
Under review as a conference paper at ICLR 2020

REVISITING BATCH NORMALIZATION FOR TRAINING
LOW-LATENCY DEEP SPIKING NEURAL NETWORKS
FROM SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) have recently emerged as an alternative to deep
learning owing to sparse, asynchronous and binary event (or spike) driven process-
ing, that can yield huge energy efficiency benefits on neuromorphic hardware. Most
existing approaches to create SNNs either convert the weights from pre-trained
Artificial Neural Networks (ANNs) or directly train SNNs with surrogate gradient
backpropagation. Each approach presents its pros and cons. The ANN-to-SNN
conversion method requires at least hundreds of time-steps for inference to yield
competitive accuracy that in turn reduces the energy savings. Training SNNs with
surrogate gradients from scratch reduces the latency or total number of time-steps,
but the training becomes slow/problematic and has convergence issues. Thus, the
latter approach of training SNNs has been limited to shallow networks on simple
datasets. To address this training issue in SNNs, we revisit batch normalization and
propose a temporal Batch Normalization Through Time (BNTT) technique. Most
prior SNN works till now have disregarded batch normalization deeming it inef-
fective for training temporal SNNs. Different from previous works, our proposed
BNTT decouples the parameters in a BNTT layer along the time axis to capture
the temporal dynamics of spikes. The temporally evolving learnable parameters in
BNTT allow a neuron to control its spike rate through different time-steps, enabling
low-latency and low-energy training from scratch. We conduct experiments on
CIFAR-10, CIFAR-100, Tiny-ImageNet and event-driven DVS-CIFAR10 datasets.
BNTT allows us to train deep SNN architectures from scratch, for the first time,
on complex datasets with just few 25-30 time-steps. We also propose an early exit
algorithm using the distribution of parameters in BNTT to reduce the latency at
inference, that further improves the energy-efficiency. Code will be made available.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have shown state-of-the-art performance across various computer
vision tasks. Nonetheless, huge energy consumption incurred for implementing ANNs on conventional
von-Neumann hardware limits their usage in low-power and resource-constrained Internet of Things
(IoT) environment, such as mobile phones, drones among others. In the context of low-power machine
intelligence, Spiking Neural Networks (SNNs) have received considerable attention in the recent past
(Roy et al. 2019; Panda et al. 2020; Cao et al. 2015; Diehl & Cook 2015; Comsa et al. 2020). Inspired
by biological neuronal mechanisms, SNNs process visual information with discrete spikes or events
over multiple time-steps. Recent works have shown that the event-driven behavior of SNNs can be
implemented on emerging neuromorphic hardware to yield 1-2 order of magnitude energy efficiency
over ANNs (Akopyan et al. 2015; Davies et al. 2018). Despite the energy efficiency benefits, SNNs
have still not been widely adopted due to inherent training challenges. The training issue arises
from the non-differentiable characteristic of a spiking neuron, generally, Integrate-and-Fire (IF) type
(Burkitt 2006), that makes SNNs incompatible with gradient descent training.

To address the training issue of SNNs, several methods, such as, Conversion and Surrogate Gradient
Descent have been proposed. In ANN-SNN conversion (Sengupta et al. 2019; Han et al. 2020;
Diehl et al. 2015; Rueckauer et al. 2017), off-the-shelf trained ANNs are converted to SNNs using
normalization methods to transfer ReLU activation to IF spiking activity. The advantage here is

1



Under review as a conference paper at ICLR 2020

*Method (total time-steps / accuracy)

(a) Conversion (1000 / 91.2%) (b) Surrogate BP (100 / 88.7%) (c) BNTT (25 / 90.5%)

Figure 1: Visualization of the average number of spikes in each layer with respect to time-steps.
Compared to (a) ANN-SNN conversion and (b) surrogate gradient-based backpropagation, our (c)
BNTT captures the temporal dynamics of spike activation with learnable parameters, enabling low-
latency (i.e., small time-steps) and low-energy (i.e., less number of spikes) training. All experiments
are conducted on CIFAR-10 with VGG9.

that training happens in the ANN domain leveraging widely used machine learning frameworks
like, PyTorch, that yield short training time and can be applied to complex datasets. But the ANN-
SNN conversion method requires large number of time-steps (∼ 500− 1000) for inference to yield
competitive accuracy, which significantly increases the latency and energy consumption of the SNN.
On the other hand, directly training SNNs with a surrogate gradient function (Neftci et al. 2019;
Lee et al. 2020; Wu et al. 2018) exploits temporal dynamics of spikes, resulting in lesser number
of time-steps (∼ 100− 150). However, the discrepancy between forward spike activation function
and backward surrogate gradient function during backpropagation restricts the training capability.
Only shallow SNNs (e.g., VGG5) can be trained using surrogate gradient descent and therefore they
achieve high performance only for simple datasets (e.g., MNIST and CIFAR-10). Recently, a hybrid
method (Rathi et al. 2020) that combines the conversion method and the surrogate gradient-based
method shows state-of-the-art performance at reasonable latency (∼ 250 time-steps). However, the
hybrid method incurs sequential processes, i.e., training ANN from scratch, conversion of ANN to
SNN, and training SNNs using surrogate gradient descent, that increases the total computation cost
to obtain the final SNN model. Overall, training high-accuracy and low-latency SNNs from scratch
still remains an open problem.

In this paper, we revisit Batch Normalization (BN) for more advanced SNN training. The BN layer
(Ioffe & Szegedy 2015) has been used extensively in deep learning to accelerate the training process
of ANNs. It is well known that BN reduces internal covariate shift (or soothing optimization landscape
(Santurkar et al. 2018)) mitigating the problem of exploding/vanishing gradients. However, till now,
numerous studies on surrogate gradient of SNNs (Lee et al. 2016) have witnessed that BN does
not help with SNN optimization. Moreover, most ANN-SNN conversion methods (Sengupta et al.
2019) get rid of BN since time-sequential spikes with BN set the firing threshold of all neurons to
non-discriminative/similar values across all inputs, resulting in accuracy decline.

Motivation & Contribution: A natural question then arises: Can standard BN capture the proper
structure of temporal dynamics of spikes in SNNs? Through this paper, we assert that standard
BN hardly captures temporal characteristics as it represents the statistics of total time-steps as one
common parameter. Thus, a temporally adaptive BN approach is required. To this end, we propose a
new SNN-crafted batch normalization layer called Batch Normalization Through Time (BNTT) that
decouples the parameters in the BN layer across different time-steps. BNTT is implemented as an
additional layer in SNNs and is trained with surrogate gradient backpropagation. To investigate the
effect of our BNTT, we compare the statistics of spike activity of BNTT with previous approaches:
Conversion (Sengupta et al. 2019) and standard Surrogate Gradient Descent (Neftci et al. 2019), as
shown in Fig. 1. Interestingly, different from the conversion method and surrogate gradient method
(without BNTT) that maintain reasonable spike activity during the entire time period across different
layers, spike activity of layers trained with BNTT follows a gaussian-like trend. BNTT imposes
a variation in spiking across different layers, wherein, each layer’s activity peaks in a particular
time-step range and then decreases. Moreover, the peaks for early layers occur at initial time-steps
and latter layers peak at later time-steps. This phenomenon implies that learnable parameters in
BNTT enable the networks to pass the visual information temporally from shallow to deeper layers
in an effective manner.

2



Under review as a conference paper at ICLR 2020

The newly observed characteristics of BNTT brings several advantages. First, similar to BN, the
BNTT layer enables SNNs to be trained stably from scratch even for large-scale datasets. Second,
learnable parameters in BNTT enable SNNs to be trained with low latency (∼ 25− 50 time-steps)
and impose optimum spike activity across different layers for low-energy inference. Finally, the
distribution of the BNTT learnable parameter (i.e., γ) is a good representation of the temporal
dynamics of spikes. Hence, relying on the observation that low γ value induces low spike activity
and vice-versa, we further propose a temporal early exit algorithm. Here, an SNN can predict at an
earlier time-step and does not need to wait till the end of the time period to make a prediction.

In summary, our key contributions are as follows: (i) For the first time, we introduce a batch
normalization technique for SNNs, called BNTT. (ii) BNTT allows SNNs to be implemented in a
low-latency and low-energy environment. (iii) We further propose a temporal early exit algorithm at
inference time by monitoring the learnable parameters in BNTT. (iv) To ascertain that BNTT captures
the temporal characteristics of SNNs, we mathematically show that proposed BNTT has similar effect
as controlling the firing threshold of the spiking neuron at every time step during inference.

2 BATCH NORMALIZATION

Batch Normalization (BN) reduces the internal covariate shift (or variation of loss landscape (San-
turkar et al. 2018)) caused by the distribution change of input signal, which is a known problem of
deep neural networks (Ioffe & Szegedy 2015). Instead of calculating the statistics of total dataset, the
intermediate representations are standardized with a mini-batch to reduce the computation complexity.
Given a mini-batch B = {x1,...,m}, the BN layer computes the mean and variance of the mini-batch
as:

µB =
1

m

m∑
i=1

xi; σ2
B =

1

m

m∑
i=1

(xi − µB)2. (1)

Then, the input features in the mini-batch are normalized with calculated statistics as:

x̂i =
xi − µB√
σ2
B + ε

, (2)

where, ε is a small constant for numerical stability. To further improve the representation capability
of the layer, learnable parameters γ and β are used to transform the input features that can be
formulated as BN(xi) = γx̂i + β. At inference time, BN uses the running average of mean and
variance obtained from training. Previous works show that the BN layer not only improves the
performance but also reduces the number of iterations required for training convergence. Therefore,
BN is an indispensable training component for all ANN models, such as convolutional neural networks
(Simonyan & Zisserman 2014) and recurrent neural networks (Greff et al. 2016). On the other hand,
the effectiveness of BN in bio-plausible SNNs has not been observed yet.

3 METHODOLOGY

3.1 SPIKING NEURAL NETWORKS

Different from conventional ANNs, SNNs transmit information using binary spike trains. To leverage
the temporal spike information, Leaky-Integrate-and-Fire (LIF) model (Dayan et al. 2001) is widely
used to emulate neuronal functionality in SNNs, which can be formulated as a differential equation:

τm
dUm
dt

= −Um +RI(t), (3)

where, Um represents the membrane potential of the neuron that characterizes the internal state of
the neuron, τm is the time constant of membrane potential decay. Also, R and I(t) denote the input
resistance and the input current at time t, respectively. Following the previous work (Wu et al. 2019),
we convert this continuous dynamic equation into a discrete equation for digital simulation. For a
single post-synaptic neuron i, we can represent the membrane potential uti at time-step t as:

uti = λut−1i +
∑
j

wijo
t
j . (4)

Here, j is the index of a pre-synaptic neuron, λ is a leak factor with value less than 1, oj is the binary
spike activation, and wij is the weight of the connection between pre- and post-neurons. From Eq. 4,
the membrane potential of a neuron decreases due to leak and increases due to the weighted sum of
incoming input spikes.

3



Under review as a conference paper at ICLR 2020

Figure 2: (a) Illustration of spike activities in Leaky-
Integrate-and-Fire neurons. (b) The approximated gra-
dient value with respect to the membrane potential.

If the membrane potential u exceeds a pre-
defined firing threshold θ, the LIF neuron
i generates a binary spike output oi. Af-
ter that, we perform a soft reset, where the
membrane potential ui is reset by reducing
its value by the threshold θ. Compared to
a hard reset (resetting the membrane poten-
tial ui to zero after neuron i spikes), the
soft reset minimizes information loss by
maintaining the residual voltage and carry-
ing it forward to the next time step, thereby
achieving better performance (Han et al. 2020). Fig. 2(a) illustrates the membrane potential dynamics
of a LIF neuron.

For the output layer, we discard the thresholding functionality so that neurons do not generate any
spikes. We allow the output neurons to accumulate the spikes over all time-steps by fixing the leak
parameter (λ in Eq. 4) as one. This enables the output layer to compute probability distribution after
softmax function without information loss. As with ANNs, the number of output neurons in SNNs is
identical to the number of classes C in the dataset. From the accumulated membrane potential, we
can define the cross-entropy loss for SNNs as:

L = −
∑
i

yilog(
eu

T
i∑C

k=1 e
uT
k

), (5)

where, y is the ground-truth label, and T represents the total number of time-steps. Then, the weights
of all layers are updated by backpropagating the loss value with gradient descent.

To compute the gradients of each layer l, we use back-propagation through time (BPTT), which accu-
mulates the gradients over all time-steps (Neftci et al. 2019). These approaches can be implemented
with auto-differentiation tools, such as PyTorch (Paszke et al. 2017), that enable backpropagation
on the unrolled network. To this end, we compute the loss function at time-step T and use gradient
descent optimization. Mathematically, we can define the accumulated gradients at the layer l by chain
rule as:

∆Wl =
∑
t

∂L

∂W t
l

=


∑
t
∂L
∂oti

∂oti
∂ut

i

∂ut
i

∂W t
l
, if layer l is a hidden layer∑

t
∂L
∂uT

i

∂uT
i

∂W t
l
. if layer l is an output layer

(6)

For the output layer, we can get the derivative of the loss L with respect to the membrane potential
uTi at final time-step T :

∂L

∂uTi
=

eu
T
i∑C

k=1 e
uT
k

− yi. (7)

This derivative function is continuous and differentiable for all possible membrane potential values.
On the other hand, LIF neurons in hidden layers generate spike output only if the membrane potential
uti exceeds the firing threshold, leading to non-differentiability. To deal with this problem, we
introduce an approximate gradient:

∂oti
∂uti

= αmax{0, 1− |u
t
i − θ
θ
|}, (8)

where, α is a damping factor for back-propagated gradients. Note, a large α value causes unstable
training as gradients are summed over all time-steps. Hence, we set α to 0.3. Overall, we update the
network parameters at the layer l based on the gradient value (Eq. 6) as Wl = Wl − η∆Wl.

3.2 BATCH NORMALIZATION THROUGH TIME (BNTT)

The main contribution of this paper is a new SNN-crafted Batch Normalization (BN) technique.
Naively applying BN does not have any effect on training SNNs. This is because using the same
BN parameters (e.g., global mean µ, global variation σ, and learnable parameter γ) for the statistics
of all time-steps do not capture the temporal dynamics of input spike trains. For example, an LIF
neuron requires at least one time-step to propagate spikes to the next layer. Therefore, input signals

4



Under review as a conference paper at ICLR 2020

for the third layer of an SNN will have a zero value till t = 2. Following the initial spike activity in
the layer at t = 2, the spike signals vary depending upon the weight connections and the membrane
potentials of previous layers. Therefore, a fixed global mean from a standard BN layer may not store
any time-specific information, resulting in performance degradation at inference.

To resolve this issue, we vary the internal parameters in a BN layer through time, that we define as,
BNTT. Similar to the digital simulation of LIF neuron across different time-steps, one BNTT layer is
expanded temporally with a local learning parameter associated with each time-step. This allows the
BNTT layer to capture temporal statistics (see Section 3.3 for mathematical analysis). The proposed
BNTT layer is easily applied to SNNs by inserting the layer after convolutional/linear operations as:

uti = λut−1i +BNTTγt(
∑
j

wijo
t
j) = λut−1i + γti (

∑
j wijo

t
j − µti√

(σti)
2 + ε

). (9)

During the training process, we compute the mean µti and variance σti from the samples in a mini-
batch B for each time step t, as shown in Algorithm 1. Note, for each time-step t, we apply an
exponential moving average to approximate global mean µ̄ti and variance σ̄ti over training iterations.
These global statistics are used to normalize the test data at inference. Also, we do not utilize β as in
conventional BN, since it adds redundant voltage to the membrane potential of SNNs.

Adding the BNTT layer to LIF neuron changes the gradient calculation for backpropagation. Given
that xti =

∑
j wijo

t
j is an input signal to the BNTT layer, we can reformulate the accumulated

gradients at layer l (Eq. 6) by multiplying the derivative of the membrane potential with respect to
the weighted summed input signal:

∆Wl =
∑
t

∂L

∂oti

∂oti
∂uti

∂uti
∂xti

∂xti
∂W t

l

. (10)

Here, we can calculate the new derivative term as:

∂uti
∂xti

=
∂uti
∂x̂ti

∂x̂ti
∂xti

+
∂uti
∂µti

∂µti
∂xti

+
∂uti
∂(σti)

2

∂(σti)
2

∂xti

=
1

m
√

(σti)
2 + ε

m∂uti
∂x̂ti
−

m∑
j=1

∂uti
∂x̂tj
− x̂ti

m∑
j=1

∂uti
∂x̂tj

x̂tj

 .

(11)

For every time-step t, gradients are calculated based on the time-specific statistics of input signals.
This allows the networks to take into account temporal dynamics for training weight connections.
Moreover, a learnable parameter γ is updated to restore the representation power of the batch
normalized signal. Since we use different γt values across all time-steps, γt finds an optimum over
each time-step for efficient inference. We update gamma γt = γt − η∆γt where ∆γt is:

∆γt =
∂L

∂γt
=

m∑
i=1

∂L

∂uti
x̂ti =

m∑
i=1

∂L

∂uti

xti − µti√
(σti)

2 + ε
. (12)

3.3 MATHEMATICAL ANALYSIS

In this section, we discuss the connections between BNTT and the firing threshold of a LIF neuron.
Specifically, we formally prove that using BNTT has a similar effect as varying the firing threshold
over different time-steps, thereby ascertaining that BNTT captures temporal characteristics in SNNs.
Recall that BNTT normalizes the input signal using stored approximated global average µ̄ti and
standard deviation (σ̄i

t)2 at inference. From Eq. 9, we can calculate a membrane potential at time-
step t = 1, given that initial membrane potential u0i has a zero value:

u1i = γ1i (

∑
j wijo

1
j − µ̄1

i√
(σ̄1
i )2 + ε

) ≈ γ1i√
(σ̄1
i )2 + ε

∑
j

wijo
1
j =

γ1i√
(σ̄1
i )2 + ε

ũ1i . (13)

Here, we assume µ̄1
i can be neglected with small signal approximation due to the spike sparsity in

SNNs, and ũ1i =
∑
j wijo

1
j is membrane potential at time-step t = 1 without BNTT (obtained from

Eq. 4). We can observe that the membrane potential with BNTT is proportional to the membrane

5



Under review as a conference paper at ICLR 2020

potential without BNTT at t = 1. For time-step t > 1, we should take into account the membrane
potential from the previous time-step, which is multiplied by leak λ. To this end, by substituting Eq.
13 in the BNTT equation (Eq. 9), we can formulate the membrane potential at t = 2 as:

u2i ≈ λu1i +
γ2i√

(σ2
i )2 + ε

∑
j

wijo
2
j

= (
λγ1i√

(σ1
i )2 + ε

)ũ1i +
γ2i√

(σ2
i )2 + ε

∑
j

wijo
2
j

≈ γ2i√
(σ2
i )2 + ε

{λũ1i +
∑
j

wijo
2
j} =

γ2i√
(σ2
i )2 + ε

ũ2i .

(14)

In the third line, the learnable parameter γti and σti have similar values in adjacent time intervals
(t = 1, 2) because of continuous time property. Hence, we can approximate γ1i and σ1

i as γ2i and σ2
i ,

respectively. Finally, we can extend the equation of BNTT to the time-step t:

uti ≈
γti√

(σti)
2 + ε

ũti. (15)

Considering that a neuron produces an output spike activation whenever the membrane potential ũti
exceeds the pre-defined firing threshold θ, the spike firing condition with BNTT can be represented
uti ≥ θ. Comparing with the threshold of a neuron without BNTT, we can reformulate the firing
condition as:

ũti ≥
√

(σti)
2 + ε

γti
θ. (16)

Thus, we can infer that using a BNTT layer changes the firing threshold value by
√

(σti)
2 + ε/γti

at every time-step. In practice, BNTT results in an optimum γ during training that improves the
representation power, producing better performance and low-latency SNNs.This observation allows us
to consider the advantages of time-varying learnable parameters in SNNs. This implication is in line
with previous work (Han et al. 2020), which insists that manipulating the firing threshold improves
the performance and latency of the ANN-SNN conversion method. However, Han et al. change the
threshold value in a heuristic way without any optimization process and fix the threshold value across
all time-steps. On the other hand, our BNTT yields time-specific γt which can be optimized via
back-propagation.

Algorithm 1 BNTT layer
Input: mini-batch at time step t (B =
xt{1...m}), learnable parameter (γt), update
factor (α)
Output: {yti = BNTTγt(x

t
i)}

1: µti ← 1
m

∑m
i=1 x

t
i

2: (σti)
2 ← 1

m

∑m
i=1(xti − µti)2

3: x̂ti =
xti−µ

t
i√

(σt
i)

2+ε

4: yti ← γtx̂ti ≡ BNTTγt(x
t
i)

5: % Exponential moving average
6: µ̄ti ← (1− α)µ̄ti + αµti
7: σ̄ti ← (1− α)σ̄ti + ασti

Algorithm 2 Training process with BNTT
Input: mini-batch (X); label set (Y ); max timestep (T )
Output: updated network weights
1: for i← 1 to max iter do
2: fetch a mini batch X
3: for t← 1 to T do
4: O← PoissonGenerator(X)
5: for l← 1 to L− 1 do
6: (ol, ut)← (λ, ut−1,BNTTγt(Wl, o

l−1))
7: end for
8: % For final layer, stack the voltage
9: (oL, ut)←(ut−1BNTTγt(Wl, o

L−1))
10: end for
11: % Calculate the loss and back-propagation
12: L← (uT , Y )
13: end for

3.4 EARLY EXIT ALGORITHM

The main objective of early exit is to reduce the latency during inference (Teerapittayanon et al. 2016;
Panda et al. 2016). Most previous methods (Wu et al. 2018; Lee et al. 2020; Sengupta et al. 2019;
Rathi et al. 2020; Han et al. 2020) accumulate output spikes till the end of the time-sequence, at
inference, since all layers generate spikes across all time-steps as shown in Fig. 1(a) and Fig. 1(b). On
the other hand, learnable parameters in BNTT manipulate the spike activity of each layer to produce a

6



Under review as a conference paper at ICLR 2020

Figure 3: The average value of γ at each layer over all time-steps. Early exit time can be calculated as
t = 20 since γ values at every layer have lower value than threshold 0.1 after time-step 20 (yellow
dotted line). Here, we use a VGG9 architecture on CIFAR-10.

peak value, which falls again (a gaussian-like trend), as shown in Fig. 1(c). This phenomenon shows
that SNNs using BNTT convey little information at the end of spike trains.

Inspired by this observation, we propose a temporal early exit algorithm based on the value of γt.
From Eq. 16, we know that a low γt value increases the firing threshold, resulting in low spike activity.
A high γt value, in contrast, induces more spike activity. It is worth mentioning that (σti)

2 shows
similar values across all time-steps and therefore we only focus on γt. Given that the intensity of
spike activity is proportional to γt, we can infer that spikes will hardly contribute to the classification
result once γt values across every layer drop to a minimum value. Therefore, we measure the average
of γt values in each layer l at every time-step, and terminate the inference when γt value in every
layer is below a pre-determined threshold. For example, as shown in Fig. 3, we observe that all
averaged γt values are lower than threshold 0.1 after t > 20. Therefore, we define the early exit
time at t = 20. Note that we can determine the optimum time-step for early exit before forward
propagation without any additional computation. In summary, the temporal early exit method enables
us to find the earliest time-step during inference that ensures integration of crucial information, in
turn reducing the inference latency without significant loss of accuracy.

3.5 OVERALL OPTIMIZATION

Algorithm 2 summarizes the whole training process of SNNs with BNTT. Our proposed BNTT acts
as a regularizer, unlike previous methods (Lee et al. 2020; Sengupta et al. 2019; Lee et al. 2016; Rathi
et al. 2020) that use dropout to perform regularization. Our training scheme is based on widely used
rate coding where the spike generator produces a Poisson spike train for each pixel in the image with
frequency proportional to the pixel intensity (Roy et al. 2019). For all layers, the weighted sum of the
input signal is passed through a BNTT layer and then is accumulated in the membrane potential. If the
membrane potential exceeds the firing threshold, the neuron generates an output spike. For last layer,
we accumulate the input voltage over all time-steps without leak, that we feed to a softmax layer to
output a probability distribution. Then, we calculate a cross-entropy loss function and gradients for
weight of each layer with the approximate gradient function. During the training phase, a BNTT layer
computes the time-dependent statistics (i.e., µt and σt) and stores the moving-average global mean
and variance. At inference, we first define the early exit time-step based on the value of γ in BNTT.
Then, the networks classify the test input (note, test data normalized with pre-computed global µ̄t, σ̄t
BNTT statistics) based on the accumulated output voltage at the pre-computed early exit time-step.

4 EXPERIMENTS

In this section, we carry out comprehensive experiments on public classification datasets. Till now,
training SNNs from scratch with surrogate gradient has been limited to simple datasets, e.g., CIFAR-
10, due to the difficulty of direct optimization. In this paper, for the first time, we train SNNs
with surrogate gradients from scratch and report the performance on large-scale datasets including
CIFAR-100 and Tiny-ImageNet with multi-layered network architectures. We first compare our
BNTT with previous SNNs training methods. Then, we quantitatively and qualitatively demonstrate
the effectiveness of our proposed BNTT.

4.1 EXPERIMENTAL SETUP

We evaluate our method on three static datasets (i.e., CIFAR-10, CIFAR-100, Tiny-ImageNet) and one
neuromophic dataset (i.e., DVS-CIFAR10). CIFAR-10 (Krizhevsky et al. 2009) consists of 60,000
images (50,000 for training / 10,000 for testing) with 10 categories. All images are RGB color images
whose size are 32 × 32. CIFAR-100 has the same configuration as CIFAR-10, except it contains

7



Under review as a conference paper at ICLR 2020

Table 1: Classification Accuracy (%) on CIFAR-10, CIFAR-100, Tiny-ImageNet, and DVS-CIFAR10.
Dataset Training Method Architecture Time-steps Accuracy(%)

Cao et al. (2015) CIFAR-10 ANN-SNN Conversion 3Conv, 2Linear 400 77.4
Sengupta et al. (2019) CIFAR-10 ANN-SNN Conversion VGG16 2500 91.5
Lee et al. (2020) CIFAR-10 Surrogate Gradient VGG9 100 90.4
Rathi et al. (2020) CIFAR-10 Hybrid VGG16 200 92.0
Han et al. (2020) CIFAR-10 ANN-SNN Conversion VGG16 2048 93.6
w.o. BNTT CIFAR-10 Surrogate Gradient VGG9 100 88.7
BNTT (ours) CIFAR-10 Surrogate Gradient VGG9 25 90.5
BNTT + Early Exit (ours) CIFAR-10 Surrogate Gradient VGG9 20 90.3

Sengupta et al. (2019) CIFAR-100 ANN-SNN Conversion VGG16 2500 70.9
Rathi et al. (2020) CIFAR-100 Hybrid VGG16 125 67.8
Han et al. (2020) CIFAR-100 ANN-SNN Conversion VGG16 2048 70.9
w.o. BNTT CIFAR-100 Surrogate Gradient VGG11 n/a n/a
BNTT (ours) CIFAR-100 Surrogate Gradient VGG11 50 66.6
BNTT + Early Exit (ours) CIFAR-100 Surrogate Gradient VGG11 30 65.8

Sengupta et al. (2019) Tiny-ImageNet ANN-SNN Conversion VGG16 2500 48.6
w.o. BNTT Tiny-ImageNet Surrogate Gradient VGG11 n/a n/a
BNTT (ours) Tiny-ImageNet Surrogate Gradient VGG11 30 57.8
BNTT + Early Exit (ours) Tiny-ImageNet Surrogate Gradient VGG11 25 56.8

Orchard et al. (2015) DVS-CIFAR10 Random Forest - - 31.0
Lagorce et al. (2016) DVS-CIFAR10 HOTS - - 27.1
Sironi et al. (2018) DVS-CIFAR10 HAT - - 52.4
Sironi et al. (2018) DVS-CIFAR10 Gabor-SNN - - 24.5
Wu et al. (2019) DVS-CIFAR10 Surrogate Gradient - - 60.5
w.o. BNTT DVS-CIFAR10 Surrogate Gradient - - 25.0
BNTT (ours) DVS-CIFAR10 Surrogate Gradient - - 63.2

(a) (b)

Figure 4: (a) Visualization layer-wise spike activity (log scale) in VGG9 on CIFAR-10 dataset. (b)
Performance change with respect to the standard deviation of the Gaussian noise.

images from 100 categories. Tiny-ImageNet is the modified subset of the original ImageNet dataset.
Here, there are 200 different classes of ImageNet dataset (Deng et al. 2009), with 100,000 training
and 10,000 validation images. The resolution of the images is 64×64 pixels. DVS-CIFAR10 (Li et al.
2017) has the same configuration as CIFAR-10. This discrete event-stream dataset is collected by
moving the event-driven camera. We follow the similar data pre-processing protocol and a network
architecture used in previous work (Wu et al. 2019) (details in Appendix A). Our implementation is
based on Pytorch (Paszke et al. 2017). We train the networks with standard SGD with momentum
0.9, weight decay 0.0005 and also apply random crop and horizontal flip to input images. The base
learning rate is set to 0.3 and we use step-wise learning rate scheduling with a decay factor 10 at 50%,
70%, and 90% of the total number of epochs. Here, we set the total number of epochs to 120, 240, 90,
and 60 for CIFAR-10, CIFAR-100, Tiny-ImageNet, and DVS-CIFAR10, respectively.

4.2 COMPARISON WITH PREVIOUS METHODS

On public datasets, we compare our proposed BNTT method with previous rate-coding based SNN
training methods, including ANN-SNN conversion (Han et al. 2020; Sengupta et al. 2019; Cao et al.
2015), surrogate gradient back-propagation (Lee et al. 2020), and hybrid (Rathi et al. 2020) methods.
From Table 1, we can observe some advantages and disadvantages of each training method. The
ANN-SNN conversion method performs better than the surrogate gradient method across all datasets.
However, they require large number of time-steps for training and testing, which is energy-inefficient
and impractical in a real-time application. The hybrid method aims to resolve this high-latency
problem, but it still requires over hundreds of time-steps. The surrogate gradient method suffers
from poor optimization and hence cannot be scaled to larger datasets such as CIFAR-100 and Tiny-
ImageNet. Our BNTT is based on the surrogate gradient method, however, it enables SNNs to achieve
high performance even for more complicated datasets. At the same time, we dramatically reduce the
latency due to the inclusion of learnable parameters and temporal statistics in the BNTT layer. As a
result, BNTT can be trained with 25 time-steps on a simple CIFAR-10 dataset, while preserving state-

8



Under review as a conference paper at ICLR 2020

Figure 5: Histogram visualization of γ at conv1 (row1), conv4 (row2), and conv7 (row3) layers in
VGG9 across all time-steps. The experiments are conducted on CIFAR-10 with 25 time-steps.

of-the-art accuracy. For CIFAR-100, we achieve about 40× and 2× faster inference speed compared
to the conversion methods and the hybrid method, respectively. Interestingly, for Tiny-ImageNet,
BNTT achieves better performance and shorter latency compared to previous conversion method.
Note that ANN with VGG16 architecture used for ANN-SNN conversion achieves 51.9% accuracy.
Moreover, using an early exit algorithm further reduces the latency by ∼ 20%, which enables the
networks to be implemented with lower-latency and energy-efficiency. It is worth mentioning that
surrogate gradient method without BNTT (w.o. BNTT in Table 1) only converges on CIFAR-10.
For neuromorphic DVS-CIFAR10 dataset, ANN-SNN Conversion methods are not applicable since
ANNs hardly capture the temporal dynamic of a spike train. Using BNTT significantly improves the
performance from the surrogate gradient baseline (i.e., w.o. BNTT), and achieves the state-of-the-art
performance. These results show that out BNTT technique is very effective on event-driven data and
hence well-suited for neuromorphic applications.

Table 2: Energy table for 45nm CMOS process.
Operation Energy(pJ)

32bit FP MULT (EMULT ) 3.7
32bit FP ADD (EADD) 0.9
32bit FP MAC (EMAC) 4.6 (= EMULT + EADD)

32bit FP AC (EAC) 0.9

Table 3: Energy efficiency comparison.
Method Latency Accuracy (%) EANN/Emethod

VGG9 (ANN) 1 91.5 1×
Conversion 1000 91.2 0.32×
Conversion 500 90.9 0.55×
Conversion 100 89.3 2.71×
Surrogate Gradient 100 88.7 1.05×
BNTT 25 90.5 9.14×

4.3 ENERGY COMPARISON

We compare the layer-wise spiking activities of our BNTT with two widely-used methods, i.e.,
ANN-SNN conversion method (Sengupta et al. 2019) and surrogate gradient method (w.o. BNTT)
(Neftci et al. 2019). Note, we refer to our approach as BNTT and standard surrogate approach w.o.
BNTT as surrogate gradient in the remainder of the text. Specifically, we calculate the spike rate
of each layer l, which can be defined as the total number of spikes at layer l over total time-steps T
divided by the number of neurons in layer l (see Appendix B for the equation of spike rate). In Fig.
4(a), converted SNNs show a high spike rate for every layer as they forward spike trains through a
larger number of time-steps compared to other methods. Even though the surrogate gradient method
uses less number of time-steps, it still requires nearly hundreds of spikes for each layer. Compared to
these methods, we can observe that BNTT significantly improves the spike sparsity across all layers.

More precisely, as done in previous works (Park et al. 2020; Lee et al. 2016), we compute the energy
consumption for SNNs in standard CMOS technology (Horowitz 2014) as shown in Table 2 by
calculating the net multiplication-and-accumulate (MAC) operations. As the computation of SNNs
are event-driven with binary {1, 0} spike processing, the MAC operation reduces to just a floating
point (FP) addition. On the other hand, conventional ANNs still require one FP addition and one FP
multiplication to conduct the same MAC operation (see Appendix B for more detail). Table 3 shows
the energy efficiency of ANNs and SNNs with a VGG9 architecture (Simonyan & Zisserman 2014)
on CIFAR-10. As expected, ANN-SNN conversion yields a trade-off between accuracy and energy
efficiency. For the same latency, the surrogate gradient method expends higher energy compared to
the conversion method. It is interesting to note that even though our BNTT is trained based on the
surrogate gradient method, we get ∼ 9× improvement in energy efficiency compared to ANNs.

9



Under review as a conference paper at ICLR 2020

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet

Figure 6: Visualization of accuracy and early exit time with respect to the threshold value for γ.

4.4 ANALYSIS ON LEARNABLE PARAMETERS IN BNTT

The key observation of our work is the change of γ across time-steps. To analyze the distribution of
the learnable parameters in our BNTT, we visualize the histogram of γ in conv1, conv4, and conv7
layers in VGG9 as shown in Fig. 5. Interestingly, all layers show different temporal evolution of
gamma distributions. For example, conv1 has high γ values at the initial time-steps which decrease as
time goes on. On the other hand, starting from small values, the γ values in conv4 and conv7 layers
peak at t = 9 and t = 13, respectively, and then shrink to zero at later time-steps. Notably, the peak
time is delayed as the layer goes deeper, implying that the visual information is passed through the
network sequentially over a period of time similar to Fig.1(c). This gaussian-like trend with rise and
fall of γ across different time-steps can support the explanation of overall low spike activity compared
to other methods (Fig. 4(a)).

4.5 ANALYSIS ON EARLY EXIT

Recall that we measure the average of γ values in each layer at every time-step, and stop the inference
when all γ values in every layer is lower than a predetermined threshold. To further investigate this,
we vary the predetermined threshold and show the accuracy and exit time Texit trend. As shown in
Fig. 6, we observe that high threshold enables the networks to infer at earlier time-steps. Although
we use less number time-steps during inference, the accuracy drops marginally. This implies that
BNTT rarely sends crucial information at the end of spike train (see Fig. 1(c)). Note that the temporal
evolution of learnable parameter γ with our BNTT allows us to exploit the early exit algorithm that
yields a huge advantage in terms of reduced latency at inference. Such strategy has not been proposed
or explored in any prior works that have mainly focused on reducing the number of time-steps during
training without effectively using temporal statistics.

4.6 ANALYSIS ON ROBUSTNESS

Finally, we highlight the advantage of BNTT in terms of the robustness to noisy input. To investigate
the effect of our BNTT for robustness, we evaluate the performance change in the SNNs as we feed
in inputs with varyling levels of noise. We generate the noisy input by adding Gaussian noise (0, σ2)
to the clean input image. From Fig. 4 (b), we observe the following: i) The accuracy of conversion
method degrades considerably for σ > 0.4. ii) Compared to ANNs, SNNs trained with surrogate
gradient back-propagation shows better performance at higher noise intensity. Still, they suffer from
large accuracy drops in presence of noisy inputs. iii) BNTT achieves significantly higher performance
than the other methods across all noise intensities. This is because using BNTT decreases the overall
number of time-steps which is a crucial contributing factor towards robustness (Sharmin et al. 2020).
These results imply that, in addition to low-latency and energy-efficiency, our BNTT method also
offers improved robustness for suitably implementing SNNs in a real-world scenario.

5 CONCLUSION

In this paper, we revisit the batch normalization technique and propose a novel mechanism for training
low-latency, energy-efficient, robust, and accurate SNNs from scratch. Our key idea is to extend the
effect of batch normalization to the temporal dimension with time-specific learnable parameters and
statistics. We discover that optimizing learnable parameters γ during the training phase enables visual
information to be passed through the layers sequentially. This reduces the number of time-steps with
increased spike sparsity while preserving accuracy. For the first time, we directly train SNNs on large
datasets such as CIFAR-100 and Tiny-ImageNet, which opens up the potential advantage of surrogate
gradient-based backpropagation for future practical research in SNNs.

10



Under review as a conference paper at ICLR 2020

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

Anthony N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.
Biological cybernetics, 95(1):1–19, 2006.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66, 2015.

Iulia M Comsa, Thomas Fischbacher, Krzysztof Potempa, Andrea Gesmundo, Luca Versari, and
Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8529–8533. IEEE, 2020.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Peter Dayan, Laurence F Abbott, et al. Theoretical neuroscience, vol. 806, 2001.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. ieee, 2015.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222–2232, 2016.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13558–13567,
2020.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14.
IEEE, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad B Benosman. Hots:
a hierarchy of event-based time-surfaces for pattern recognition. IEEE transactions on pattern
analysis and machine intelligence, 39(7):1346–1359, 2016.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy.
Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in
Neuroscience, 14, 2020.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10:508, 2016.

11



Under review as a conference paper at ICLR 2020

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks. IEEE Signal Processing Magazine, 36:61–63, 2019.

Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings, Christoph Posch, Nitish Thakor, and
Ryad Benosman. Hfirst: a temporal approach to object recognition. IEEE transactions on pattern
analysis and machine intelligence, 37(10):2028–2040, 2015.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pp. 475–480. IEEE, 2016.

Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accurate deep
spiking neural networks with backward residual connections, stochastic softmax, and hybridization.
Frontiers in Neuroscience, 14, 2020.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: Deep spiking neural
networks with time-to-first-spike coding. arXiv preprint arXiv:2003.11741, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
sion of continuous-valued deep networks to efficient event-driven networks for image classification.
Frontiers in neuroscience, 11:682, 2017.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In Advances in Neural Information Processing Systems, pp. 2483–2493,
2018.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Saima Sharmin, Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Inherent adversarial robustness
of deep spiking neural networks: Effects of discrete input encoding and non-linear activations.
arXiv preprint arXiv:2003.10399, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman. Hats:
Histograms of averaged time surfaces for robust event-based object classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740, 2018.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pp. 2464–2469. IEEE, 2016.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311–1318, 2019.

12


	Introduction
	Batch Normalization
	Methodology
	Spiking Neural Networks
	Batch Normalization Through Time (BNTT)
	Mathematical Analysis
	Early Exit Algorithm
	Overall Optimization

	Experiments
	Experimental Setup
	Comparison with Previous Methods
	Energy Comparison
	Analysis on Learnable Parameters in BNTT
	Analysis on Early Exit
	Analysis on Robustness

	Conclusion

