

000 001 002 003 004 005 REINFORCING AGENTIC SEARCH VIA REWARD DEN- 006 SITY OPTIMIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) is a promising approach for enhancing agentic deep search. However, its application is often hindered by low **Reward Density** in deep search scenarios, where agents expend significant exploratory costs for infrequent and often null final rewards. In this paper, we formalize this challenge as the **Reward Density Optimization** problem, which aims to improve the reward obtained per unit of exploration cost. This paper introduce **InfoFlow**, a systematic framework that tackles this problem from three aspects. 1) **Sub-goal Scaffolding**: breaking down long-range tasks to assign process rewards, thereby providing denser learning signals. 2) **Pathfinding Hints**: injecting corrective guidance into stalled trajectories to increase the probability of successful outcomes. 3) **Dual-agent refinement**: employing a dual-agent architecture to offload the cognitive burden of deep exploration. A refiner agent synthesizes the search history, which effectively compresses the researcher's perceived trajectory, thereby reducing exploration cost and increasing the overall reward density. We evaluate InfoFlow on multiple agentic search benchmarks, where it significantly outperforms strong baselines, enabling lightweight LLMs to achieve performance comparable to advanced proprietary LLMs. Our codes are in *this repository*.

1 INTRODUCTION

Large language models (LLMs) have become essential tools for information seeking in daily life (Zhao et al., 2023; Gao et al., 2023). As their applications expand, users increasingly expect LLMs to handle not only factual queries but also complex, multi-step tasks requiring knowledge discovery and synthesis. However, because an LLM's internal knowledge is limited and quickly outdated, relying solely on parametric memory is insufficient for knowledge-intensive tasks (Vu et al., 2023). Addressing such challenges requires integrating external knowledge sources and moving beyond surface-level retrieval toward deeper reasoning and information synthesis (Shi et al., 2023). Most existing approaches follow the retrieval-augmented generation (RAG) paradigm (Gao et al., 2023), which treats the input as a query and retrieves relevant documents for generation. While effective for factual questions, RAG struggles with hierarchical or implicit information needs (Asai et al., 2023; Qian et al., 2025). Extensions such as query rewriting, iterative retrieval, and self-refinement (Ma et al., 2023; Jiang et al., 2023; Madaan et al., 2023) improve flexibility but remain bound to a *pre-inference* design that retrieves information before reasoning begins, limiting adaptability in dynamic, multi-step tasks.

Inspired by reasoning-centric models (OpenAI, 2024; DeepSeek-AI, 2025), recent studies adopt the *search-integrated reasoning* (SIR) paradigm (Yao et al., 2023; Chen et al., 2025a; Xue et al., 2025; Huang et al., 2025), which interleaves reasoning and search to adaptively incorporate external knowledge at each step (Li et al., 2025c; Jin et al., 2025b; Li et al., 2025b). However, current LLMs lack native mechanisms to invoke external search tools. Early SIR implementations relied on manually crafted prompts and exhibited limited generalization (Li et al., 2025a). To overcome this, *Reinforcement Learning with Verifiable Rewards* (RLVR) has emerged as an effective approach for training LLMs to conduct agentic deep search. RLVR enables models to learn search-integrated reasoning policies via trajectory rollouts and final reward-driven optimization (Jin et al., 2025b;a; Qian & Liu, 2025).

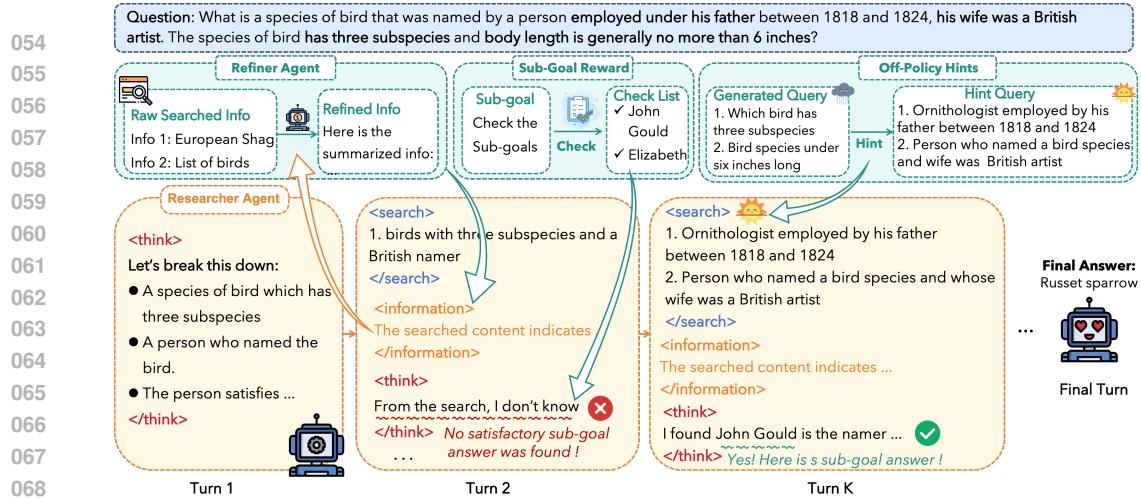


Figure 1: The framework of InfoFlow and example of DSQA task. Researcher agent focuses on reasoning and planning, refiner agent synthesizes massive searched content into condensed info.

Despite its promise, RLVR for deep search suffers from **low reward density**, which we define as total reward per unit exploration cost (i.e., per trajectory length). Deep search tasks typically require multiple turns of reasoning-searching exploration before producing a final answer. As *trajectory length increases*, success rates decline rapidly, since a single reasoning error can accumulate to invalidate the entire trajectory. Moreover, recent work highlights that training robust search agents *requires more complex, reasoning-intensive tasks* (Xia et al., 2025; Tao et al., 2025; Bae et al., 2025; Yan et al., 2025). However, our preliminary experiments (Fig. 2) show that on difficult tasks successful rollouts become rare (often less than 10% of initial accuracy), further reducing reward density and increasing computational inefficiency.

To address these issues, we formulate **Reward Density Optimization** and propose **InfoFlow**, a reinforcement learning framework that improves reward accessibility and stabilizes learning in search-integrated reasoning. InfoFlow increases reward density and learning efficiency via three core components: **(1) Sub-goal Scaffolding**. To make deep search more tractable for agents with limited initial capabilities, InfoFlow decomposes complex search queries into sub-goals and awards intermediate rewards for solving them. Deep search tasks naturally exhibit hierarchical structure: reaching the final answer typically requires identifying intermediate key facts or anchor entities. Rather than assigning rewards only for full task success, InfoFlow grants partial rewards for resolved sub-goals, providing denser feedback for policy updates. This scaffolding yields a denser learning signal and mitigates the sparsity of final rewards. **(2) Pathfinding Hints**. To guide agents toward full solutions, InfoFlow incorporates explicit guidance during RL exploration in the form of pathfinding hints. We employ LLM (Gemini 2.5 or Qwen3-8B (Gemini Team, 2025; Yang et al., 2025)) as annotators to enrich training data (§ A.2) by generating search queries that guide the agent toward reaching key sub-goals. When the agent struggles to reach final answers within a predefined turns during on-policy rollouts, InfoFlow inserts guiding queries into the next turn to suggest more informative search directions. These pathfinding hints make intermediate key facts and anchor entities easier to discover, increasing sub-goal rewards and the likelihood of a correct final answer. They also help the agent learn improved search strategies via learning from expert demonstrations. **(3) Dual-agent refinement**. To reduce the cognitive burden associated with long trajectories, InfoFlow adopts a dual-agent design for deep search. A *research agent* performs reasoning and search, while a *refiner agent* condenses retrieved information into concise, structured summaries that are fed back to the research agent. This collaboration improves efficiency and accuracy: we observe up to 59.5% higher initial rewards, 16.4% reduced inference time, and 44.8% shorter trajectories (§ 3.1), substantially increasing reward density. Together, these techniques enable InfoFlow to overcome the reward sparsity bottleneck in RL training, making complex information-seeking tasks more tractable for agents while fostering deeper reasoning and evidence synthesis.

We evaluate InfoFlow on a suite of knowledge-intensive agentic search benchmarks as well as the challenging complex benchmark BrowseComp-Plus (Chen et al., 2025b). Experimental results demonstrate that our method consistently outperforms strong baselines. Notably, on BrowseComp-

108 Plus, our optimized small-scale model achieves performance comparable to much larger LLMs. Our
 109 main contributions are summarized as follows: (1) We propose InfoFlow, a dual-agent framework
 110 for agentic deep search, where a researcher agent is responsible for central reasoning and planning,
 111 while a refiner agent synthesizes retrieved evidence into coherent knowledge. (2) We introduce a
 112 well-tailored reward density optimization strategy, comprising sub-goal reward shaping, adaptive
 113 off-policy hints, and supervised initialization via reject sampling. These techniques collectively
 114 alleviate reward sparsity and stabilize training. (3) Through extensive experiments, we verify the ef-
 115 fectiveness of InfoFlow. In particular, on the challenging *BrowseComp-Plus* benchmark, InfoFlow
 116 enables a small-scale model to achieve performance competitive with much larger LLMs.
 117

2 PRELIMINARY AND DATA PREPARATION

2.1 DEEP SEARCH QUESTION ANSWERING

121 The task of **Deep Search Question Answering (DSQA)** involves addressing complex queries that
 122 require multi-step reasoning and extensive information seeking. Benchmarks such as *BrowseC-
 123 omp* (Wei et al., 2025) exemplify this challenge, evaluating agentic search capability to navigate
 124 large-scale corpora such as the internet and synthesize information into coherent answers.

125 To enable principled optimization, we formalize DSQA as a reasoning tree \mathcal{T} , following the frame-
 126 work of Xia et al. (2025). In this formulation, each node denotes a sub-problem, either an entity
 127 to be identified or a constraint imposed on its parent entity. The root node is the final answer to
 128 the DSQA problem, which is a fact or entity to be discovered. Directed edges from child to parent
 129 nodes encode logical dependencies that must be validated. The complexity of DSQA problem is
 130 characterized by two structural properties of the reasoning tree. The *depth*, defined as the length
 131 of the longest root-to-leaf path, captures the extent of sequential reasoning required to resolve all
 132 sub-problems. The overall *width*, measured as the sum of children across all non-leaf nodes, reflects
 133 the degree of parallel information aggregation necessary to complete the task.
 134

2.2 FORMULATION OF AGENTIC DEEP SEARCH PROCESS

136 The process of an LLM agent solving DSQA task can be formalized as a Markov Decision Pro-
 137 cess (MDP) (Puterman, 1990). An agent’s trajectory τ is a sequence of interactions with a search
 138 environment: $\tau = (q, a_0, i_0, a_1, i_1, \dots, a_{K-1}, i_{K-1}, a_K)$. Here, q is the initial question, a_k is the
 139 agent’s action at step k , i_k is the information retrieved from the environment, and a_K is the terminal
 140 action containing the final answer. The MDP is defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$, where:

141 **Action (a_k).** The agent generates an action a_k , which involves two components: *Thinking* (a_k^{think}):
 142 A reasoning trace where the agent analyzes the current state S_k , synthesizes retrieved knowledge,
 143 and plans its next steps. This corresponds to *depth-wise progress* in the reasoning tree by exploiting
 144 available information and is enclosed in `<think>` tags. *Searching* (a_k^{search}): The agent generates
 145 a set of N_k parallel search queries $\{q_{k,j}\}_{j=1}^{N_k}$ to acquire new information. This facilitates *width-
 146 wise exploration* of the reasoning tree and is enclosed in `<search>` tags. The full action is the
 147 concatenation $a_k = a_k^{\text{think}} \circ a_k^{\text{search}}$. The action space also includes a terminal action a_K , where the
 148 agent provides the final answer within `<answer>` tags.

149 **Transition (\mathcal{T}).** The transition function $\mathcal{P}(S_{k+1}|S_k, a_k)$ is determined by the environment’s re-
 150 sponse to the search action. An external search tool processes the queries $\{q_{k,j}\}$ and returns a
 151 set of retrieved evidence $i_k = \{(q_{k,j}, e_{k,j})\}_{j=1}^{N_k}$. This information is presented to the agent within
 152 `<information>` tags. The subsequent state is formed by appending the action and observation
 153 to the history: $S_{k+1} = S_k \circ (a_k, i_k)$.

154 **Reward (R).** A final reward $R(\tau)$ is assigned based on the correctness of the final answer a_K ,
 155 evaluated by a rule-based reward model. The agent’s objective is to learn a policy $\pi(a|S)$ that
 156 maximizes the expected return.

2.3 DATA PREPARATION WITH ENRICHED PROCESS INFORMATION

157 As described in introduction, optimizing agentic search via RL is challenged by low reward density.
 158 This problem is particularly pronounced in complex deep search tasks, where agents must execute
 159 long exploratory trajectories. Since agentic RL methods depend on outcome-based rewards (Dong
 160 et al., 2025; Jin et al., 2025b; Sun et al., 2025), the rarity of success often leaves agents with no
 161

162 feedback after costly exploration, making policy gradient methods ineffective on predominantly
 163 unsuccessful trajectories.

164 We argue that this sparsity arises from a lack of training data with dense, process-level supervi-
 165 sion. To address this gap, we build on the open-source *InfoSeek* dataset (Xia et al., 2025). Unlike
 166 datasets such as Natural Questions or HotpotQA (Kwiatkowski et al., 2019a; Yang et al., 2018),
 167 which emphasize single- or two-hop reasoning, *InfoSeek* is designed for multi-step information
 168 seeking, providing a more suitable foundation for our work.

169 We enrich the 18,000 training instances in *InfoSeek* (Xia et al., 2025) with two forms of off-policy
 170 supervision, generated using the Gemini 2.5 API (Gemini Team, 2025). This augmented data is de-
 171 signed to directly facilitate the reinforcement learning strategies detailed in § 3: (1) **Sub-goal Scaf-
 172 folding:** For each problem’s reasoning tree, we use LLM (Gemini 2.5 and Qwen3-8B) to annotate
 173 and select only the most informative nodes representing critical entities as distinct sub-goals. These
 174 entities constitute mandatory milestones, as their identification represents significant breakthroughs
 175 essential for resolving the overall query. We form a ground-truth set of sub-goals $\mathcal{G}_q = \{g_1, \dots, g_M\}$
 176 and annotate each sub-goal g_i with a normalized importance weight s_i , reflecting their contribution
 177 for solving the overall deepsearch task. The weights are constrained to sum to one: $\sum_{i=1}^M s_i = 1$.
 178 The final enriched data thus provides a set of weighted sub-goals $\{(g_i, s_i)\}_{i=1}^M$ for each question,
 179 enabling a granular basis for the sub-goal reward shaping scheme used to encourage structured de-
 180 composition during RL. (2) **Pathfinding Hints:** To lower the exploration barrier for particularly
 181 difficult reasoning steps, we generate hints for **critical edges** in the reasoning tree. We employ
 182 LLMs for hint annotation; empirically, both proprietary (e.g., Gemini 2.5) and open-source models
 183 (e.g., Qwen3-8B) are capable of effectively performing this annotation task. Unlike simple keyword
 184 prompts, these hints are formulated as high-leverage **guiding queries** that decompose intertwined
 185 constraints into actionable search steps. They are designed to teach the agent three specific skills:
 186 *purposeful search* for specific sub-problems, *bottleneck breakthrough* for non-obvious reasoning
 187 points, and *creative search* via constraint reframing. These pre-generated queries act as information
 188 bridges, providing adaptive off-policy guidance to mitigate unproductive exploration loops during
 189 on-policy RL (Yan et al., 2025; Zhang et al., 2025; Wu et al., 2025). Further details on the prompt
 190 construction and concrete examples are provided in Appendix § A.2.

3 METHOD

192 We formally define reward density as the expected reward obtained per unit exploration cost, which
 193 reflects how efficiently a search agent transforms exploratory computation into verifiable learning
 194 signals. Given a dataset of n deep search QA instances, each solved by a leading search agent cou-
 195 pled with an external search engine, we conduct k rollouts per instance under a non-zero sampling
 196 temperature to ensure exploration diversity. For the j -th rollout of instance i , we denote the final
 197 reward as $r_{i,j} \in \{0, 1\}$, indicating correctness of the final answer, and the trajectory length as $l_{i,j}$,
 198 representing the trajectory length of the search agent. The reward density τ is computed as:

$$\tau = \frac{\sum_{i=1}^n \sum_{j=1}^k r_{i,j}}{\sum_{i=1}^n \sum_{j=1}^k l_{i,j}}.$$

202 Reward density is the key to the efficiency and scalability of both Rejection sampling Fine-Tuning
 203 (RFT) and Reinforcement Learning (RL) stages, which constitute the common two-phase optimiza-
 204 tion paradigm for search agents. Higher τ provides more successful trajectories for supervised
 205 learning in RFT and stronger, more stable gradient signals for policy optimization in RL.

206 **InfoFlow** addresses the challenge of *low reward density* in deep search training by formulating
 207 learning as a **Reward Density Optimization** problem. We enhance the reward density through
 208 three comprehensive and complementary mechanisms: (i) **Sub-goal Scaffolding** (dense, process-
 209 level rewards; see § 3.3), (ii) **Pathfinding Hints** (adaptive off-policy guidance; see § 3.4), and (iii)
 210 **Dual-agent refinement** (dual-agent compression of retrieved evidence; see § 3.1).

3.1 DUAL-AGENT REFINEMENT

212 The cognitive burden of managing long, noisy trajectories in deep search is a key driver of low
 213 reward density. To mitigate this, our framework (Figure 1) decouples this process into a **Researcher
 214 Agent** (π_θ) for planning and exploration, and a **Refiner Agent** (\mathcal{F}_ϕ) for information synthesis.

216 The *Researcher* navigates the reasoning tree by generating actions $a_k = a_k^{\text{think}} \circ a_k^{\text{search}}$, where a_k^{search}
 217 can issue parallel queries $\{q_{k,j}\}_{j=1}^{N_k}$ to explore multiple lines of inquiry. For each query, the *Refiner*
 218 (driven by a LLM described in § A.6.1) processes the resulting noisy evidence $e_{k,j}$ and distills it into
 219 a concise summary: $\text{sum}_{k,j} = \mathcal{F}_\phi(q, q_{k,j}, e_{k,j})$. These summaries form the structured information
 220 $i_k = \{(q_{k,j}, \text{sum}_{k,j})\}_{j=1}^{N_k}$ that updates the researcher’s state to S_{k+1} .
 221

222 The advantage of the decoupled architecture
 223 lies in its ability to enhance the **reward density** (higher accuracy with less context length),
 224 which lays the foundation for later stable on-
 225 policy RL. As shown in Figure 2, we
 226 conduct experiments on InfoSeek evaluation set us-
 227 ing Qwen2.5-3B-Instruct as the researcher, and
 228 compare varying refiner configurations. The
 229 introduction of a 3B refiner improves the suc-
 230 cess rate by 5.0 points while reducing the re-
 231 searcher’s context length by nearly 45% (from
 232 2372 to 1310 tokens). The context reduction
 233 frees up the researcher’s limited context win-
 234 dow to focus on high-level reasoning and plan-
 235 ning rather than being overwhelmed by ver-
 236 bose, unprocessed evidence. More detailed ef-
 237 ficiency analysis is conducted in § A.3.
 238

3.2 REJECTION SAMPLING FINE-TUNING FOR REWARD-DENSE INITIALIZATION

240 Preliminary experiments in Figure 2 show less than 10% accuracy for untrained agents, yielding
 241 extremely sparse rewards. To mitigate this cold-start issue, we construct a high-quality corpus using
 242 rejection sampling and use it to jointly fine-tune both the Researcher and Refiner.
 243

244 **Trajectory collection and verification.** We start from 18,000 DSQA tasks in the *InfoSeek*
 245 dataset (Xia et al., 2025). Using the base dual-agent framework (Qwen2.5-7B-Instruct for both
 246 roles), we perform two rollouts per task and retain only trajectories that produce correct final an-
 247 swers. We then apply a powerful verifier (Gemini-2.5-Pro (Gemini Team, 2025)) to filter out trajec-
 248 tories that succeed by chance or contain flawed reasoning; the final corpus contains $\approx 3,450$ high-
 249 quality trajectories. This corpus encodes step-level reasoning and search-grounded evidence, pro-
 250 viding dense supervised signals absent in standard pretraining data.
 251

252 **Joint fine-tuning objective.** We co-train the Researcher policy π_θ and the Refiner \mathcal{F}_ϕ on the veri-
 253 fied trajectories. The Researcher is trained with token-level negative log-likelihood on demon-
 254 strated actions:

$$\mathcal{L}_{\text{SFT}}^{\text{researcher}}(\theta; \tau) = - \sum_{k=0}^K \sum_{t=1}^{|a_k|} \log \pi_\theta(a_{k,t} \mid S_k, a_{k,<t}),$$

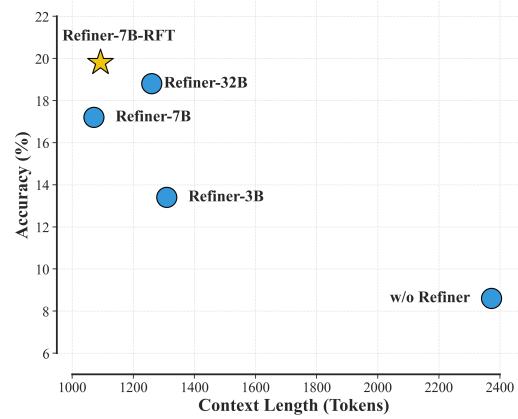
255 while the Refiner is trained to map raw evidence to compact summaries:

$$\mathcal{L}_{\text{SFT}}^{\text{refiner}}(\phi; \tau) = - \sum_{k=0}^{K-1} \sum_{j=1}^{N_k} \log P_\phi(\text{sum}_{k,j} \mid q, q_{k,j}, e_{k,j}).$$

256 Joint RFT yields a substantially higher initial success rate and reduces trajectory verbosity, making
 257 subsequent RL more stable. Empirical comparisons are reported in Table 1.
 258

3.3 SUB-GOAL SCAFFOLDING

259 After the RFT initialization, we conduct RLVR to further enhance deep search capability of In-
 260 foFlow. The sparse-reward challenge in deep search RL arises from both task complexity and
 261 outcome-based reward. Single binary reward for final answer offers limited guidance for the in-
 262 termediate steps of a long reasoning trajectory, particularly when early-stage success rates are low.
 263



264 Figure 2: Dual agent framework enhances reward den-
 265 sity: achieving higher accuracy with less context.
 266

270 Table 1: Analytical experiments on InfoSeek eval set. Co-training (RFT on both) improves Mean@4
 271 and reduces the fraction of unsolved (“Solve None”) samples.
 272

273 Configuration	274 Mean@4	275 Solve None(%)	276 Context (Tok.)	277 Search Calls
275 Base Agents (researcher-3B + refiner-7B)	276 17.2	277 76.7	278 1071.2	279 2.83
276 + RFT on researcher only	277 31.0	278 50.3	279 2489.3	280 3.92
277 + RFT on Both (Co-training)	278 34.3	279 46.0	280 2612.0	281 4.17

281 To provide informative learning signals inside long trajectories, we decompose each complex ques-
 282 tion into a set of weighted sub-goals $\{(g_i, s_i)\}_{i=1}^M$ (e.g., find anchor entities, verify key facts) as
 283 described in § 2.3. For a trajectory τ , let $\mathcal{G}_{\text{solved}}(\tau)$ denote the sub-goals resolved by the agent. We
 284 define a process-level reward

$$285 R_{\text{sub}}(\tau) = \sum_{g_i \in \mathcal{G}_{\text{solved}}(\tau)} s_i,$$

286 with $\sum_i s_i = 1$. The total trajectory reward combines the binary final reward and the sub-goal
 287 reward:

$$288 R(\tau) = R_{\text{final}}(\tau) + w \cdot R_{\text{sub}}(\tau),$$

289 where w trades off final correctness and intermediate progress (we use $w = 0.3$). This shaped
 290 reward provides gradient information for partially correct trajectories and encourages decomposed
 291 reasoning.

294 3.4 PATHFINDING HINTS

295 While sub-goal rewards densify the learning signal, on-policy exploration alone remains a bottleneck
 296 for the more challenging problems. Even after RFT, a significant portion of difficult samples are
 297 never solved through multiple rollouts (as suggested by the solve none ratio with four rollouts in pilot
 298 analytical studies Table 1), hindering learning signal to policy gradient updates. This is because the
 299 agent can become trapped in unproductive exploration loops, failing to discover the critical reasoning
 300 paths necessary for success.

301 To overcome this exploration barrier, we introduce *pathfinding hints* to provide help during on-
 302 policy rollouts. We leverage the guiding queries prepared in § 2.3, which are high-leverage search
 303 actions designed to bridge difficult logical steps. The pathfinding hints injection is triggered when
 304 a trajectory exceeds a predefined turn threshold, K_h , without reaching a terminal state. At this step
 305 ($k = K_h$), the executed action a'_k is constructed by combining the agent’s original reasoning trace
 306 a_k^{think} with the pre-constructed hint queries $a_{k,\text{hint}}^{\text{search}}$:

$$307 a'_k = a_k^{\text{think}} \circ a_{k,\text{hint}}^{\text{search}}. \quad (1)$$

308 The agent then receives the information retrieved using these hint queries and continues its trajectory
 309 from the new state. We set $K_h = 5$ in practice.

310 This mechanism offers two-fold benefits for stabilizing RL. First, as an exploration corrective, it
 311 rescues the agent from unproductive loops, increasing the yield of successful trajectories essential
 312 for policy optimization. Second, as an explicit demonstration, it exposes the agent to an informative
 313 off-policy, expert-quality search action and its positive outcome for better learning.

316 3.5 POLICY OPTIMIZATION

317 We fine-tune the researcher via reinforcement learning that integrates the shaped reward $R(\tau)$ and
 318 hint-guided exploration after RFT. We adopt Group Relative Policy Optimization (GRPO) (Shao
 319 et al., 2024), a PPO-style algorithm that normalizes advantages within trajectory groups to reduce
 320 variance. For a batch of G trajectories $\{\mathcal{Y}_i\}$ with returns $\{R_i\}$, the group-normalized advantage is

$$323 A_i = \frac{R_i - \text{mean}(\mathbf{R})}{\text{std}(\mathbf{R})},$$

324 and the GRPO objective is
 325

$$326 \quad \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E} \left[\frac{1}{G} \sum_{i=1}^G \min \left(r_i A_i, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) A_i \right) - \beta D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) \right],$$

328 where r_i is the importance ratio and π_{ref} is a reference policy used for KL regularization.
 329

330 4 EXPERIMENTS

333 In this section, we empirically validate InfoFlow. Our experiments are designed to demonstrate that
 334 by systematically optimizing for *reward density*, our framework achieves strong performance and
 335 generalization for agentic search tasks, particularly on complex deep search tasks.

336 4.1 EXPERIMENTAL SETUP

338 **Datasets and Evaluation Metrics.** To assess the **general information-seeking and agentic**
 339 **search** capability, we test InfoFlow on a suite of widely-used single-hop and multi-hop QA bench-
 340 marks with external search corpus: Natural Questions (NQ) (Kwiatkowski et al., 2019b), TriviaQA
 341 (TQA) (Joshi et al., 2017), PopQA (Mallen et al., 2022), HotpotQA (HQA) (Yang et al., 2018),
 342 2WikiMultihopQA (2Wiki) (Ho et al., 2020), Musique (MSQ) (Trivedi et al., 2022), and Bam-
 343 boogle (Bamb) (Press et al., 2022). We use E5 (Wang et al., 2024) as the embedding model, the
 344 2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus, and set the number of retrieved pas-
 345 sages to 3. We report Exact Match (EM) as the metric for these datasets. To evaluate **deep search**
 346 **capability**, we employ the BrowseComp-Plus benchmark (Chen et al., 2025b), a refined version of
 347 BrowseComp (Wei et al., 2025) with 830 challenging problems and a fixed 100K webpage corpus.
 348 This benchmark is an ideal testbed for DSQA as its problems inherently demand the deep, iterative
 349 reasoning and search. Following the official implementation, accuracy is judged by an LLM (we use
 350 deepseek v3.1 (DeepSeek-AI, 2024) to judge).

351 **Baselines and Implementation Details.** We compare InfoFlow against recent agentic search
 352 methods, including Self-RAG (Asai et al., 2023), Search-o1 (Li et al., 2025c), Search-R1 (Jin et al.,
 353 2025b), Zero-Search (Sun et al., 2025), AutoRefine (Shi et al., 2025), InForage (Qian & Liu, 2025),
 354 and ParrallelSearch (Zhao et al., 2025). These methods employ multi-turn interactions but differ
 355 in their training strategies and agentic framework. For the complex BrowseComp-Plus benchmark,
 356 we include proprietary models like Gemini 2.5 Pro (Comanici et al., 2025), Sonnet 4 (Anthropic,
 357 2025), GPT-5 (OpenAI, 2025), and larger open-sourced Qwen3-32B (Yang et al., 2025) and Search-
 358 R1-32B (Jin et al., 2025b). Our model is initialized with the framework described in § 3.1. For
 359 InfoFlow-3B and InfoFlow-7B, we use Qwen2.5-3B-Instruct/Qwen2.5-7B-Instruct (Group, 2025)
 360 as initialization for researcher agent respectively. We use Qwen2.5-7B-Instruct as initialization for
 361 refiner agent. Then InfoFlow is trained using the pipeline detailed in § 3. Further training details are
 362 provided in § A.4.

363 4.2 MAIN RESULTS

365 4.2.1 INFOFLOW DEMONSTRATES SUPERIOR GENERALIZATION ON QA TASKS

367 As shown in Table 2, InfoFlow demonstrates strong performance and generalization ability on stan-
 368 dard agentic search and information-seeking benchmarks, outperforming all baseline models at both
 369 the 3B and 7B scales. Unlike baseline methods, which primarily rely on in-domain training data
 370 such as NQ and HQA, InfoFlow maintains robust and transferable performance without requiring
 371 in-domain supervision. This result highlights the effectiveness of our reward density optimization
 372 approach with the enriched InfoSeek dataset, which encourages more resilient and generalizable
 373 reasoning by providing dense, process-level rewards. These rewards enable the model to capture
 374 the compositional structure of multi-step reasoning. The benefit is particularly evident on multi-hop
 375 datasets such as HQA and 2Wiki, where the method explicitly trains the agent to synthesize informa-
 376 tion step by step, a critical capability for complex information-seeking tasks. These rewards enable
 377 the model to capture the compositional structure of multi-step reasoning. The benefit is particularly
 378 evident on multi-hop datasets such as HQA and 2Wiki, where the method explicitly trains the agent
 379 to synthesize information step by step, a critical capability for complex information-seeking tasks.

378
379
380
381
382 Table 2: Performance comparison on QA tasks with agentic search methods. The best result in each
383 column is highlighted in **bold**.
384
385
386
387
388
389

Model	NQ	TQA	PopQA	HQA	2Wiki	MSQ	Bamb	Avg.
<i>Qwen2.5-3B Based Models</i>								
Search-o1-3B	23.8	48.2	26.2	22.1	21.8	5.4	32.0	25.6
Search-R1-3B	40.8	59.1	42.8	30.8	31.1	8.4	13.0	32.3
ZeroSearch-3B	41.2	61.5	44.0	31.2	33.2	12.6	14.3	34.0
AutoRefine-3B	43.6	59.7	44.7	40.4	38.0	16.9	33.6	39.6
InForage-3B	42.1	59.7	45.2	40.9	42.8	17.2	36.0	40.6
InfoFlow-3B	44.5	63.7	47.0	44.6	45.2	21.0	41.2	43.9
<i>Qwen2.5-7B Based Models</i>								
Self-RAG-7B	36.4	38.2	23.2	15.7	11.3	3.9	5.6	19.2
Search-o1-7B	27.7	47.4	29.4	34.8	35.6	4.8	15.2	27.1
Search-R1-7B	38.3	59.3	39.9	37.6	31.7	15.1	38.1	37.0
ZeroSearch-7B	43.6	65.2	48.8	34.6	35.2	18.4	27.8	39.1
ParallelSearch-7B	46.2	62.8	42.9	42.9	42.4	19.7	41.1	42.5
InfoFlow-7B	47.2	68.1	48.1	44.3	47.2	21.9	47.6	46.2

390
391
392
393
394
395
396
397
398
399
400 4.2.2 INFOFLOW EXCELS AT COMPLEX LONG-HORIZON DEEP SEARCH TASKS

401
402 We conduct evaluation on BrowseComp-Plus to
403 test the deep information seeking capability of
404 InfoFlow. For fair comparison, all models use
405 BM25 as retriever. As shown in Table 3, In-
406 foFlow substantially outperforms existing open-
407 source agents, even those based on larger 32B
408 models. Notably, it also surpasses strong pro-
409 prietary models like Gemini 2.5 Pro and GPT-
410 4.1. The dual-agent framework preserves the
411 researcher’s focus on high-level strategic plan-
412 ning. Concurrently, our data-centric RL approach
413 (§ 3.4), which uses sub-goal rewards and adap-
414 tive hints, provides the dense and structured su-
415 pervision necessary to navigate complex reason-
416 ing paths where sparse rewards would otherwise stall learning, thus making InfoFlow effectively
417 solving difficult deep search tasks.

418
419 Table 3: Performance and search calls on the
420 complex BrowseComp-Plus benchmark.

Model	Accuracy (%)	Search Calls
Gemini 2.5 Flash	15.5	10.6
Gemini 2.5 Pro	19.0	7.4
Sonnet 4	14.3	10.0
GPT-4.1	14.6	11.2
GPT-5	55.9	23.2
Qwen3-32B	3.5	0.9
SearchR1-32B	3.9	1.8
InfoFlow-3B	18.5	8.1
InfoFlow-7B	23.2	7.9

421
422 Table 4: Ablation study of InfoFlow components. We report average accuracy on seven general QA
423 tasks, accuracy on the BrowseComp-Plus, and InfoSeek-Eval benchmarks.

Configuration	QA Average	BrowseComp-Plus	InfoSeek-Eval
InfoFlow-7B	46.2	23.2	47.8
w/o Dual-Agent RFT	38.4	10.2	32.5
w/o Sub-Goal Reward	44.9	21.4	44.5
w/o Off-Policy Hints	45.8	20.1	42.1

423
424
425 4.3 DISCUSSION426
427 4.3.1 ABLATION STUDY

428
429 We perform ablations on InfoFlow-7B to evaluate the contribution of each component: (1) Remov-
430 ing **dual-agent RFT** causes the largest performance degradation. The combination of low success

432 rates and long trajectories results in extremely low reward density, which are insufficient for stable
 433 policy optimization. (2) Removing **sub-goal reward shaping** also yields a consistent decrease. This
 434 finding underscores the importance of dense intermediate supervision for on-policy RL. (3) Without
 435 **off-policy hints** has a relatively minor effect on general QA but leads to a 3.1-point drop on
 436 BrowseComp-Plus, indicating that hints are especially valuable for difficult information-seeking
 437 tasks requiring deep search, intensive reasoning, and long-horizon exploration.

439 4.3.2 ANALYSIS OF REASONING DEPTH

440
 441 We conduct experiments to analyze how InfoFlow’s performance scales with reasoning
 442 depth on the challenging BrowseComp-Plus
 443 benchmark. As shown in Figure 3, allowing more
 444 reasoning-searching turns improves accuracy eff-
 445 ectively, which increases from 11.2% (4 turns)
 446 to 22.8% (16 turns). This result demonstrates that
 447 InfoFlow learns a generalizable, iterative reason-
 448 ing policy rather than being limited by the fixed
 449 max reasoning-searching turns during training.
 450 This allows the agent to dynamically extend its
 451 reasoning process during inference, a crucial ca-
 452 pability for deep search tasks where the required
 453 reasoning depth to be adaptively adjusted.

454 4.3.3 REINFORCEMENT LEARNING TRAINING DYNAMICS

455 We examine the RL training dynamics of InfoFlow-7B with and without sub-goal shaping and hints.
 456 We report both the original final reward (task accuracy, green curve) and the shaped reward (pink
 457 curve). The two curves improve in tandem rather than diverging. If reward hacking were present,
 458 the shaped reward would increase while the final reward stagnated or declined. Instead, both metrics
 459 rise consistently, indicating that the agent is learning genuinely improved search behaviors rather
 460 than exploiting annotation.

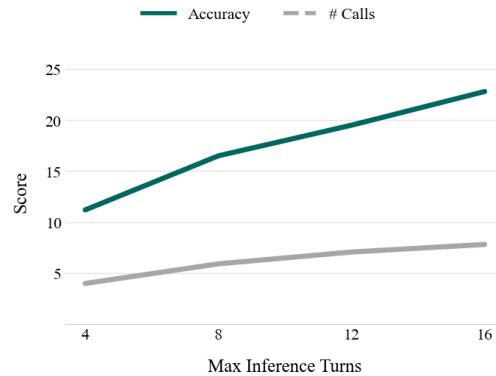


Figure 3: Analysis of Reasoning Depth.

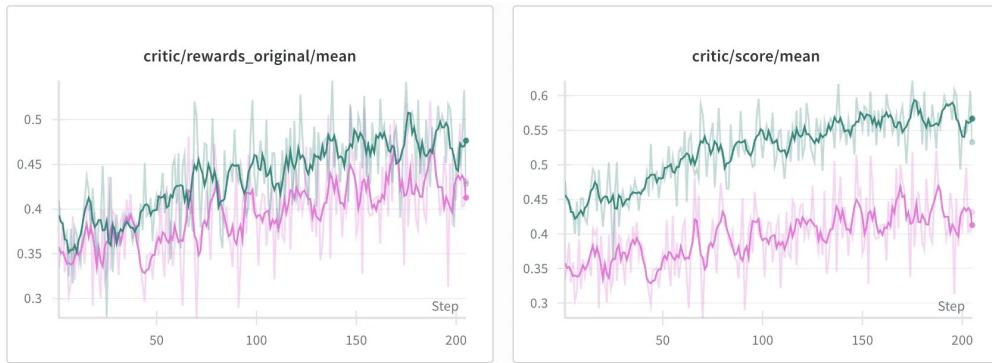


Figure 4: RL training dynamics with and without hints and sub-goal rewards.

477 5 CONCLUSION

478
 479 We introduced InfoFlow, a dual-agent framework designed to address the critical challenge of low
 480 reward density in training LLM agents for agentic deep search tasks. By integrating sub-goal reward
 481 shaping, adaptive off-policy hints, and a dual-agent architecture initialized with RFT, InfoFlow pro-
 482 vides dense, process-level supervision that makes learning tractable. Our experiments demonstrate
 483 that this approach enables even lightweight LLMs to achieve performance competitive with much
 484 larger proprietary models on challenging deep search benchmarks. This work highlights the effi-
 485 cacy of data-centric RL in making complex agentic deep search tractable and presents a promising
 direction for developing more capable and efficient LLM search agents.

486 REPRODUCIBILITY STATEMENT
487

488 To ensure the reproducibility of our research, we provide a detailed account of our methodology and
489 experimental setup. Our code, along with the enriched InfoSeek dataset, will be made publicly avail-
490 able upon publication. The experimental setup, including datasets, evaluation metrics, and baseline
491 models, is described in § 4.1. Key implementation details and hyperparameters for our proposed In-
492 InfoFlow framework are presented throughout § 3. Specifically, the dual-agent RFT process is detailed
493 in § 3.2, and the reinforcement learning approach, including the sub-goal reward weight ($w = 0.3$)
494 and the hint injection threshold ($K_h = 5$). Detailed hyperparameters and further implementation
495 details are provided in the Appendix.

496
497 REFERENCES
498

499 Anthropic. Claude sonnet 4. <https://www.anthropic.com/clause/sonnet>, 2025. Ac-
500 cessed: 2025-08-24.

501 Akari Asai, Ziqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
502 retrieve, generate, and critique through self-reflection. *arXiv preprint arXiv:2310.11511*, 2023.

503 Akari Asai, Ziqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
504 retrieve, generate, and critique through self-reflection. 2024.

505 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
506 Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. *arXiv preprint*
507 *arXiv:2504.03380*, 2025.

508 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
509 Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
510 ment learning. *arXiv preprint arXiv:2503.19470*, 2025a.

511 Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
512 Kshama Patel, Ruoxi Meng, Mingyi Su, et al. Browsecocom-plus: A more fair and transparent
513 evaluation benchmark of deep-research agent. *arXiv preprint arXiv:2508.06600*, 2025b.

514 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
515 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
516 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
517 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

518 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

519 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
520 *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

521 Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai,
522 Shuo Yang, Zhanwei Zhang, Qiwen Wang, et al. Atom-searcher: Enhancing agentic deep research
523 via fine-grained atomic thought reward. *arXiv preprint arXiv:2508.12800*, 2025.

524 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
525 Chen, Jiazen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
526 *arXiv preprint arXiv:2507.19849*, 2025.

527 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
528 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
529 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

530 Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
531 long context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

540 Qwen Group. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

541

542

543 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
544 qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*,
545 2020.

546 S Hong, X Zheng, J Chen, Y Cheng, C Zhang, Z Wang, SKC Yau, Z Lin, L Zhou, C Ran, et al.
547 Metagpt: Meta programming for multi-agent collaborative framework. arxiv. *arXiv preprint*
548 *arXiv:2308.00352*, 2023.

549

550 Ziyang Huang, Wangtao Sun, Jun Zhao, and Kang Liu. Improve rule retrieval and reasoning with
551 self-induction and relevance reestimate. *arXiv preprint arXiv:2505.10870*, 2025.

552 Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
553 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Houda Bouamor,
554 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in*
555 *Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 7969–7992.
556 Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.495.
557 URL <https://doi.org/10.18653/v1/2023.emnlp-main.495>.

558

559 Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O Arik, and Jiawei Han. An empirical
560 study on reinforcement learning for reasoning-search interleaved llm agents. *arXiv preprint*
561 *arXiv:2505.15117*, 2025a.

562 Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
563 r1: Training llms to reason and leverage search engines with reinforcement learning. *CoRR*,
564 abs/2503.09516, 2025b. doi: 10.48550/ARXIV.2503.09516. URL <https://doi.org/10.48550/arXiv.2503.09516>.

565

566 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
567 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

568

569 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
570 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
571 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on*
572 *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November
573 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
574 URL <https://aclanthology.org/2020.emnlp-main.550>.

575

576 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
577 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
578 benchmark for question answering research. *Transactions of the Association for Computational*
579 *Linguistics*, 7:453–466, 2019a.

580

581 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
582 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
583 benchmark for question answering research. *Transactions of the Association for Computational*
584 *Linguistics*, 7:453–466, 2019b.

585

586 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
587 Heinrich Köttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
588 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
589 9459–9474, 2020.

590

591 Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen
592 Yu, Binyuan Hui, Junyang Lin, and Dayiheng Liu. Start: Self-taught reasoner with tools. *arXiv*
593 *preprint arXiv:2503.04625*, 2025a.

594

595 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
596 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
597 agent. *arXiv preprint arXiv:2507.02592*, 2025b.

594 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
 595 and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *CoRR*,
 596 abs/2501.05366, 2025c. doi: 10.48550/ARXIV.2501.05366. URL <https://doi.org/10.48550/arXiv.2501.05366>.

598

599 Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting in retrieval-
 600 augmented large language models. In *Proceedings of the 2023 Conference on Empirical Methods
 601 in Natural Language Processing*, pp. 5303–5315, 2023.

602 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 603 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 604 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

605

606 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
 607 When not to trust language models: Investigating effectiveness and limitations of parametric and
 608 non-parametric memories. *arXiv preprint arXiv:2212.10511*, 2022.

609

610 Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong
 611 Wei, Shanru Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation
 612 ai agents for web automation with large foundation models. In *Proceedings of the 31st ACM
 613 SIGKDD Conference on Knowledge Discovery and Data Mining V. 2*, pp. 6140–6150, 2025.

614 OpenAI. Openai o1 system card. *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720.
 615 URL <https://doi.org/10.48550/arXiv.2412.16720>.

616

617 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, Au-
 618 gust 2025. Accessed: 2025-08-24.

619

620 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 621 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 622 2022.

623 Martin L Puterman. Markov decision processes. *Handbooks in operations research and management
 624 science*, 2:331–434, 1990.

625

626 Hongjin Qian and Zheng Liu. Scent of knowledge: Optimizing search-enhanced reasoning with
 627 information foraging. *arXiv preprint arXiv:2505.09316*, 2025.

628

629 Hongjin Qian, Zheng Liu, Chao Gao, Yankai Wang, Defu Lian, and Zhicheng Dou. Hawkbench:
 630 Investigating resilience of rag methods on stratified information-seeking tasks. *arXiv preprint
 631 arXiv:2502.13465*, 2025.

632

633 Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
 634 Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning
 635 with minimal predefinition and maximal self-evolution. *arXiv preprint arXiv:2505.20286*, 2025.

636

637 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 638 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 639 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

640

641 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
 642 moyer, and Wen tau Yih. Replug: Retrieval-augmented black-box language models. *arXiv
 643 preprint arXiv:2301.12652*, 2023. URL <https://arxiv.org/pdf/2301.12652.pdf>.

644

645 Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, and Xiang
 646 Wang. Search and refine during think: Autonomous retrieval-augmented reasoning of llms. *arXiv
 647 preprint arXiv:2505.11277*, 2025.

648

649 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 650 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 651 learning. *arXiv preprint arXiv:2503.05592*, 2025.

648 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 649 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 650 searching. *arXiv preprint arXiv:2505.04588*, 2025.

651

652 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 653 Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
 654 information-seeking formalization. *arXiv preprint arXiv:2507.15061*, 2025.

655 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 656 questions via single-hop question composition. *Transactions of the Association for Computational
 657 Linguistics*, 10:539–554, 2022.

658 Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan
 659 Sung, Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search
 660 engine augmentation. *arXiv preprint arXiv:2310.03214*, 2023.

661

662 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 663 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024.
 664 URL <https://arxiv.org/abs/2212.03533>.

665 Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
 666 Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. *arXiv preprint
 667 arXiv:2505.15107*, 2025.

668

669 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 670 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 671 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

672 Jinyang Wu, Chonghua Liao, Mingkuan Feng, Shuai Zhang, Zhengqi Wen, Pengpeng Shao, Huazhe
 673 Xu, and Jianhua Tao. Thought-augmented policy optimization: Bridging external guidance and
 674 internal capabilities. *arXiv preprint arXiv:2505.15692*, 2025.

675

676 Ziyi Xia, Kun Luo, Hongjin Qian, and Zheng Liu. Open data synthesis for deep research. *arXiv
 677 preprint arXiv:2509.00375*, 2025.

678

679 Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
 680 pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. *arXiv preprint
 681 arXiv:2509.02479*, 2025.

682

683 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 684 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

685

686 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 687 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 688 arXiv:2505.09388*, 2025.

689

690 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 691 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 692 answering. *arXiv preprint arXiv:1809.09600*, 2018.

693

694 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 695 React: Synergizing reasoning and acting in language models. In *International Conference on
 696 Learning Representations (ICLR)*, 2023.

697

698 Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
 699 ing: Enabling generalized agent abilities for llms. *arXiv preprint arXiv:2310.12823*, 2023.

700

701 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
 702 and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
 703 reinforcement learning via dynamic weighting. *arXiv preprint arXiv:2508.11408*, 2025.

704

705 Shu Zhao, Tan Yu, Anbang Xu, Japinder Singh, Aaditya Shukla, and Rama Akkiraju. Parallelsearch:
 706 Train your llms to decompose query and search sub-queries in parallel with reinforcement learn-
 707 ing. *arXiv preprint arXiv:2508.09303*, 2025.

702 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
703 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
704 *preprint arXiv:2303.18223*, 1(2), 2023.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
757758 **A.1 RELATED WORK**
759760 **From Retrieval Augmentation to Search-Integrated Reasoning.** To mitigate the limitations of
761 static parametric knowledge, Retrieval-Augmented Generation (RAG) has become a standard practice
762 (Lewis et al., 2020). Early RAG methods follow a static "retrieve-then-generate" pipeline, which
763 struggles with complex, multi-hop queries. Recent efforts have made this process more dynamic
764 through query rewriting, iterative retrieval, or self-critique mechanisms that assess the relevance of
765 retrieved information (Asai et al., 2024). A more advanced paradigm, Search-Integrated Reasoning
766 (SIR), moves beyond this separation by deeply interleaving reasoning steps with tool actions like
767 web searches. Foundational frameworks such as ReAct (Yao et al., 2023) demonstrated the effec-
768 tiveness of this approach using in-context learning. Our work, InfoFlow, adopts the SIR paradigm
769 but focuses on explicitly training models to acquire these capabilities, rather than relying solely on
770 prompt engineering at inference time.
771772 **Training Agents for Search and Reasoning.** A prominent research direction focuses on fine-
773 tuning LLMs to learn robust policies for interacting with search engines. While Supervised Fine-
774 Tuning (SFT) on expert trajectories provides a strong initialization (Zeng et al., 2023), Reinforce-
775 ment Learning (RL) is crucial for teaching agents to explore and discover effective strategies for
776 unseen problems. Several works have successfully applied RL to train search agents (Jin et al.,
777 2025b; Song et al., 2025). However, a fundamental obstacle is reward sparsity: complex tasks yield
778 infrequent terminal rewards, providing poor learning signals for the long sequence of intermediate
779 steps (Ning et al., 2025). This makes policy optimization unstable and inefficient. While some
780 methods attempt to mitigate this by learning a separate reward model or using offline policy opti-
781 mization (Wang et al., 2025; Deng et al., 2025), InfoFlow addresses the problem directly through a
782 novel combination of sub-goal reward shaping to provide dense, intermediate signals and adaptive
783 off-policy hints to increase the rate of successful trajectory completion during online training.
784785 **Multi-Agent Collaboration.** Decomposing complex problems for multi-agent systems is a pow-
786 erful strategy. Most current approaches focus on inference-time orchestration, where a central plan-
787 ner LLM delegates sub-tasks to specialized tools or other LLM instances without altering their
788 weights (Qiu et al., 2025). Frameworks like MetaGPT (Hong et al., 2023) assign distinct roles to
789 different LLM agents to collaboratively solve complex tasks. InfoFlow advances this concept by in-
790 troducing a co-trained dual-agent framework. We partition the cognitive load between a Researcher
791 agent for planning and execution and a Refiner agent for evidence synthesis and guidance. Cru-
792 cially, unlike inference-time frameworks, our agents are jointly optimized, allowing them to develop
793 a specialized and synergistic protocol that enhances reasoning efficiency and stability.
794795 **A.2 OFF-POLICY INFORMATION CONSTRUCTION WITH INFOSEEK DATASET**
796797 As introduced in Section 2.3, our process-based reinforcement learning approach relies on densely
798 supervised data. This appendix details how we construct this off-policy supervision, specifically the
799 weighted sub-goals and hints, by leveraging the unique structure of the **InfoSeek** dataset (Xia et al.,
2025). Figure 5, 6 and 7 provide three examples.
800801 **InfoSeek: A Dataset Built on Decomposable Reasoning Structures.** The InfoSeek dataset was
802 specifically designed to address the scarcity of benchmarks for *Deep Research* tasks, which demand
803 complex, multi-step reasoning beyond simple multi-hop question answering. Its core innovation
804 lies in its data synthesis paradigm, which generates questions grounded in a verifiable and explicit
805 reasoning structure called a **Research Tree**. The generation process begins by mining entities and
806 their relationships from a large-scale text corpus. From these, a "Research Tree" is recursively
807 constructed for each data point, where the root denotes the final, unique answer, internal nodes rep-
808 resent intermediate sub-goals, and edges encode their logical dependencies. To ensure complexity,
809 the descriptions of these internal nodes are "blurred" with additional constraints. Finally, a powerful
810 LLM is prompted with the entire tree structure to generate a high-level, natural language question
811 whose resolution requires traversing the entire reasoning path. This tree-based structure provides a
812

810 ground-truth decomposition of a complex problem into a hierarchy of verifiable sub-goals, making
 811 it an ideal foundation for generating process-level supervision.
 812

813 **InfoSeek-Evaluation** The InfoSeek-Evaluation set contains 300 high-quality, human-checked
 814 samples to evaluate agentic deep search capability. Qwen2.5-72B-Instruct with a CoT prompting
 815 achieves lower than 8% accuracy in this evaluation set.
 816

817 **Constructing Weighted Sub-Goals.** We utilize the InfoSeek Research Tree’s topology to define
 818 sub-goals and assign an importance weight s_i to each. Our process begins by extracting a subset
 819 of **high-value** internal nodes from the Research Tree to form the set $\mathcal{G}_q = \{g_1, \dots, g_M\}$, de-
 820 liberately excluding simple confirmatory facts. We leverage a powerful teacher model, Gemini 2.5
 821 Pro, to meticulously select these critical entities (typically 2-4 per tree) and assign an importance
 822 weight to each. This selection process distinguishes between **pivotal intermediate nodes** (core
 823 entities unlocking subsequent paths) and **secondary supporting nodes** (necessary evidence),
 824 ensuring sparse yet targeted supervision. The specific prompt used for this task is detailed in Ap-
 825 pendix A.6. The assigned weights are constrained to sum to one ($\sum_{i=1}^M s_i = 1$), providing the final
 826 set of weighted sub-goals $\{(g_i, s_i)\}_{i=1}^M$ for our reward shaping scheme.
 827

828 **Generating Hints as Guiding Queries.** Hints are formulated as high-leverage guiding queries
 829 that act as off-policy information bridges. They are designed to assist the agent when it is unable to
 830 make progress through autonomous exploration, thereby mitigating unproductive reasoning loops.
 831 These hints are generated using Gemini 2.5 Pro (see Appendix A.6) based on the critical edges of
 832 the Research Tree. During policy optimization, these hints are instrumental in teaching the agent
 833 several crucial search skills. They foster **purposeful search** by providing direct queries for specific
 834 sub-problems, guiding the agent onto a productive path. Furthermore, they help the agent **break**
 835 **through key points** in the reasoning chain where identifying the next step is non-obvious. Finally,
 836 by reframing or combining constraints in novel ways, the hints encourage **creative search**, training
 837 the agent to formulate more effective queries beyond simple keyword matching.
 838

839 Figure 5, 6 and 7 provide three examples. The main question contains multiple, intertwined con-
 840 straints. The generated hints effectively decompose this complexity by isolating and combining key
 841 constraints into actionable search queries. The first hint focuses on identifying the person, while the
 842 second provides an alternative, more robust query by combining the person’s profession with their
 843 marital information.
 844

845 **Question:** What is a literary genre that was defined by a novelist who wrote a novel incorporating ele-
 846 ments of the legendary origins of the Hope Diamond, and was mentored by Charles Dickens, characterized
 847 as a ‘novel-with-a-secret’?
 848

849 **Answer:** Sensation novel
 850

851 **Hint Queries:**
 852 *novelist mentored by Charles Dickens who wrote The Moonstone*
 853 *author whose novel incorporated elements of the Hope Diamond and was mentored by Charles Dickens*
 854
 855 *author of 'The Woman in White' mentored by Charles Dickens*
 856

857 **Sub Goals:**
 858 Wilkie Collins: weight 0.6
 859 Charles Dickens: weight 0.2
 860 The Moonstone: weight 0.2
 861

862 Figure 5: Case study 1 (Sensation novel): An example of enriched InfoSeek dataset. The hints
 863 decompose the main question into more manageable, high-leverage search queries that serve as off-
 864 policy guidance.
 865

866 Through this process, we enrich the original InfoSeek dataset with a structured layer of off-policy
 867 supervision. This augmented data, containing both quantitative sub-goal importance and qualitative
 868 reasoning hints, provides a robust foundation for training more capable and efficient Deep Research
 869 agents using our proposed reinforcement learning framework.
 870

864	Question: What is an album that was created by a musician who played piano in Gus Arnheim's band, 865 created a jazz camp, was recorded in 1955, and features drumming by Mel Lewis?
866	
867	Answer: Contemporary Concepts
868	
869	Hint Queries:
870	<i>musician who played piano in Gus Arnheim's band and later created a jazz camp</i>
871	<i>bandleader whose 1955 album featured Mel Lewis on drums</i>
872	<i>jazz pianist who once played for Gus Arnheim and founded a music education program</i>
873	
874	Sub Goals:
875	Stan Kenton: weight 0.7
876	Gus Arnheim: weight 0.3
877	

Figure 6: Case study 2 (Contemporary Concepts): An example of enriched InfoSeek dataset. The hints decompose the main question into more manageable, high-leverage search queries that serve as off-policy guidance.

879	Question: What is a British Thoroughbred racehorse that was sired by a horse who won the 1941 Epsom 880 Derby, was the leading British two-year-old of 1959, was a dark bay horse with a white blaze standing 881 16.1 hands high, and had considerable success as a sire of sprinters?
882	
883	Answer: Sing Sing (horse)
884	
885	Hint Queries:
886	<i>horse that won the 1941 Epsom Derby</i>
887	<i>1941 Epsom Derby winner</i>
888	
889	Sub Goals:
890	Tudor Minstrel: weight 0.5
891	Owen Tudor: weight 0.5
892	

Figure 7: Case study 3 (Sing Sing (horse)): An example of enriched InfoSeek dataset. The hints decompose the main question into more manageable, high-leverage search queries that serve as off-policy guidance.

A.3 FURTHER DUAL-AGENT FRAMEWORK EXPERIMENTS AND EFFICIENCY ANALYSIS

As introduced in Section 3.1, our dual-agent framework decouples high-level reasoning from low-level evidence gathering to enhance performance and efficiency. This section provides a detailed empirical analysis of this design.

Table 5: Analysis of the dual-agent framework on the InfoSeek evaluation set. The Researcher Agent is fixed as Qwen2.5-3B-Instruct. "Context Length" is the average number of tokens processed by the researcher per trajectory. "Time" denotes the average inference time per task.

Refiner Agent	Accuracy (%)	Search Calls (#)	Context Length (Tok.)	Time (min.)
w/o refiner	8.4	1.93	2372.4	12.2
Qwen2.5-3B-Inst	13.4	3.07	1309.6	10.2
Qwen2.5-7B-Inst	17.2	2.83	1071.2	10.5
Qwen2.5-32B-Inst	18.8	3.01	1260.4	11.3

As shown in Tab 5, we conduct analytical study employing a fixed Qwen2.5-3B-Instruct researcher to isolate the impact of the refiner with InfoSeek evaluation set. The baseline without a refiner struggles, achieving only 7.4% accuracy. The introduction of a 3B refiner dramatically improves accuracy to 13.4% while simultaneously reducing the researcher's average context length per trajectory by 45% (from 2372 to 1310 tokens). Scaling the refiner to a 7B model yields further gains to 17.2%. This demonstrates that offloading evidence distillation enables the researcher to dedicate their limited context window to high-level reasoning, significantly boosting performance.

918 Beyond performance gains, the dual-agent framework offers computational efficiency. The primary
 919 bottleneck in LLM is the quadratic complexity ($O(n^2)$) of self-attention with respect to context
 920 length. By delegating the processing of verbose evidence to the refiner, we substantially reduce
 921 the peak context length for the researcher. In a practical deployment, this architecture is highly
 922 feasible. A standard setup for information-seeking tasks already requires a researcher agent and a
 923 retrieval service (10% VRAM) in a single 8xH800 node. Adding a dedicated refiner, optimized
 924 with frameworks like vLLM, incurs a manageable overhead of approximately 20% more VRAM,
 925 making the entire system viable on a single 8xH800 node.

926 A key advantage of our approach is its implementation simplicity and adaptability. Unlike com-
 927 plex multi-agent reinforcement learning schemes, our refiner can be aligned with the researcher via
 928 a straightforward SFT process. This involves sampling trajectories from the researcher and using
 929 them to train the refiner, ensuring it learns to distill information in a manner tailored to the re-
 930 searcher’s reasoning patterns. Consequently, the refiner is not a static, prompt-engineered module
 931 but a dynamic component that co-evolves with the researcher. This training methodology provides
 932 a scalable path toward building more capable, collaborative agent systems without incurring pro-
 933 hibitive complexity.

934 A.4 IMPLEMENTATION DETAILS

936 For research agent RFT, we fine-tune for 3 epochs with a learning rate of 1e-5, L2 normalization of
 937 0.01(important for stabilizing training), and a context length of 16,384, using a single 8xH100 node.
 938 For refiner agent RFT, we fine-tune for 2 epochs with a learning rate of 1e-5, L2 normalization of
 939 0.01 , and a context length of 8,192, using a single 8xH100 node.

940 RL training is conducted with a batch size of 256, a maximum of 10 turns, rollout size 8, temperature
 941 0.8, and a search engine restricted to the top-5 retrieved contents. The training is conducted on two
 942 8xH100 nodes.

944 A.5 THE USE OF LARGE LANGUAGE MODELS (LLMs)

946 LLMs are used to polish writing and are used for enriching the training dataset, which is described
 947 in Sec 2.3.

948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 A.6 PROMPTS

973

974 A.6.1 REFINER AGENT

975

976 The complete prompt template used for our Refiner Agent is presented in Listing 1. Note that we
977 use this template both to drive the refiner and for refiner RFT training

```

978 <|im_start|>user
979 **TASK:**
980 Synthesize the key information from the **[Retrieved Documents]** that
981   ↪ is relevant to the **[Current Query]**. The synthesis should be
982   ↪ guided by conducting deep research to uncover the **[Original
983   ↪ Question]**.
984
985 **INSTRUCTIONS:**
986 1. **Extract & Merge:** Identify all relevant facts and combine them.
987   ↪ Eliminate redundancy. You should provide information for deep
988   ↪ research, not answer to current query or original question.
989 2. **Provide Information, Not an Answer:** Your output should be a
990   ↪ self-contained block of information, NOT a direct, short answer
991   ↪ to the original question or the current query.
992 3. **Handle Insufficient Information:** If the documents do not
993   ↪ contain relevant information for the query, state that the
994   ↪ provided sources are insufficient and suggest that further
995   ↪ investigation may be needed. You can also provide some further
996   ↪ investigation direction and query rewrite suggestions.
997 4. **Format:** Enclose the entire synthesized output within '<
998   ↪ information>' and '</information>' tags. Add no other text. For
999   ↪ example, <information> Synthesized information for deep research
1000   ↪ here </information>.
1001
1002 **CONTEXT:**
1003 - **[Original Question]:** {original_question}
1004 - **[Current Query]:** {query}
1005 - **[Retrieved Documents]:** {documents}
1006
1007 **TASK:**
1008 Synthesize the key information from the **[Retrieved Documents]** that
1009   ↪ is relevant to the **[Current Query]**. The synthesis should be
1010   ↪ guided by conducting deep research to uncover the **[Original
1011   ↪ Question]**.
1012
1013 **INSTRUCTIONS:**
1014 1. **Extract & Merge:** Identify all relevant facts and combine them.
1015   ↪ Eliminate redundancy. You should provide information for deep
1016   ↪ research, not answer to current query or original question.
1017 2. **Provide Information, Not an Answer:** Your output should be a
1018   ↪ self-contained block of information, NOT a direct, short answer
1019   ↪ to the original question or the current query.
1020 3. **Handle Insufficient Information:** If the documents do not
1021   ↪ contain relevant information for the query, state that the
1022   ↪ provided sources are insufficient and suggest that further
1023   ↪ investigation may be needed. You can also provide some further
1024   ↪ investigation direction and query rewrite suggestions.
1025 4. **Format:** Enclose the entire synthesized output within '<
1026   ↪ information>' and '</information>' tags. Add no other text. For
1027   ↪ example, <information> Synthesized information for deep research
1028   ↪ here </information>.
1029
1030 **SYNTHESIZED INFORMATION:**
1031 <|im_end|>
1032 <|im_start|>assistant

```

1025

Listing 1: The prompt template for the Refiner Agent.

1026 A.6.2 PROMPT FOR DATASET ENRICHMENT
 1027
 1028 We use the Gemini 2.5 API (Gemini Team, 2025) with the following prompt to conduct InfoSeek
 1029 dataset enrichment as described in Section 2.3 and Section A.2.

```

 1030  <|im_start|>user
 1031  **Role**: You are an AI Data Augmentation expert. Your mission is to
 1032    ↪ extract and expand key information from a Research Tree to
 1033    ↪ optimize reinforcement learning for training an LLM as a deep
 1034    ↪ research agent.

 1035  **Objective**: From the input Research Tree, complete the two tasks
 1036    ↪ below and return results in one unified JSON output.

 1037  ### **Task 1: Extract High-Value Entities & Assign Weights (for Reward
 1038    ↪ Shaping)**

 1039  Identify pivotal breakthroughs to reward in PPO training.

 1040  **Steps**:
 1041  1. Select **2-4 most critical entities** from the Research Tree.
 1042  2. Assign each a 'weight' (float), with all weights summing to **1.0**.
 1043  3. Prioritize:
 1044    * **Pivotal Nodes (0.6-0.8)**: Core breakthroughs, usually direct
 1045      ↪ children of the root, resolving major clauses.
 1046    * **Supporting Nodes (0.2-0.4)**: Necessary for pivotal nodes,
 1047      ↪ smaller but still important.
 1048    * Exclude trivial confirmatory facts.

 1049  **Output**:
 1050  JSON array of objects with 'id', 'entity', and 'weight'.

 1051  ### **Task 2: Generate Early-Stage Guiding Queries (for Strategic Hints
 1052    ↪ )**
 1053  Provide hints to guide initial exploration without leaking answers.

 1054  **Steps**:
 1055  1. Generate **1-2 critical guiding queries**.
 1056  2. Focus on **leaf nodes**, using their parent's entity + claim.
 1057  3. Queries must **not** contain the child node's entity.
 1058  4. Queries should be natural, strategic, and yield high information
 1059    ↪ gain.

 1060  **Output**:
 1061  JSON array of objects with 'target_id' and '
 1062    ↪ generated_queries' (array of strings).

 1063  **Background**:
 1064  * Research Tree = hierarchical structure of questions/answers (nodes).
 1065  * Root = original complex question.
 1066  * Children = sub-questions.
 1067  * Claims = relationship between parent and child entities.

 1068  **Example Input & Output:**
 1069  ...
 1070

 1071  **Execute both tasks on this Research Tree:**  

 1072  {research_tree_stucture}

 1073

 1074  **Output:**
 1075  <|im_end|>
 1076  <|im_start|>assistant
 1077
 1078
 1079
  
```

Listing 2: The prompt for the AI Data Augmentation expert to process the Research Tree.