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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) is a promising approach
for enhancing agentic deep search. However, its application is often hindered by
low Reward Density in deep search scenarios, where agents expend significant
exploratory costs for infrequent and often null final rewards. In this paper, we for-
malize this challenge as the Reward Density Optimization problem, which aims
to improve the reward obtained per unit of exploration cost. This paper introduce
InfoFlow, a systematic framework that tackles this problem from three aspects.
1) Sub-goal Scaffolding: breaking down long-range tasks to assign process re-
wards, thereby providing denser learning signals. 2) Pathfinding Hints: injecting
corrective guidance into stalled trajectories to increase the probability of success-
ful outcomes. 3) Dual-agent refinement: employing a dual-agent architecture to
offload the cognitive burden of deep exploration. A refiner agent synthesizes the
search history, which effectively compresses the researcher’s perceived trajectory,
thereby reducing exploration cost and increasing the overall reward density. We
evaluate InfoFlow on multiple agentic search benchmarks, where it significantly
outperforms strong baselines, enabling lightweight LLMs to achieve performance
comparable to advanced proprietary LLMs. Our codes are in this repository.

1 INTRODUCTION

Large language models (LLMs) have become essential tools for information seeking in daily
life (Zhao et al., 2023; Gao et al., 2023). As their applications expand, users increasingly expect
LLMs to handle not only factual queries but also complex, multi-step tasks requiring knowledge
discovery and synthesis. However, because an LLM’s internal knowledge is limited and quickly
outdated, relying solely on parametric memory is insufficient for knowledge-intensive tasks (Vu
et al., 2023). Addressing such challenges requires integrating external knowledge sources and mov-
ing beyond surface-level retrieval toward deeper reasoning and information synthesis (Shi et al.,
2023). Most existing approaches follow the retrieval-augmented generation (RAG) paradigm (Gao
et al., 2023), which treats the input as a query and retrieves relevant documents for generation. While
effective for factual questions, RAG struggles with hierarchical or implicit information needs (Asai
et al., 2023; Qian et al., 2025). Extensions such as query rewriting, iterative retrieval, and self-
refinement (Ma et al., 2023; Jiang et al., 2023; Madaan et al., 2023) improve flexibility but remain
bound to a pre-inference design that retrieves information before reasoning begins, limiting adapt-
ability in dynamic, multi-step tasks.

Inspired by reasoning-centric models (OpenAI, 2024; DeepSeek-AI, 2025), recent studies adopt
the search-integrated reasoning (SIR) paradigm (Yao et al., 2023; Chen et al., 2025a; Xue et al.,
2025; Huang et al., 2025), which interleaves reasoning and search to adaptively incorporate external
knowledge at each step (Li et al., 2025c; Jin et al., 2025b; Li et al., 2025b). However, current
LLMs lack native mechanisms to invoke external search tools. Early SIR implementations relied
on manually crafted prompts and exhibited limited generalization (Li et al., 2025a). To overcome
this, Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an effective approach
for training LLMs to conduct agentic deep search. RLVR enables models to learn search-integrated
reasoning policies via trajectory rollouts and final reward-driven optimization (Jin et al., 2025b;a;
Qian & Liu, 2025).
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Figure 1: The framework of InfoFlow and example of DSQA task. Researcher agent focuses on reasoning and
planning, refiner agent synthesizes massive searched content into condensed info.

Despite its promise, RLVR for deep search suffers from low reward density, which we define as
total reward per unit exploration cost (i.e., per trajectory length). Deep search tasks typically require
multiple turns of reasoning-searching exploration before producing a final answer. As trajectory
length increases, success rates decline rapidly, since a single reasoning error can accumulate to
invalidate the entire trajectory. Moreover, recent work highlights that training robust search agents
requires more complex, reasoning-intensive tasks (Xia et al., 2025; Tao et al., 2025; Bae et al.,
2025; Yan et al., 2025). However, our preliminary experiments (Fig. 2) show that on difficult tasks
successful rollouts become rare (often less than 10% of initial accuracy), further reducing reward
density and increasing computational inefficiency.

To address these issues, we formulate Reward Density Optimization and propose InfoFlow, a re-
inforcement learning framework that improves reward accessibility and stabilizes learning in search-
integrated reasoning. InfoFlow increases reward density and learning efficiency via three core com-
ponents: (1) Sub-goal Scaffolding. To make deep search more tractable for agents with limited
initial capabilities, InfoFlow decomposes complex search queries into sub-goals and awards inter-
mediate rewards for solving them. Deep search tasks naturally exhibit hierarchical structure: reach-
ing the final answer typically requires identifying intermediate key facts or anchor entities. Rather
than assigning rewards only for full task success, InfoFlow grants partial rewards for resolved sub-
goals, providing denser feedback for policy updates. This scaffolding yields a denser learning signal
and mitigates the sparsity of final rewards. (2) Pathfinding Hints. To guide agents toward full
solutions, InfoFlow incorporates explicit guidance during RL exploration in the form of pathfinding
hints. We employ LLM (Gemini 2.5 or Qwen3-8B (Gemini Team, 2025; Yang et al., 2025)) as
annotators to enrich training data (§ A.2) by generating search queries that guide the agent toward
reaching key sub-goals. When the agent struggles to reach final answers within a predefined turns
during on-policy rollouts, InfoFlow inserts guiding queries into the next turn to suggest more infor-
mative search directions. These pathfinding hints make intermediate key facts and anchor entities
easier to discover, increasing sub-goal rewards and the likelihood of a correct final answer. They
also help the agent learn improved search strategies via learning from expert demonstrations. (3)
Dual-agent refinement. To reduce the cognitive burden associated with long trajectories, InfoFlow
adopts a dual-agent design for deep search. A research agent performs reasoning and search, while
a refiner agent condenses retrieved information into concise, structured summaries that are fed back
to the research agent. This collaboration improves efficiency and accuracy: we observe up to 59.5%
higher initial rewards, 16.4% reduced inference time, and 44.8% shorter trajectories (§ 3.1), substan-
tially increasing reward density. Together, these techniques enable InfoFlow to overcome the reward
sparsity bottleneck in RL training, making complex information-seeking tasks more tractable for
agents while fostering deeper reasoning and evidence synthesis.

We evaluate InfoFlow on a suite of knowledge-intensive agentic search benchmarks as well as
the challenging complex benchmark BrowseComp-Plus (Chen et al., 2025b). Experimental results
demonstrate that our method consistently outperforms strong baselines. Notably, on BrowseComp-
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Plus, our optimized small-scale model achieves performance comparable to much larger LLMs. Our
main contributions are summarized as follows: (1) We propose InfoFlow, a dual-agent framework
for agentic deep search, where a researcher agent is responsible for central reasoning and planning,
while a refiner agent synthesizes retrieved evidence into coherent knowledge. (2) We introduce a
well-tailored reward density optimization strategy, comprising sub-goal reward shaping, adaptive
off-policy hints, and supervised initialization via reject sampling. These techniques collectively
alleviate reward sparsity and stabilize training. (3) Through extensive experiments, we verify the ef-
fectiveness of InfoFlow. In particular, on the challenging BrowseComp-Plus benchmark, InfoFlow
enables a small-scale model to achieve performance competitive with much larger LLMs.

2 PRELIMINARY AND DATA PREPARATION

2.1 DEEP SEARCH QUESTION ANSWERING

The task of Deep Search Question Answering (DSQA) involves addressing complex queries that
require multi-step reasoning and extensive information seeking. Benchmarks such as BrowseC-
omp (Wei et al., 2025) exemplify this challenge, evaluating agentic search capability to navigate
large-scale corpora such as the internet and synthesize information into coherent answers.

To enable principled optimization, we formalize DSQA as a reasoning tree T , following the frame-
work of Xia et al. (2025). In this formulation, each node denotes a sub-problem, either an entity
to be identified or a constraint imposed on its parent entity. The root node is the final answer to
the DSQA problem, which is a fact or entity to be discovered. Directed edges from child to parent
nodes encode logical dependencies that must be validated. The complexity of DSQA problem is
characterized by two structural properties of the reasoning tree. The depth, defined as the length
of the longest root-to-leaf path, captures the extent of sequential reasoning required to resolve all
sub-problems. The overall width, measured as the sum of children across all non-leaf nodes, reflects
the degree of parallel information aggregation necessary to complete the task.

2.2 FORMULATION OF AGENTIC DEEP SEARCH PROCESS

The process of an LLM agent solving DSQA task can be formalized as a Markov Decision Pro-
cess (MDP) (Puterman, 1990). An agent’s trajectory τ is a sequence of interactions with a search
environment: τ = (q, a0, i0, a1, i1, . . . , aK−1, iK−1, aK). Here, q is the initial question, ak is the
agent’s action at step k, ik is the information retrieved from the environment, and aK is the terminal
action containing the final answer. The MDP is defined by the tuple (S,A,P,R, γ), where:
Action (ak). The agent generates an action ak, which involves two components: Thinking (athink

k ):
A reasoning trace where the agent analyzes the current state Sk, synthesizes retrieved knowledge,
and plans its next steps. This corresponds to depth-wise progress in the reasoning tree by exploiting
available information and is enclosed in <think> tags. Searching (asearch

k ): The agent generates
a set of Nk parallel search queries {qk,j}Nk

j=1 to acquire new information. This facilitates width-
wise exploration of the reasoning tree and is enclosed in <search> tags. The full action is the
concatenation ak = athink

k ◦ asearch
k . The action space also includes a terminal action aK , where the

agent provides the final answer within <answer> tags.
Transition (T ). The transition function P(Sk+1|Sk, ak) is determined by the environment’s re-
sponse to the search action. An external search tool processes the queries {qk,j} and returns a
set of retrieved evidence ik = {(qk,j , ek,j)}Nk

j=1. This information is presented to the agent within
<information> tags. The subsequent state is formed by appending the action and observation
to the history: Sk+1 = Sk ◦ (ak, ik).
Reward (R). A final reward R(τ) is assigned based on the correctness of the final answer aK ,
evaluated by a rule-based reward model. The agent’s objective is to learn a policy π(a|S) that
maximizes the expected return.

2.3 DATA PREPARATION WITH ENRICHED PROCESS INFORMATION

As described in introduction, optimizing agentic search via RL is challenged by low reward density.
This problem is particularly pronounced in complex deep search tasks, where agents must execute
long exploratory trajectories. Since agentic RL methods depend on outcome-based rewards (Dong
et al., 2025; Jin et al., 2025b; Sun et al., 2025), the rarity of success often leaves agents with no
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feedback after costly exploration, making policy gradient methods ineffective on predominantly
unsuccessful trajectories.

We argue that this sparsity arises from a lack of training data with dense, process-level supervi-
sion. To address this gap, we build on the open-source InfoSeek dataset (Xia et al., 2025). Unlike
datasets such as Natural Questions or HotpotQA (Kwiatkowski et al., 2019a; Yang et al., 2018),
which emphasize single- or two-hop reasoning, InfoSeek is designed for multi-step information
seeking, providing a more suitable foundation for our work.

We enrich the 18,000 training instances in InfoSeek (Xia et al., 2025) with two forms of off-policy
supervision, generated using the Gemini 2.5 API (Gemini Team, 2025). This augmented data is de-
signed to directly facilitate the reinforcement learning strategies detailed in § 3: (1) Sub-goal Scaf-
folding: For each problem’s reasoning tree, we use LLM (Gemini 2.5 and Qwen3-8B) to annotate
and select only the most informative nodes representing critical entities as distinct sub-goals. These
entities constitute mandatory milestones, as their identification represents significant breakthroughs
essential for resolving the overall query. We form a ground-truth set of sub-goals Gq = {g1, . . . , gM}
and annotate each sub-goal gi with a normalized importance weight si, reflecting their contribution
for solving the overall deepsearch task. The weights are constrained to sum to one:

∑M
i=1 si = 1.

The final enriched data thus provides a set of weighted sub-goals {(gi, si)}Mi=1 for each question,
enabling a granular basis for the sub-goal reward shaping scheme used to encourage structured de-
composition during RL. (2) Pathfinding Hints: To lower the exploration barrier for particularly
difficult reasoning steps, we generate hints for critical edges in the reasoning tree. We employ
LLMs for hint annotation; empirically, both proprietary (e.g., Gemini 2.5) and open-source models
(e.g., Qwen3-8B) are capable of effectively performing this annotation task. Unlike simple keyword
prompts, these hints are formulated as high-leverage guiding queries that decompose intertwined
constraints into actionable search steps. They are designed to teach the agent three specific skills:
purposeful search for specific sub-problems, bottleneck breakthrough for non-obvious reasoning
points, and creative search via constraint reframing. These pre-generated queries act as information
bridges, providing adaptive off-policy guidance to mitigate unproductive exploration loops during
on-policy RL (Yan et al., 2025; Zhang et al., 2025; Wu et al., 2025). Further details on the prompt
construction and concrete examples are provided in Appendix § A.2.

3 METHOD

We formally define reward density as the expected reward obtained per unit exploration cost, which
reflects how efficiently a search agent transforms exploratory computation into verifiable learning
signals. Given a dataset of n deep search QA instances, each solved by a leading search agent cou-
pled with an external search engine, we conduct k rollouts per instance under a non-zero sampling
temperature to ensure exploration diversity. For the j-th rollout of instance i, we denote the final
reward as ri,j ∈ {0, 1}, indicating correctness of the final answer, and the trajectory length as li,j ,
representing the trajectory length of the search agent. The reward density τ is computed as:

τ =

∑n
i=1

∑k
j=1 ri,j∑n

i=1

∑k
j=1 li,j

.

Reward density is the key to the efficiency and scalability of both Rejection sampling Fine-Tuning
(RFT) and Reinforcement Learning (RL) stages, which constitute the common two-phase optimiza-
tion paradigm for search agents. Higher τ provides more successful trajectories for supervised
learning in RFT and stronger, more stable gradient signals for policy optimization in RL.

InfoFlow addresses the challenge of low reward density in deep search training by formulating
learning as a Reward Density Optimization problem. We enhance the reward density through
three comprehensive and complementary mechanisms: (i) Sub-goal Scaffolding (dense, process-
level rewards; see § 3.3), (ii) Pathfinding Hints (adaptive off-policy guidance; see § 3.4), and (iii)
Dual-agent refinement (dual-agent compression of retrieved evidence; see § 3.1).

3.1 DUAL-AGENT REFINEMENT

The cognitive burden of managing long, noisy trajectories in deep search is a key driver of low
reward density. To mitigate this, our framework (Figure 1) decouples this process into a Researcher
Agent (πθ) for planning and exploration, and a Refiner Agent (Fϕ) for information synthesis.
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The Researcher navigates the reasoning tree by generating actions ak = athink
k ◦ asearch

k , where asearch
k

can issue parallel queries {qk,j}Nk
j=1 to explore multiple lines of inquiry. For each query, the Refiner

(driven by a LLM described in § A.6.1) processes the resulting noisy evidence ek,j and distills it into
a concise summary: sumk,j = Fϕ(q, qk,j , ek,j). These summaries form the structured information
ik = {(qk,j , sumk,j)}Nk

j=1 that updates the researcher’s state to Sk+1.

Figure 2: Dual agent framework enhances reward den-
sity: achieving higher accuracy with less context.

The advantage of the decoupled architecture
lies in its ability to enhance the reward den-
sity (higher accuracy with less context length),
which lays the foundation for later stable on-
policy RL. As shown in Figure 2, we con-
duct experiments on InfoSeek evaluation set us-
ing Qwen2.5-3B-Instruct as the researcher, and
compare varying refiner configurations. The
introduction of a 3B refiner improves the suc-
cess rate by 5.0 points while reducing the re-
searcher’s context length by nearly 45% (from
2372 to 1310 tokens). The context reduction
frees up the researcher’s limited context win-
dow to focus on high-level reasoning and plan-
ning rather than being overwhelmed by ver-
bose, unprocessed evidence. More detailed ef-
ficiency analysis is conducted in § A.3.

3.2 REJECTION SAMPLING FINE-TUNING FOR REWARD-DENSE INITIALIZATION

Preliminary experiments in Figure 2 show less than 10% accuracy for untrained agents, yielding
extremely sparse rewards. To mitigate this cold-start issue, we construct a high-quality corpus using
rejection sampling and use it to jointly fine-tune both the Researcher and Refiner.

Trajectory collection and verification. We start from 18,000 DSQA tasks in the InfoSeek
dataset (Xia et al., 2025). Using the base dual-agent framework (Qwen2.5-7B-Instruct for both
roles), we perform two rollouts per task and retain only trajectories that produce correct final an-
swers. We then apply a powerful verifier (Gemini-2.5-Pro (Gemini Team, 2025)) to filter out trajec-
tories that succeed by chance or contain flawed reasoning; the final corpus contains ≈3,450 high-
quality trajectories. This corpus encodes step-level reasoning and search-grounded evidence, pro-
viding dense supervised signals absent in standard pretraining data.

Joint fine-tuning objective. We co-train the Researcher policy πθ and the Refiner Fϕ on the veri-
fied trajectories. The Researcher is trained with token-level negative log-likelihood on demonstrated
actions:

Lresearcher
SFT (θ; τ) = −

K∑
k=0

|ak|∑
t=1

log πθ(ak,t | Sk, ak,<t),

while the Refiner is trained to map raw evidence to compact summaries:

Lrefiner
SFT (ϕ; τ) = −

K−1∑
k=0

Nk∑
j=1

logPϕ(sumk,j | q, qk,j , ek,j).

Joint RFT yields a substantially higher initial success rate and reduces trajectory verbosity, making
subsequent RL more stable. Empirical comparisons are reported in Table 1.

3.3 SUB-GOAL SCAFFOLDING

After the RFT initialization, we conduct RLVR to further enhance deep search capability of In-
foFlow. The sparse-reward challenge in deep search RL arises from both task complexity and
outcome-based reward. Single binary reward for final answer offers limited guidance for the in-
termediate steps of a long reasoning trajectory, particularly when early-stage success rates are low.
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Table 1: Analytical experiments on InfoSeek eval set. Co-training (RFT on both) improves Mean@4
and reduces the fraction of unsolved (“Solve None”) samples.

Configuration Mean@4 Solve None(%) Context (Tok.) Search Calls

Base Agents (researcher-3B + refiner-7B) 17.2 76.7 1071.2 2.83

+ RFT on researcher only 31.0 50.3 2489.3 3.92
+ RFT on Both (Co-training) 34.3 46.0 2612.0 4.17

To provide informative learning signals inside long trajectories, we decompose each complex ques-
tion into a set of weighted sub-goals {(gi, si)}Mi=1 (e.g., find anchor entities, verify key facts) as
described in § 2.3. For a trajectory τ , let Gsolved(τ) denote the sub-goals resolved by the agent. We
define a process-level reward

Rsub(τ) =
∑

gi∈Gsolved(τ)

si,

with
∑

i si = 1. The total trajectory reward combines the binary final reward and the sub-goal
reward:

R(τ) = Rfinal(τ) + w ·Rsub(τ),

where w trades off final correctness and intermediate progress (we use w = 0.3). This shaped
reward provides gradient information for partially correct trajectories and encourages decomposed
reasoning.

3.4 PATHFINDING HINTS

While sub-goal rewards densify the learning signal, on-policy exploration alone remains a bottleneck
for the more challenging problems. Even after RFT, a significant portion of difficult samples are
never solved through multiple rollouts (as suggested by the solve none ratio with four rollouts in pilot
analytical studies Table 1), hindering learning signal to policy gradient updates. This is because the
agent can become trapped in unproductive exploration loops, failing to discover the critical reasoning
paths necessary for success.

To overcome this exploration barrier, we introduce pathfinding hints to provide help during on-
policy rollouts. We leverage the guiding queries prepared in § 2.3, which are high-leverage search
actions designed to bridge difficult logical steps. The pathfinding hints injection is triggered when
a trajectory exceeds a predefined turn threshold, Kh, without reaching a terminal state. At this step
(k = Kh), the executed action a′k is constructed by combining the agent’s original reasoning trace
athink
k with the pre-constructed hint queries asearch

k,hint:

a′k = athink
k ◦ asearch

k,hint. (1)

The agent then receives the information retrieved using these hint queries and continues its trajectory
from the new state. We set Kh = 5 in practice.

This mechanism offers two-fold benefits for stabilizing RL. First, as an exploration corrective, it
rescues the agent from unproductive loops, increasing the yield of successful trajectories essential
for policy optimization. Second, as an explicit demonstration, it exposes the agent to an informative
off-policy, expert-quality search action and its positive outcome for better learning.

3.5 POLICY OPTIMIZATION

We fine-tune the researcher via reinforcement learning that integrates the shaped reward R(τ) and
hint-guided exploration after RFT. We adopt Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), a PPO-style algorithm that normalizes advantages within trajectory groups to reduce
variance. For a batch of G trajectories {Yi} with returns {Ri}, the group-normalized advantage is

Ai =
Ri −mean(R)

std(R)
,

6
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and the GRPO objective is

JGRPO(θ) = E

[
1

G

G∑
i=1

min
(
riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai

)
− βDKL(πθ ∥πref)

]
,

where ri is the importance ratio and πref is a reference policy used for KL regularization.

4 EXPERIMENTS

In this section, we empirically validate InfoFlow. Our experiments are designed to demonstrate that
by systematically optimizing for reward density, our framework achieves strong performance and
generalization for agentic search tasks, particularly on complex deep search tasks.

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. To assess the general information-seeking and agentic
search capability, we test InfoFlow on a suite of widely-used single-hop and multi-hop QA bench-
marks with external search corpus: Natural Questions (NQ) (Kwiatkowski et al., 2019b), TriviaQA
(TQA) (Joshi et al., 2017), PopQA (Mallen et al., 2022), HotpotQA (HQA) (Yang et al., 2018),
2WikiMultihopQA (2Wiki) (Ho et al., 2020), Musique (MSQ) (Trivedi et al., 2022), and Bam-
boogle (Bamb) (Press et al., 2022). We use E5 (Wang et al., 2024) as the embedding model, the
2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus, and set the number of retrieved pas-
sages to 3. We report Exact Match (EM) as the metric for these datasets. To evaluate deep search
capability, we employ the BrowseComp-Plus benchmark (Chen et al., 2025b), a refined version of
BrowseComp (Wei et al., 2025) with 830 challenging problems and a fixed 100K webpage corpus.
This benchmark is an ideal testbed for DSQA as its problems inherently demand the deep, iterative
reasoning and search. Following the official implementation, accuracy is judged by an LLM (we use
deepseek v3.1 (DeepSeek-AI, 2024) to judge).

Baselines and Implementation Details. We compare InfoFlow against recent agentic search
methods, including Self-RAG (Asai et al., 2023), Search-o1 (Li et al., 2025c), Search-R1 (Jin et al.,
2025b), Zero-Search (Sun et al., 2025), AutoRefine (Shi et al., 2025), InForage (Qian & Liu, 2025),
and ParrallelSearch (Zhao et al., 2025). These methods employ multi-turn interactions but differ
in their training strategies and agentic framework. For the complex BrowseComp-Plus benchmark,
we include proprietary models like Gemini 2.5 Pro (Comanici et al., 2025), Sonnet 4 (Anthropic,
2025), GPT-5 (OpenAI, 2025), and larger open-sourced Qwen3-32B (Yang et al., 2025) and Search-
R1-32B (Jin et al., 2025b). Our model is initialized with the framework described in § 3.1. For
InfoFlow-3B and InfoFlow-7B, we use Qwen2.5-3B-Instruct/Qwen2.5-7B-Instruct (Group, 2025)
as initialization for researcher agent respectively. We use Qwen2.5-7B-Instruct as initialization for
refiner agent. Then InfoFlow is trained using the pipeline detailed in § 3. Further training details are
provided in § A.4.

4.2 MAIN RESULTS

4.2.1 INFOFLOW DEMONSTRATES SUPERIOR GENERALIZATION ON QA TASKS

As shown in Table 2, InfoFlow demonstrates strong performance and generalization ability on stan-
dard agentic search and information-seeking benchmarks, outperforming all baseline models at both
the 3B and 7B scales. Unlike baseline methods, which primarily rely on in-domain training data
such as NQ and HQA, InfoFlow maintains robust and transferable performance without requiring
in-domain supervision. This result highlights the effectiveness of our reward density optimization
approach with the enriched InfoSeek dataset, which encourages more resilient and generalizable
reasoning by providing dense, process-level rewards. These rewards enable the model to capture
the compositional structure of multi-step reasoning. The benefit is particularly evident on multi-hop
datasets such as HQA and 2Wiki, where the method explicitly trains the agent to synthesize informa-
tion step by step, a critical capability for complex information-seeking tasks. These rewards enable
the model to capture the compositional structure of multi-step reasoning. The benefit is particularly
evident on multi-hop datasets such as HQA and 2Wiki, where the method explicitly trains the agent
to synthesize information step by step, a critical capability for complex information-seeking tasks.
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Table 2: Performance comparison on QA tasks with agentic search methods. The best result in each
column is highlighted in bold.

Model NQ TQA PopQA HQA 2Wiki MSQ Bamb Avg.

Qwen2.5-3B Based Models

Search-o1-3B 23.8 48.2 26.2 22.1 21.8 5.4 32.0 25.6
Search-R1-3B 40.8 59.1 42.8 30.8 31.1 8.4 13.0 32.3
ZeroSearch-3B 41.2 61.5 44.0 31.2 33.2 12.6 14.3 34.0
AutoRefine-3B 43.6 59.7 44.7 40.4 38.0 16.9 33.6 39.6
InForage-3B 42.1 59.7 45.2 40.9 42.8 17.2 36.0 40.6
InfoFlow-3B 44.5 63.7 47.0 44.6 45.2 21.0 41.2 43.9

Qwen2.5-7B Based Models

Self-RAG-7B 36.4 38.2 23.2 15.7 11.3 3.9 5.6 19.2
Search-o1-7B 27.7 47.4 29.4 34.8 35.6 4.8 15.2 27.1
Searcn-R1-7B 38.3 59.3 39.9 37.6 31.7 15.1 38.1 37.0
ZeroSearch-7B 43.6 65.2 48.8 34.6 35.2 18.4 27.8 39.1
ParallelSearch-7B 46.2 62.8 42.9 42.9 42.4 19.7 41.1 42.5
InfoFlow-7B 47.2 68.1 48.1 44.3 47.2 21.9 47.6 46.2

4.2.2 INFOFLOW EXCELS AT COMPLEX LONG-HORIZON DEEP SEARCH TASKS

Table 3: Performance and search calls on the com-
plex BrowseComp-Plus benchmark.

Model Accuracy (%) Search Calls

Gemini 2.5 Flash 15.5 10.6
Gemini 2.5 Pro 19.0 7.4
Sonnet 4 14.3 10.0
GPT-4.1 14.6 11.2
GPT-5 55.9 23.2
Qwen3-32B 3.5 0.9
SearchR1-32B 3.9 1.8
InfoFlow-3B 18.5 8.1
InfoFlow-7B 23.2 7.9

We conduct evaluation on BrowseComp-Plus to
test the deep information seeking capability of
InfoFlow. For fair comparison, all models use
BM25 as retriever. As shown in Table 3, In-
foFlow substantially outperforms existing open-
source agents, even those based on larger 32B
models. Notably, it also surpasses strong pro-
prietary models like Gemini 2.5 Pro and GPT-
4.1. The dual-agent framework preserves the
researcher’s focus on high-level strategic plan-
ning. Concurrently, our data-centric RL approach
(§ 3.4), which uses sub-goal rewards and adap-
tive hints, provides the dense and structured su-
pervision necessary to navigate complex reason-
ing paths where sparse rewards would otherwise stall learning, thus making InfoFlow effectively
solving difficult deep search tasks.

Table 4: Ablation study of InfoFlow components. We report average accuracy on seven general QA
tasks, accuracy on the BrowseComp-Plus. and InfoSeek-Eval benchmarks.

Configuration QA Average BrowseComp-Plus InfoSeek-Eval

InfoFlow-7B 46.2 23.2 47.8

w/o Dual-Agent RFT 38.4 10.2 32.5
w/o Sub-Goal Reward 44.9 21.4 44.5
w/o Off-Policy Hints 45.8 20.1 42.1

4.3 DISCUSSION

4.3.1 ABLATION STUDY

We perform ablations on InfoFlow-7B to evaluate the contribution of each component: (1) Remov-
ing dual-agent RFT causes the largest performance degradation. The combination of low success
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rates and long trajectories results in extremely low reward density, which are insufficient for stable
policy optimization. (2) Removing sub-goal reward shaping also yields a consistent decrease. This
finding underscores the importance of dense intermediate supervision for on-policy RL. (3) With-
out off-policy hints has a relatively minor effect on general QA but leads to a 3.1-point drop on
BrowseComp-Plus, indicating that hints are especially valuable for difficult information-seeking
tasks requiring deep search, intensive reasoning, and long-horizon exploration.

4.3.2 ANALYSIS OF REASONING DEPTH

Figure 3: Analysis of Reasoning Depth.

We conduct experiments to analyze how In-
foFlow’s performance scales with reasoning
depth on the challenging BrowseComp-Plus
benchmark. As shown in Figure 3, allowing more
reasoning-searching turns improves accuracy ef-
fectively, which increases from 11.2% (4 turns)
to 22.8% (16 turns). This result demonstrates that
InfoFlow learns a generalizable, iterative reason-
ing policy rather than being limited by the fixed
max reasoning-searching turns during training.
This allows the agent to dynamically extend its
reasoning process during inference, a crucial ca-
pability for deep search tasks where the required
reasoning depth to be adaptively adjusted.

4.3.3 REINFORCEMENT LEARNING TRAINING DYNAMICS

We examine the RL training dynamics of InfoFlow-7B with and without sub-goal shaping and hints.
We report both the original final reward (task accuracy, green curve) and the shaped reward (pink
curve). The two curves improve in tandem rather than diverging. If reward hacking were present,
the shaped reward would increase while the final reward stagnated or declined. Instead, both metrics
rise consistently, indicating that the agent is learning genuinely improved search behaviors rather
than exploiting annotation.

Figure 4: RL training dynamics with and without hints and sub-goal rewards.

5 CONCLUSION

We introduced InfoFlow, a dual-agent framework designed to address the critical challenge of low
reward density in training LLM agents for agentic deep search tasks. By integrating sub-goal reward
shaping, adaptive off-policy hints, and a dual-agent architecture initialized with RFT, InfoFlow pro-
vides dense, process-level supervision that makes learning tractable. Our experiments demonstrate
that this approach enables even lightweight LLMs to achieve performance competitive with much
larger proprietary models on challenging deep search benchmarks. This work highlights the effi-
cacy of data-centric RL in making complex agentic deep search tractable and presents a promising
direction for developing more capable and efficient LLM search agents.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a detailed account of our methodology and
experimental setup. Our code, along with the enriched InfoSeek dataset, will be made publicly avail-
able upon publication. The experimental setup, including datasets, evaluation metrics, and baseline
models, is described in § 4.1. Key implementation details and hyperparameters for our proposed In-
foFlow framework are presented throughout § 3. Specifically, the dual-agent RFT process is detailed
in § 3.2, and the reinforcement learning approach, including the sub-goal reward weight (w = 0.3)
and the hint injection threshold (Kh = 5). Detailed hyperparameters and further implementation
details are provided in the Appendix.
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A APPENDIX

A.1 RELATED WORK

From Retrieval Augmentation to Search-Integrated Reasoning. To mitigate the limitations of
static parametric knowledge, Retrieval-Augmented Generation (RAG) has become a standard prac-
tice (Lewis et al., 2020). Early RAG methods follow a static ”retrieve-then-generate” pipeline, which
struggles with complex, multi-hop queries. Recent efforts have made this process more dynamic
through query rewriting, iterative retrieval, or self-critique mechanisms that assess the relevance of
retrieved information (Asai et al., 2024). A more advanced paradigm, Search-Integrated Reasoning
(SIR), moves beyond this separation by deeply interleaving reasoning steps with tool actions like
web searches. Foundational frameworks such as ReAct (Yao et al., 2023) demonstrated the effec-
tiveness of this approach using in-context learning. Our work, InfoFlow, adopts the SIR paradigm
but focuses on explicitly training models to acquire these capabilities, rather than relying solely on
prompt engineering at inference time.

Training Agents for Search and Reasoning. A prominent research direction focuses on fine-
tuning LLMs to learn robust policies for interacting with search engines. While Supervised Fine-
Tuning (SFT) on expert trajectories provides a strong initialization (Zeng et al., 2023), Reinforce-
ment Learning (RL) is crucial for teaching agents to explore and discover effective strategies for
unseen problems. Several works have successfully applied RL to train search agents (Jin et al.,
2025b; Song et al., 2025). However, a fundamental obstacle is reward sparsity: complex tasks yield
infrequent terminal rewards, providing poor learning signals for the long sequence of intermediate
steps (Ning et al., 2025). This makes policy optimization unstable and inefficient. While some
methods attempt to mitigate this by learning a separate reward model or using offline policy opti-
mization (Wang et al., 2025; Deng et al., 2025), InfoFlow addresses the problem directly through a
novel combination of sub-goal reward shaping to provide dense, intermediate signals and adaptive
off-policy hints to increase the rate of successful trajectory completion during online training.

Multi-Agent Collaboration. Decomposing complex problems for multi-agent systems is a pow-
erful strategy. Most current approaches focus on inference-time orchestration, where a central plan-
ner LLM delegates sub-tasks to specialized tools or other LLM instances without altering their
weights (Qiu et al., 2025). Frameworks like MetaGPT (Hong et al., 2023) assign distinct roles to
different LLM agents to collaboratively solve complex tasks. InfoFlow advances this concept by in-
troducing a co-trained dual-agent framework. We partition the cognitive load between a Researcher
agent for planning and execution and a Refiner agent for evidence synthesis and guidance. Cru-
cially, unlike inference-time frameworks, our agents are jointly optimized, allowing them to develop
a specialized and synergistic protocol that enhances reasoning efficiency and stability.

A.2 OFF-POLICY INFORMATION CONSTRUCTION WITH INFOSEEK DATASET

As introduced in Section 2.3, our process-based reinforcement learning approach relies on densely
supervised data. This appendix details how we construct this off-policy supervision, specifically the
weighted sub-goals and hints, by leveraging the unique structure of the InfoSeek dataset (Xia et al.,
2025). Figure 5, 6 and 7 provide three examples.

InfoSeek: A Dataset Built on Decomposable Reasoning Structures. The InfoSeek dataset was
specifically designed to address the scarcity of benchmarks for Deep Research tasks, which demand
complex, multi-step reasoning beyond simple multi-hop question answering. Its core innovation
lies in its data synthesis paradigm, which generates questions grounded in a verifiable and explicit
reasoning structure called a Research Tree. The generation process begins by mining entities and
their relationships from a large-scale text corpus. From these, a “Research Tree” is recursively
constructed for each data point, where the root denotes the final, unique answer, internal nodes rep-
resent intermediate sub-goals, and edges encode their logical dependencies. To ensure complexity,
the descriptions of these internal nodes are “blurred” with additional constraints. Finally, a powerful
LLM is prompted with the entire tree structure to generate a high-level, natural language question
whose resolution requires traversing the entire reasoning path. This tree-based structure provides a
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ground-truth decomposition of a complex problem into a hierarchy of verifiable sub-goals, making
it an ideal foundation for generating process-level supervision.

InfoSeek-Evaluation The InfoSeek-Evaluation set contains 300 high-quality, human-checked
samples to evaluate agentic deep search capability. Qwen2.5-72B-Instruct with a CoT prompting
achieves lower than 8% accuracy in this evaluation set.

Constructing Weighted Sub-Goals. We utilize the InfoSeek Research Tree’s topology to define
sub-goals and assign an importance weight si to each. Our process begins by extracting a subset
of **high-value** internal nodes from the Research Tree to form the set Gq = {g1, . . . , gM}, de-
liberately excluding simple confirmatory facts. We leverage a powerful teacher model, Gemini 2.5
Pro, to meticulously select these critical entities (typically 2-4 per tree) and assign an importance
weight to each. This selection process distinguishes between **pivotal intermediate nodes** (core
entities unlocking subsequent paths) and **secondary supporting nodes** (necessary evidence),
ensuring sparse yet targeted supervision. The specific prompt used for this task is detailed in Ap-
pendix A.6. The assigned weights are constrained to sum to one (

∑M
i=1 si = 1), providing the final

set of weighted sub-goals {(gi, si)}Mi=1 for our reward shaping scheme.

Generating Hints as Guiding Queries. Hints are formulated as high-leverage guiding queries
that act as off-policy information bridges. They are designed to assist the agent when it is unable to
make progress through autonomous exploration, thereby mitigating unproductive reasoning loops.
These hints are generated using Gemini 2.5 Pro (see Appendix A.6) based on the critical edges of
the Research Tree. During policy optimization, these hints are instrumental in teaching the agent
several crucial search skills. They foster purposeful search by providing direct queries for specific
sub-problems, guiding the agent onto a productive path. Furthermore, they help the agent break
through key points in the reasoning chain where identifying the next step is non-obvious. Finally,
by reframing or combining constraints in novel ways, the hints encourage creative search, training
the agent to formulate more effective queries beyond simple keyword matching.

Figure 5, 6 and 7 provide three examples. The main question contains multiple, intertwined con-
straints. The generated hints effectively decompose this complexity by isolating and combining key
constraints into actionable search queries. The first hint focuses on identifying the person, while the
second provides an alternative, more robust query by combining the person’s profession with their
marital information.

Question: What is a literary genre that was defined by a novelist who wrote a novel incorporating ele-
ments of the legendary origins of the Hope Diamond, and was mentored by Charles Dickens, characterized
as a ’novel-with-a-secret’?

Answer: Sensation novel

Hint Queries:
novelist mentored by Charles Dickens who wrote The Moonstone
author whose novel incorporated elements of the Hope Diamond and was mentored by Charles Dickens

author of ’The Woman in White’ mentored by Charles Dickens
Sub Goals:
Wilkie Collins: weight 0.6
Charles Dickens: weight 0.2
The Moonstone: weight 0.2

Figure 5: Case study 1 (Sensation novel): An example of enriched InfoSeek dataset. The hints
decompose the main question into more manageable, high-leverage search queries that serve as off-
policy guidance.

Through this process, we enrich the original InfoSeek dataset with a structured layer of off-policy
supervision. This augmented data, containing both quantitative sub-goal importance and qualitative
reasoning hints, provides a robust foundation for training more capable and efficient Deep Research
agents using our proposed reinforcement learning framework.
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Question: What is an album that was created by a musician who played piano in Gus Arnheim’s band,
created a jazz camp, was recorded in 1955, and features drumming by Mel Lewis?

Answer: Contemporary Concepts

Hint Queries:
musician who played piano in Gus Arnheim’s band and later created a jazz camp
bandleader whose 1955 album featured Mel Lewis on drums
jazz pianist who once played for Gus Arnheim and founded a music education program

Sub Goals:
Stan Kenton: weight 0.7
Gus Arnheim: weight 0.3

Figure 6: Case study 2 (Contemporary Concepts): An example of enriched InfoSeek dataset. The
hints decompose the main question into more manageable, high-leverage search queries that serve
as off-policy guidance.

Question: What is a British Thoroughbred racehorse that was sired by a horse who won the 1941 Epsom
Derby, was the leading British two-year-old of 1959, was a dark bay horse with a white blaze standing
16.1 hands high, and had considerable success as a sire of sprinters?

Answer: Sing Sing (horse)

Hint Queries:
horse that won the 1941 Epsom Derby
1941 Epsom Derby winner

Sub Goals:
Tudor Minstrel: weight 0.5
Owen Tudor: weight 0.5

Figure 7: Case study 3 (Sing Sing (horse)): An example of enriched InfoSeek dataset. The hints
decompose the main question into more manageable, high-leverage search queries that serve as off-
policy guidance.

A.3 FURTHER DUAL-AGENT FRAMEWORK EXPERIMENTS AND EFFICIENCY ANALYSIS

As introduced in Section 3.1, our dual-agent framework decouples high-level reasoning from low-
level evidence gathering to enhance performance and efficiency. This section provides a detailed
empirical analysis of this design.

Table 5: Analysis of the dual-agent framework on the InfoSeek evaluation set. The Researcher Agent
is fixed as Qwen2.5-3B-Instruct. ”Context Length” is the average number of tokens processed by
the researcher per trajectory. ”Time” denotes the average inference time per task.

Refiner Agent Accuracy (%) Search Calls (#) Context Length (Tok.) Time (min.)

w/o refiner 8.4 1.93 2372.4 12.2

Qwen2.5-3B-Inst 13.4 3.07 1309.6 10.2
Qwen2.5-7B-Inst 17.2 2.83 1071.2 10.5
Qwen2.5-32B-Inst 18.8 3.01 1260.4 11.3

As shown in Tab 5, we conduct analytical study employing a fixed Qwen2.5-3B-Instruct researcher
to isolate the impact of the refiner with InfoSeek evaluation set. The baseline without a refiner
struggles, achieving only 7.4% accuracy. The introduction of a 3B refiner dramatically improves
accuracy to 13.4% while simultaneously reducing the researcher’s average context length per tra-
jectory by 45% (from 2372 to 1310 tokens). Scaling the refiner to a 7B model yields further gains
to 17.2%. This demonstrates that offloading evidence distillation enables the researcher to dedicate
their limited context window to high-level reasoning, significantly boosting performance.
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Beyond performance gains, the dual-agent framework offers computational efficiency. The primary
bottleneck in LLM is the quadratic complexity (O(n2)) of self-attention with respect to context
length. By delegating the processing of verbose evidence to the refiner, we substantially reduce
the peak context length for the researcher. In a practical deployment, this architecture is highly
feasible. A standard setup for information-seeking tasks already requires a researcher agent and a
retrieval service ( 10% VRAM) in a single 8xH800 node. Adding a dedicated refiner, optimized
with frameworks like vLLM, incurs a manageable overhead of approximately 20% more VRAM,
making the entire system viable on a single 8xH800 node.

A key advantage of our approach is its implementation simplicity and adaptability. Unlike com-
plex multi-agent reinforcement learning schemes, our refiner can be aligned with the researcher via
a straightforward SFT process. This involves sampling trajectories from the researcher and using
them to train the refiner, ensuring it learns to distill information in a manner tailored to the re-
searcher’s reasoning patterns. Consequently, the refiner is not a static, prompt-engineered module
but a dynamic component that co-evolves with the researcher. This training methodology provides
a scalable path toward building more capable, collaborative agent systems without incurring pro-
hibitive complexity.

A.4 IMPLEMENTATION DETAILS

For research agent RFT, we fine-tune for 3 epochs with a learning rate of 1e-5, L2 normalization of
0.01(important for stablizing training), and a context length of 16,384, using a single 8×H100 node.
For refiner agent RFT, we fine-tune for 2 epochs with a learning rate of 1e-5, L2 normalization of
0.01 , and a context length of 8,192, using a single 8×H100 node.

RL training is conducted with a batch size of 256, a maximum of 10 turns, rollout size 8, temperature
0.8, and a search engine restricted to the top-5 retrieved contents. The training is conducted on two
8×H100 nodes.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used to polish writing and are used for enriching the training dataset, which is described
in Sec 2.3.
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A.6 PROMPTS

A.6.1 REFINER AGENT

The complete prompt template used for our Refiner Agent is presented in Listing 1. Note that we
use this template both to drive the refiner and for refiner RFT training

<|im_start|>user
**TASK:**
Synthesize the key information from the **[Retrieved Documents]** that

↪→ is relevant to the **[Current Query]**. The synthesis should be
↪→ guided by conducting deep research to uncover the **[Original
↪→ Question]**.

**INSTRUCTIONS:**
1. **Extract & Merge:** Identify all relevant facts and combine them.

↪→ Eliminate redundancy. You should provide information for deep
↪→ research, not answer to current query or original question.

2. **Provide Information, Not an Answer:** Your output should be a
↪→ self-contained block of information, NOT a direct, short answer
↪→ to the original question or the current query.

3. **Handle Insufficient Information:** If the documents do not
↪→ contain relevant information for the query, state that the
↪→ provided sources are insufficient and suggest that further
↪→ investigation may be needed. You can also provide some further
↪→ investigation direction and query rewrite suggestions.

4. **Format:** Enclose the entire synthesized output within ‘<
↪→ information>‘ and ‘</information>‘ tags. Add no other text. For
↪→ example, <information> Synthesized information for deep research
↪→ here </information>.

**CONTEXT:**
- **[Original Question]:** {original_question}
- **[Current Query]:** {query}
- **[Retrieved Documents]:** {documents}

**TASK:**
Synthesize the key information from the **[Retrieved Documents]** that

↪→ is relevant to the **[Current Query]**. The synthesis should be
↪→ guided by conducting deep research to uncover the **[Original
↪→ Question]**.

**INSTRUCTIONS:**
1. **Extract & Merge:** Identify all relevant facts and combine them.

↪→ Eliminate redundancy. You should provide information for deep
↪→ research, not answer to current query or original question.

2. **Provide Information, Not an Answer:** Your output should be a
↪→ self-contained block of information, NOT a direct, short answer
↪→ to the original question or the current query.

3. **Handle Insufficient Information:** If the documents do not
↪→ contain relevant information for the query, state that the
↪→ provided sources are insufficient and suggest that further
↪→ investigation may be needed. You can also provide some further
↪→ investigation direction and query rewrite suggestions.

4. **Format:** Enclose the entire synthesized output within ‘<
↪→ information>‘ and ‘</information>‘ tags. Add no other text. For
↪→ example, <information> Synthesized information for deep research
↪→ here </information>.

**SYNTHESIZED INFORMATION:**
<|im_end|>
<|im_start|>assistant

Listing 1: The prompt template for the Refiner Agent.
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A.6.2 PROMPT FOR DATASET ENRICHMENT

We use the Gemini 2.5 API (Gemini Team, 2025) with the following prompt to conduct InfoSeek
dataset enrichment as described in Section 2.3 and Section A.2.

<|im_start|>user
**Role**: You are an AI Data Augmentation expert. Your mission is to

↪→ extract and expand key information from a Research Tree to
↪→ optimize reinforcement learning for training an LLM as a deep
↪→ research agent.

**Objective**: From the input Research Tree, complete the two tasks
↪→ below and return results in one unified JSON output.

### **Task 1: Extract High-Value Entities & Assign Weights (for Reward
↪→ Shaping)**

Identify pivotal breakthroughs to reward in PPO training.

**Steps**:
1. Select **2-4 most critical entities** from the Research Tree.
2. Assign each a ‘weight‘ (float), with all weights summing to **1.0**.
3. Prioritize:

* **Pivotal Nodes (0.6-0.8)**: Core breakthroughs, usually direct
↪→ children of the root, resolving major clauses.

* **Supporting Nodes (0.2-0.4)**: Necessary for pivotal nodes,
↪→ smaller but still important.

* Exclude trivial confirmatory facts.

**Output**: JSON array of objects with ‘id‘, ‘entity‘, and ‘weight‘.

### **Task 2: Generate Early-Stage Guiding Queries (for Strategic Hints
↪→ )**

Provide hints to guide initial exploration without leaking answers.

**Steps**:
1. Generate **1-2 critical guiding queries**.
2. Focus on **leaf nodes**, using their parent’s entity + claim.
3. Queries must **not** contain the child node’s entity.
4. Queries should be natural, strategic, and yield high information

↪→ gain.

**Output**: JSON array of objects with ‘target_id‘ and ‘
↪→ generated_queries‘ (array of strings).

**Background**:
* Research Tree = hierarchical structure of questions/answers (nodes).
* Root = original complex question.
* Children = sub-questions.
* Claims = relationship between parent and child entities.

**Example Input & Output:**
...

**Execute both tasks on this Research Tree:**
{research_tree_stucture}

**Output:**
<|im_end|>
<|im_start|>assistant

Listing 2: The prompt for the AI Data Augmentation expert to process the Research Tree.
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