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Abstract

Existing inequalities are known through out diabetes care which result in poorer
health outcomes for ethnic minority groups and those from disadvantaged back-
grounds. With the growth of foundation models being deployed to assist with
diagnosis and healthcare usage predictions it is essential we understand how these
may exacerbate existing biases. We assess the fairness of long-term microvas-
cular complication predictions for individuals living with Type 2 Diabetes. We
encoded the entire structured clinical record for each individual as text in order to
take advantage of existing knowledge within pretrained clinical language models.
Leveraging large-scale EHR data from the UK, we predict the risk of microvas-
cular complications in individuals with Type 2 Diabetes across 6-, 12-, 36- and
60-month prediction windows and assess performance across three fairness metrics;
sensitivity, specificity and demographic parity. We find that models demonstrate
statistically significant gaps in performance across different protected characteris-
tics such as sex, ethnic group and level of deprivation. These performance gaps
were particularly pronounced for ethnic minority groups, and those with missing
or unknown ethnicity status.

1 Introduction

Evidence has highlighted that inequalities are present across diabetes care and health outcomes. Type
2 Diabetes (T2DM) is a long-term cardio-metabolic condition that disproportionately impacts ethnic
minority groups [3], which experience higher prevalence rates of undiagnosed T2DM compared to
White ethnic groups [1] and poorer treatment once diagnosed [10]. These disparities in diagnosis
and treatment can lead to worse health outcomes, such as micro- and macro-vascular complications
that can result in severe outcomes, such as vision loss, end stage renal disease and amputations [2, 7].
Given these existing inequities, it is crucial that as AI systems become more integrated into healthcare
decision making and prediction, that these biases are not proliferated further.

There are well documented examples of how AI models can perpetuate and exacerbate health
inequalities [8, 15, 11], and with the wide spread use and proliferation of foundational models, there
is risk that we inherit and create biases that could result in inequitable outcomes. Although attention
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has been paid to biases present in unstructured clinical notes, limited research has explored bias and
performance across different socio-demographic groups in models trained on structured real-world
electronic healthcare records (EHRs) and how this may change over time.

In this work we assess the impact of biases in a pre-trained model, GatorTron, across various disease
prediction tasks in individuals with T2DM. Using large real world EHRs from the UK, we focus on
predicting the microvascular complications across 6-, 12-, 36- and 60-month prediction windows,
and explore biases across sex, ethnic group and indices of multiple deprivation (IMD).

2 Related work

Considerable research has explored bias in BERT-based models trained on unstructured data. Zhang
et al. [18] highlighted linguistic biases as well as differing model performance for genders, ethnicities,
language speakers and insurance status on clinical prediction tasks. They found statistically significant
performance gaps in sensitivity, specificity and demographic parity across 50 downstream prediction
tasks, with models favouring majority groups in gender, language, ethnicity and insurance status.

Jiang et al. [6] assessed the performance of NYUTron on a readmission task stratified by clinical
department, age and racial groups and found biases across strata. For racial groups model performance
varied, performing best for Chinese patients (AUC 0.85) and worst for Black patients (AUC 0.77),
even though Black patients experienced the highest rates of readmission across ethnic groups.
Critically they also reported varied performances across clinical departments, performing best in
Neurology (AUC 0.90) and worst in Internal Medicine (AUC 0.64). This also wasn’t seen to be
an effect of sample size, with variations in both performance and number of readmissions. These
findings suggest that model performance is poor for specific groups, and this may be amplified by
intersecting variables, for example, elderly Black patients seen in Internal Medicine.

Pal et al. [13] compared the performance of various pre-trained BERT-like models on a multi-label
classification task identifying smoking and obesity status from unstructured clinical notes. They
found that across 5 models on both tasks there was a bias towards males and models performed
the worst for those 20 – 40 years. When assessing intersectional bias for the smoking task, the
model performed worst for men aged 40 – 60 (micro-F1 0.76) compared to women of the same age
(micro-F1 0.92).

These findings paint a picture of systematic bias across a variety of different BERT-like models,
healthcare systems and datasets. Our work builds on this to explore biases in sex, ethnic group and
IMD in small foundational models fine-tuned on structured EHR data. We particularly focus on the
differences in bias over time, exploring both short-term and long-term prediction of microvascular
complications in individuals living with T2DM.

3 Methods

3.1 Data and study population

This study uses the Clinical Practice Research Datalink (CPRD), real-world anonymised patient
data on 19 million patients from across the UK [16]. We analysed EHRs from CPRD AURUM
and included all individuals ≥ 18, diagnosed with at least one long-term condition, permanently
registered to any General Practice in London between 01/01/2010 and 01/01/2020.

A diagnosis of T2DM, retinopathy, neuropathy or nephropathy were identified using validated pheno-
type definitions and we used the first occurring diagnosis date [4]. Individuals with microvascular
complications prior to a diagnosis of T2DM were excluded. Our dataset included 140,186 individuals
diagnosed with T2DM, 19,954 with nephropathy, 31,091 with retinopathy and 8,135 with neuropathy
(Table 1).

Study entry was defined as the first EHR event, up until the event before the prediction window, or
to the last recorded event for those without complications. For example, for the 6-month prediction
window for retinopathy, we kept all data until 6 months prior to the first diagnosis of retinopathy. See
Appendix (Figure 4) for an example.
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Table 1: Characteristics of individuals with T2DM complications

Characteristic Retinopathy Nephropathy Neuropathy
Total 31,091 19,954 8,135
Sex Male 17,481 10,806 4,853

Female 13,610 9,148 3,282
Ethnic group White 9,415 8,527 3,983

Asian or Asian British 8,941 5,123 1,696
Black or Black British 6,555 4,471 1,792
Any Other Ethnic Group 2,033 1,029 403
Mixed 414 212 89
Missing 3,067 362 113
Unknown 666 230 59

IMD 1 (least deprived) 1,700 1,231 451
2 3,061 2,042 697
3 5,525 3,536 1,427
4 11,026 6,641 2,693
5 (most deprived) 9,779 6,504 2,867

3.2 EHR pre-processing

We utilised data on diagnoses, symptoms, demographics, referrals, hospitalisations, procedures and
medications. Each event in CPRD is associated with a clinical code and textual descriptor, for
example the ICD10 code E11.9 is associated with type 2 diabetes mellitus without complications. We
concatenated the textual descriptor for every event in a patient’s EHR chronologically to generate
textual sentences for each patient.

Within CPRD, sex is recorded as a binary variable (Male/Female). IMD, a well used measure of
deprivation, is calculated based on an individual’s address and grouped into quintiles. For ethnic
group, we aggregated into 6 categories: White, Black or Black British, Asian or Asian British, Any
Other Ethnic Group, Mixed, Unknown. For any individuals without an ethnicity code we generated a
Missing category, as missingness can be informative [5].

3.3 Model architecture

We utilised a pre-trained clinical language model, GatorTron-base [17] to encode the tokenized EHR
sequences, truncated or padded to 512 tokens, the maximum length for standard encoder-only models.
We calculate the median length and interquartile range (IQR) for each dataset (Appendix A).

We fine-tuned a total of 12 models, one for each microvascular complication and risk prediction
window. The models consisted of a fine-tuned encoder with a single linear output layer for the
classification task. We split our data 80/10/10 into training, test and validation, downsampled the
train datasets and used weighted cross entropy due to class imbalance. We report on recall, F1, Area
Under the Receiver Operating Characteristic (AUROC) and area under the precision recall curve
(AUPRC) calculated on the held-out test set.

Models were fine-tuned using a learning rate of 2e-5, on the entire dataset with early stopping.
Losses were monitored for overfitting. For more information on pre-processing and architecture see
Appendix A.

3.4 Evaluation of model fairness

We evaluated the classifiers performance gaps on sensitivity, specificity and demographic parity.
We used bootstrapping of 1000 samples from the test set to establish 95% confidence intervals (CI)
for each gap. We use three definitions of fairness: sensitivity, specificity and demographic parity.
Sensitivity, also known as recall or the true positive rate, is a ratio of correctly identified positive
samples over the total number of positive samples. A higher value [0, 1] indicates better prediction of
the positive class. Sensitivity is an important metric in clinical diagnostic tools as it is preferable to
capture as many true cases of a disease as possible whilst minimising false negatives (18). Sensitivity
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is expressed as:
P (Ŷ = 1|Y = 1) = P (Ŷ = 1|Y = 1, Z = z),∀z ∈ Z

Specificity is the ratio of correctly identified negative samples over the total number of all nega-
tive samples. A higher specificity value [0, 1] represents accurately predicting the negative class.
Specificity denoted as:

P (Ŷ = 0|Y = 0) = P (Ŷ = 0|Y = 0, Z = z),∀z ∈ Z

Demographic parity is a commonly used fairness metric, also known as statistical parity or group
fairness, that refers to equal positive prediction rates across groups regardless of the true outcome. In
a clinical setting, this means that for a prediction model of nephropathy in individuals with T2DM,
the proportion of men and women identified is equal regardless of whether the true rates of disease
differ between groups. Demographic parity is expressed as:

P (Ŷ = y) = P (Ŷ = y|Z = z),∀z ∈ Z

4 Results

We assess the performance of the pre-trained model on 3 downstream tasks over 4 prediction windows.
We benchmark the performance across each of these settings (Table 2).

Table 2: Model Performance metrics for different prediction windows

Time Period Recall F1 AUROC AUPRC
6-months Nephropathy 0.81 0.42 0.42 0.52

Retinopathy 0.83 0.54 0.83 0.66
Neuropathy 0.72 0.22 0.77 0.30

12-months Nephropathy 0.82 0.42 0.81 0.53
Retinopathy 0.83 0.55 0.83 0.68
Neuropathy 0.74 0.21 0.77 0.29

36-months Nephropathy 0.85 0.44 0.56 0.63
Retinopathy 0.87 0.56 0.88 0.75
Neuropathy 0.73 0.23 0.80 0.43

60-months Nephropathy 0.84 0.47 0.89 0.70
Retinopathy 0.89 0.58 0.91 0.81
Neuropathy 0.76 0.26 0.85 0.55

Across all three tasks models performed better at the longest prediction window of 60-months,
compared to a 6-month window and for tasks with lower levels of class imbalance. The model for
retinopathy, the largest class, performed best across all metrics with an AUPRC score of 0.81 at
60-month prediction window, as compared to neuropathy with an AUPRC of 0.55.

4.1 Variation in performance gaps for ethnic groups

We visualise the sensitivity, specificity and parity gap for ethnic group over different prediction
windows across Retinopathy (Figure 1), Nephropathy (Figure 2) and Neuropathy (Figure 3), which
highlights a series of significant gaps in performance over time.

A positive bar indicates that the model performs better for that ethnic group at that specific time point
compared to the reference group (White), a negative bar indicates poorer performance for that ethnic
group. The 95% CI is included to aid in interpretation of statistical significance. Where the 95% CI
crosses zero, the gap is not statistical significant. For ease we also report the number of significant
gaps, over total number of gaps for each socio-demographic area.

For the prediction of retinopathy, gaps in sensitivity were significant 8 out of 24 times, almost all of
which favoured ethnic minority groups. Specificity was poorer for ethnic minority groups (11/24),
particularly Asian or Asian British and those with Missing ethnicity. Demographic parity was better
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Figure 1: Performance gaps for Retinopathy

Figure 2: Performance gaps for Nephropathy
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Figure 3: Performance gaps for Neuropathy

for most ethnic minority groups (12/24), which means that the model is predicting disease presence
at a higher rate compared to the White ethnic groups.

For nephropathy prediction, there were fewer significant gaps in sensitivity (7/24), all of which
favoured the majority reference group. Whilst specificity was better for all ethnic minority groups
across all time windows (24/24), meaning that the models are better at correctly identifying negative
cases in ethnic minority groups as compared to the White reference group. The gap in demographic
parity was significant in all cases (24/24) and favoured the reference group.

Finally for neuropathy prediction, fewer gaps were significant (4/24) and were equally spread between
favouring ethnic minority groups or the reference group. Specificity favoured ethnic minority groups
in almost every case (23/24) whilst demographic parity was worse for ethnic minority groups in
comparison to the reference group (23/24).

Overall model performance varied across each prediction task and highlights the importance of
investigating model performance over a variety of metrics. Although the gaps in performance
were not always significant for sensitivity, they were for specificity and demographic parity. The
biggest variation and significant differences could be seen in the category with Missing ethnicity,
which experienced poorer sensitivity and parity across nephropathy and neuropathy compared to the
reference group. In practice this could result in an underdiagnosis of those with a Missing ethnicity
for nephropathy and neuropathy, given that more true positive cases are missed.

4.2 Ethnic group bias may decrease over time

There is a visual trend towards a decreasing bias over time across all three metrics. This is more
pronounced in specific settings, such as the sensitivity and parity gap for individuals with Missing
ethnicity data in the nephropathy task. This may be due to a variety of factors, which includes a
selection bias. In order to contribute data to the 60-month prediction model an individual is required
to have at least 60-months of data, whilst those contributing to 6-month prediction models are only
required to have at least 6 months. Due to this inherent selection bias due to the set up of the study,
there may be differences in individuals that are included at each time point. For example, at 6 months
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there are 8135 individuals with neuropathy, whilst for the 60-month prediction task there were 7164
individuals (Table 3).

Table 3: Number of cases by disease and prediction window

Condition 6-months 12-months 36-months 60-months
Neuropathy 8,135 8,031 7,646 7,164
Nephropathy 19,954 19,773 19,055 17,999
Retinopathy 31,091 30,505 28,381 26,034

4.3 Biases less prominent across other demographics

For both sex and IMD there were considerably fewer statistical differences. We report the total number
of statistically significant gaps across all three tasks (retinopathy, neuropathy and nephropathy) and
all four prediction windows (6-, 12, 36- and 60-months) together. A score of 12 would demonstrated
a significant gap over all models and time periods for each metric. We also report of the total number
of gaps that favour the reference group in brackets.

Of the statistically significant gaps in performance, all gaps favoured the reference groups (males, and
IMD quartile 1) for sensitivity and demographic parity, but favoured all other groups for specificity.
In medical terms this is less desirable, as a higher specificity but lower sensitivity can result in fewer
false alarms but also fewer actual cases being identified.

Table 4: Comparison of sensitivity, specificity, and parity by sex and IMD

Category Sensitivity Specificity Demographic Parity
Sex (Male vs Female) 3 (3) 8 (0) 6 (6)
IMD 1 vs 2 1 (1) - -
IMD 1 vs 3 - 7 (0) 5 (5)
IMD 1 vs 4 2 (2) 3 (0) 4 (4)
IMD 1 vs 5 1 (1) 4 (0) 4 (4)

5 Discussion and future work

We assessed the fairness of a pre-trained language model in a series of microvascular complication
prediction tasks over different prediction windows. These models demonstrated differences in
performance across ethnic groups, sex and IMD across a variety of metrics.

These performances may reflect known biases in the data. For example, research shows that although
ethnic minority groups experience higher rates of diabetes complications [12], they are not always
diagnosed at the same rate as White ethnic groups. The models in this study may perform better for
the majority group as these are the trends captured within the available data.

Additionally, there are issues with messy EHR data. Performance varied across the 7 ethnic groups,
each group contains other granular ethnicity categories which are collapsed for a larger sample size.
Future work should look at more granular ethnicity categories to explore within group differences.
The Missing ethnicity group typically experience the poorest performance. Research has found that
those with missing ethnicity data are generally younger, male and living with fewer co-morbidities
[9, 14] which suggests that this group may be a relatively healthy group that does not interact with
the healthcare service regularly, thus reducing the possibility to capture ethnicity data. It is common
in research to exclude this group from modelling, but this work highlights the need to understand how
model performance varies under real-world conditions where missing ethnicity data can be common.

A limitation of this work is that we do not engage in understanding where the biases emerge from,
whether clinical practices, data quality, class imbalance or other sources, nor do we attempt to account
or correct for the biases in the pipeline. In future work, to get a deeper understanding of bias we will
consider a counterfactual evaluation, whereby all data remains the same whilst we alter one or more
sensitive attributes, such as ethnic group or sex, and then compare model performance.
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Future work will explore the temporal aspects to bias, particularly to understand the potential
reduction in bias over time. This could be in the form of explainability, to understand the features
that drive prediction at 6 months versus 60 months as well as analysing changes in the cohort over
longer prediction windows to assess any systematic differences in these cohorts. Additionally it is
important to understand how inequalities intersect, and a particular focus should be on understanding
and mitigating any intersectional biases.
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A Appendix

A.1 Pre-processing

Patients were only included if they were eligible for data linkage to Hospital Episode Statistics (HES)
and Office for National Statistics (ONS) registries. This ensured that only patients with primary and
secondary care were included. Data was pre-processed to remove duplicate events (identical rows),
impossible events (dates of events that occur before birth or after deregistration), events with missing
dates, or missing clinical code (events without a textual descriptor). Due to data quality issues only
records between 1985 and 2020 were included [16]. Only individuals with at least 3 unique events
were included.

Figure 4: Data window

A.2 Model architecture

Gatortron-base is a small foundational model with 345M parameters. It was trained on 82B words of
de-identified clinical notes, 6.1B words from PubMed, 2.5B words from WikiText and 0.5B words of
de-identified clinical notes from MIMIC-III.

For all prediction tasks and prediction windows, input was first tokenized and special token [CLS]
added. The tokenized sequences, special tokens and positional embeddings were fed into the
pretrained encoder-only model. The final hidden state of the [CLS] token was used as input to the
fully connected layer. A sigmoid activation function was applied to logits to produce independent
probabilities for each label.

We searched for a learning rate that gave the lowest F1 score (1e-3, 2e-5, 3e-5, 4e-5, 5e-5) and
fine-tuned on the entire dataset for 48000 steps with early stopping. Models were fine-tuned on one
NVidia A100 GPU.

A.3 Average token length

We also provide the median token length of patient’s EHR sequences for each disease and prediction
window. We also calculate the interquartile range, displayed as the 25th and 75th percentile. The vast
majority of EHR sequences are truncated due to the standard maximum length of 512 although this
decreased gradually the longer predicton window lengths.
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Table 5: Median [IQR] and percentage truncated by disease and prediction window

Condition Prediction Window Median [IQR] % Truncated
Nephropathy 6-months 2773 [1059, 5877] 86.31%

12-months 2698 [1006, 5741] 85.31%
36-months 2367 [806, 5333] 81.48%
60-months 2118 [657, 4995] 78.29%

Neuropathy 6-months 3080 [1176, 6550] 87.87%
12-months 3026 [1151, 6486] 87.42%
36-months 2858 [1041, 6225] 85.66%
60-months 2720 [946, 6051] 83.99%

Retinopathy 6-months 2374 [912, 5004] 84.40%
12-months 2268 [840, 4864] 82.94%
36-months 1921 [628, 4397] 77.98%
60-months 1670 [470, 4111] 73.83%
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in this paper are clearly layed out in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations can be found in discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
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Justification: N/A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Additional information is provided in the supplementary materials. However,
the dataset is private, researchers need to apply to use the data, going through a strict
application, as well as paying for access which limits reproducibility. This is one of the
many challenges of EHR data. We will release all the code on acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: It is not possible to provide open access to the data, as described above. We
will release code on acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These are layed out in the methods and supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Where appropriate we have provided confidence intervals and we outline how
these were caluculated.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the appendix we include details on the compute utilised.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines: The paper conforms to the guidelines.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The findings are discussed in relation to impact in the clinical setting.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper uses pre-trained models which are widely available for use.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: N/A
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This project was reviewed by CPRD and the work is approved under licence.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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