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ABSTRACT

Machine Learning (ML)-based optimization frameworks have drawn increasing
attention for their remarkable ability to accelerate the optimization procedure of
large-scale Quadratically Constrained Quadratic Programs (QCQPs) by learning
the shared problem structures, resulting in improved performance compared to
classical solvers. However, current ML-based frameworks often struggle with
strong problem assumptions and high dependence on large-scale solvers. This pa-
per presents a promising and general hypergraph-based optimization framework
for large-scale QCQPs, called NeuralQP. The proposed method comprises two key
components: Hypergraph-based Neural Prediction, which generates the embed-
ding of an arbitrary QCQP and obtains the predicted solution without any prob-
lem assumption; Iterative Neighborhood Optimization, which uses a McCormick
relaxation-based repair strategy to quickly identify illegal variables in the pre-
dicted solution and iteratively improves the current solution using only a small-
scale solver. Experiments on three classic benchmarks demonstrate that NeuralQP
converges significantly faster than the state-of-the-art solves (e.g. Gurobi), further
validating the efficiency of the ML-based framework for QCQPs.

1 INTRODUCTION

Quadratically Constrained Quadratic Programs (QCQPs) are mathematical optimization problems
characterized by the presence of quadratic terms, finding extensive applications across diverse do-
mains such as finance (Gondzio & Grothey, 2007), robotic control (Galloway et al., 2015), and
power grid operations (Zhang et al., 2013). However, solving QCQPs is exceptionally challenging,
especially for large-scale QCQPs, due to their discrete (Balas, 1969) and nonconvex nature (El-
loumi & Lambert, 2019). With the advancement of machine learning (ML), the ML-based QCQP
optimization framework has emerged as a promising research direction as it can effectively leverage
the structural commonality among similar QCQPs to accelerate the solving process.

Current widely adopted ML-based QCQP optimization frameworks can be categorized into two
types: Solver-based Learning and Model-based Learning. Solver-based Learning methods learn to
tune the parameters or status of the solver to accelerate the solution process. As a representative
work, RLQP Ichnowski et al. (2021) learned a policy to tune parameters of OSQP solver (Stellato
et al., 2017) with reinforcement learning (RL) to accelerate convergence. Bonami et al. (2018)
learned a classifier that predicts a suitable solution strategy on whether or not to linearize the problem
for the CPLEX solver. Ghaddar et al. (2022) and Kannan et al. (2023) both learned branching rules
on selected problem features to guide the solver. Although solver-based methods have demonstrated
strong performance on numerous real-world QCQPs, their effectiveness heavily relies on large-scale
solvers and is constrained by the solver’s solving capacity, resulting in scalability challenges.

Model-based learning methods employ a neural network model to learn the parameters of the QCQP
models, aiming to translate the optimization problem into a multiclass classification problem, of
which the results can accelerate the solution process of the original optimization problem. Bertsi-
mas & Stellato (2020; 2021) learned a multi-class classifier for both solution strategies and integer
variable values, proposing an online QCQP optimization framework that consists of a feedforward
neural network evaluation and a linear system solution. However, these methods make strong as-
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sumptions about the model parameters. They assume that multiple problem instances are generated
by a single model and that the model parameters are shared across different problem instances,
which limits their applicability in real-world problem-solving scenarios.

To address the above limitations, this paper proposes NeuralQP, a general hypergraph-based opti-
mization framework for large-scale QCQPs, which can be divided into two stages. In Hypergraph-
based Neural Prediction, a representation of QCQPs based on a variable relational hypergraph with
initial vertex embeddings is created as a lossless representation of QCQPs. Then UniEGNN, an im-
proved hypergraph convolution strategy, takes both hyperedge features and vertex features as inputs,
leverages a vertex-hyperedge-vertex convolution strategy, and finally obtains neural embeddings of
the variables in QCQPs. In Iterative Neighborhood Search, to acquire feasible solutions after mul-
tiple neighborhood solutions are merged (which is termed crossover), a new repair strategy based
on the McCormick relaxation is proposed to quickly identify violated constraints. Then, improperly
fixed variables are reintroduced into the neighborhood, which realizes a progressive updating of the
neighborhood radius and effective correction of infeasible solutions via a small-scale optimizer.

To validate the effectiveness of NeuralQP, experiments are conducted on three benchmark QCQPs,
and the results show that NeuralQP can achieve better results than the state-of-the-art solver Gurobi
and SCIP in a fixed wall-clock time using only a small-scale solver with 30% of the original problem
size. Further experiments indicate that NeuralQP can achieve the same solution quality in less than
one-fifth of the solving time of Gurobi and SCIP in large-scale QCQPs, which verifies the efficiency
of the framework in solving QCQPs. Our contributions are concluded as follows:

1. We propose NeuralQP, the first general optimization framework for large-scale QCQPs
without any problem assumption by means of a small-scale solver, shedding light on solv-
ing general nonlinear programming using an ML-based framework.

2. In Hypergraph-based Neural Prediction, a new hypergraph-based representation is pro-
posed as a complete representation of QCQPs and an enhanced hypergraph convolution
strategy is employed to fully utilize hyperedge features.

3. In Iterative Neighborhood Search, a new repair strategy based on the McCormick relax-
ation is proposed for neighborhood search and crossover with small-scale optimizers.

4. Experiments show that NeuralQP can accelerate the convergence speed with a small-scale
optimizer, and can significantly increase the solving size of QCQPs compared with existing
algorithms, indicating its robust capability in addressing large-scale QCQPs.

2 PRELIMINARIES

2.1 QUADRATICALLY-CONSTRAINED QUADRATIC PROGRAM

A Quadratically-Constrained Quadratic Program (QCQP) is an optimization problem that involves
minimizing (or maximizing) a quadratic objective function subject to quadratic constraints (Elloumi
& Lambert, 2019). Formally, a QCQP is defined as follows:

min ormax f(x) = xTQ0x+
(
r0

)T
x,

s.t. xTQix+
(
ri
)T

x ≤ bi, ∀i ∈M,

li ≤ xi ≤ ui, ∀i ∈ N ,
xi ∈ Z, ∀i ∈ I.

(1)

In the above equation,M, N and I are the index sets of constraints, variables and integer variables
respectively. Let n = |N | and x = (x1, x2, . . . , xn) ∈ Rn denotes the vector of n variables, with li
and ui being the lower and upper bounds of xi. For each k ∈ {0} ∪M, Qk ∈ Rn×n, representing
the coefficients of quadratic terms, is symmetric but not necessarily positive (semi-)definite. rk is
the coefficient vector of linear terms and bk denotes the right-hand side of the k-th constraint.

2.2 GRAPH REPRESENTATIONS FOR MILPS

Graph representations for (mixed-integer) linear program denoted as (MI)LP have been proposed
to transform the MILP into a suitable input format for graph neural networks, accompanied by
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Figure 1: Tripartite representation. The green, blue,
and red nodes represent the objective, variables, and
constraints, and the edge features are associated with
coefficients in the original problem.
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Figure 2: Star expansion. A hypergraph
is transformed into a bipartite graph,
with nodes on the left and hyperedges
on the right.

encoding strategies that further enhance the expressive power of the corresponding graph. This
section introduces the specifics of tripartite graph representation and random feature strategy.

Gasse et al. (2019) first proposed a bipartite graph representation for MILPs that preserves the
entire information of constraints, decision variables, and their relationships without loss. Ding et al.
(2019) further proposed a tripartite graph representation for MILPs, which simplifies the feature
representation of the graph by adding the objective node, ensuring that all coefficients appear only
on edge weights. Figure 1 gives an example of the tripartite graph representation. In Figure 1, the
left set of n variable nodes represent decision variables with variable types and bounds encoded
into node features; the m constraint nodes on the right symbolize linear constraints with constraint
senses and bi values encoded into node features; the objective node on the top represent the objective
function with objective sense encoded as node features. The connecting edge (i, j), signifies the
presence of the i-th decision variable in the j-th constraint, with edge weight aij representing the
coefficient. The upper node signifies the objective, and the edge weight ci between the i-th variable
node and the objective represents the objective coefficient.

However, there are MILP instances, named foldable MILPs (Chen et al., 2023) which have distinct
optimal solutions yet the corresponding graph cannot be distinguished by the Weisfeiler-Lehman
test (Weisfeiler & Leman, 1968). On these foldable MILPs, the performance of the graph neural
networks could significantly deteriorate. To resolve such inability, Chen et al. (2023) proposed a
random feature strategy, i.e., appending an extra dimension of random number to the node features,
which further enhances the power of graph neural networks.

2.3 MCCORMICK RELAXATION

The McCormick relaxation (McCormick, 1976) is widely employed in nonlinear programming, aim-
ing at bounding nonconvex terms by linear counterparts. Given variables x and y with bounds
Lx ≤ x ≤ Ux and Ly ≤ y ≤ Uy , the nonconvex term ϕxy := xy can be approximated by:

ϕxy ≤ min{Lyx+ Uxy − LyUx, Lxy + Uyx− LxUy},
ϕxy ≥ max{Lyx+ Lxy − LxLy, Uyx+ Uxy − UxUy},

(2)

which transforms the originally nonconvex problem into a more manageable linear format. Equation
2 can be derived by considering the expansions of the following four inequalities:

(Ux − x)(Uy − y) ≥ 0, (Ux − x)(y − Ly) ≥ 0,

(x− Lx)(Uy − y) ≥ 0, (x− Lx)(y − Ly) ≥ 0.
(3)

This method is particularly pertinent when dealing with nonconvex quadratic terms, for which ob-
taining feasible solutions is notably challenging due to the inherent nonlinearity and nonconvexity.

3 VARIABLE RELATIONAL HYPERGRAPH

The graph representation in Sec. 2.2 is limited to MILPs since it cannot represent the nonlinear
terms. To address such limitation, we propose the variable relational hypergraph in this section to
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model quadratic terms in QCQPs. To provide a rigorous definition, we first present the definition of
hypergraphs (Sec. 3.1 & 3.2) and then formally define variable relational hypergraph (Sec. 3.3).

3.1 HYPERGRAPH BASICS

A hypergraph H = (V, E) is defined by a set of vertices V = {1, 2, · · · , n} and a set of hyperedges
E = {ej}m1 , where each hyperedge e ∈ E is a non-empty subset of V (Bretto, 2013). The incidence
matrix H ∈ {0, 1}|V|×|E| is characterized by H(v, e) = 1 if v ∈ e else 0. A hypergraph is termed
k-uniform (Rödl & Skokan, 2004) if every hyperedge contains exactly k vertices. A distinctive class
within hypergraph theory is the bipartite hypergraph (Annamalai, 2016). If V can be partitioned into
two disjoint sets V1 and V2, a bipartite hypergraph is defined as H = (V1,V2, E) so that for each
hyperedge e ∈ E, |e ∩ V1| = 1 and e ∩ V2 ̸= ∅.
Hypergraphs can be converted into graphs via expansion techniques (Dai & Gao, 2023). We intro-
duce the star expansion technique, which converts a hypergraph into a bipartite graph. Specifically,
given a hypergraph H = (V, E), each hyperedge e ∈ E is transformed into a new node in a bi-
partite graph. The original vertices from V are retained on one side of the bipartite graph, while
each hyperedge is represented as a node on the opposite side, connected to its constituent vertices
in V by edges, thus forming a star. Such transformation enables the representation of the high-order
relationships in the hypergraph within the simpler structure of a bipartite graph. Figure 2 provides a
bipartite graph representation obtained through the star expansion of a hypergraph.

3.2 HYEPRGRAPH MESSAGE PROPAGATION

To formalize the message propagation on hypergraphs, the Inter-Neighbor Relation (Dai & Gao,
2023) has been defined, which is essential in hypergraph learning models.

Definition 1 Inter-Neighbor Relation. The Inter-Neighbor Relation N ⊂ V × E on a hypergraph
H = (V, E) with incidence matrix H is defined as: N = {(v, e)|H(v, e) = 1, v ∈ V, e ∈ E}. The
hyperedge neighborhood Ne(v) of vertex v and the vertex neighborhood Nv(e) of hyperedge e are
defined based on the Inter-Neighbor Relation.

Definition 2 Hyperedge Neighborhood. The hyperedge neighborhood of vertex v ∈ V is defined
as: Ne(v) = {e|vNe, e ∈ E}, for each v ∈ V.

Definition 3 Vertex Neighborhood. The vertex neighborhood of hyperedge e ∈ V is defined as:
Nv(e) = {v|vNe, v ∈ V}, for each e ∈ E .

Using hypergraph Inter-Neighbor Relation, the general hypergraph convolution (also known as spa-
tial convolution) (Gao et al., 2023) follows a vertex-hyperedge-vertex message propagation pattern.
As the first representative framework of hypergraph convolution, UniGNN (Huang & Yang, 2021)
utilizes a convolution method delineated in Equation 4:

(UniGNN)

 he = ϕ1

(
{hj}j∈Nv(e)

)
h̃v = ϕ2

(
hv, {hi}i∈Ne(v)

) , (4)

where he symbolizes the hyperedge features aggregated from the vertices residing in hyperedge e;
hv and h̃v represent the vertex features before and after the convolution respectively; the functions
ϕ1 and ϕ2 are permutation-invariant functions. This spatial convolution strategy initiates by aggre-
gating messages from the incident vertices of a hyperedge and then relays the aggregated message
back to vertices, thus fulfilling a round of message propagation.

3.3 THE PROPOSED VARIABLE RELATIONAL HYPERGRAPH

Based on the definition of hypergraph, we propose the variable relational hypergraph as a lossless
representation of QCQPs compatible with MILPs. Consider a QCQP problem defined in Equation
1, formal definitions are given below to describe the construction of such a hypergraph.
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Definition 4 Extended variable vertex set. The variable vertex set Vx is defined as Vx = {vi|i ∈
N} and the extended variable vertex set V̄x is defined as V̄x = Vx ∪ {v0, v2}, which is the variable
vertex set with additional two vertices representing degree zero and degree two.

Definition 5 Constraint vertex set and objective vertex set. The constraint vertex set Vc is defined
as Vc = {ci|i ∈M} and the objective vertex set Vo is defined as Vo = {o}.

Definition 6 V-O relational hyperedge. The set of V-O relational hyperedges is defined as
Eo = {{vi, v0, o}| if term xi is in the objective} ∪ {{vi, v2, o}| if term x2i is in the objective} ∪
{{vi, vj , o}| if term xixj is in the objective}.

Definition 7 V-C relational hyperedge. The set of V-C relational hyperedges is defined as
Ec = {{vi, v0, ck}| if term xi is in constraint k} ∪ {{vi, v2, ck}| if term x2i is in constraint k} ∪
{{vi, vj , ck}| if term xixj is in constraint k}.

Definition 8 Variable relational hypergraph. A Variable Relational Hypergraph is defined as
H = (Vx,Vo,Vc, Eo, Ec) where Vx,Vo,Vc are sets of nodes representing variables, objective, and
constraints respectively. Eo and Ec are sets of V-O relational and V-C relational hyperedges.

From the above definitions, a variable relational hypergraph H = (Vx,Vo,Vc, Eo, Ec) generated by
MILPs or QCQPs is 3-uniform by the definition of relational hyperedges. Furthermore, let V1 =
Vx,V2 = Vc ∪ Vo and E = Ec ∪ Eo, thenH = (V1,V2, E) is also a bipartite hypergraph.

4 THE GENERAL HYPERGRAPH-BASED OPTIMIZATION FRAMEWORK FOR
LARGE-SCALE QCQPS

On the strength of the variable relational hypergraph, this section presents our proposed general
hypergraph-based optimization framework for large-scale QCQPs, named NeuralQP. The frame-
work of NeuralQP (illustrated in Figure 3) consists of neural prediction (Sec. 4.1) which predicts a
high-quality initial solution and iterative neighborhood optimization (Sec. 4.2) which optimizes the
incumbent solution by neighborhood search and crossover.

4.1 NEURAL PREDICTION

During this stage, QCQPs are initially converted into hypergraph-based representation (Sec. 4.1.1).
During the training process, our proposed UniEGNN (Sec. 4.1.2) is applied on multiple hypergraphs
to learn the typical structures of these problems. The outputs are interpreted as a probability of the
optimal solution values similar to Neural Diving (Nair et al., 2021), which are adopted as a heuristic
for iterative neighborhood search in Sec. 4.2. Details are presented in Appendix E.1.

4.1.1 HYPERGRAPH-BASED REPRESENTATION

Based on Sec. 3, each QCQP instance is transformed into a variable relational hypergraph. Then,
coefficients of the terms are further encoded as features of the corresponding hyperedges; variable,
constraint and objective vertex features are generated in the same way introduced in Sec. 2.2.

For a concrete example shown in Figure 4, the QCQP instance is first converted to a variable rela-
tional hypergraph with initial embeddings, where the q011x

2
1 term in the objective is represented as

a hyperedge covering vertices x1, x2 and obj with feature q011; the term q11nx1xn in constraint δ1
is represented as a hyperedge covering vertices x1, 1 and δ1 with q11n as hyperedge feature; and the
rmn xn term in constraint δm is represented as a hyperedge with feature rmn covering vertices x1, x2
and δm. The initial vertex and hyperedge embeddings are generated in a similar way as the tripartite
graph representation with the random feature strategy in Sec.2.2.

4.1.2 UNIEGNN

With the hypergraph representation, our proposed UniEGNN further employs the features of both
vertices and hyperedges as the neural network inputs, converts the hypergraph into a bipartite graph,
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Figure 3: An overview of NeuralQP framework. The black line indicates the problem instances
and their solutions. In the stage of hypergraph-based neural prediction, the QCQP is first encoded
into a variable relational hypergraph with an initial node and hyperedge embeddings generated from
the original problem. Then UniEGNN is applied to generate neural embeddings for each variable,
utilizing both node and hyperedge features by converting the incumbent hypergraph into a bipartite
graph. Then a multilayer perceptron layer predicts the optimal solution based on the neural embed-
dings. In the stage of iterative neighborhood optimization, the predicted solutions are first relaxed
and repaired to get an initial feasible solution, after which neighborhood optimization with a small-
scale optimizer is iteratively used. The iteration of neighborhood optimization consists of adaptive
neighborhood partition, parallel neighborhood search, and McCormick relaxation-based neighbor-
hood repair. The neighborhood search solution is again used as an initial feasible solution if the time
limit is not reached; otherwise, the incumbent solution is output as the optimization result.

and updates vertex encodings via spatial convolution (Sec. 3.2). Firstly, different dimensional fea-
tures of vertices and hyperedges are mapped into the same high-dimensional hidden space through
a Multi-Layer Perceptron (MLP) layer. Then, vertices and hyperedges are reformulated as a bipar-
tite graph via star expansion (Sec. 3) so that hyperedge features can be fully utilized in the spatial
convolution. The bipartite graph contains two sets of nodes, V nodes and E nodes, which represent
the original nodes and hyperedges. The new edge features correspond with the original hyperedge
features, indicating that all edges connected with one E node share the same feature. Details are
illustrated in Figure 4. Finally, given the bipartite graph reformulation, a half-convolution strategy
is employed as is detailed in Equation 5:

(UniEGNN)

 h
(t)
e = ϕe

(
h
(t−1)
e , ψe

(
{h(t−1)

α }α∈Nv(e)

))
h
(t)
v = ϕv

(
h
(t−1)
v , ψv

(
{h(t)β }β∈Ne(v)

)) , (5)

where h(t)e and h(t)v are hyperedge features and vertec features after the t-th convolution, respec-
tively; ϕe and ϕv are two permutation-invariant functions implemented by MLP; ϕe and ψv are
aggregation functions for hyperedges and vertices, which are SUM and MEAN in NeuralQP re-
spectively; Nv(e) and Ne(v) are the neighborhood of hyperedge e and vertex v defined in Sec. 3.2.
Figure 5 illustrates the message propagation in the half-convolution process, where features of both
E nodes and V nodes are updated. The red arrow indicates the flow to the specific node.

4.2 ITERATIVE NEIGHBORHOOD OPTIMIZATION

In this stage, a variable proportion αub ∈ (0, 1) is defined so that a large-scale QCQP with n decision
variables can be solved by a small-scale optimizer with αubn decision variables. Leveraging pre-
dicted values based on hypergraph neural networks, an initial feasible solution is initially searched
by dynamically adjusting the radius using our proposed Q-Repair algorithm (Sec. 4.2.1). Then,
a neighborhood search with a fixed radius is performed with an adaptive neighborhood partition
strategy (Sec. 4.2.2). Finally, for multiple sets of neighborhood search solutions, neighborhood
crossover and our proposed Q-Repair algorithm are used to repair infeasible solutions (Sec. 4.2.3),
i.e., making them feasible. The current solution is iteratively optimized using the last two steps until
the time limit is reached. Finally, the current solution is output as the final optimization result.
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4.2.1 Q-REPAIR-BASED INITIAL FEASIBLE SOLUTION

For a QCQP involving n decision variables, NeuralQP arranges these variables in ascending order
based on their predicted losses. Subsequently, it defines an initial variable proportion denoted as
α and fixes the first (1 − α)n variables, leaving the remaining variables for optimization. The Q-
Repair algorithm is then applied to identify constraints that are expected to be violated, and the
neighborhood search scope is expanded. Throughout this process, the number of unfixed decision
variables after expansion is ensured to remain below or equal to αubn. Therefore, a small-scale
optimizer can be used to effectively find the initial feasible solution.

min xTQ0x+
(
r0

)T
x

s.t. xTQix+
(
ri
)T

x ≤ bi
lj ≤ xj ≤ uj
xj = x̂j , ∀xj ∈ F
∀i ∈M, ∀j ∈ N

ϕjk:=xjxk,∀j,k∈N−−−−−−−−−−−−−−−−−−→
ujk,ljk=McCor(uj ,uk,lj ,lk)

min xTQ0x+
(
r0

)T
x

s.t.
∑

qijkϕjk +
(
ri
)T

x ≤ bi
lj ≤ xj ≤ uj , ljk ≤ ϕjk ≤ ujk
xj = x̂j , ϕjk = x̂jxk,∀xj ∈ F
ϕjk = x̂j x̂k, ∀xj , xk ∈ F
∀i ∈M, ∀j, k ∈ N .

(6)
The Q-Repair algorithm is based on the term-wise McCormick relaxation approach (Sec. 2.3). It
estimates the bounds of the left-hand side terms of the constraint conditions to quickly identify
the violated constraints. First, the quadratic terms within the constraints are linearized through
McCormick relaxation, which is shown in Equation 6, where x̂j denotes the current solution of
xi and F denotes the set of fixed variables. Then the linear Repair algorithm (Ye et al., 2023b)
is employed. For unfixed variables, their bounds are determined based on their original problem
bounds. In contrast, for fixed variables, their current solution values are utilized as the bounds for
the respective terms. These bounds are all summed together to calculate the bounds for the left
side of the constraint and be compared with the right-side coefficient. If the constraint is violated,
the fixed variables within it are added to the neighborhood one by one until the solution becomes
feasible. The related pseudocode is shown in Appendix B.1.

The Q-Repair algorithm reintroduces critical variables into the neighborhood, enabling the progres-
sive updating of the neighborhood search radius and the repair of infeasible solutions. Because of the
Q-Repair algorithm, for the first time, neighborhood crossover has been introduced into quadratic
problems, thereby enhancing both solution speed and solution quality.

4.2.2 NEIGHBORHOOD PARTITION

To reduce the number of violated constraints, neighborhood partitioning for QCQPs is carried out
using the ACP framework (Ye et al., 2023a). After randomly shuffling the order of constraints,
NeuralQP adds each variable of a constraint to a particular neighborhood one by one until the size of
that neighborhood reaches its upper limit. Due to the fixed radius of the neighborhoods, the number
of neighborhoods is adaptive. More details and the related pseudocode are shown in Appendix B.2.

The ACP framework for neighborhood partitioning increases the likelihood that variables within
the same constraint are assigned to the same neighborhood, reducing the probability of a specific
constraint being infeasible. However, in QCQPs with a large number of variables within a single
constraint, this approach may result in an excessive number of neighborhoods, which can reduce
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solving speed. Therefore, for QCQPs with varying degrees of density, an adaptive neighborhood
partitioning strategy is necessary to prevent an excessive number of neighborhoods. When the den-
sity exceeds a certain fixed threshold, a variable-based random neighborhood partitioning strategy is
employed. All variables are randomly shuffled, and NeuralQP performs neighborhood partitioning
sequentially, ensuring that each variable appears in only one neighborhood.

This adaptive neighborhood partitioning strategy, on the one hand, retains the advantages of the ACP
framework, ensuring the feasibility of subproblems after neighborhood partitioning. On the other
hand, it addresses the issue of excessive neighborhood partitioning in dense problems within the
ACP framework, which leads to longer solving times, thus ensuring solving speed.

4.2.3 NEIGHBORHOOD SEARCH AND CROSSOVER

After obtaining the initial feasible solution and neighborhood partitioning, NeuralQP uses small-
scale solvers to perform fixed-radius neighborhood searches within multiple neighborhoods in par-
allel. Additionally, the neighborhood optimization approach has shown promising results in linear
problems (Ye et al., 2023b). Therefore, neighborhood crossovers are also exploited for QCQPs to
prevent getting trapped in local optima due to search radius limitations.

To be specific, after the neighborhood partitioning, num n subproblems are solved in parallel using
a small-scale solver. Then, neighborhood crossovers are performed between every two subproblems,
resulting in ⌊num n/2⌋ neighborhoods to be explored. To address the potential infeasible issues
caused by neighborhood crossovers, the Q-Repair algorithm in Sec. 4.2.1 is applied again to repair
the neighborhoods. Finally, the ⌊num n/2⌋ neighborhoods are solved in parallel using a small-scale
solver, and the best among them is selected as the result of this round of neighborhood optimization.
If the time limit is not reached, the process proceeds to the next round; otherwise, the output serves
as the final optimization result. All the related pseudocodes are shown in Appendix B.3.

5 EXPERIMENTS

Experiments are performed on three distinct benchmark problems and two real-world libraries,
QAPLIB (Burkard et al., 1997) and QPLIB (Furini et al., 2019). The three problems are Quadratic
Multiple Knapsack Problem (QMKP)((Kellerer et al., 2004)), Quadratic Independent Set Problem
(QIS), and Quadratic Vertex Covering Problem (QVC), with the latter two modified from Indepen-
dent Set Problem (Coxeter, 1950) and Vertex Covering Problem (COOK, 1971). For each problem
type, we generate small, medium, and large three scales of problems, on which we train 9 neural net-
work models in total. Details about the benchmark problems and the dataset are shown in Appendix
A.4 and C. Results of experiments on QAPLIB and QPLIB are presented in Appendix E.

In the testing stage, we use SCIP and Gurobi, the state-of-the-art academic and commercial solvers,
as the baselines. Then our model is employed to obtain initial solutions, followed by iterative neigh-
borhood search where the small-scale solvers are restricted to 30% and 50% of the number of vari-
ables. To ensure fair comparison, experiments are conducted in the following two aspects (as Ye
et al. (2023b)). To study the effectiveness of NeuralQP, the objective value is compared with Gurobi
and SCIP within the same wall-clock time (Sec. 5.1); to verify the efficiency of NeuralQP, the run-
ning time till reaching the same objective value is compared with Gurobi and SCIP (Sec. 5.2). More
details of the datasets and additional experimental settings are listed in the Appendix C. The code
for reproducing the experiment results will be open-source upon the acceptance of our paper.

5.1 COMPARISON OF OBJECTIVE VALUE

To validate the effectiveness of the proposed framework for solving large-scale QCQPs using small-
scale solvers, this section compares our framework with the baseline large-scale solvers Gurobi and
SCIP, evaluating their performance under the same running time. As shown in Table 1, the scales
of the solver used NeuralQP are constrained to 30%and 50% of the number of variables. Compared
to Gurobi or SCIP, using a solver with a scale of only 30%of the number of variables, NeuralQP
can obtain better objective value compared to large-scale solvers at the same time on all benchmark
problems. When the scale increases to 50%, this advantage is even more pronounced.

8



Under review as a conference paper at ICLR 2024

Table 1: Comparison of objective values with SCIP and Gurobi within the same running time. Ours-
30%S and Ours-30%G mean the scale-limited versions of SCIP and Gurobi respectively, with the
variable proportion α limited to 30%. Subscripts 1, 2, and 3 represent small-, medium-, and large-
scale problems, respectively. “↑” means the result is better than or equal to the baseline. Each value
is averaged among 3 similar instances.

QMKP1 QMKP2 QMKP3 QIS1 QIS2 QIS3 QVC1 QVC2 QVC3

SCIP 1259.15 5030.62 10907.46 174.61 181.53 732.13 29688 35659 48348
Ours-30%S 1665.30↑ 6052.66↑ 14747.62↑ 273.95↑ 403.46↑ 1495.07↑ 27274↑ 32816↑ 44716↑
Ours-50%S 1710.94↑ 6156.98↑ 14473.05↑ 280.34↑ 409.75↑ 1509.22↑ 27476↑ 32777↑ 44940↑

Time 25s 200s 1000s 40s 130s 1200s 30s 400s 2200s
Gurobi 1672.22 6027.79 11908.34 278.73 399.89 1459.21 29740 34867 45753

Ours-30%G 1951.92↑ 6332.49↑ 15127.66↑ 280.33↑ 410.72↑ 1514.99↑ 28417↑ 33305↑ 45355↑
Ours-50%G 1800.37↑ 6502.99↑ 15200.67↑ 285.07↑ 415.96↑ 1520.97↑ 28604↑ 32875↑ 44780↑

Time 30s 250s 1500s 50s 300s 1200s 25s 300s 2200s

Table 2: Comparsion of running time with SCIP and Gurobi till the same objective value. Notations
are similar to Table 1. > indicates the inability to achieve the target objective function within the
given time limit. Each value is averaged among 3 similar instances.

QMKP1 QMKP2 QMKP3 QIS1 QIS2 QIS3 QVC1 QVC2 QVC3

SCIP 43.07s 797.67s >30000s 2737.8s >20000s >30000s 98.5s >10000s >18000s
Ours-30%S 32.28s 178.6s 893.04s 41.98s 405.75s 1426.88s 13.09s 398s 1023.71s
Ours-50%S 23.06s 106.67s 1235.09s 24.20s 136.05s 865.28s 28.26s 105.63s 2200s
Objective 1665.30 6052.66 14747.62 273.95 403.46 1495.07 27476 32816 44940

Gurobi 45.00s 443.46s 5089.63s 45.00s 1824.48s 13247.26s 21.46s 7633.07s >18000s
Ours-30%G 20.15s 281.31s 1123.64s 40.35s 405.75s 749.21s 4.9s 833.94s 4142.59s
Ours-50%G 47.55s 213.92s 928.74s 21.83s 136.05s 396.71s 3.55s 22.55s 1448s
Objective 1800.37 6332.49 15127.66 280.33 410.72 1503.99 29740 33305 45355

Furthermore, for small-scale problems, the advantages of the proposed framework compared to
large-scale solvers are not very pronounced. However, when it comes to solving large-scale prob-
lems, the proposed framework significantly outperforms large-scale solvers in the same time limit.
Besides, the experimental results with solvers constrained to 50% scale do not consistently outper-
form those constrained to 30% scale, indicating that small-scale solvers may be more suitable for
the proposed framework, which deserves further study. All the above analyses demonstrate that the
proposed NeuralQP can use small-scale solvers to effectively address large-scale QCQPs.

5.2 COMPARISON OF RUNNING TIME

In addition to solving performance, we also evaluate the time efficiency of NeuralQP by compar-
ing the duration required to reach equivalent optimization results. In this aspect, both 30%-scale
and 50%-scale solvers within our framework are benchmarked against their full-scale counterparts.
According to the results in Table 2, NeuralQP consistently requires less time to achieve the same
objective values compared to Gurobi and SCIP across all benchmark problems. Particularly for the
larger-scale problems, even though the objective values achieved within a similar time limit may ap-
pear close, reaching the same optimization result typically demands substantially longer processing
times for SCIP and Gurobi, often up to ten or thirty times longer, than for our proposed framework.

6 CONCLUSIONS

This paper presents NeuralQP, a pioneering hypergraph-based optimization framework for large-
scale QCQPs. Key features of NeuralQP include: 1) a variable relational hypergraph as a complete
representation of QCQPs without any assumption and 2) a McCormick relaxation-based repair algo-
rithm that can identify illegal constraints. Experimental results demonstrate that NeuralQP achieves
equivalent quality solutions in less than one-fifth of the time compared to leading solvers on large-
scale QCQPs, setting the groundwork for solving nonlinear problems via machine learning. A future
direction is extending our framework to nonlinear programming.
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APPENDIX

This Appendix contains four sections. Appendix A provides a detailed introduction to the
definition and features of QCQPs and the benchmark problems used in the experiments. Appendix
B shows the pseudocode and detailed explanation of iterative neighborhood optimization. Appendix
C describes the experiment settings used in this paper, including the parameters of the experiment
and the source of datasets. Appendix E presents more experimental results to further validate the
effectiveness of the proposed NeuralQP in the prediction and the convergence of optimization.

A QUADRATIC PROGRAMMING

QCQPs encompass a broad class of optimization problems, where both the objective function and
the constraints are quadratic. Equation 1 lays down the foundational structure of QCQPs. In this
appendix, we briefly introduce the characteristics of QCQPs, emphasizing both mathematical and
machine learning-based approaches.

A.1 CONVEXITY IN QCQPS

Convexity plays a pivotal role in the realm of optimization, significantly impacting the solvability
and computational tractability of problems. A QCQP is termed convex both the objective function
and the feasible region are convex. In such scenarios, global optima can be efficiently found using
polynomial-time algorithms, such as interior-point methods. However, the general form of QCQPs
does not have convex properties. Nonconvex QCQPs are even harder, posing significant challenges
in finding global optima, and often necessitating the exploration of heuristic methods, relaxation
techniques, or local search strategies.

A.2 MIXED-INTEGER AND BINARY QUADRATIC PROGRAMS

When QCQPs incorporate integer constraints on certain variables, they evolve into Mixed-Integer
Quadratically Constrained Programs (MIQCPs). MIQCPs inherit the complexities of both integer
programming and quadratic programming, which combine to make them particularly challenging
to solve. Binary Quadratically Constrained Programs (BQCPs), a special case of MIQCPs, impose
strict restrictions on variables by exclusively allowing binary values.

A.3 SOLUTION STRATEGIES

Solving QCQPs involves a variety of strategies. We divide these strategies into two main categories:
mathematical approaches and machine learning approaches.

Mathematical approaches to QCQPs typically involve convex optimization algorithms for convex
instances and approximation methods, branch-and-bound techniques, or metaheuristic approaches
for nonconvex instances. The choice of strategy depends heavily on the problem’s structure, size,
and the desired balance between solution quality and computational resources. For further reference,
readers are encouraged to consult key works in the field, such as Burer & Saxena (2012) and (Burer
& Letchford, 2012).

The use of machine learning methods in solving QCQPs is notably scarce, with only a few studies,
as is introduced in Sec.1. The problems in Kannan et al. (2023) are relatively small compared to our
experiments. Other studies focus on Quadratic Programming (QP) problems with quadratic objec-
tive functions and linear constraints (Bonami et al. (2018), Bonami et al. (2022), Ichnowski et al.
(2021) andBertsimas & Stellato (2021)), which are not directly comparable to our approach. Mean-
while, classic datasets like QPLIB (Furini et al., 2019) exist but are limited in problem count (453 in
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total with 133 binary ones) and too diverse, making them unsuitable for training machine learning
models due to the varied distribution of problems. Specialized datasets like QAPLIB (Burkard et al.,
1997) also exist but are more focused on specific problem types.

In our method, to enable the use of small-scale solvers for general large-scale problems, we utilized
three problem formulations and adopted a random generation approach. This method ensures that

1. Our approach is tested and validated across different problem types;

2. The problems generated are sufficiently large and difficult to solve.

For more details on QAPLIB and QPLIB, please refer to Appendix D.

A.4 PROBLEM FORMULATIONS

In Section 5, we use three problem formulations: the Quadratic Independent Set Problem (QIS),
the Quadratic Multiple Knapsack Problem (QKP), and the Quadratic Vertex Cover (QVC). These
correspond to scenarios where the objective function is linear with quadratic constraints, where the
objective function is quadratic with linear constraints, and where both the objective function and
constraints are quadratic. Such formulation is aimed at evaluating our proposed methods in various
scenarios and providing training data for testing on QPLIB.

A.4.1 QUADRATIC INDEPENDENT SET PROBLEM (QIS)

The Quadratic Independent Set (QIS) problem is an extension of the classical Independent Set (IS)
problem (Coxeter, 1950), where we introduce quadratic non-convex constraints to enhance its rele-
vance to realistic scenarios. In the QIS problem, we represent distinct node attributes by introducing
random weights ci into the objective function, where each weight corresponds to the attribute of
node i. To capture the high-order relationships typical in real-world networks, we employ a hyper-
graph model, denoted as H = (V, E), where V is the set of vertices and E is the set of hyperedges.
In this model, each hyperedge can encompass multiple nodes, reflecting the multi-dimensional in-
teractions within each hyperedge. The primary objective of the QIS problem is to identify the largest
weighted independent set within the graph. An independent set is a subset of vertices where each
hyperedge e ∈ E satisfies certain restriction f(e) ≤ 0. The mathematical form of the QIS problem
can be expressed as:

max
∑
i∈V

cixi,

s.t. f(e) ≤ 0, ∀e ∈ E ,

where f(e) =
∑
i∈e

aixi +
∑

i,j∈e,i ̸=j

qijxixj − |e|,

xi ∈ B, ∀i ∈ V.

(7)

Here, the coefficients ai and qij are randomly generated from a uniform distribution U(0, 1). The
term |e| represents the degree of the hyperedge, which is chosen to ensure that the constraints are
both valid and feasible.

The QIS model is highly applicable in various scenarios involving hypergraph network models with
nonlinear relationships between nodes. For instance, in wireless communication networks, espe-
cially in frequency assignment tasks (Aardal et al., 2007), the challenge often involves allocating
frequencies to transmitters or channels in a way that minimizes interference and maximizes network
efficiency. This challenge is conceptually akin to our QIS model, necessitating consideration of non-
linear interactions between network elements. Other potential applications include social network
analysis, where the intricate interplay of relationships and attributes is crucial.

A.4.2 QUADRATIC MULTIPLE KNAPSACK PROBLEM (QMKP)

The Quadratic Multiple Knapsack Problem (QMKP) (Hiley & Julstrom, 2006) is a combination of
the Quadratic Knapsack Problem (QKP) (Gallo et al., 1980) and the Multiple Knapsack Problem

13



Under review as a conference paper at ICLR 2024

(MKP) Kellerer et al., 2004, adapted to better reflect real-world scenarios. QKP assumes a single-
dimensional restriction on the items, which has limited applications; MKP assumes a linear rela-
tionship between the values of items, which ignores interactions between them. To overcome these
limitations, the QMKP incorporates not only a linear value for each item but also quadratic terms
representing the interactions between items when selected together, as well as multidimensional
constraints. This additional complexity allows for more sophisticated modeling and is applicable in
various fields. The QMKP can be mathematically formulated as follows:

max
∑
i

cixi +
∑

(i,j)∈E

qijxixj ,

s.t. aki xi ≤ bk, ∀k ∈M,

xi ∈ B, ∀i ∈ N,

(8)

where ci represents the value of item i, and the coefficient qij denotes the interaction between items
i and j when selected together. The coefficients aki relate to the attribute of item i concerning
constraint k, and bk is the upper limit for that attribute. In our experiment, ci, qij and aki are
generated from the uniform distribution U(0, 1), with bk = 1

2

∑
i∈N aki so that the 0s and 1s in the

optimal solution are roughly the same and that the constraints remain valid.

The QMKP thus extends the scope of the QKP and the MKP, making it more suitable for scenarios
where the value of items depends on the simultaneous selection of others. For example, consider
optimizing a day’s diet to maximize the nutritional value of each food item. In this scenario, certain
food combinations may offer greater nutritional benefits, akin to the standard QKP. However, each
food item also possesses various attributes such as calorie, carbohydrate, and sodium content. To
ensure a healthy diet, these attributes must not exceed specific limits. The QMKP’s ability to capture
the interdependencies among items makes it a valuable tool for addressing complex optimization
challenges in real-world settings with intricate constraints and objectives.

A.4.3 QUADRATIC VERTEX COVER PROBLEM (QVC)

The Vertex Cover problem (COOK, 1971), a fundamental challenge in combinatorial optimization,
involves selecting a minimum number of vertices in a graph such that every edge is connected to
at least one selected vertex. In its classical form, the Vertex Cover problem is formulated for graph
G = (V,E) as follows:

min
∑
i∈V

xi

s.t. xi + xj ≥ 1, ∀(i, j) ∈ E,
xi ∈ B, ∀i ∈ V,

(9)

where xi is a binary decision variable indicating whether vertex i is included in the vertex cover.
The objective is to minimize the number of vertices in the cover while satisfying the constraints that
every edge is connected to at least one chosen vertex.

However, real-world applications often require considering inter-dependencies between variables,
an aspect not captured in the classical Vertex Cover formulation. To address this, we extend the
problem to the QVC, introducing quadratic terms that represent the interaction between vertices.
This extension allows for modeling more complex relationships and decision-making scenarios.
The QVC problem is thus reformulated as follows, incorporating quadratic interactions into both
the objective function and the constraints:

min
∑

(i,j)∈E

xi + xj + xixj ,

s.t. cixi + cjxj + qijxixj ≥ 1, ∀(i, j) ∈ E,
xi ∈ B, ∀i ∈ V,

(10)
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where the coefficients ci, cj , and qij represent the values and interactions between vertices i and j.
These coefficients capture the essence of the interdependencies and complex relationships inherent
in many real-world scenarios, ranging from network design and logistics to social network analysis
and resource allocation. In our experiment, the coefficients ci, cj , and qij are generated from the
uniform distribution U(0, 1).

By integrating quadratic terms in both the constraints and the objective, the QVC problem becomes
one of the most challenging forms of QCQP to solve, making it a rigorous test case for any solution
method. In contrast, the QIS problem involves linear objective functions with quadratic constraints,
and the QMKP features quadratic objective functions with linear constraints. Our intention in for-
mulating the QVC problem is to thoroughly evaluate our method’s effectiveness across a broad spec-
trum of QCQP variations. The introduction of the QVC problem allows us to assess our method’s
performance in solving QCQPs ranging from moderately complex to highly intricate scenarios. The
QVC problem, therefore, not only tests the limits of our solution strategy but also contributes to the
versatility and adaptability of our approach in various domains.

B ITERATIVE NEIGHBORHOOD OPTIMIZATION

The iterative neighborhood optimization is a crucial component of the proposed framework, en-
abling it to exhibit strong convergence performance and swiftly obtain high-quality feasible solu-
tions within a short time. By applying our proposed Q-Repair algorithm, commonly used neighbor-
hood optimization methods for linear problems can be extended to QCQPs. Iterative neighborhood
optimization in this paper comprises neighborhood partitioning, neighborhood search, and neighbor-
hood crossover. These processes are iterated sequentially to optimize the objective function value
repeatedly until the time limit is reached. This section provides a detailed description of the iterative
neighborhood optimization process.

B.1 Q-REPAIR ALGORITHM

When performing fixed-radius neighborhood optimization for QCQPs, there may be some con-
straints that are certainly infeasible. The Q-Repair algorithm, based on the McCormick relax-
ation, quickly identifies these infeasible constraints and reintroduces the correlative variables into
the neighborhood, thus rendering the constraints feasible once again.

The first step is using McCormick relaxation shown in Algorithm 1 to transform quadratic terms into
linear terms. Then the constraints in QCQPs can be transformed into linear constraints as shown in
Equation 6. Since the repair algorithm is independent of the objective function and only involves
constraints, the common Repair algorithm for linear problems can be used to solve this problem
after that. Assume that Qi

jk ≥ 0 and the constraint, since the case with negative coefficients can be
easily generalized, the Q-repair algorithm is shown in Algorithm 2.

Algorithm 1 MCCORMICK RELAXATION
Input: The upper and lower bounds of x1, x2: u1, u2, l1, l2
Output: The upper and lower bounds of x1x2: u12, l12
1: u12 ← min{l2x1 + u1x2 − l2u1, l1x2 + u2x1 − l1u2}
2: l12 ← max{l2x1 + l1x2 − l1l2, u2x1 + u1x2 − u1u2}

B.2 NEIGHBORHOOD PARTITION ALGORITHM

Neighborhood search refers to fixing a subset of decision variables to their current values and then
exploring the search space for the remaining variables. The key to the effectiveness of neighbor-
hood search is the quality of neighborhood partitioning. The neighborhood partition in the proposed
framework is an adaptive partitioning based on the density of variables and the size of the neighbor-
hood. It distinguishes the density of the problem by identifying the number of variables contained
in each constraint. The number of neighborhoods is determined by the number of variables, neigh-
borhood partition strategy, and neighborhood size.
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Algorithm 2 Q-REPAIR
Input: The set of fixed variables F , the set of unfixed variables U , the current solution x, the

coefficients of the given QCQP {Q, r, b, l,u}
n← the number of decision variables
m← the number of constraints

Output: F ,U
1: for i← 1 to n do
2: if the i-th variable ∈ F then
3: cur ui ← xi
4: cur li ← xi
5: else
6: cur ui ← ui
7: cur li ← li
8: end if
9: end for

10: for i, j ← 1 to n do
11: uij , lij ←MCCORMICK RELAXATION(ui, uj , li, lj)
12: cur uij , cur lij ←MCCORMICK RELAXATION(cur ui, cur uj , cur li, cur lj)
13: end for
14: for i← 1 to m do
15: N ← 0
16: for j ← 1 to n do
17: N ← N + rijcur lj
18: end for
19: for j, k ← 1 to n do
20: N ← N +Qi

jkcur ljk
21: end for
22: if N > bi then
23: for term in constraint i do
24: if is a linear term with the j-th variable ∈ F then
25: remove the j-th variable from F
26: add the j-th variable into U
27: N ← N − rijcur lj
28: N ← N + rij lj
29: else if is a quadratic term with the j-th and k-th variable, and at least one of them ∈ F

then
30: remove them from F
31: add them into U
32: N ← N −Qi

jkcur ljk
33: N ← N +Qi

jkljk
34: end if
35: if N ≤ bi then
36: BREAK
37: end if
38: end for
39: end if
40: end for
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For dense problems, the proposed framework employs a variable-based random neighborhood par-
tition strategy. The decision variables are randomly shuffled and added to the neighborhood until
the upper limit of the neighborhood size is reached. The number of neighborhoods is equal to the
number of variables divided by the neighborhood size. This neighborhood partition strategy ensures
that each variable appears in only one neighborhood. Even in dense problems, it guarantees that the
solution speed is not compromised due to too many neighborhoods.

For sparse problems, the proposed framework uses an ACP-based neighborhood partition strategy
(Ye et al. (2023a)). The constraints are randomly shuffled, and the variables within the constraints
are sequentially added to the neighborhood until the upper limit of the neighborhood size is reached.
This neighborhood partition strategy increases the likelihood of variables within the same constraint
being in the same neighborhood, thereby reducing the probability of the constraint being bound to
be violated. More details are shown in Algorithm 3.

Algorithm 3 ACP-Based NEIGHBORHOOD PARTITION
Input: A QP, the number of variables n, the number of constraints m, the max size of the neigh-

borhood smax
Output: A set of neighborhoods N = {N1,N2, . . . }, the number of neighborhoods num n
1: Randomly shuffle the order of constraints.
2: num all← 0
3: for i← 1 to m do
4: Initialize var listi
5: for j ← 1 to n do
6: if The i-th decision variable is in constraint i then
7: add j into var listi
8: num all← num all + 1
9: end if

10: end for
11: end for
12: num n← num all \ smax
13: Initialize num n neighborhoods
14: ID← 1
15: s← 0
16: for i← 1 to m do
17: for j ∈ var listi do
18: if s < smax then
19: add the i-th decision variable into NID
20: s← s+ 1
21: else
22: add NID into N
23: ID← ID + 1
24: s← 1
25: add the i-th decision variable into NID
26: end if
27: end for
28: end for

B.3 NEIGHBORHOOD SEARCH AND CROSSOVER

To prevent the neighborhood search from getting trapped in local optimal, neighborhood crossover
is required. The neighborhood crossover used in this paper takes place between two neighborhoods,
and the details are provided in Algorithm B.3. Q-REPAIR() constructs a new search neighborhood
to prevent the problem from becoming infeasible after neighborhood crossover. SEARCH() means
using a small-scale solver to search for a better solution in a specific neighborhood.
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Algorithm 4 NEIGHBORHOOD CROSSOVER
Input: The decision variable set X , neighborhoods N1,N2, neighborhood search solution x1,x2,

the number of variables n
Output: Crossover solution x

′

1: // Assume that x1 is better than x2

2: for i← 1 to n do
3: if The i-th decision variable ∈N1 then
4: x

′

i ← x1
i

5: else
6: x

′

i ← x2
i

7: end if
8: end for
9: F ,U ← Q-REPAIR(X , ∅,x′

)
10: X ′ ← SEARCH(F ,U ,x′

)

Integrating the above steps, the complete iterative neighborhood optimization process is shown in
Algorithm 5. The first step is performing neighborhood partitioning and then solving all neighbor-
hoods in parallel using small-scale solvers. After crossing over the neighborhoods pairwise, the best
solution is selected as the initial solution for the next round of neighborhood optimization. This
process is repeated until the time limit is reached.

Algorithm 5 ITERATIVE NEIGHBORHOOD OPTIMIZATION
Input: Initial feasible solution x, the number of variables n, the max variable proportion αub, time

limit t
Output: Optimization solution x
1: N , num n← PARTITION(smax = αubn)
2: // Do the next step in parallel
3: for Fi,Ui ∈ N do
4: xi ← SEARCH(Fi,Ui,x)
5: end for
6: // Do the next step in parallel
7: for i← 1 to num n/2 do
8: x

′

i ← CROSSOVER(x2i−1,x2i,N2i−1,N2i)
9: end for

10: x← the best solution among x
′

i
11: if Reach the time limit then
12: return x
13: else
14: Restart from row 1 with x
15: end if

C MAIN EXPERIMENT DETAILS

C.1 DATASET

Since the existing dataset and learning methods couldn’t meet the training and testing requirements
(see Appendix A.3), we generated the three problems described in Appendix A.4 using random
coefficients. The number of variables and constraints for the problems is shown in Table 3. In terms
of training data, we generated 100 problem instances for small-scale problems; for medium-scale
problems, we generated 50 problem instances; for large-scale problems, we generated 10 problem
instances. We used Gurobi to solve the problems until the gap was less than or equal to 10%, and
we considered the solution at this point as the optimal or near-optimal solution for the training set,
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Table 3: The size of three common types of NP-hard QCQPs. QMKP denotes the Quadratic Knap-
sack Problem. QIS denotes the Quadratic Independent Set Problem. QVC denotes the Quadratic
Vertex Cover Problem.

Problem Scale Number of
variables

Number of
Constraints

QMKP
(Maximize)

QMKP1 1000 5
QMKP2 5000 10
QMKP3 10000 12 ∼13

QIS
(Maximize)

QIS1 1000 803
QIS2 1500 1500
QIS3 5000 3750

QVC
(Minimize)

QVC1 280∼300 650∼750
QVC2 440∼450 900∼1100
QVC3 540∼550 1180∼1280

since the rest of the time would be primarily spent on improving dual bounds. In the testing stage,
we generated 5 problem instances for small-scale problems. For medium and large-scale problems,
we generated 3 problem instances as the testing dataset.

C.2 BASELINES

We used the currently most advanced and widely used solvers, Gurobi and SCIP, as baselines. The
Gurobi version used is 10.0.2 with Threads set to 4, NonConvex set to 2 and other parameters
set to default values. The SCIP version used is 4.3.0 with all default settings. The scaled-constrained
versions are restricted to 30% and 50% of the number of variables in the original problem. To ensure
the validity of comparative experiments, the scale-constrained versions of the corresponding solvers
are used as the small-scale solvers in neighborhood optimization, and the original versions share the
same parameters as the scale-constrained versions.

C.3 EXPERIMENT SETTINGS

In the training stage, we implemented a UniEGNN model with 6 convolution layers and an MLP
model with 3 layers. For each combination of problem type and scale, a UniEGNN model is trained
on a machine with 4 NVIDIA Tesla V100(32G) GPUs for 100 epochs with an early-stop set to 20
epochs to prevent over-fitting. The dimensions of the initial embedding space, the hidden space, the
MLP input (also the convolution output), and the final output are 16, 64, 16, and 1 respectively.

In the testing stage, experiments are conducted on a machine with 36 Intel (R) Core (TM) i9-9980
XE @ 3.00 GHz CPUs. During the initial feasible solution search phase, the small-scale solver was
configured to prioritize finding feasible solutions and would return when found one feasible solution
or upon reaching the time limit. In the iterative neighborhood optimization phase, the small-scale
solver was set to prioritize searching for the optimal solution and would return when found the
optimal solution or upon reaching the time limit. Besides, we limited the initial feasible solution
search, each round of neighborhood search, and neighborhood crossover time to 20s for small-scale
problems, and 100s for medium-scale and large-scale problems.

D EXPERIMENTS ON QPLIB AND QAPLIB

We also conducted tests on the QPLIB and QAPLIB datasets, two real-world data sources. Given
that previous experimental results indicated Gurobi’s superior speed compared to SCIP, we used
small-scale Gurobi solvers for comparison against full-scale Gurobi solvers. The experiments on
QPLIB and QAPLIB were carried out on a machine equipped with 128 Intel Xeon Platinum 8375
C @ 2.90 GHz CPUs. The method for problem selection and the experimental results are in the
following.
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D.1 EXPERIMENTS ON QPLIB

QPLIB is a compilation of various mixed problems and datasets, as curated by Furini et al. (2019).
The authors filtered out similar problems based on criteria such as variable types, constraint types,
and the proportion of non-zero elements. As a result, the 453 problems in QPLIB cover a wide range
of possible scenarios, including 133 binary problems.

D.1.1 TRAINING DATASET CONSTRUCTION

Given that the problems in QPLIB are not ideally suited for training neural networks, we adopted
a novel approach. The problems in QPLIB have fewer than 1000 variables, and their constraints
and objective functions can be linear or quadratic. Therefore, we formed a mixed training dataset
comprising 100 instances each of small-scale QIS, QMKP, and QVC problems. Subsequently, we
used a neural network, trained on this mixed dataset, to predict optimal solutions on QPLIB prob-
lems, followed by neighborhood search optimization on the initial feasible solutions. The method
of generating this mixed dataset is consistent with Appendix C.1.

D.1.2 TESTING DATASET CONSTRUCTION

Targeting large-scale, time-consuming problems, we selected certain problems from QPLIB. Ini-
tially, we solved these problems using unrestricted Gurobi with a gap limit of 10% and a time limit
of 600s. We filtered out problems that could be optimally solved within 100s and those whose ob-
jective values remained the same between 100s and 600s. This process resulted in 16 problems, with
variable counts ranging from 150 to 676. We then utilized Gurobi as a small-scale solver at 30% and
50% scales, with TimeLimit set to 100s and Threads set to 4, to compare the objective values
achieved at 100s.

D.1.3 RESULTS

The experimental results are listed in Table 4. Among the 16 problems, our method outperformed
Gurobi in 14 cases. In terms of the 30% and 50% solver scales, our method matched or exceeded
Gurobi in 12 and 10 problems, respectively. Notably, the problems in QPLIB are relatively small-
scale; our method’s advantages are expected to be more pronounced with even larger-scale problems.

Table 4: Comparison of objective values with Gurobi within the same running time on QPLIB. Ours-
30% and Ours-50% mean the scale-limited versions of Gurobi which limit the variable proportion
α to 30% and 50% respectively. “↑” means the result is equal to or better than the baseline. “No.” is
the QPLIB number. “Sense” is the objective sense. “n var” is the number of variables.

No. Sense n var Objective value

Ours-30% Ours-50% Gurobi

2017 min 252 -21544.0 -22984.0↑ -22584.0
2022 min 275 -22000.5↑ -22716.0↑ -21514.5
2036 min 324 -28960.0↑ -30480.0↑ -28260.0
2067 min 190 3311060.0↑ 3441020.0 3382980.0
2085 min 253 8154640.0 7717850.0↑ 7885860.0
2315 min 595 -13552.0↑ -22680.0 -17952.0
2733 min 324 5358.0↑ 5358.0↑ 5376.0
2957 min 484 3616.0↑ 3604.0↑ 3788.0
3347 min 676 3825111.0↑ 3828653.0 3826800.0
3402 min 144 230704.0↑ 224416.0↑ 230704.0
3584 min 528 -13090.0↑ -18989.0 -15525.0
3752 min 462 -1075.0 -1279.0 -1299.0
3841 min 300 -1628.0↑ -1690.0↑ -1594.0
3860 min 435 -13820.0 -16331.0 -16590.0
3883 min 182 -788.0↑ -788.0↑ -782.0
5962 max 150 6962.0↑ 6343.0↑ 5786.0
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D.2 EXPERIMENTS ON QAPLIB

QAPLIB (Burkard et al., 1997) consists of 136 problems, ranging in size from 10 to 256 (corre-
sponding to 100 to 66536 variables). Given the limited number of problems for each size, it is not
suitable for training neural networks. The Quadratic Assignment Problem (QAP) can be modeled
and solved in various ways (Loiola et al., 2007). Standard modeling as a quadratic objective func-
tion with linear constraints (Equation 11) is significantly slower when solved with general-purpose
solvers like Gurobi and SCIP than with specific methods for QAP. As our goal is to solve gen-
eral quadratic problems, we compared our approach with the state-of-the-art general-purpose solver
Gurobi, rather than benchmarking against other specific algorithms for QAP.

D.2.1 MATHEMATICAL FORMULATION

QAP can be formed as a quadratic program in Equation 11, which belongs to the general QCQP.

min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fijdklxikxjl

s.t.
n∑

i=1

xij = 1, j = 1, 2 . . . n,

n∑
j=1

xij = 1, i = 1, 2 . . . n.

(11)

fij represents the flow between facilities i and j; dkl denotes the distance between locations k and l;
xik is a binary variable that equals 1 if facility i is assigned to location k and 0 otherwise. The first
summation constraint ensures that each location j has exactly one facility assigned to it. The second
summation constraint guarantees that each facility i is assigned to exactly one location. A QAP can
be encoded as two matrices F ,D ∈ Rn×n where F = [fij ] is the flow matrix and D = [dkl] is the
distance matrix.

D.2.2 TRAINING DATASET CONSTRUCTION

As QAPLIB is not suitable for neural network training, we opted for random generation. We gen-
erated two sizes of QAP problems, 20 and 50 (corresponding to 400 and 2500 variables), creating
50 and 20 instances for each size, respectively. Parameters in the QAP formula fij and dkl were
sampled from the uniform distribution U(0, 1). We used Gurobi to solve the problems until the gap
was less than or equal to 10% to generate labels, which is the same as is explained in Appendix C.1.

D.2.3 TESTING DATASET CONSTRUCTION

Modeling the QAP problem in the QCQP format results in a complexity of O(n4), so we conducted
tests on part of QAPLIB problems in standard form. We tested on 8 instances of size 20 (400
variables) and 3 instances of size 50 (2500 variables). Before modeling them as quadratic problems,
we normalized the F and D matrices by dividing them by their maximum values respectively.

D.2.4 RESULTS

The experimental results are detailed in Table D.2.4. Among the eight problems of size 20, our
method surpassed Gurobi in 6 instances. For the solver scales of 30% and 50%, our approach
matched or exceeded Gurobi in 5 and 6 problems, respectively. In all 3 problems of size 50, both
our 30% and 50% scale solvers outperformed Gurobi. Notably, in problems of size 50, our 30%
scale solver demonstrated the best performance, indicating that our small-scale solver combined
with a neighborhood search framework has significant potential for handling large-scale problems.

Future directions might include 1) a detailed study of the dataset, generating a sufficient number of
problems from the typical, limited problems in QPLIB for neural network training, and 2) improving
the neural network by training larger models on diverse datasets, thus achieving one-shot learning
on QPLIB.
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Table 5: Comparison of objective values with Gurobi within the same running time on QAPLIB.
Name is the instance name given by QAPLIB. Other notations are the same as Table 4. All QAP
problems are minimization problems.

Name n var Time Limit (s) Objective value

Ours-30% Ours-50% Gurobi

chr20a 20 100 3.03 2.84 2.62
chr20b 20 100 2.94↑ 2.89↑ 2.94
chr20c 20 100 1.75 1.61 1.54
had20 20 100 62.93↑ 62.93↑ 63.33
nug20 20 100 36.77↑ 37.09↑ 37.77
rou20 20 100 75.65↑ 75.16↑ 77.61
tai20a 20 100 74.92↑ 73.90↑ 75.69
tai20b 20 100 2.80 2.51↑ 2.52

tai50a 50 1800 524.18↑ 527.47↑ 531.52
tai50b 50 1800 31.73↑ 32.47↑ 32.76
wil50 50 1800 427.04↑ 427.16↑ 427.67

E EXTRA EXPERIMENTS

In this section, the details of our two extra experiments regarding the two stages introduced in Sec.
4, neural prediction evaluation and neighborhood optimization convergence analysis, are presented
to further validate the effectiveness and efficiency of our optimization framework.

E.1 NEURAL PREDICTION EVALUATION

Our method is similar to the Neural Diving model proposed by Nair et al. (2021) in that we trained a
neural network to directly predict solutions and is also similar to Relaxation Enforced Neighborhood
Search (RENS) (Berthold, 2014) in that we obtain high-quality feasible solutions by fixing a subset
of variables and solve the resulting sub-QCQP. In the following sections, a detailed description of
our model is given, a new method to handle general integer and continuous variables is proposed
and the visualization of neural prediction results is presented.

E.1.1 MODEL FORMULATION

Given a QCQP instance Q of the form in Equation 1, the optimal solution X ∗ can be represented as
a function g of the instance Q, denoted as g(Q). The learning objective is then to approximate this
function g using a neural network model gθ, parameterized by θ. Formally, the training dataset is
constructed as D = {(Qi,X ∗

i )}Ni=1, where {Qi}Ni=1 represents N problem instances and {X ∗
i }Ni=1

denotes the corresponding optimal or suboptimal solutions obtained by off-the-shelf solvers.

To measure the difference between the network’s predictions and the true solutions, we employ
the binary cross-entropy loss with logits, represented by BCEWithLogitLoss in PyTorch. This loss
function is suitable as it accounts for the fact that the network outputs are not probabilities and
applies a sigmoid function to convert them into probabilities before calculating the loss. The loss
for each instance in the dataset is calculated as:

L(θ) = − 1

N

N∑
i=1

[yi · log(σ(gθ(Qi))) + (1− yi) · log(1− σ(gθ(Qi)))] , (12)

where σ denotes the sigmoid function, yi is the true label indicating whether the solution is 0 or
1, and gθ(Qi) is the raw output of the network for the given QCQP instance Qi. The goal during
training is to minimize this loss function, effectively adjusting the parameters θ to improve the
approximation of the true function g.
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Figure 6: Neural network outputs of the small-scale QIS.

Figure 7: Neural network outputs of the large-scale QMKP.

E.1.2 HANDLING INTEGER AND CONTINUOUS VARIABLES

For integer variables, two strategies are considered: one represents an integer as a sum of multiple
binary variables, and the other, similar to the Neural Diving model (Nair et al., 2021), treats an inte-
ger in its binary form, where each bit prediction is a binary classification task. This latter approach
addresses the challenges associated with variable cardinality by reframing the prediction task into
a sequence of binary tasks, enabling more efficient handling of integer variables by predicting the
most significant bits and subsequently narrowing the possible variable range.

Regarding continuous variables in nonconvex QCQPs, the necessity for predicted solutions arises,
as not all continuous variables can be optimized during the iterative neighborhood search. This is
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attributed to the requirement of spatial branching (sB&B) (McCormick, 1976) for optimizing con-
tinuous variables in nonconvex scenarios, a computationally expensive and NP-hard process. Con-
sequently, a viable method is treating continuous variables as integer variables in training instances.
This adaptation enables the model to predict high-quality integer values, serving as initial feasi-
ble solutions for sB&B in the neighborhood optimization process, thereby facilitating a balanced
computational effort.

E.1.3 PREDICTION RESULTS VISUALIZATION

Given the inherent variance in true labels (0s and 1s in binary problems) across optimal solutions
of distinct QCQP instances, both loss and accuracy metrics lose some degree of meaningfulness in
the evaluation of the efficacy of neural prediction. Consequently, we opt for a visualization strat-
egy wherein we plot the output solution values of a specific QCQP instance across various epochs,
facilitating the observation of a discernible trend of separation amongst the variables of differing
optimal values. The x axis represents the index of variables, while the y axis delineates the output
values emanating from the neural network model, with a larger value signifying a higher confidence
level of our model predicting it as 1. A value approaching 0 indicates a degree of uncertainty within
the model concerning the optimal value—a plausible scenario given that the value of certain vari-
ables might exert a negligible influence on the objective values. The neural network outputs for
both small-scale QIS instances (Figure 6) and large-scale QMKP instances (Figure 7) are depicted,
serving to demonstrate that our proposed network has indeed acquired the capability to discern the
optimal solution values, with similar plots being observable across other problem types of varying
scales. Inspection of these plots reveals instances of misclassification by the neural network, indicat-
ing a potential area for enhancement in subsequent research endeavors. Additionally, the emergence
of a “stripe”-like pattern within large-scale instances is noted, suggesting the potential classification
of variables within the same “stripe” into identical categories, which is a phenomenon warranting
further exploration in future work.

E.2 NEIGHBORHOOD OPTIMIZATION CONVERGENCE ANALYSIS

Figure 8: The time-objective value figure for QMKP.

Figure 9: The time-objective value figure for QIS.

Figure 10: The time-objective value figure for QVC.
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Convergence is an important criterion for assessing the effectiveness of neighborhood optimization.
It can be obtained by observing the curve of the objective value over time during the optimization
process. The convergence curves for solving QCQPs by using the proposed framework with the
small-scale version solver, in comparison with the large-scale version solver, as shown in Figure 8,
Figure 9 and Figure 10, with the small-scale solvers in our method all restricted to 30%.

It is apparent that our proposed framework exhibits superior convergence performance compared to
Gurobi and SCIP, especially in large-scale problems. It converges to high-quality solutions in less
time. Interestingly, despite the convergence performance of SCIP’s noticeably weaker compared
to Gurobi, the proposed framework with restricted SCIP as the small-scale solver outperforms the
restricted Gurobi in the Quadratic Vertex Cover problem.

E.3 AREA-UNDER-CURVE VS. RUNNING TIME

We have further plotted curves of the area-under-curve (AUC) divided by running time. In such
graphs, if the objective function value converges, the function should approach a horizontal line.
The quicker the function approaches this line, the faster the convergence. For maximization prob-
lems, a higher y-coordinate value of this asymptotic line is preferable; conversely, for minimization
problems, a lower value is better.

E.3.1 EXPERIMENT RESULTS

Since our focus is on large-scale problems, we have drawn graphs for both medium-scale and large-
scale scenarios. As the graphs for each type of problem at each scale exhibit similarities, we have
selected one representative graph to illustrate our findings.

Figure 11: The time-objective value figure for QMKP.

Figure 12: The time-objective value figure for QIS.
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Figure 13: The time-objective value figure for QVC.

E.3.2 RESULTS ANALYSIS

QMKP and QIS are framed as maximization problems, whereas QVC is a minimization problem.
For QMKP and QIS, our analyses reveal that our method quickly increases the objective value and
demonstrates faster convergence, and thus the AUC divided by time value increases sharply and
converges quickly. In the case of QVC, it is observable that our approach converges to a horizontal
line in a shorter time frame. In contrast, Gurobi and SCIP initially exhibit higher objective function
values during the early stages of the optimization process. This results in a larger AUC divided by
time, correlating with a rapid initial ascent followed by a gradual decline, as depicted in Figure 13.

Since this is the first attempt to include such a metric in the field of learning for optimization,
we are cognizant that our understanding of its full implications may be limited at this stage. We
wholeheartedly welcome future discussions and in-depth research on this topic.
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