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ABSTRACT

Despite decades of advancements in automated ligand screening, large-scale drug
discovery remains resource-intensive and requires post-processing hit selection,
a step where chemists manually select a few promising molecules based on their
chemical intuition. This creates a major bottleneck in the virtual screening process
for drug discovery, demanding experts to repeatedly balance complex trade-offs
among drug properties across a vast pool of candidates. To improve the efficiency
and reliability of this process, we propose a novel human-centered framework
named CheapVS that allows chemists to guide the ligand selection process by
providing preferences regarding the trade-offs between drug properties via pairwise
comparison. Our framework combines preferential multi-objective Bayesian opti-
mization with a docking model for measuring binding affinity to capture human
chemical intuition for improving hit identification. Specifically, on a library of
100K chemical candidates targeting EGFR and DRD2, CheapVS outperforms state-
of-the-art screening methods in identifying drugs within a limited computational
budget. Notably, our method can recover up to 16/37 EGFR and 37/58 DRD2
known drugs while screening only 6% of the library, showcasing its potential to
significantly advance drug discovery.

Figure 1: Chemist-guided Active Preferential Virtual Screening performance in identifying EGFR
and DRD2 drugs. The search is conducted on a 100K ligand library, screened for a maximum of 6%
of the library. The plot compares different methods for structure-based binding affinity measurement
(Vina, EDM-S, Chai-1) and objective types. The y-axis shows the percentage of the top number of
approved drugs identified, while the x-axis represents the number of ligands screened. Multi-objective
optimization (circles) across all methods for affinity measures outperforms affinity-only selection
(triangles) and random screening (gray line). Error bars indicate 1 standard deviation.
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1 INTRODUCTION

Virtual screening (VS) is a key pillar of modern computational drug discovery, acting as a rapid sift
through massive molecular libraries-ranging from millions to billions of compounds-to identify a
set of “hits” with promising therapeutic potential Shoichet (2004); Lyu et al. (2023). At the core of
VS lies hit selection: the practical step in which a set of candidate compounds is manually chosen
from top-ranked docking results, informed not only by binding affinity scores but also by key factors
such as solubility, toxicity, and pharmacokinetic properties, all of which collectively determine a
compounds potential. Despite its centrality to drug discovery, VS and hit selection remain both
resource-intensive. Traditional pipelines rely on exhaustive docking of the entire library, which
demands substantial time and computational resources Lyu et al. (2019); Gorgulla et al. (2020).
Moreover, human expertise is required in the loop: medicinal chemists must examine the results
to finalize which hits are worthy of costly experimental validation. In large-scale campaigns with
millions of compounds, this process quickly becomes bottlenecked by both the computational costs
and the limited bandwidth of experts. On top of the issue, vast computational resources are spent on
characterizing unpromising (later-known low-scored) compounds, even though only a small fraction
of top-ranked molecules typically move forward for hit selection and experimental validation. To
address this problem, recent methods have combined active learning with binding affinity prediction to
query compounds based on predicted binding affinity, substantially reducing computational overhead
while maintaining high accuracy Graff et al. (2021); Zhou et al. (2024); Gentile et al. (2020).

Although binding molecules are good starting points for screening campaigns, the drug discovery
process, in its entirety, is a complex multi-objective optimization problem. Indeed, VS presents a
unique challenge due to its operation in a high-dimensional search space where these objectives (e.g.,
binding affinity, solubility, toxicity, pharmacokinetic properties, etc.) exhibit complex and often
poorly understood interdependencies Hann & Keserü (2012). For instance, adding bulky functional
groups can enhance binding affinity but simultaneously lower solubility or increase off-target toxicity,
complicating the search for high-potential candidates. Balancing competing properties is key to
robust drug leads. While single-objective active-learning approaches Graff et al. (2021); Gentile
et al. (2020) have shown promise in efficiently identifying top-scored molecules from large-scale
libraries, the screening process still overlooks important considerations that medicinal chemists
weigh in real-world pipelines, such as synthetic accessibility, stability, toxicity, etc. Thus, much
computational power is still wasted on molecules with poor profiles other than binding affinity. This
disconnection also highlights the critical role of domain expertise, balancing multiple factors that
purely physics-based methods often fail to capture. Unfortunately, while invaluable, the expert-driven
hit selection process is labor-intensive when scaled to large candidate pools.

To address these limitations, we present CheapVS (CHEmist-guided Active Preferential Virtual
Screening) to assist chemists in expert-guided VS by leveraging a preferential multi-objective
Bayesian optimization (BO) toolbox. By translating expert chemists nuanced understanding into multi-
objective utility functions - incorporating factors such as binding affinity, solubility, or toxicityour
framework ensures that computational optimization captures subtle trade-offs that purely physics-
based methods often overlook. This expert-guided approach refines the VS process, prioritizing
candidates based on broader criteria crucial for downstream development. In doing so, we aim to
make the hit identification process more efficient and aligned with expert preference and, ultimately,
more effective in discovering promising drug leads from vast chemical spaces.

Preference ranking relies on the availability of a good measurement of ligand properties. An important
measurement is the binding affinity between the ligand and the target protein. Recent breakthroughs
such as AlphaFold3 Abramson et al. (2024) and Chai-1 Boitreaud et al. (2024) have promised
better measurement of binding affinity on a wide range of targeted proteins. Unfortunately, these
methods are expensive, and the lack of understanding of their accuracy-efficiency trade-off has made
it difficult for practitioners to select a suitable method for large scale VS. We compare the accuracy
and efficiency of the physics-based and diffusion-based approaches, showing that while existing
diffusion docking models are promising, their efficiency is far away from practical VS. Introducing
a lightweight diffusion model on large-scale data, we significantly improve the efficiency of these
tools while maintaining high performance, suggesting a path toward making deep learning models
practical for VS.

Code and data are at github.com/vietai/cheapvs.
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In summary, our key contributions are:

• Eliciting Expert Preference for Efficient Virtual Screening: We optimize trade-offs among
interdependent drug properties by leveraging chemists’ intuition through preference learning,
translating domain knowledge into a latent utility function for more efficient VS.

• Understanding Accuracy-Efficiency Trade-Off in Docking Models: We evaluate the accuracy-
efficiency trade-off of the physics-based and diffusion-based approaches and use data augmentation
to significantly improve the efficiency of the diffusion docking model.

• Efficient Multi-Objective Virtual Screening: CheapVS considers various candidates’ properties
to simultaneously optimize them, such as binding affinity and toxicity, moving beyond single-
objective paradigms.

2 RELATED WORK

Efficient Decision Making in Virtual Screening VS Lionta et al. (2014); Kitchen et al. (2004) is a
computational strategy for selecting promising molecules from large chemical libraries. Traditional
high-throughput VS (HTVS) often employs computationally expensive structured-based binding
affinity measurement methods McNutt et al. (2021); Koes et al. (2013); Eberhardt et al. (2021);
Lyu et al. (2019). While the effectiveness of ultra-large libraries is debated Clark (2020), their use
in structure-based drug design has seen an increase in popularity Gorgulla et al. (2020); Acharya
et al. (2020). However, docking billions of compounds is computationally demanding Gorgulla
et al. (2020). Therefore, active learning strategies, such as MolPAL Graff et al. (2021), improve
efficiency by integrating optimal model-based sequential decision-making with docking. By training
a machine learning model on initial binding affinities, MolPAL predicts binding affinities on the entire
set and strategically selects subsequent compounds, significantly reducing the number of docking
calculations while ensuring reliable performance.

Expert Preference in Virtual Screening Multi-objective BO (MOBO) Couckuyt et al. (2012)
tackles the challenge of optimizing multiple, potentially conflicting objectives. A common ap-
proach uses the Expected Hypervolume Improvement (EHVI) Emmerich et al. (2008); Daulton et al.
(2021), while other strategies include Predictive Entropy Search, Max-value Entropy Search, and the
Uncertainty-Aware Search Framework Hernández-Lobato et al. (2016); Belakaria et al. (2020a;b).
ParEGO Knowles (2006) addresses computationally expensive problems using landscape approxima-
tions. Recent work extends MOBO to high-dimensional spaces Daulton et al. (2022), accelerates VS,
molecular optimization, and reaction optimization Fromer et al. (2024); Zhu et al. (2024); Torres et al.
(2022). However, many MOBO methods still lack mechanisms to effectively incorporate domain
expert insights during the search process, which is a critical need in VS. CheapVS builds on this
MOBO foundation Couckuyt et al. (2012); Chu & Ghahramani (2005); Brochu et al. (2010) by
introducing a preference learning framework that guides optimization towards solutions aligned
with expert knowledge in VS. While prior work Choung et al. (2023) explores expert preferences
via SMILES-based rankings, they do not consider ligand properties, which limits the optimization
process

Measurement of Binding Affinity via Diffusion Model Diffusion-based generative models have
gained significant attention for their ability to model complex data distributions through itera-
tive refinements of noisy inputs. Grounded on denoising score-matching Hyvärinen & Dayan
(2005); Song & Ermon (2019), these models leverage a governing ordinary differential equation,
dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, where x represents the inputs, σ(t) is the noise level, and
∇x log p(x;σ(t)) is the score function. The denoiser D(x;σ) minimizes the mean squared error
loss. Modern machine-learning models for structure-based binding affinity prediction often rely on
experimentally verified structures from the Protein Data Bank (PDB)wwPDB consortium (2019).
Although the PDB offers thousands of structures, it contains only around 40k ligands. To broaden
coverage, researchers often generate additional data, e.g., PDBScreen Cao et al. (2024) introduces
“decoy” ligands presumed not to bind the protein, while PigNet and CarsiDock Moon et al. (2022);
Cai et al. (2024) use techniques like re-docking, cross-docking, and random docking from large
commercial libraries. These methods expand protein-ligand diversity, enabling models to improve
their generalization for docking.
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3 PRELIMINARY

We briefly describe the VS setup. Given a target protein ρ and a screening library L = {ℓ1, . . . , ℓN},
the goal is to select the top k ligands with the highest potential to succeed as drugs. A value is
assigned to each ligand toward this goal so they can be ranked. It is common in practice to use a
molecular property vector of ligand ℓ, denoted as xℓ, as a proxy of drug likeliness. The vector can
include various properties, such as binding affinity, toxicity, and solubility: xℓ = [xaff

ℓ , xtoc
ℓ , xsol

ℓ ].
However, evaluating these properties can be costly and time-consuming for large molecular libraries.
To address this, active screening methods are used to explore the chemical space efficiently. These
methods start with a small, randomly chosen fraction of the ligand library as the initial training set.
The properties of this small set of ligands, often binding affinity, are measured, which are then used
to train a surrogate model. Once the initial model is established, the optimization proceeds iteratively.
In each cycle, newly measured ligands update the model with their latest data. The updated surrogate
model evaluates the remaining compounds, and an acquisition function α ranks them by balancing
exploration and exploitation. The top-ranked candidates are selected, their properties are measured,
and the resulting data is used to update the surrogate model further. This process continues until
the termination criteria is reached. For evaluation, regret and top-k accuracy are the main metrics
used in the screening procedure. Regret at iteration i is defined as Ri = U∗ − U(i), where U∗ is the
highest possible utility in the library and U(i) is the highest utility found at iteration i. Importantly,
U∗ can only be determined if affinity computations are carried out for the entire library, making it a
post-hoc evaluation metric rather than a run-time metric. Lower regret indicates a better screening
strategy. Top-k Accuracy measures the proportion of correctly identified compounds within the top-k
set, where the top-k corresponds to the compounds with the highest utility value.

Measuring molecular properties is essential for eliciting expert preference. One of the most important
properties is binding affinity, denoted as xaff

ℓ,ρ. Unfortunately, this objective is computationally
expensive to estimate because it requires searching for an energetically optimal 3D structure of the
ligand inside the protein binding pocket:

xaff
ℓ,ρ = min

ℓ3D∈3×Nℓ

h(ℓ3D, ρ) ∀ℓ ∈ L (1)

where h is the physics-based affinity scoring function based on the atomic interaction between the
ligand and the target protein, Nℓ is the number of atoms in ligand ℓ (which is typically several
dozen), and ℓ3D is the 3D coordinate vector of ligand ℓ. Traditional docking methods use heuristics to
search through the vast conformation space 3×Nℓ , rendering an intractable procedure when applied at
scale to all ligands in the library. Diffusion docking models have been introduced to bias the above
optimization toward a 3D structure that geometrically fits the binding pocket. Given a protein target
ρ, a ligand, and a corresponding experimentally obtained 3D binding pose, the training objective of
diffusion docking model pθ is to find the 3D pose that best fits the binding pocket in terms of mean
squared error (MSE) loss. After training, the optimal 3D pose could be obtained rapidly without
exhaustive search through sampling process ℓ3D ∼ pθ(ℓ, ρ). The optimal pose is then used with the
scoring function h to measure binding affinity.

4 METHODS

We introduce a comprehensive methodology comprised of three components: preference modeling,
active ligand selection, and ligand property measurement. An overview of the complete pipeline is
presented in Figure 2.

Preference Modeling Balancing multiple objectives, such as affinity, toxicity, and solubility, is
necessary to identify drug candidates. This is challenging as the optimal trade-offs are unknown. We
elicit expert preferences to guide the optimization process. These preferences are gathered through
pairwise comparisons of ligand properties, where experts indicate which of the two ligands, ℓ1 and ℓ2,
is more desirable based on multiple criteria. We assume the probability of preferring ligand ℓ1 over
ℓ2 follows the Bradley-Terry model, generated via a utility function f mapping from ligand property
vector xℓ to a utility scalar:

p(ℓ1 ≻ ℓ2 | xℓ1 , xℓ2) = σ(f(xℓ1)− f(xℓ2)) (2)

where σ is the logistic function. We model the distribution of the latent utility function with a
Gaussian process (GP), assuming f ∼ GP(µ(X), k(X,X ′)), where µ(X) and k(X,X ′) denote
the mean and kernel functions. We train f using a dataset f = {(xℓi , xℓj , yeij )}, where each pair
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Figure 2: Overview of Chemist-guided Active Preferential Virtual Screening (CheapVS). Ligands
from a large library are selected using an acquisition function and evaluated through structure-based
affinity models. Chemists provide preference rankings, which inform a utility model to refine the
selection process. The screened library iteratively improves, prioritizing ligands with desirable
properties. Yellow-colored ligands represent found drug compounds, while purple ligands indicate
screened compounds.

(xℓi , xℓj ) consists of ligand property vectors, and yeij is the expert preference label indicating whether
ℓi is preferred over ℓj . For posterior estimation, we employ the Laplace approximation. The choice
of GPs for surrogate models is motivated by their superior performance over neural networks, as
detailed in Appendix E.

Measurement of Binding Affinity via Diffusion Model A large-scale diffusion docking model
holds the promise to accelerate finding optimal binding poses in comparison to traditional searches.
Unfortunately, sampling from the diffusion model is still an expensive process, especially for a large
model, making it impractical to use diffusion for large-scale screening. Here, we aim to train a
lightweight diffusion model that is highly computationally tractable for a large-scale library while
aiming for a minimal reduction in binding affinity estimation. Toward this goal, we curate a large,
diverse diffusion training dataset:

1. From PDBScan22 (Flachsenberg et al., 2023), we remove non-drug-like ligands (e.g.,
solvents) to retain biologically relevant molecules (e.g., amino acids), ensuring the dataset
focuses on drug-like ligands in realistic protein environments (see Appendix C), yielding
180,000 high-quality protein-ligand pairs.

2. To address low ligand diversity, we leverage the Papyrus dataset Béquignon et al. (2023),
containing 260,000 active ligands across about 1,300 UniProt IDs. Molecules with reliable
and good activity data (pChemBL > 5) matching curated PDBScan22 structures were
retained. Using Conforge Seidel et al. (2023), we generate 50 conformers per molecule
(RMSD > 0.2 Å). Pharmacophores from PDBScan22 are extracted with CDPKit Seidel
(2023) and ligands are aligned based on shape and electrostatic properties. The aligned
poses are minimized for binding affinity with Smina Koes et al. (2013).

After training the diffusion on this curated data, for each ligand, we generate 128 candidate conforma-
tion and greedily select the one with the lowest binding affinity to solve Equation 1 by inference-time
best-of-N search. One can train a diffusion policy to solve this equation directly via reinforcement
learning, and we defer this to future work.

Even with a highly efficient diffusion model, measuring binding affinity on a vast ligand library
remains intractable. We further tackle this problem by introducing a protein-specific surrogate model
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gρ that directly predicts binding affinity for a given ligand. Here, we use GP to model the affinity
distribution of gρ with a Gaussian likelihood following Brochu et al. (2010). We featurize the ligand
ℓ by its Morgan fingerprint ℓ, a fixed-length vector encoding its substructural features: x̂aff

ℓ,ρ = gρ(ℓ),
where gρ is supervised trained by leveraging data from diffusion model gρ = {(ℓ,i, h(ℓ3D,i) : ℓ3D,i ∼
pθ(ℓi, ρ))}i
Active Virtual Screening with Expert Preference We have introduced a latent utility function and
a scalable method for measuring the binding affinity of a large ligand library, which can provide a
measure for drug likeliness f ◦ gρ(ℓ) of ligand ℓ that balances various objectives aligning with human
preference. Since various approximations have been made in favor of computational tractability, one
should not greedily optimize for f ◦ gρ. The composition of utility and affinity functions allows
uncertainty in gρ to propagate through and impact decision quality if not handled carefully. Here,
the optimal ligand for further measurement is the maximizer of the expected value of the acquisition
function α, marginalizing over posterior predictive distribution induced by gρ for a given acquisition
function α and a posterior distribution over f :

ℓ∗ = argmax
ℓ∈L

Ep(xaff
ℓ,ρ|ℓ,gρ )

α(p(f |f ), xℓ). (3)

where the expectation is approximated using Monte Carlo sampling, and ligand pairs for expert
preference queries are randomly chosen among the top-k candidates with the highest acquisition
values. The full pseudocode for CheapVS’s algorithm can be found in Appendix D.1.

5 EXPERIMENTS

We conduct the experiments in three main stages. First, we investigate how well the utility model
can learn from preference data, using both synthetic benchmark functions and real human-labeled
preferences. Second, we explore the accuracy-speed tradeoff in affinity measurement by comparing
our lightweight diffusion model (EDM-S) against Chai-1 and Vina, analyzing how computational
efficiency impacts optimization performance. Finally, we integrate preference learning, molecular
docking, and virtual screening into a comprehensive drug discovery pipeline, primarily targeting
the EGFR and DRD2 proteins. For our main study, we utilize qEUBO as the main acquisition
function. A full analysis of additional strategies can be found in Appendix B and D.5. Additionally,
we compute physicochemical properties using RDKit, online and incorporate ADMET predictions
(absorption, distribution, metabolism, excretion, and toxicity) Swanson et al. (2024) to account for
realistic multi-objective trade-offs in drug discovery. Our study focuses on 3 Research Questions
(RQ):

• RQ1: How effectively can the latent utility function learn and approximate the underlying
true utility from both synthetic and expert pairwise comparisons?

• RQ2: How does the accuracy-efficiency trade off in diffusion docking model impact the
virtual screening process and what is a promising path to improve the efficiency of diffusion
docking model?

• RQ3: How effectively does CheapVS identify clinically relevant drug ligands using multi-
objective optimization compared to affinity-only baseline?

5.1 PREFERENCE ELICITATION FROM PAIRWISE COMPARISONS

To answer RQ1, we examine how well preference learning can correctly identify preferences using
ligand properties (binding affinity, lipophilicity, molecular weight, and half-life) as input. For syn-
thetic data, we generate 1,200 pairwise labels via functions–Ackley, Alpine1, Hartmann, Dropwave,
Qeifail, and Levy. In contrast, for real human data, experts provide rankings on the EGFR target
to form pairwise comparisons. All experiments are conducted under an 80/20 split and 20-fold
cross-validation and evaluate model performance with accuracy and ROC AUC.

Table 1 indicates that our preference learning framework consistently achieves high accuracy and
ROC AUC, demonstrating robust recovery of the latent utility function. While there is some variability
across different synthetic functions, the overall trend confirms strong performance. Similarly, prelimi-
nary results on real human data show competitive performance, with an accuracy of approximately
80% and a ROC AUC of around 90%. These findings suggest that our approach effectively captures
the underlying utility function from pairwise comparisons, supporting its potential for practical
applications in drug candidate screening.
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Accuracy (%) ROC AUC
ackley 95.75 ± 1.97 0.99 ± 0.01
alpine1 79.73 ± 2.99 0.88 ± 0.03
hartmann 90.52 ± 2.18 0.98 ± 0.01
levy 94.22 ± 1.31 0.99 ± 0.01
dropwave 66.32 ± 3.89 0.72 ± 0.05
qeifail 95.95 ± 1.35 0.99 ± 0.01

human 80.40 ± 0.03 0.90 ± 0.02

Table 1: GP Utility Performance across 20 trials on synthetic and human data using 80/20 split of
1200 pair comparisons, demonstrating that the model effectively captures the latent utility.

Summary: Preferential learning robustly recovers the latent utility function with high
accuracy and AUC on both synthetic and human data.

5.2 ACCURACY-EFFICIENCY TRADE-OFF IN MEASUREMENT

Figure 3: Accuracy over cumulative FLOPs on
EGFR under the same screening settings. Vina
achieves the highest accuracy with the fewest
FLOPs, EDM-S is in between, and Chai uses the
most FLOPs with the lowest accuracy.

We tackle RQ2 by investigating how the compu-
tational overhead of diffusion models affects
convergence speed. We focus on the EGFR
target, plotting accuracy against total FLOPs
(FLoating OPerations). We first compare Chai-1
and Vina under the ϵ-greedy acquisition func-
tion, noting that Chai produces five poses and
Vina produces ten. Figure 3 shows that Vina
requires fewer FLOPs to reach the highest ac-
curacy of around 0.43, while Chai-1 is FLOP-
intensive and ends with the lowest accuracy,
around 0.10. These results show that slower,
computationally expensive docking methods im-
pede the exploration-exploitation cycle, while
faster models (Vina) significantly boost through-
put and convergence speed. Minimizing dock-
ing overhead enables the exploration of a larger
chemical space.

Understanding the importance of efficiency in
VS, we aim to train a highly efficient diffusion model while maintaining its accuracy using data
augmentation. Our model (EDM-S) is based on Karras’s diffusion model Karras et al. (2022). Training
occurs in two phases: We first pre-train on 11 million synthetic pairs generated via pharmacophore
alignment to capture diverse docking patterns. This enables the model to learn generalizable features
from a broad chemical space that would be difficult to obtain solely from experimental data. We
then fine-tune on PDBScan22, a high-quality dataset of approximately 180,000 experimentally
determined complexes, to refine the models understanding of biologically relevant interactions. For
targeted applications in (5.3), EDM-S is further fine-tuned on 10,000 pairs from Garcı́a-Ortegón et al.
(2022), ensuring robust binding affinity predictions. EDM-S achieves a final accuracy of about 0.30,
drastically improving over Chai-1 but still lagging behind Vina. This result shows that diffusion
models can be efficient via data augmentation, and future research should investigate methods to
make these models even more practical for VS.

We further discuss the diffusion training result to deepen the understanding of the link between the
training process and the downstream VS performance. Binding affinity (measured in kilocalories
per mole) is evaluated using EGFR as the target, and results from all VS experiments are collected
using the Vinardo scoring function. As shown in Figure 16, EDM-S outperforms Chai in binding
affinity measurements, highlighting its advantage in robust sampling. While EDM-S is slightly
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outperformed by Vina, it achieves comparable binding affinity distributions, showcasing its ability
to balance accuracy and speed of measuring binding affinity. However, these findings are specific
to the EGFR target; further experiments on diverse protein systems are necessary to assess broader
generalizability.

Figure 4: Scatter plots comparing EDM Affinity
with Vina Affinity (left) and RMSD (right). A
moderate correlation is observed between EDM
and Vina affinities (r = 0.52), while no meaningful
correlation exists between RMSD and EDM Affin-
ity (r = 0.18).

Regarding Root Mean Square Devia-
tion (RMSD) performance, EDM-S, and
DockScan22 (a DiffDock-S trained on our
PDBScan22) employ distinct training strategies.
RMSD, measured in Ångströms (Å, where
1Å = 0.1 nm), quantifies structural devia-
tions between predicted and reference ligand
poses, with lower values indicating higher
accuracy. EDM-S combines pretraining on the
PapyrusScan dataset (11M synthetic pairs) with
fine-tuning on PDBScan22 (322K validated
complexes), while DockScan22 trains solely on
PDBScan22 using DiffDock-S as its backbone.
Experimental results (8) show DockScan22
achieves 54.1% and 34.1% accuracy (RMSD
< 2Å) on PoseBuster V1 and PDBBind,
outperforming DiffDock-S and the original
DiffDock. EDM-S achieves 91% accuracy (RMSD < 5Å) on PoseBuster V1. Both models are 34
times faster than folding models like AlphaFold, running in 10s on an A100 GPU, demonstrating
their practicality for large-scale applications. Most current methods train diffusion models on atomic
coordinates, optimizing for low RMSD. However, RMSD only quantifies geometric similarity to a
reference structure and is not sensitive to steric clashes or energetically unfavorable interactions:
a ligand with RMSD < 2Å may still exhibit steric clashes that disrupt binding, making it a poor
candidate despite its structural similarity. In drug discovery, binding strength is more important than
geometric accuracy. While binding affinity reflects a ligand’s ability to bind to a protein and regulate
its function, geometric accuracy only indicates how closely the predicted pose aligns with a reference
structure, offering little insight into the drug’s regulatory potential. The Vinardo scoring function
provides a more meaningful measure of binding affinity by incorporating both energetic and steric
factors. Figure 4 shows the weak RMSD-affinity correlation, emphasizing the need for affinity-based
scoring as a better measure of drug quality.

Summary: Diffusion models show promise in binding affinity prediction, though physics-
based methods demonstrate greater efficiency and accuracy.

5.3 ELICITING EXPERT PREFERENCE FOR EFFICIENT SCREENING

To address RQ3, we focus on two targets, Epidermal Growth Factor Receptor (EGFR) and Dopamine
D2 Receptor (DRD2) proteins, due to their clinical importance and the availability of multiple
FDA-approved drugs Cohen et al. (2021). We collect 37 and 58 FDA-approved or late-stage clinical
candidates from the PKIDB and DrugBank Carles et al. (2018); Knox et al. (2024) for EGFR and
DRD2, respectively, treating them as “goal-optimal” molecules. The screening library comprises
260, 000 molecules from Garcı́a-Ortegón et al. (2022), in which a random subset of 100, 000 is used
to simulate a realistic campaign. Expert chemists provide preference labels, defining nuanced multi-
objective utility functions. In each BO iteration, these experts complete 200 pairwise comparisons via
an interactive app, yielding a total of 2, 200 pairs over one full experiment of the study. Overall, the
ranking process took a chemist roughly 10 hours to complete. During the process, they have access
to SMILES visualizations and ligand properties to inform their decisions (see Figure 5). Our current
experiment involves only one chemist; we leave bias mitigation for future work by incorporating
feedback from multiple chemists. Finally, We also evaluate an affinity-optimization baseline to
determine whether multi-property feedback yields more meaningful optimization for VS, using only
Vina, as it typically provides the best performance for affinity-based docking.

As DRD2 is a protein located inside the Central Nervous System (CNS), its drug candidates require
substantial considerations for brain penetration. To reflect the distinct pharmacological considerations,
we select new objectives for DRD2 that differ from the previous target EGFR. For EGFR, we optimize
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affinity, molecular weight (MW), lipophilicity, and half-life, aligning with key properties of kinase
inhibitors. For EGFR, these properties are vital as they enable potent target binding, efficient cell
penetration, and sustained drug activity-key traits for effective kinase inhibition. Meanwhile, for
DRD2, we instead optimize affinity, MW, topological polar surface area (TPSA), predicted drug-
induced liver injury (DILI), and predicted blood-brain barrier permeability (BBB). MW, TPSA,
and BBB reflect important parameters allowing brain permeability, while DILI provides a standard
toxicity indicator; for details on target-specific objective selection, see Appendix D.4.

Figure 5: Virtual Screening (VS) App built with
Gradio for seamless interaction with chemists

To validate our objective selection, we com-
pare these properties between drugs and non-
drug molecules, confirming that the drug-like
molecules exhibit characteristics consistent with
our assumptions (see Figures 10 and 12). These
choices ensure that our preference optimization
aligns with real-world drug design. The BO
pipeline begins by randomly sampling 1.0% of
the 100, 000-compound library, then screening
an additional 0.5% per iteration for 10 itera-
tions (covering 6% of the library). All exper-
iments are run on an A100 GPU with two seeds
for EGFR and one for DRD2. Chai-1 requires
180 GPU-hours to complete 6000 dockings,
making it computationally expensive for high-
throughput tasks. In contrast, EDM-S finished in
17 GPU-hours. The BO computation–integrated
within the cheapvs process–takes around 12
GPU-hours, resulting in an overall process time of about 3 days. Meanwhile, Vina requires no
docking as affinities are precomputed from Garcı́a-Ortegón et al. (2022). However, for a fair compari-
son, we refer to the measurements from Ding et al. (2023) for Vina on GPU, which we estimate a
runtime of approximately 2.4 GPU-hours for 6,000 docking runs.

Model ROC AUC Accuracy
No Interactions 0.67 ± 0.21 0.61 ± 0.16
Second-Order 0.72 ± 0.14 0.68 ± 0.11
Third-Order 0.77 ± 0.11 0.71 ± 0.09
Fourth-Order 0.79 ± 0.08 0.74 ± 0.05

Table 2: Linear regression performance
across interaction orders. No Interaction uses
individual features, while Pairwise, Triple,
and Quadruple add second-, third-, and fourth-
order interactions. Results averaged over 20
trials with 1200 pair-wise expert preferences
(80/20 split), suggest trade-offs in ligand prop-
erties.

Figure 1 shows how effectively each approach (Multi-
Objective, Affinity-Only, and Random) with differ-
ent dock models (Vina, Chai, EDM-S) identifies the
known EGFR and DRD2 ligands. For EGFR exper-
iments, using Vina strategy, guided by expert prefer-
ences, attains about 42% accuracy in retrieving these
known drugs, substantially surpassing the 22% ac-
curacy of the best affinity-only approach. EDM-S
reaches up to 30%. Chai-1 performs poorly due to its
high affinity, highlighting that affinity still remains
a crucial component in multi-objective optimization.
Random screening performs poorly. We observe that
two docking models show improved performance
when incorporating multi-objective preferences over
single-objective affinity, emphasizing the broad ad-
vantage of reflecting real-world trade-offs in the BO
process. The results for DRD2 show that our multi-
objective approach identifies a greater fraction of the 58 known DRD2 drugs compared to the
affinity-only model and random selection. After screening about 1200 ligands, its accuracy quickly
rises above 60%, while the best affinity-only model remains at zero. These findings address RQ3:
leveraging expert preference leads to more clinically relevant molecules than relying solely on affinity,
and reinforces our hypothesis that incorporating expert-defined preferences leads to more effective
VS

To understand why multi-objective optimization is more effective, we analyze how the utility model
captures expert preferences and the resulting trade-offs in ligand selection. Figure ?? illustrates that
the utility model captures expert preferences on EGFR: the box plot shows higher mean utility scores
for drug-like compounds, while the heatmap highlights the trade-offs of multi-objective optimization.
This interplay between pharmacokinetic properties reinforces how the model balances trade-offs to
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identify clinically relevant candidates. Understanding the trade-off nature of drug discovery requires
understanding how optimizing one objective impacts others. Toward this goal, we use simple linear
regression to test whether high-order interaction is necessary for out-of-sample fit. The null model
consists of individual effects, while the alternative models incorporate higher-order interactions to
capture the interdependence among ligand properties. Table 2 shows that models with higher-order
interactions generalize better, indicating that ligand properties exhibit complex interdependencies
that influence predictive performance. GP, our main predictive model, generalizes this ideal to
infinite dimensional feature space, capturing high-order interaction terms through kernel functions
Schölkopf & Smola (2002); Mercer (1909); Williams (1998), allowing it to naturally model intricate
dependencies among ligand properties without explicitly defining interaction orders. The superior
out-of-sample fit of the alternative models and the complex utility landscape conclude that optimizing
one objective does not necessarily improve overall drug potential, highlighting the shortcomings of
single-objective screening.

Summary: Incorporating expert preferences outperforms affinity-only methods, emphasizing
the critical role of chemical intuition in drug discovery.

6 CONCLUSION

We present a framework for accelerating drug discovery with preferential multi-objective BO.
CheapVS enables a deeper understanding of how incorporating chemical intuition can enhance
the practicality of the VS. By addressing the challenges chemists often face during hit identification,
CheapVS speeds up the VS process. It requires screening only a small subset of the ligand library and
leveraging a few chemists’ pairwise preferences to efficiently identify drug-like compounds. Specifi-
cally, CheapVS successfully identified up to 16 out of 37 known drugs for EGFR and 36 out of 57 for
DRD2 targets. This paper opens exciting avenues for future research. CheapVS relies on pairwise
preference and is well-suited for listwise preference. Here, chemists can select the best ligand from
a list, providing richer preference information and further boosting algorithm performance. Future
work would benefit from exploring advanced preference modeling to enable deeper insights and
further accelerate the drug discovery process.
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Michael M. Hann and György M. Keserü. Finding the sweet spot: the role of nature and nurture in
medicinal chemistry. Nature Reviews Drug Discovery, 11(5):355–365, 2012.

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive entropy
search for multi-objective bayesian optimization. In International conference on machine learning,
pp. 1492–1501. PMLR, 2016.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Douglas B. Kitchen, Hélène Decornez, John R. Furr, and Jürgen Bajorath. Docking and scoring in
virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3
(11):935–949, 2004.

J. Knowles. Parego: a hybrid algorithm with on-line landscape approximation for expensive multiob-
jective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1):50–66,
2006. doi: 10.1109/TEVC.2005.851274.

12



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

Craig Knox, Mike Wilson, Christen M Klinger, Mark Franklin, Eponine Oler, Alex Wilson, Al-
lison Pon, Jordan Cox, Na Eun Chin, Seth A Strawbridge, et al. Drugbank 6.0: the drugbank
knowledgebase for 2024. Nucleic acids research, 52(D1):D1265–D1275, 2024.

David Ryan Koes, Matthew P. Baumgartner, and Carlos J. Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of Chemical Information
and Modeling, 53(8):1893–1904, 08 2013. doi: 10.1021/ci300604z. URL https://doi.org/
10.1021/ci300604z.

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. J. Basic Eng., 1964.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

Evanthia Lionta, George Spyrou, Demetrios K Vassilatis, and Zoe Cournia. Structure-based virtual
screening for drug discovery: principles, applications and recent advances. Current topics in
medicinal chemistry, 14(16):1923–1938, 2014.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis for
developing protein–ligand interaction scoring functions. Accounts of chemical research, 50(2):
302–309, 2017.

Jiankun Lyu, Sheng Wang, Trent E. Balius, Isha Singh, Anat Levit, Yurii S. Moroz, Matthew J.
O’Meara, Tao Che, Enkhjargal Algaa, Kateryna Tolmachova, Andrey A. Tolmachev, Brian K.
Shoichet, Bryan L. Roth, and John J. Irwin. Ultra-large library docking for discovering new
chemotypes. Nature, 566(7743):224–229, 2019.

Jiankun Lyu, John J Irwin, and Brian K Shoichet. Modeling the expansion of virtual screening
libraries. Nature chemical biology, 19(6):712–718, 2023.

Andrew McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew Ragoza,
Jocelyn Sunseri, and David Koes. Gnina 1.0: molecular docking with deep learning. Journal of
Cheminformatics, 13, 06 2021. doi: 10.1186/s13321-021-00522-2.

JXVI Mercer. Functions of positive and negative type, and their connection the theory of integral
equations. philos. Trans. Roy. Soc. London, pp. 415–446, 1909.

Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim, and Woo Youn Kim. Pignet: a
physics-informed deep learning model toward generalized drug–target interaction predictions.
Chemical Science, 13(13):3661–3673, 2022.

RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org, 2013. [Online;
accessed 11-April-2013].

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Thomas Seidel. Chemical data processing toolkit source code repository. https://github.
com/molinfo-vienna/CDPKit, 2023.

Thomas Seidel, Christian Permann, Oliver Wieder, Stefan M Kohlbacher, and Thierry Langer. High-
quality conformer generation with conforge: algorithm and performance assessment. Journal of
Chemical Information and Modeling, 63(17):5549–5570, 2023.

Brian K. Shoichet. Virtual screening of chemical libraries. Nature, 432(7019):862–865, 2004.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

Kyle Swanson, Parker Walther, Jeremy Leitz, Souhrid Mukherjee, Joseph C Wu, Rabindra V Shiv-
naraine, and James Zou. Admet-ai: a machine learning admet platform for evaluation of large-scale
chemical libraries. Bioinformatics, 40(7):btae416, 2024.

13

https://doi.org/10.1021/ci300604z
https://doi.org/10.1021/ci300604z
http://www.rdkit.org
https://github.com/molinfo-vienna/CDPKit
https://github.com/molinfo-vienna/CDPKit


Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Jose Antonio Garrido Torres, Sii Hong Lau, Pranay Anchuri, Jason M Stevens, Jose E Tabora, Jun
Li, Alina Borovika, Ryan P Adams, and Abigail G Doyle. A multi-objective active learning
platform and web app for reaction optimization. Journal of the American Chemical Society, 144
(43):19999–20007, 2022.

Swapnil Wagle, Richard D Smith, Anthony J Dominic III, Debarati DasGupta, Sunil Kumar Tripathi,
and Heather A Carlson. Sunsetting binding moad with its last data update and the addition of
3d-ligand polypharmacology tools. Scientific Reports, 13(1):3008, 2023.

Christopher KI Williams. Computation with infinite neural networks. Neural Computation, 10(5):
1203–1216, 1998.

wwPDB consortium. Protein data bank: the single global archive for 3d macromolecular structure
data. Nucleic acids research, 47(D1):D520–D528, 2019.

Chengxin Zhang, Xi Zhang, Peter L Freddolino, and Yang Zhang. Biolip2: an updated structure
database for biologically relevant ligand–protein interactions. Nucleic Acids Research, 52(D1):
D404–D412, 2024.

Guangfeng Zhou, Domnita-Valeria Rusnac, Hahnbeom Park, Daniele Canzani, Hai Minh Nguyen,
Lance Stewart, Matthew F. Bush, Phuong Tran Nguyen, Heike Wulff, Vladimir Yarov-Yarovoy,
Ning Zheng, and Frank DiMaio. An artificial intelligence accelerated virtual screening platform
for drug discovery. Nature Communications, 15(1):7761, 2024.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36, 2024.

14



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

A NOTATION

We summarize the notation used in our paper in Table 3.

Symbol Description
L Ligand library used for VS.
ℓi Ligand i in the ligand library L.
ℓ3D 3D coordinate vector of ligand ℓ.
gP Affinity model mapping ligand fingerprints to binding affinity.
f Latent Utility model learning from preference data.
h Physics-based affinity scoring function.
x Ligand properties, including physicochemical and ADMET.
ℓ Morgan Fingerprint representation of the ligand’s structure.
α Acquisition function in BO for ligand selection.
R Regret, quantifying the gap between the best possible and selected ligand.
U Utility values of ligands.
k Used for selecting the top-k compounds.
ρ Protein target for VS.
pθ Docking diffusion model, predicting ligand-protein binding.

gρ Datasets acquired to train affinity model.

f Datasets acquired to train utility model.

Table 3: Notation

B ACQUISITION FUNCTIONS

In this paper, we utilize the following acquisition functions to guide our optimization process:

• qExpected Improvement (qEI) Boender (1991): Evaluates the expected gain in model
performance across multiple candidates, emphasizing exploration where improvement
potential is high.

• qProbability of Improvement (qPI) Kushner (1964): Computes the likelihood that a set of
candidate samples will surpass the current best performance.

• qUpper Confidence Bound (qUCB) Srinivas et al. (2009): Balances exploration and ex-
ploitation by selecting candidates with both high uncertainty and high predicted performance
based on their upper confidence bounds.

• qThompson Sampling (qTS) Thompson (1933): Approximates the posterior distribution
of the model and sample candidates to maximize predicted utility, promoting diverse
exploration.

• qExpected Utility of the Best Option (qEUBO) Astudillo et al. (2023): A decision-
theoretic acquisition function for preferential BO (PBO) that maximizes the expected utility
of the best option. It is computationally efficient, robust under noise, and offers superior
performance with guaranteed regret convergence.

• Greedy: Selects the candidate with the highest predicted performance at each step. This
purely exploits the current model estimates and does not explicitly encourage exploration.

• ϵ-Greedy Lai & Robbins (1985): With probability ϵ (typically 5%), selects a candidate at
random (exploration), and otherwise selects the best predicted candidate (exploitation). This
method is a simple yet effective way to balance exploration and exploitation.
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Figure 6: PDBScan22 data curation workflow. The process consists of three main steps: (1) Ensuring
meaningful binding sites by filtering promiscuous ligands, removing unnatural molecules such as
solvents and buffers, and eliminating misidentified lipid membranes. (2) Preprocessing structural
data by downloading structures from PDB, removing water and ions, truncating proteins exceeding
1,800 residues, and refining ligand files by assigning bond orders and eliminating distorted poses. (3)
Preventing data leakage through temporal train-validation splitting, and removing training samples
with proteins sharing UniProt IDs and highly similar ligands (>0.7 similarity) with test sets.

C PRELIMINARY ANALYSIS ON THE DATA

As noted in Figure 7, the number of data points in the PDBScan training data is roughly four times as
large as the data points in the PDBbind training data. Furthermore, the training data utilized covers
18 different protein groups. Additionally, we also perform a similar comparison on the Plinder dataset
Durairaj et al. (2024) to further evaluate the differences in data distribution and model performance
across diverse datasets.

C.1 DIVERSITY OF DATA: PROTEINS

Figure 7: Analysis of protein properties: Protein classes distribution, Protein classes data point count

Understanding the diversity of protein classes in the dataset is essential for evaluating its coverage
and potential biases in molecular docking tasks. Figure 7 illustrates the distribution of protein
classes across different datasets, highlighting variations in data availability. The left panel compares
the protein class distributions between PDBScan and PDBbind, showing that PDBScan contains a
significantly larger number of data points across all protein categories, particularly in “Unclassified
proteins” and “Kinases.” This discrepancy suggests that PDBScan provides broader protein coverage,
which may enhance model generalization.

The right panel further details the absolute counts of protein classes, emphasizing their relative
abundance. The dataset is dominated by enzymatic proteins, including Oxidoreductases, Transferases,
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and Hydrolases, which are frequently studied in drug discovery. However, certain categories such as
Toll-like and IL-1 receptors, Transporters, and Cytochrome P450 remain underrepresented, potentially
impacting model performance on these classes. These insights highlight the importance of data
augmentation techniques to balance protein representation and improve downstream learning.

C.2 DIVERSITY OF DATA: LIGANDS

Figure 9 compares the distribution of key molecular interactions across the PDBScan++ and PLIN-
DER datasets, including hydrogen bonds, salt bridges, pi-stacking, hydrophobic interactions, and
halogen bonds. PDBScan++ consistently contains more ligand-protein interactions than PLINDER,
reflecting its larger dataset size. Hydrogen bonds and hydrophobic interactions are the most prevalent,
while halogen bonds are the least common. Notably, PDBScan++ includes PDBScan22 along with
250k synthetic pharmacophore-ligand pairs with the lowest affinity, added to match the number of
compounds in PLINDER, ensuring a balanced comparison.

Figure 8 presents the distribution of key physicochemical properties across the PDBScan++ and
PLINDER datasets, including QED drug-likeness, molecular weight, Wildman-Crippen LogP, hy-
drogen bond donors and acceptors, polar surface area, rotatable bonds, and aromatic rings. Across
all properties, PDBScan++ exhibits a broader and more diverse range of molecular characteristics
compared to PLINDER, reflecting its larger dataset size. The QED scores and molecular weights of
compounds in both datasets follow similar distributions, but PDBScan++ has a wider spread. The
Wildman-Crippen LogP distribution indicates that PDBScan++ includes more hydrophobic molecules.
Additionally, PDBScan++ contains a higher number of hydrogen bond donors and acceptors, as well
as greater structural flexibility (rotatable bonds) and aromaticity (aromatic rings), highlighting its
increased chemical diversity.

Together with the molecular interaction distributions in Figure 9, these results emphasize that
PDBScan++ encompasses a broader and more chemically diverse set of compounds than PLINDER,
ensuring a comprehensive representation of molecular properties. Notably, PDBScan++ includes
PDBScan22 along with 250k synthetic pharmacophore-ligand pairs with the lowest affinity, introduced
to match the number of compounds in PLINDER.

Figure 8: Comparison of physicochemical properties between PDBScan++ and PLINDER, including
QED drug-likeness, molecular weight, LogP, hydrogen bond donors/acceptors, polar surface area,
rotatable bonds, and aromatic rings. PDBScan++ shows greater diversity across all properties.
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Figure 9: Distribution of molecular interactions in PDBScan++ and PLINDER, including hydrogen
bonds, salt bridges, pi-stacking, hydrophobic interactions, and halogen bonds. PDBScan++ exhibits a
broader range of interactions due to its larger dataset size.

C.3 DIVERSITY OF PROTEIN-LIGAND DATASET

Dataset Dataset size Main approaches Limitations
PDBBind (Liu et al.,
2017)

Approx. 20k
complexes

Human-curated experimental
structures with experimental
binding affinity

Limited number of data points

BindingMOAD (Wa-
gle et al., 2023)

Approx. 40k
complexes

Human-curated experimental
structures (with or without
binding affinity)

Limited number of data points

BioLiP2 (Zhang et al.,
2024)

Approx. 470k
organic ligand
complexes

Semi-manual-curated exper-
imental structures (with or
without binding affinity)

Include non-specific ligands (an-
ions, crystal artefacts, solvents,
etc)

PDBScreen (Cao
et al., 2024)

True ligands:
23k unique
ligands
Generated de-
coys: approx.
110k

- Automated filtering from the
PDB, excluding endogenous lig-
and (ATP, ADP, etc.)
- Data augmentation by redock-
ing and cross-docking
- Also include artificially gener-
ated decoy ligands

- Purposely built for screening
and scoring, but excluded en-
dogenous ligands which repre-
sent important pockets
- Redocked and cross-docked
poses do not enrich protein or
ligand diversity

PLINDER Durairaj
et al. (2024)

Approx. 450k
unique (or-
ganic) ligands

- Automated annotation of
PDB structures to retrieve
broad-termed ligands
- Graph-based multiple-
similarity data splitting to
debias the train-test split

- Include covalent modifications
of the proteins as surrogate lig-
ands (glycosylation)
- Include ions on the broadly de-
fined ligand category

PapyrusScan Approx. 11
million

- Synthetic data from 2D binding
information

- Synthetic data
- Unbalanced number of data
points between proteins depend-
ing on 2D data

Table 4: Comparison of community-available protein-ligand structural datasets.

Table 4 compares various protein-ligand structural datasets, with a focus on PDBScreen and Pa-
pyrusScan in contrast to existing community datasets. PDBScreen refines structural data by filtering
endogenous ligands and augmenting diversity through redocking and cross-docking, making it well-
suited for screening and scoring tasks. However, its exclusion of endogenous ligands may overlook
important binding pockets. In contrast, PapyrusScan is the largest dataset, containing approximately
11 million protein-ligand interactions derived from 2D binding data, offering extensive coverage but
relying on synthetic data, leading to potential biases and imbalances across proteins. Compared to
PDBBind, BindingMOAD, and BioLiP2, which primarily rely on human-curated or semi-curated
experimental structures, PDBScreen and PapyrusScan emphasize data augmentation and large-scale
synthetic generation, respectively. While PLINDER provides a broad dataset with automated an-
notation and debiased train-test splitting, it includes covalent modifications and ions as ligands,
introducing potential noise. This comparison highlights the complementary nature of PDBScreen
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and PapyrusScan, balancing curated experimental data with large-scale synthetic augmentation to
enhance ligand-protein modeling.

D MORE RESULTS ON PREFERENTIAL MULTI-OBJECTIVE BAYESIAN
OPTIMIZATION

D.1 CHEAPVS’S PSEUDOCODE

Algorithm 1 CheapVS’s Algorithm

Require: Ligand library L = {ℓ1, . . . , ℓN}, target protein ρ, docking model pθ, acquisition function
α

Ensure: Top-k drug ligands for target ρ
1: D ← ∅, Dgρ ← ∅, Df ← ∅, F ← ∅, Ltox ← ∅, Lsol ← ∅, Xaff

ℓ,ρ ← ∅
2: Di ← {ℓ ∈ L | U(0, 1) < 0.01} // Select 1% of L at random
3: for each ligand ℓi ∈ L do
4: ℓi,M ← MORGANFINGERPRINT(ℓi)
5: xtox

ℓi
← RDKITTOXICITY(ℓi)

6: xsol
ℓi
← RDKITSOLUBILITY(ℓi)

7: F ← F ∪ {ℓi,M}, Ltoc ← Ltoc ∪ {xtox
ℓi
}, Lsol ← Lsol ∪ {xsol

ℓi
}

8: end for
9: while computational budget not reached do

10: gP ∼ GP(µ, k) // Initialize affinity model with Gaussian likelihood
11: f ∼ GP(µ, k) // Initialize utility model with pairwise likelihood:
12: D ← D ∪Di // Add selected ligands to the dataset
13: L ← L \ Di // Remove selected ligands from the library
14: For each ligand ℓi ∈ Di:
15: ℓi;3D ∼ pθ(ℓi, ρ)
16: xaff

ℓi,ρ
← min

ℓi;3D∈R3×Nℓi
h(ℓi;3D, ρ)

17: Xaff
ℓ,ρ ← Xaff

ℓ,ρ ∪ {xaff
ℓi,ρ
}

18: Dgρ ← Dgρ ∪ {(F(Di), X
aff
ℓ,ρ)}

19: Fit gP on Dgρ
20: I ← random pairs(Di) // I: set of index pairs from Di

21: Xtrain ← concat
(
Xaff

ℓ,ρ,Ltox(Di), Lsol(Di)
)

22: Ye ← chemists ranking(Xtrain, I)
23: Df ← Df ∪ {(Xtrain, Ye)}
24: Fit f on Df

25: X̂aff
ℓ,ρ ← gρ(F(L)) // Posterior inference: x̂aff

ℓ,ρ = gρ(ℓM) ∀ ℓ ∈ L
26: X̂ ← concat(X̂aff

ℓ,ρ, Lsol(L), Ltox(L))
27: Di ← Topk

{
ℓ ∈ L | Ep(xaff

ℓ,ρ|ℓ,gρ )
α(f(X̂))

}
28: end while
29: Return D
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D.2 DRD2 EXPERIMENTS

Figure 10: Comparison of physicochemical and pharmacokinetic properties between known DRD2-
targeting drugs (blue) and non-drug molecules (red) within 100,000-compound screening library.
Violin plots illustrate key attributes such as affinity, molecular weight (MW), topological polar
surface area (TPSA), blood-brain barrier permeability (BBB), and drug-induced liver injury (DILI),
among others. The observed differences validate our objective selection, showing that drug-like
molecules generally align with expected characteristics for CNS-active compounds, such as lower
MW, optimized BBB permeability, and favorable toxicity profiles.

Figure 11: Predictive utility scores after BO on expert preference elicitation on DRD2. Heatmaps
illustrate utility over two objectives while keeping others three at their mean. Results align well with
established medicinal chemistry ranges, favoring optimal MW (200-400), TPSA (below 140), while
maximizing BBB and minimizing DILI and binding affinity.
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D.3 EGFR EXPERIMENTS

Figure 12: Comparison of physicochemical and pharmacokinetic properties between known EGFR-
targeting drugs (blue) and non-drug molecules (red) within the 100,000-compound screening library.
The observed differences confirm that drug-like molecules generally exhibit characteristics favorable
for kinase inhibition, including higher MW and optimized lipophilicity.

Figure 13: More on Gaussian process (GP) utility surfaces learned from expert preference data,
illustrating the interplay among molecular weight (MW), halflife (HL), affinity, and lipophilicity.
Each heatmap shows the predicted utility (color scale) over two of these variables while holding
the others fixed at the levels indicated in each title. Higher (yellow) regions correspond to more
favorable tradeoffs according to the elicited expert preferences, providing insights for optimizing lead
compounds in drug discovery.

D.4 GUIDELINES FOR CHEMISTS

The virtual screening app 5 assists chemists in evaluating and comparing ligands by providing key
molecular properties such as binding affinity, molecular weight (MW), lipophilicity, and half-life.
It integrates SMILES-based molecular visualizations alongside numerical data, enabling users to
analyze structural and chemical characteristics effectively. Chemists select their preferred ligand
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based on predefined criteria, and their selections contribute to refining the models predictive capa-
bilities, improving its ability to identify promising drug-like candidates over time. However, the
selection process is highly dependent on the biological target, as different proteins require distinct
pharmacokinetic and pharmacodynamic considerations.

For example, targeting DRD2 in neuropharmacology necessitates prioritizing blood-brain barrier
(BBB) permeability, as compounds must effectively penetrate the central nervous system while
maintaining an appropriate balance between molecular weight and topological polar surface area
(TPSA). Additionally, potential toxicity, such as predicted drug-induced liver injury (DILI), should
be considered to ensure safety. In contrast, when designing inhibitors for EGFR in cancer therapy,
selectivity, and affinity becomes paramount, as high target specificity minimizes off-target interactions
and reduces systemic toxicity. A well-structured screening approach should reflect these protein-
specific requirements, allowing chemists to weigh molecular properties appropriately when ranking
compounds. Effective use of CheapVS requires some degree of expertise in medicinal chemistry, as
misprioritizing criteria may lead to the selection of ineffective molecules.

D.5 SYNTHETIC EXPERIMENTS

We examine how well CheapVS identifies high-utility solutions under various synthetic utility
functions. Before running on real human preference data, we first test on synthetic functions. We
create complex utility landscapes by modeling multi-dimensional molecular designs with benchmark
functions: Ackley, Alpine1, Hartmann, Dropwave, Qeifail, and Levy. Each benchmark outputs a
scalar “utility,” and we generate initial pairwise preference labels based on the corresponding utility
values. In addition, we simulate four main objectives relevant to drug discovery: binding affinity,
rotatable bonds, molecular weight, and LogP. For computational feasibility, we use a 20k-ligand
subset sampled from the Dockstring library Garcı́a-Ortegón et al. (2022). Since the docking affinity
values have already been computed for all compounds, we can determine both regret and accuracy. To
ensure robustness, we repeat all experiments across five random seeds and report mean and standard
deviation across runs. Furthermore, we evaluate a range of acquisition functions, including qEUBO,
qTS, qEI, qPI, qUCB, Greedy, ϵ-Greedy, and Random. Figure 14 and Figure 15 displays the
log regret and accuracy versus the number of compounds screened, illustrating the effectiveness of
different acquisition strategies. The results show that regret consistently decreases and accuracy
improves across all acquisition functions, with more advanced methods converging significantly
faster than random baselines. These findings demonstrate that preferential BO effectively learns
multi-objective trade-offs in synthetic benchmarks.
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Figure 14: Preferential Multi-Objective Optimization results on multiple synthetic functions. The y-
axis shows log(regret). The results compare multiple acquisition functions across various benchmark
functions. Error bars indicate standard deviations across five seeds.

Figure 15: Preferential Multi-Objective Optimization results on multiple synthetic functions. The
y-axis shows accuracy. The results compare multiple acquisition functions across various benchmark
functions. Error bars indicate standard deviations across five seeds.
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E SURROGATE MODEL PERFORMACE

Model Type MSE Loss NLPD

Fully-connected Neural Network 1.0568±0.0437 1.4629±0.0198
Decision Tree 1.9785±0.2227 1.7572±0.0548
Gaussian Process (Tanimoto kernel) 0.8549±0.0689 1.3389±0.0404

Table 5: Comparison of model performance in predicting binding affinity values based on ligand
fingerprints. The table reports the Mean Squared Error (MSE) Loss and Negative Log Predictive
Density (NLPD) for different model types. Each model is trained on 6,000 samples using an 80/20
train/test split, and results are averaged over 20 random trials.

Model Type Accuracy (%) ROC AUC

Fully-connected Neural Net 0.9505±0.0146 0.9913±0.0081
Decision Tree 0.7853±0.0285 0.7858±0.029
Pairwise Gaussian Process 0.9563±0.0146 0.9724±0.0161

Table 6: Comparison of utility model performance in predicting preference-based rankings from
ligand properties on Ackley function. The table reports the classification accuracy and ROC-AUC of
different model types. Each model is trained on 1,000 samples using an 80/20 train/test split, and
results are averaged over 20 random trials. The Pairwise Gaussian Process achieves the highest classi-
fication accuracy and second highest ROC-AUC, demonstrating superior performance in modeling
pairwise preferences and learning utility functions from ligand physicochemical properties.

F DIFFUSION MODEL TRAINING: HYPERPARAMETERS AND PERFORMANCE
RESULTS

Model DockScan22 EDM-S (Pre-train) EDM-S (Fine-tune) EDM-S (EGFR)

Parameters initialized from Random Random EDM-S (Pre-train) EDM-S (Fine-tune)
Batch Size 256 256 256 64
Number of Epochs 150 2.32 140 640
Dataset train on PDBScan22 11M synthetic data PDBScan22 ChemDiv 10k

Learning Rate 1.8× 10−3 1.8× 10−3 1× 10−3 2× 10−3

Diffusion steps 20 20 20 10
σdata 32 32 32 5

Table 7: Hyperparameters for training EDM-S and DockScan22
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PoseBuster V1
Top-1 RMSD ()

PoseBuster V2
Top-1 RMSD ()

PDBBind
Top-1 RMSD ()

Inference time
on 1 A100

Metrics % < 2 % < 5 % < 2 % < 5 % < 2 % < 5 seconds
DIFFDOCK-S (40) 24 45.1 - - 31.1 - 10
DIFFDOCK (40) 37.9 49.3 - - 38.2 62 30
AlphaFold 3 (25) 76.4 - 80.5 - - - 340
Chai-1 (25) 77.05 - - - - - 340
DockScan22 (40) 54.1 77.8 58.8 81.4 34.1 56 10
EDM-S (40) 30 91 32.2 92.1 - - 10

Table 8: Performance comparison on PDBBind and PoseBuster benchmarks, with models sampling
40 or 25 ligand poses per protein-ligand pair. Highlighted rows show our proposed methods, offering
competitive accuracy with significantly lower runtime.

Figure 16: Violin plot of binding affinities (kcal/mol) for different docking models on the EGFR
protein with 6000 ligands. Vina achieves the lowest median binding affinity, followed by EDM-S,
while Chai exhibits the weakest binding.

Figure 17: Training and validation loss of EDM-S on EGFR protein with 10k ligands.
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