
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth
Channel and Vulnerability

Zhao Song 1 Yitan Wang 2 Zheng Yu 3 Lichen Zhang 4

Abstract
Sketching is one of the most fundamental tools
in large-scale machine learning. It enables run-
time and memory saving via randomly compress-
ing the original large problem into lower dimen-
sions. In this paper, we propose a novel sketching
scheme for the first order method in large-scale
distributed learning setting, such that the com-
munication costs between distributed agents are
saved while the convergence of the algorithms
is still guaranteed. Given gradient information
in a high dimension d, the agent passes the com-
pressed information processed by a sketching ma-
trix R ∈ Rs×d with s ≪ d, and the receiver
de-compressed via the de-sketching matrix R⊤ to
“recover” the information in original dimension.
Using such a framework, we develop algorithms
for federated learning with lower communication
costs. However, such random sketching does not
protect the privacy of local data directly. We show
that the gradient leakage problem still exists after
applying the sketching technique by presenting
a specific gradient attack method. As a remedy,
we prove rigorously that the algorithm will be dif-
ferentially private by adding additional random
noises in gradient information, which results in
a both communication-efficient and differentially
private first order approach for federated learning
tasks. Our sketching scheme can be further gener-
alized to other learning settings and might be of
independent interest itself.

1. Introduction
Federated learning enables multiple parties to collabora-
tively train a machine learning model without directly ex-
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changing training data. This has become particularly im-
portant in areas of artificial intelligence where users care
about data privacy, security, and access rights, including
healthcare (Li et al., 2020b; 2019), internet of things (Chen
et al., 2020), and fraud detection (Zheng et al., 2020).

Given the importance and popularity of federated learning,
two central aspects of this subject have been particularly
studied: privacy and communication cost. The fundamental
purpose of federated learning is to protect the data privacy
of clients by only communicating the gradient information
of a user. Unfortunately, recent studies (Geiping et al., 2020;
Zhu et al., 2019; Wang et al., 2019) have demonstrated
that attackers can recover the input data from the commu-
nicated gradients. The reason why these attacks work is
the gradients carry important information about the train-
ing data (Ateniese et al., 2015; Fredrikson et al., 2015). A
very recent work (Wang et al., 2023) demonstrates that via
computationally intense approach based on tensor decom-
position, one can recover the training data from a single
gradient and model parameters for over-parametrized net-
works.

Communication efficiency is also one of the core concerns.
In a typical federated learning setting, the model is trained
through gathering individual information from many clients
who operate under a low bandwidth network. On the other
hand, the size of the gradient is usually large due to the sheer
parameter count of many modern machine learning mod-
els. This becomes even more problematic when conducting
federated learning on mobile and edge devices, where the
bandwidth of the network is further limited. Many works try
to address this challenge through local optimization meth-
ods, such as local gradient descent (GD), local stochastic
gradient descent (SGD) (Konečnỳ et al., 2016; McMahan
et al., 2017; Stich, 2019) and using classic data structures in
streaming to compress the gradient (Rothchild et al., 2020).
Despite of significant efforts on improving the communi-
cation cost of federated learning framework, none of these
approaches, as we will show, are private enough to truly
guard against gradient leakage attack.

The above two concerns allude us to ask the following ques-
tion:
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Is there an FL framework that protects the local privacy
and has good performance even in low-bandwidth

networks?

In this paper, we achieve these goals by using tools from
randomized linear algebra — the linear sketches. Sketching
matrices describe a distribution of random matrices R :
Rd → Rbsketch where bsketch ≪ d and for vectors x ∈ Rd one
has ∥Rx∥2 = (1± ϵ)∥x∥2. While these random projections
effectively reduce the dimension of the gradient, we still
need to “recover” them to the original dimension for training
purpose. To realize this goal, we apply the de-sketch matrix,
which is essentially the transpose of R as a decoder. Instead
of running the gradient descent w(t+1) ← w(t) − η · g(t)
using true gradient g(t) ∈ Rd, we apply sketch and de-
sketch to the gradient:

w(t+1) ← w(t) − η ·R⊤ ·R · g(t).

Here R ∈ Rbsketch×d denotes a sketching matrix that sketches
the true gradient to a lower dimension and R⊤ ∈ Rd×bsketch

denotes the de-sketching process that maps the sketched gra-
dient back to the true gradient dimension. To ensure that the
gradient descent still has good convergence behavior under
the linear map x 7→ R⊤Rx, we argue that it is enough for
R to satisfy the coordinate-wise embedding property (Song
& Yu, 2021). This property states that R⊤Rg(t) is an unbi-
ased estimator of g(t) and has small second moment, and
many of the popular sketching matrices satisfy this property.
Hence, all clients will only communicate sketched gradients
to the server, the server averages the sketched gradients and
broadcasts them back to all clients. Finally, each client de-
sketches the received gradients and performs local updates.
Since the sketching dimension is always small compared to
the original dimension, we save communication costs per
iteration via sketching.

While the algorithm with sketch-and-de-sketch might seem
simple and elegant, it is not enough to address the privacy
challenge of federated learning. At the first glance, the
sketching “masks” the communicated gradients, but this
can actually be leveraged by a malicious attacker to de-
velop gradient leakage attacks. Specifically, we propose a
highly-efficient attack algorithm such that the attacker only
needs to observe the sketched gradient being communicated,
the sketching matrix being used and the model parameters.
Then, the attacker can effectively learn the private local data
by instantiating a gradient descent on data, instead of model
parameters. For attacking the sketched gradients, we show
that it is no harder than that without any sketching. Our ap-
proach is based on the classical sketch-and-solve (Clarkson
& Woodruff, 2013) paradigm. To the best of our knowledge,
this is the first theoretical analysis on effectiveness of the
gradient leakage attack using simple and standard first-order
methods that are widely-observed in practice (Geiping et al.,

2020; Zhu et al., 2019). Moreover, compare to the ten-
sor decomposition-based algorithm of (Wang et al., 2023),
our algorithm is much more computationally efficient and
extends to a variety of models beyond over-parametrized
networks. On the other hand, the (Wang et al., 2023) algo-
rithm produces stronger guarantees than ours and works for
noisy gradients. Our leakage attack algorithm and analysis
not only poses privacy challenges to our sketching-based
framework, but many other popular approaches building
upon randomized data structures (Rothchild et al., 2020).

To circumvent this issue, we inject random Gaussian noises
to the gradients-to-be-communicated to ensure they are dif-
ferentially private (Dwork et al., 2006a) and therefore prov-
ably robust against the gradient leakage attack.

We summarize the contributions in this work as follows:

Our contributions: We present our main technical contri-
butions as follows:

• We introduce the sketch-and-de-sketch framework. Un-
like the classical sketch-and-solve paradigm, our itera-
tive sketch and de-sketch method can be combined with
gradient-based methods and extended to broader optimiza-
tion problems.

• We apply our sketch-and-de-sketch method to federated
learning, obtaining an algorithm that only needs to com-
municate lower-dimensional vector, which is particularly
useful in low-bandwidth networks.

• By adding Gaussian noise, we show that our algorithm is
differentially private.

• We present a gradient leakage attack algorithm that can
recover the local data from only observing the commu-
nicated sketched gradients and sketching matrices. Our
analysis extends to a large family of non-linear machine
learning models.

Roadmap. In section 2, we discuss related work and define
common notations. In section 3, we describe the problem
setting and assumptions. In section 4, we present a feder-
ated learning framework with communication efficiency by
leveraging sketching techniques. In section 5, we analyze
the convergence property of our proposed framework for
smooth and convex objectives. In section 6, we discuss
the privacy guarantee of our framework. In section 7, we
discuss the feasibility of the gradient attacking when the
framework shares sketched gradient information. In sec-
tion 8, we conclude the contribution and limitations of this
paper.

2. Related Work
Federated Learning. Federated learning (FL) is an emerg-
ing framework in distributed deep learning. FL allows mul-
tiple parties or clients collaboratively train a model without
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data sharing. In this learning paradigm, local clients per-
form most of the computation and a central sever update
the model parameters through aggregation then transfers
the parameters to local models (Dean et al., 2012; Shokri &
Shmatikov, 2015; McMahan et al., 2017). In this way, the
details of the data are not disclosed in between each party.
Unlike the standard parallel setting, FL has three unique
challenge (Li et al., 2020a), including communication cost,
data heterogeneity and client robustness. In our work, we
focus on the first two challenges. The training data are
massively distributed over an incredibly large number of
devices, and the connection between the central server and
a device is slow. A direct consequence is the slow commu-
nication, which motivated communication-efficient FL algo-
rithm. Federated average (FedAvg) (McMahan et al., 2017)
firstly addressed the communication efficiency problem by
introducing a global model to aggregate local stochastic
gradient descent updates. Later, different variations and
adaptations have arisen. This encompasses a myriad of pos-
sible approaches, including developing better optimization
algorithms (Wang et al., 2020a), generalizing model to het-
erogeneous clients under special assumptions (Zhao et al.,
2018; Kairouz et al., 2021; Li et al., 2021) and utilizing
succinct and randomized data structures (Rothchild et al.,
2020). The work of (Li et al., 2023) provides a provable
guarantee federated learning algorithm for adversarial deep
neural networks training.

Sketching. Sketching is a fundamental tool in many nu-
merical linear algebra tasks, such as linear regression, low-
rank approximation (Clarkson & Woodruff, 2013; Nelson
& Nguyên, 2013; Meng & Mahoney, 2013; Boutsidis &
Woodruff, 2014; Song et al., 2017; Andoni et al., 2018;
Makarychev et al., 2020), distributed problems (Woodruff
& Zhong, 2016; Boutsidis et al., 2016), reinforcement learn-
ing (Wang et al., 2020b; Shrivastava et al., 2023), tensor
decomposition (Song et al., 2019), clustering (Esfandiari
et al., 2021; Deng et al., 2022), convex programming (Lee
et al., 2019; Jiang et al., 2021; Song & Yu, 2021; Jiang et al.,
2020; Qin et al., 2023b), gradient-based algorithm (Xu et al.,
2021), online optimization problems (Reddy et al., 2022a),
training neural networks (Xiao et al., 2018; Brand et al.,
2021; Song et al., 2021a;b; Gao et al., 2022), submodular
maximization (Qin et al., 2023a), matrix sensing (Qin et al.,
2023c), relational database (Qin et al., 2022a), dynamic ker-
nel estimation (Qin et al., 2022b), and Kronecker product
regression (Reddy et al., 2022b).

Gradient Leakage Attack. A number of works (Zhu
et al., 2019; Yin et al., 2021; Wei et al., 2020; Rigaki &
García, 2020) have pointed out that the private informa-
tion of local training data can be attacked using only the
exchanged gradient information. Given the gradient of the
neural network model with respect to the weights for a

specific data, their method starts with a random generated
dummy data and label, and its corresponding dummy gradi-
ents. By minimizing the difference between the true gradi-
ent and the dummy gradients using gradient descent, they
show empirically that the dummy data and label will reveal
the true data completely. The follow-up work (Zhao et al.,
2020) further discuss the case of classification task with
cross-entropy loss, and observe that the true label can be
recovered exactly. Therefore, they only need to minimize
over the dummy data and have better empirical performance.
Other attack methods include but not limited to membership
inference and property inference attacks (Shokri et al., 2017;
Melis et al., 2019), training generative adversarial network
(GAN) models (Hitaj et al., 2017; Goodfellow et al., 2014)
and other learning-based methods (McPherson et al., 2016;
Papernot et al., 2016). Very recently, (Wang et al., 2023)
uses tensor decomposition for gradient leakage attack on
over-parametrized networks with provable guarantees. How-
ever, the tensor decomposition algorithm is inherently inef-
ficient and their analysis is restricted to over-parametrized
networks.

Notations. For a positive integer n, we use [n] to denote
the set {1, 2, · · · , n}. We use E[·] to denote expectation (if
it exists), and use Pr[·] to denote probability. For a vector x,
we use ∥x∥2 := (

∑n
i=1 x

2
i )

1/2 or ∥x∥ to denote its ℓ2 norm.
We denote 1{x=l} for l ∈ R to be the indicator function
which equals to 1 if x = l and 0 otherwise. Let f : A→ B
and g : C → A be two functions, we use f ◦ g to denote
the composition of functions f and g, i.e., for any x ∈ C,
(f ◦ g)(x) = f(g(x)). We denote Id to be the identity
mapping.

3. Problem Setup
Consider a federated learning scenario with N clients and
corresponding local losses fc : Rd → R, our goal is to find

min
w∈Rd

f(w) :=
1

N

N∑
c=1

fc(w) (1)

For the sake of discussion, we will be focusing on the clas-
sical convex and smooth setting for the objective function.
Our paradigm will extends to non-convex objectives and we
defer details to appendix G.
Assumption 3.1. Assume that the set of minimizers of (1)
is nonempty. Each fc is µ-strongly convex for µ ≥ 0 and
L-smooth. That is, for all x, y ∈ Rd,

µ

2
∥y − x∥22 ≤ fc(y)− fc(x) + ⟨y − x,∇fc(x)⟩

≤ L

2
∥y − x∥22.

Note in the case µ = 0, this assumption reduces back to
convexity and smoothness.
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In addition to the above assumption, we allow local losses
to have arbitrary heterogeneity. In other words, we allow
fc’s to vary between different clients.

Our results also contain an attack algorithm, which can
extract useful information by only inspecting the local gra-
dient and model parameters. We defer those discussions to
section 7.

4. Our Algorithm
In this section, we propose a federated learning framework
that addresses the communication efficiency issue. When
the learning gradients are of high dimension, classical feder-
ated learning framework that communicates the exact gra-
dient could incur a heavy communication cost per round.
Sketching technique, which emerges as an effective way to
reduce the dimension of vector while preserving significant
amount of information (Sarlós, 2006; Woodruff, 2014), is
highly preferred in this setting. It enables us to compress
the gradient vector into a lower dimension while preserving
convergence rates, and greatly saves the communication
cost per round.

Algorithm 1 Iterative sketching-based federated larning
Algorithm with K local steps

1: procedure ITERATIVESKETCHINGFL
2: Each client initializes w0 with the same seed
3: for t = 1→ T do
4: /* Client */
5: parfor c = 1→ N do
6: if t = 1 then
7: ut,0

c ← w0

8: else
9: ut,0

c ← wt−1 + deskt(∆w̃t−1)
10: end if
11: wt ← ut,0

c

12: for k = 1→ K do
13: ut,k

c ← ut,k−1
c − ηlocal · ∇fc(ut,k−1

c )
14: end for
15: ∆wc(t)← ut,K

c − wt

16: Client c sends skt(∆wc(t)) to server
17: end parfor
18: /* Server */
19: ∆w̃t ← ηglobal · 1

N

∑N
c=1 skt(∆wc(t))

20: Server sends ∆w̃t to each client
21: end for
22: end procedure

Motivated by above discussion, we propose the iterative
sketching-based federated learning algorithm, which builds
upon vanilla local gradient descent: we start with a predeter-
mined sequence of independent sketching matrices shared
across all clients. In each round, local clients accumulate

and sketch its change over K local steps, then transmit the
low-dimensional sketch to the server. Server then averages
the sketches and transmits them back to all clients. Upon
receiving, each client de-sketches to update the local model.

We highlight several distinct features of our algorithm:

• Communication: In each sync step, we only communi-
cates a low-dimensional sketched gradients, indicating a
smaller communication cost per round. This property is
particularly valuable in a small-bandwidth setting.

• De-sketch: We emphasize that unlike the classical sketch-
and-solve paradigm that decreases the problem dimension,
our algorithm applies sketching in each round, combined
with a de-sketching process which recovers back to the
true gradient dimension.

• Simpler server task: Server only needs to do simple
averaging, indicating no need of a trustworthy party as
the server.

• Decentralization: Our algorithm can be generalized to
decentralized learning settings, where local clients can
only communicate with neighboring nodes. In this case,
it requires O(diam) rounds to propagate the sketched
local changes, where diam is the diameter of the network
graph.

• Linearity: Compared to the framework of (Rothchild
et al., 2020), our de-sketching operator is linear, this adds
flexibility to the analysis and further extensions to the
framework.

4.1. sk/desk via Coordinate-wise Embedding

In this section, we discuss the concrete realization of the
skt/deskt operators in Algorithm 1 through random sketch-
ing matrices. Note we should require any processed gradient
deskt ◦ skt(g) to “be close” to the true gradient g to avoid
breaking the convergence property of the algorithm. To
achieve this, we first introduce the following property for a
broad family of sketching matrices, namely the coordinate-
wise embedding (Song & Yu, 2021), that naturally connects
with skt/deskt operators.

Definition 4.1 (a-coordinate-wise embedding). We say a
randomized matrix R ∈ Rbsketch×d satisfying a-coordinate
wise embedding if for any vector g, h ∈ Rd, we have

• ER∼Π[h
⊤R⊤Rg] = h⊤g;

• ER∼Π[(h
⊤R⊤Rg)2] ≤ (h⊤g)2 + a

bsketch
∥h∥22 · ∥g∥22.

In general, well-known sketching matrices have their
coordinate-wise embedding parameter a being a small con-
stant (See appendix D). Note that if we choose h to be
one-hot vector ei, then the above conditions translate to

E
R∼Π

[R⊤Rg] = g
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and

E
R∼Π

[∥R⊤Rg∥22] ≤ (1 + a · d

bsketch
) · ∥g∥22.

This implies that by choosing

skt = Rt ∈ Rbsketch×d (sketching),

deskt = R⊤
t ∈ Rd×bsketch (de-sketching) (2)

for any iteration t ≥ 1, where Rt’s are independent ran-
dom matrices with sketching dimension bsketch, we obtain
an unbiased sketching/de-sketching scheme with bounded
variance as state in the following Theorem 4.2.

Theorem 4.2. Let skt and deskt be defined by Eq. (2) us-
ing a sequence of independent sketching matrices Rt ∈
Rbsketch×d satisfying a-coordinate wise embedding prop-
erty (Definition 4.1). Then the following properties hold:

1. Independence: Operators (skt, deskt)’s are indepen-
dent over different each iterations.

2. Linearity: Both skt and deskt are linear operators.

3. Unbiased estimator: For any fixed vector h ∈ Rd, it
holds E[deskt(skt(h))] = h.

4. Bounded second moment: For any fixed vector h ∈ Rd,
it holds E[∥deskt(skt(h))∥22] ≤ (1 + α) · ∥h∥22, where
α = a ·d/bsketch. The value of α > 0 is given in Table 1
for common sketching matrices.

Sketching matrix Definition Param α
Random Gaussian Def. D.2 3d/bsketch

SRHT Def. D.3 2d/bsketch

AMS sketch Def. D.4 2d/bsketch

Count-sketch Def. D.5 3d/bsketch

Sparse embedding Def. D.6,D.7 2d/bsketch

Table 1: Sketching matrices and their coordinate-wise em-
bedding parameter α.

Proof. Fix a vector g ∈ Rd, note that condition 1 of Defini-
tion 4.1 implies that

E
R∼Π

[(R⊤Rg)j ] = E
R∼Π

[e⊤j R
⊤Rg] = gj

This means that in expectation, each coordinate of R⊤Rg is
equal to corresponding coordinate of g, therefore, we have

E
R∼Π

[R⊤Rg] = g

This proves the unbiased property of Theorem 4.2. For
the variance bound, note that using the second condition of
coordinate-wise embedding, we have

E
R∼Π

[ d∑
j=1

(e⊤j R
⊤Rg)2

]
= E

R∼Π

[ d∑
j=1

(R⊤Rg)2j

]
= E

R∼Π
[∥R⊤Rg∥22]

≤
d∑

j=1

((e⊤j g)
2 +

a

k
· ∥g∥22)

= (1 + a · d

bsketch
) · ∥g∥22

Thus, we have proven that using R⊤R as desk ◦ sk, the
variance parameter α is a · d

bsketch
. By Table 1, a is a small

constant (2 or 3). Hence, we conclude that α = O( d
bsketch

).

Note that the independence property can be satisfied via
choosing independent sketching matrix R at each iteration t,
and linearity property is straightforward since R is a linear
transform.

We will use the above property to instantiate the convergent
proof and communication complexity in section 5.

5. Convergence Analysis and Communication
Complexity

In this section, we analyze the convergence property of our
proposed framework for smooth and convex objectives. Our
analysis builds upon showing that the extra randomness
introduced by sketching and de-sketching does not affect
the convergence rate much.

We first present our convergence result for strongly-convex
objective.

Theorem 5.1 (Informal version of Theorem F.9). If Assump-
tion 3.1 holds with µ > 0. If ηlocal ≤ 1

8(1+α)LK ,

E[f(wT+1)− f(w∗)]

≤ L

2
E[∥w0 − w∗∥22]e−µηlocalT + 4η2localL

2K3σ2/µ.

where w∗ is a minimizer of problem (1).

We note that while standard analysis for strongly-convex
and smooth objective will exhibit a linear convergence rate
for gradient descent, our result is more align with that of
stochastic gradient descent. In fact, our iterative sketching
method can be viewed as generating a stochastic gradient
that has certain low-dimensional structure. Using the prop-
erty of structured random matrices, our algorithm gives a
better convergence rate than standard stochastic gradient
descent. This is because in the standard stochastic gradient
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descent analysis, one only has an absolute upper bound on
the second moment:

E
g̃
[∥g̃∥22] ≤ C2

for some parameter C, where g̃ is the stochastic gradient
with Eg̃[g̃] = g. In contrast, coordinate-wise embedding
guarantees that the second moment of our estimate is upper
bounded multiplicatively in terms of ∥g∥22:

E
R
[∥R⊤Rg∥22] ≤

(
1 +O(

d

bsketch
)
)
· ∥g∥22,

this nice property enables us to obtain a more refined analy-
sis on the convergence.

We obtain the communication cost as a direct corollary:

Corollary 5.2 (Informal version of Theorem F.10). If
Assumption 3.1 holds with µ > 0. Then within Algo-
rithm 1 outputs an ϵ-optimal solution wT ∈ Rd satisfying
E[f(wT )− f(w∗)] ≤ ϵ by using

O((LN/µ)max{d,
√
σ2/(µϵ)} log(LE[∥w0 − w∗∥22]/ϵ))

bits of communication.

We observe that compared to vanilla approaches, our method
requires a step size shrinkage by a factor of O(α), thus en-
large the number of rounds approximately by a factor of
O(α). Since the iterative sketching algorithm only commu-
nicates O(bsketch/d) as many bits per round due to sketching,
the total communication cost does not increase at all for com-
monly used sketching matrices, according to Theorem 4.2.

We also point out that when ϵ ≥ σ2/(µd2), our analysis
implies a linear convergence rate of local GD under only
strongly-convex and smooth assumptions, which is new as
far as we concern.

We also have a similar observation for convergence in the
convex losses case, as well as communication cost.

Theorem 5.3 (Informal version of Theorem F.7). If Assump-
tion 3.1 holds with µ = 0. If ηlocal ≤ 1

8(1+α)LK ,

E[f(wT )− f(w∗)]

≤ 4E[∥w0 − w∗∥22]
ηlocalKT

+ 32η2localLK
2σ2,

where

wT =
1

KT
(

T∑
t=1

K−1∑
k=0

ut,k)

is the average over parameters throughout the execution of
Algorithm 1.

Corollary 5.4 (Informal version of Theorem F.8). If As-
sumption 3.1 holds with µ = 0. Then Algorithm 1 outputs
an ϵ-optimal solution wT ∈ Rd satisfying

E[f(wT )− f(w∗)] ≤ ϵ

by using

O(E[∥w0 − w∗∥22]N max{Ld/ϵ, σ
√
L/ϵ3/2})

bits of communication.

We compare our communication cost with the work of
(Khaled et al., 2019), which analyzes the local gradient
descent using the same assumption and framework. The
result of (Khaled et al., 2019) shows a communication cost
of

O

(
E[∥w0 − w∗∥22]Nd ·max{L

ϵ
,
σ
√
L

ϵ3/2
}

)
,

which is strictly not better than our results. This shows again
our approach does not introduce extra overall communica-
tion cost.

6. Differential Privacy
In this section, we show that if each client adds a Gaus-
sian noise corresponding to its local loss function, then the
iterative sketching scheme is differentially private.

To discuss the privacy guarantee of our proposed approach,
we consider that each client c trying to learn upon its local
dataset Dc with corresponding local loss

fc(x) =
1

|Dc|
∑

zi∈Dc

fc(x, zi),

where we overload the notation fc to denote the local loss
for notation simplicity. We assume fc is ℓc-Lipschitz for
agent c = 1, 2, · · · , N . We also assume that the dataset for
each client c is disjoint.

To prove the final privacy guarantee of Algorithm 2, we
employ a localized analysis by first analyzing the privacy
guarantee obtained for a single step performed by a single
client. We then combine different clients over all iterations
via well-known composition tools: we first use Parallel Com-
position to compose different clients, then use Advanced
Sequential Composition to compose over all iterations. We
also amplify privacy via sub-sampling. We defer all proofs
to appendix H.4.

Lemma 6.1 (Informal version of Lemma H.9). Let ϵ̂, δ̂ ∈
[0, 1), ϵ̂ < 1√

K
and c ∈ [N ]. For client c, the local-K-step

stochastic gradient as in Algorithm 1 is

(
√
K · ϵ̂, K · δ̂)−DP.
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Algorithm 2 Private Iterative Sketching-based Federated
Learning Algorithm with K local steps

1: procedure PRIVATEITERATIVESKETCHINGFL
2: Each client initializes w0 with the same seed
3: for t = 1→ T do
4: /* Client */
5: parfor c = 1→ N do
6: if t = 1 then
7: ut,0

c ← w0

8: else
9: ut,0

c ← wt−1 + deskt(∆w̃t−1)
10: end if
11: wt ← ut,0

c

12: σ2 ← O(log(1/δ̂)ℓ2c/ϵ̂
2)

13: for k = 1→ K do
14: ξt,kc ∼ N (0, σ2 · Id)
15: Dt,k

c ← Random batch of local data
16: ut,k

c ← ut,k−1
c − ηlocal · ( 1

|Dt,k
c |
·∑

zi∈Dt,k
c
∇fc(ut,k−1

c , zi)+ξt,kc )
17: end for
18: ∆wc(t)← ut,K

c − wt

19: Client c sends skt(∆wc(t)) to server
20: end parfor
21: /* Server */
22: ∆w̃t ← ηglobal · 1

N

∑N
c=1 skt(∆wc(t))

23: Server sends ∆w̃t to each client
24: end for
25: end procedure

Theorem 6.2 (Informal version of Theorem H.11). Let ϵ̂, δ̂
be as in Lemma 6.1. Then, Algorithm 2 is (ϵDP, δDP)-DP,
with

ϵDP =
√
TK · ϵ̂, δDP = TK · δ̂.

Proof Sketch. Notice that each agent c works on individ-
ual subsets of the data, therefore we can make use of
Lemma H.2 to conclude that over all N agents, the process
is (
√
K · ϵ̂, K · δ̂)-DP. Finally, apply Lemma H.3 over all T

iterations, we conclude that Algorithm 2 is (ϵDP, δDP)-DP,
with

ϵDP =
√
TK · ϵ̂, δDP = TK · δ̂.

Compared to an iterative sketching framework we described
without Gaussian noises, Algorithm 2 injects extra noises
at each local step for each local client. It also performs
sub-sampling. We note that the sub-sampling is essentially
a form of SGD, hence, it does not affect the convergence
too much. For the additive Gaussian noise, note that its pa-
rameter only mildly depends on the local Lipschitz constant

ℓc, therefore it is unbiased and has small variance. Coupled
with the convergence analysis in section 5, we obtain an
algorithm that only communicates low-dimensional infor-
mation, has differential privacy guarantee and provides good
convergence rate.

We would also like to point out via more advanced tech-
niques in differential privacy such as moment account or gra-
dient clipping, the privacy-utility trade-off of Algorithm 2
can be improved. We do not aim to optimize over these
perspectives in this paper since our purpose is to show the
necessity of adapting differential privacy techniques. As
we will show in section 7, without additional privacy intro-
duced by the Gaussian noise, there exists a simple, iterative
algorithm to recover the training data from communicated
gradient and local parameter for a variety of loss functions.

7. Attack Sketched Gradients
To complement our algorithmic contribution, we show that
under certain conditions on the loss functions fc’s for
c ∈ [N ] and the local step K = 1, Algorithm 1 without
the additive Gaussian noise can leak information about
the local data. To achieve this goal, we present an attack-
ing algorithm that effectively learns the local data through
gradient descent.

7.1. Warm-up: Attacking Algorithm without Sketching

To start off, we describe an attacking algorithm without
sketching being applied. We denote the loss function of the
model by F (w, x), where x ∈ Rm is the input and w ∈ Rd

is the model parameter. We do not constrain F (w, x) to be
the loss of any specific model or task. F (w, x) can be an ℓ2
loss of linear regression model, a cross-entropy loss of a neu-
ral network, or any function that the clients in the training
system want to minimize. In our federated learning sce-
nario, we have F (w, x) = 1

N

∑N
c=1 fc(w). Note that one

can view the local loss function fc being associated with the
local dataset that can only be accessed by client c. During
training, client c will send the gradient computed with the
local training data ∇wF (w, x̃(c)) to the server where x̃(c)

denotes the local data.

The attacker can can observe the gradient information shared
in the algorithm. For client c, the attacker could observe
g = ∇wF (w, x̃(c)) and w. Intuitively, one can view attacker
has hijacked one of the client and hence gaining access to
the model parameter. Local data x̃(c) will not be revealed to
the attacker.

The attacker also has access to a gradient oracle, meaning
that it can generate arbitrary data x ∈ Rm and feed into the
oracle, and the oracle will return the gradient with respect
to x and parameter w. The attacker will then try to find x

7
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that minimizes

L(x) = ∥∇wF (w, x)− g∥2

by running gradient descent. The attacker will start with
random initialization x0, and iterates as

xt+1 = xt − η · ∇L(xt)

where η > 0 is the step size chosen by the attacker.

To formalize the analysis, we introduce some key definitions.
Given a function F : Rd × Rm → R, a data point x ∈ Rm,
a fixed (gradient) vector g ∈ Rd and a fixed (weight) vector
w ∈ Rd, we define the function L as follows:

L(x) := ∥∇wF (w, x)− g∥2.

We consider the regime where d ≤ m, i.e., the model is
under-parametrized. The over-parametrized setting is stud-
ied in a recent work (Wang et al., 2023) that uses tensor de-
composition to recover the data from gradients. In contrast,
our approach simply applies gradient descent, therefore it
can easily get stuck in a local minima, which is often the
case in over-parametrized setting. However, our algorithm
is notably simpler and computationally efficient.

To better illustrate properties we want on L, we define the
matrix K as follows:
Definition 7.1. Let F : Rd × Rm → R, suppose F is dif-
ferentiable on both x and w, then we define pseudo-Hessian
mapping Φ : Rm × Rd → Rm×d as follows

Φ(x,w) = ∇x∇wF (x,w).

Correspondingly, we define a pseudo-kernel K : Rm ×
Rd → Rd×d with respect to∇xF (w, x) as:

K(x,w) = Φ(x,w)⊤Φ(x,w).

Note the weight vector w is fixed in our setting, we write
K(x) = K(x,w) for simplicity.

For a regular Hessian matrix, one considers taking second
derivative with respect to a single variable. Here, our input
is∇wF (w, x) and we need to take gradient of the input with
respect to x, hence, it is instructive to study the structure of
∇x∇wF (w, x).

We additionally introduce several key definitions that can
be implied through some basic assumptions we will make.
The first is a generalization of smoothness to the notion of
semi-smoothness.
Definition 7.2 (Semi-smoothness). For any p ∈ [0, 1], we
say L : Rm → R is (a, b, p)-semi-smoothness if for any
x, y ∈ Rm, we have

L(y) ≤ L(x) + ⟨∇L(x), y − x⟩
+ b∥y − x∥2 + a∥x− y∥2−2pL(x)p.

For examples, L(x) = ∥x∥2, L(x) = ln(1 + exp(w⊤x)),
L(x) = tanh(w⊤x + b), L(x) =

√
w⊤x+ b, L(x) =

sigmoid(w⊤x + b), and L(x) = log(w⊤x) are semi-
smooth.

Definition 7.3 (Non-critical point). We say L : Rm → R is
(θ1, θ2)-non-critical point if

θ21 · L(x) ≤ ∥∇L(x)∥2 ≤ θ22 · L(x).

The intuition for non-critical point property is that if L(x) is
large enough, then gradient descent can still make progress
because ∥∇L(x)∥ is lower bounded by θ21 · L(x). Suppose
F (w, x) has Lipschitz gradient and non-degenerate pseudo-
kernel, then the corresponding L is semi-smooth and non-
critical point:

Theorem 7.4. If F satisfies the following properties: ∀x ∈
Rm, ∇wF (w, x) is β-Lipschitz w.r.t. x, and K’s eigenval-
ues can be bounded by

0 < θ21 ≤ λ2
1(x) ≤ · · · ≤ λ2

min(d,m)(x) ≤ θ22.

Then we have L is (2(β + θ2), β, 1/2)-semi-smooth
(Def. 7.2), and L satisfies (θ1, θ2)-non-critical point
(Def. 7.3).

We state Theorem 7.5 here and the proof is provided in
appendix L.1.

Theorem 7.5. Let

• θ21 > a · θ2−2p
2 ,

• η ≤ (θ21 − a · θ2−2p
2 )/(2b · θ22),

• γ = η(θ21 − a · θ2−2p
2 )/2.

Suppose we run gradient descent algorithm to update xt+1

in each iteration as

xt+1 = xt − η · ∇L(x)|x=xt .

If we assume L is (a, b, p)-semi-smooth (Def. 7.2) and
(θ1, θ2)-non-critical point (Def. 7.3), then we have

L(xt+1)− L(x∗) ≤ (1− γ)(L(xt)− L(x∗)).

Theorem 7.5 states that a gradient descent that starts with
a dummy data point x0 can converge in the sense that it
generates a point xT whose gradient is close to the gradient
of x∗ we want to learn. As a direct consequence, if F has
the property that similar gradients imply similar data points,
then the attack algorithm truly recovers the data point it
wants to learn. Such phenomenon has been widely observed
in practice (Zhu et al., 2019; Yin et al., 2021; Zhao et al.,
2020).
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7.2. Attacking Gradients under Sketching

Now we consider the setting where sketched gradients are
shared instead of the true gradient. Let R : Rd → Rbsketch

be a sketching operator, then the gradient we observe be-
comes R(∇wF (w, x)). Additionally, we can also observe
the sketching matrix R and model parameter w. In this
setting, the objective function we consider becomes

LR(x) := ∥R(∇wF (w, x))−R(g)∥2.

It is reasonable to assume the attacker has access to R, since
frameworks that make use of sketching (Rothchild et al.,
2020) do so by sharing the sketching matrix across all nodes.
Lemma 7.6 and Lemma 7.7 shows that with reasonable
assumptions about R, which are typical properties of every
popular sketch matrix, L still satisfies semi-smooth and
non-critical-point condition. We defer all the proofs to
appendix M.

Lemma 7.6. If the sketching operator R satisfies ∥R(u)−
R(v)∥ ≤ τ∥u − v∥ and ∥S∥ ≤ γ2, and F satisfies the
conditions as in Theorem 7.4, then LR(x) is (A,B, 1/2)-
semi-smooth where A = 2τβ + 2θ2γ2, B = τ2β.

Lemma 7.7. If the sketching operator R satisfies that the
smallest singular value of R⊤ is at least γ1 > 0 and
F satisfies conditions as in Theorem 7.4, then LR(x) is
(2θ1γ1, 2θ2γ2)-non-critical-point.

While R itself is a short and fat matrix and is impossible
to have nonzero smallest singular value, our singular value
assumption is imposed on R⊤ ∈ Rd×bsketch , hence reason-
able. Moreover, for many sketching matrices R (such as
each entry being i.i.d. Gaussian random variables), the ma-
trix R⊤ is full rank almost surely. Combining Lemma 7.6
and Lemma 7.7, Theorem 7.8 shows that the system is still
vulnerable to the gradient attack even for sketched gradients.

Theorem 7.8. If the sketching operator R satisfies

• ∥R(u)−R(v)∥ ≤ τ∥u− v∥,
• 0 < γ1 ≤ σ1(R

⊤) ≤ . . . ≤ σs(R
⊤) ≤ γ2,

F satisfies the conditions in Theorem 7.4, then LR(x) is

• (2τβ + 2θ2γR, τ
2β, 1/2)-semi-smooth,

• (2θ1γ1, 2θ2γ2)-non-critical-point.

As popularized in (Rothchild et al., 2020), in federated
learning, sketching can be applied to gradient vectors ef-
ficiently while squashing down the dimension of vectors
being communicated. However, as indicated by our result,
as soon as the attacker has access to the sketching operator,
solving the sketched gradient attack problem reduces to the
classical sketch-and-solve paradigm (Clarkson & Woodruff,
2013). This negative result highlights the necessity of using
more complicated mechanisms to “encode” the gradients
for privacy. One can adapt a cryptography-based algorithms

at the expense of higher computation cost (Bonawitz et al.,
2017), or alternatively, as we have shown in this paper, using
differential privacy. We “mask” the gradient via Gaussian
noises, so that even the attack algorithm can recover a point
x that has similar gradient to the noisy gradient, it is still
offset by the noise. Instead of injecting noises directly onto
the gradient, one can also add noises after applying the
sketching (Kenthapadi et al., 2013; Nikolov, 2023). We
believe this approach will also lead to interesting privacy
guarantees.

8. Conclusion
In this work, we propose the iterative sketch-based federated
learning framework, which only communicates the sketched
gradients with noises. Such a framework enjoys the ben-
efits of both better privacy and lower communication cost
per round. We also rigorously prove that the randomness
from sketching will not introduce extra overall communi-
cation cost. Our approach and results can be extended to
other gradient-based optimization algorithms and analysis,
including but not limited to gradient descent with momen-
tum and local stochastic gradient descent. This is because
the sketched and de-sketched gradient R⊤Rg is an unbiased
estimator of the true gradient g with second moments being
a multiplier of ∥g∥22.

By a simple modification to our algorithm with additive
Gaussian noises on the gradients, we can also prove the
differential privacy of our learning system by “hiding” the
most important component in the system for guarding safety
and privacy. This additive noise also does not affect the con-
vergence behavior of our algorithm too much, since it does
not make the estimator biased, and the additive variance can
be factored into our original analysis.

To complement our algorithmic result, we also present a gra-
dient leakage attack algorithm that can effectively learn the
private data a federated learning framework wants to hide.
Our gradient leakage attack algorithm is essentially that of
gradient descent, but instead of optimizing over the model
parameters, we try to optimize over the data points that a
malicious attacker wants to learn. Even though the FL algo-
rithm tries to “hide” information via random projections or
data structures, we show that as long as the attacker has ac-
cess to the sketching operator, it can still learn from gradient.
Our attack algorithm is also computationally efficient.
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Appendix
Roadmap. We organize the appendix as follows. In section A, we introduce some notations and definitions that will
be used across the appendix. In section B, we study several probability tools we will be using in the proof of cretain
properties of various sketching matrices. In section C, we lay out some key assumptions on local objective function fc
and global objective function f , in order to proceed our discussion of convergence theory. In section D, we discuss the
(α, β, δ)-coordinate wise embedding property we proposed in this work through several commonly used sketching matrices.
In section E, we give complete proofs for single-step scheme. We dedicate sections F and G to illustrate formal analysis
of the convergence results of Algorithm 1 under k local steps, given different assumptions of objective function f . In
section H, we introduce additive noise to make our gradients differentially private, and conclude that an SGD version of
our algorithm is indeed differentially private. In section I, we provide some preliminary definitions on gradient attack and
elementary lemmas. In section J, we show what conditions of F would imply semi-smoothness and non-critical point of L.
In section K, we prove with proper assumptions, xt converges to the unique optimal solution x∗. In section L, we prove
L(xt) converges to L(x∗) under proper conditions. In section M, we extend the discussion by considering sketching and
show what conditions of sketching would imply proper conditions of L.

A. Preliminary
For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use E[·] to denote expectation (if it exists), and use
Pr[·] to denote probability. For a function f , we use Õ(f) to denote O(f poly log f). For a vector x, For a vector x, we use
∥x∥1 :=

∑
i |xi| to denote its ℓ1 norm, we use ∥x∥2 := (

∑n
i=1 x

2
i )

1/2 to denote its ℓ2 norm, we use ∥x∥∞ := maxi∈[n] |xi|
to denote its ℓ∞ norm. For a matrix A and a vector x, we define ∥x∥A :=

√
x⊤Ax. For a full rank square matrix A, we

use A−1 to denote its true inverse. For a matrix A, we use A† to denote its pseudo-inverse. For a matrix A, we use ∥A∥
to denote its spectral norm. We use ∥A∥F := (

∑
i,j A

2
i,j)

1/2 to denote its Frobenius norm. We use A⊤ to denote the
transpose of A. We denote 1{x=l} for l ∈ R to be the indicator function which equals to 1 if x = l and 0 otherwise. Let
f : A → B and g : C → A be two functions, we use f ◦ g to denote the composition of functions f and g, i.e., for any
x ∈ C, (f ◦ g)(x) = f(g(x)). Given a real symmetric matrix A ∈ Rd×d, we use λ1(A), . . . , λd(A) denote its smallest to
largest eigenvalues. Given a real matrix A, we use σmin(A) and σmax(A) to denote its smallest and largest singular values.

B. Probability
Lemma B.1 (Chernoff bound (Chernoff, 1952)). Let Y =

∑n
i=1 Yi, where Yi = 1 with probability pi and Yi = 0 with

probability 1− pi, and all Yi are independent. Let µ = E[Y ] =
∑n

i=1 pi. Then
1. Pr[Y ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), for all δ > 0 ;
2. Pr[Y ≤ (1− δ)µ] ≤ exp(−δ2µ/2), for all 0 < δ < 1.
Lemma B.2 (Hoeffding bound (Hoeffding, 1963)). Let Z1, · · · , Zn denote n independent bounded variables in [ai, bi]. Let
Z =

∑n
i=1 Zi, then we have

Pr[|Z − E[Z]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma B.3 (Bernstein inequality (Bernstein, 1924)). Let W1, · · · ,Wn be independent zero-mean random variables.
Suppose that |Wi| ≤M almost surely, for all i. Then, for all positive t,

Pr

[
n∑

i=1

Wi > t

]
≤ exp

(
− t2/2∑n

j=1 E[W 2
j ] +Mt/3

)
.

Lemma B.4 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d. sign random variables,
and let z1, · · · , zn be real numbers. Then there are constants C > 0 so that for all t > 0

Pr
[∣∣∣ n∑

i=1

ziσi

∣∣∣ ≥ t∥z∥2
]
≤ exp(−Ct2).

Lemma B.5 (Hason-wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)). Let z ∈ Rn denote a
random vector with independent entries zi with E[zi] = 0 and |zi| ≤ K. Let B be an n× n matrix. Then, for every t ≥ 0,

Pr[|z⊤Bz − E[z⊤Bz]| > t] ≤ 2 · exp(−cmin{t2/(K4∥B∥2F ), t/(K2∥B∥)}).
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We state a well-know Lemma (see Lemma 1 on page 1325 in (Laurent & Massart, 2000)).
Lemma B.6 (Laurent and Massart (Laurent & Massart, 2000)). Let Z ∼ X 2

k be a chi-squared distributed random variable
with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[Z − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t),

Pr[kσ2 − Z ≥ 2
√
ktσ2] ≤ exp(−t).

Lemma B.7 (Tail bound for sub-exponential distribution (Foss et al., 2011)). We say X ∈ SE(σ2, α) with parameters
σ > 0, α > 0 if:

E[eλX ] ≤ exp(λ2σ2/2), ∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α}).

Lemma B.8 (Matrix Chernoff bound (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of positive-semidefinite matrices
with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax as follows:

µmin := n · λmin( E
X∼X

[X]) and µmax := n · λmax( E
X∼X

[X]).

Then

Pr
[
λmin(

n∑
i=1

Xi) ≤ (1− δ)µmin

]
≤ d · exp(−δ2µmin/B) for δ ∈ [0, 1),

Pr
[
λmax(

n∑
i=1

Xi) ≥ (1 + δ)µmax

]
≤ d · exp (−δ2µmax/(4B)) for δ ≥ 0.

C. Optimization Backgrounds
Definition C.1. Let f : Rd → R be a function, we say f is L-smooth if for any x, y ∈ Rd, we have

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2

Equivalently, for any x, y ∈ Rd, we have

f(y) ≤ f(x) + ⟨y − x,∇f(x)⟩+ L

2
∥y − x∥22

Definition C.2. Let f : Rd → R be a function, we say f is convex if for any x, y ∈ Rd, we have

f(x) ≥ f(y) + ⟨x− y,∇f(y)⟩

Definition C.3. Let f : Rd → R be a function, we say f is µ-strongly-convex if for any x, y ∈ Rd, we have

∥∇f(x)−∇f(y)∥2 ≥ µ∥x− y∥2

Equivalently, for any x, y ∈ Rd, we have

f(y) ≥ f(x) + ⟨y − x,∇f(x)⟩+ µ

2
∥y − x∥22

Fact C.4. Let f : Rd → R be an L-smooth and convex function, then for any x, y ∈ Rd, we have

f(y)− f(x) ≥ ⟨y − x,∇f(x)⟩+ 1

2L
· ∥∇f(y)−∇f(x)∥22

Fact C.5 (Inequality 4.12 in (Bottou et al., 2018)). Let f : Rd → R be a µ-strongly convex function. Let x∗ be the minimizer
of f . Then for any x ∈ Rd, we have

f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥22
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D. Sketching Matrices as Coordinate-wise Embedding
In this section, we discuss the (α, β, δ)-coordinate wise embedding property we proposed in this work through several
commonly used sketching matrices.

We consider several standard sketching matrices:

1. Random Gaussian matrices.

2. Subsampled randomized Hadamard/Fourier transform matrices (Lu et al., 2013).

3. AMS sketch matrices (Alon et al., 1999), random {−1,+1} per entry.

4. Count-Sketch matrices (Charikar et al., 2002), each column only has one non-zero entry, and is −1,+1 half probability
each.

5. Sparse embedding matrices (Nelson & Nguyên, 2013), each column only has s non-zero entries, and each entry is
− 1√

s
,+ 1√

s
half probability each.

6. Uniform sampling matrices.

D.1. Definition

Definition D.1 (k-wise independence). H = {h : [m]→ [l]} is a k-wise independent hash family if ∀i1 ̸= i2 ̸= · · · ̸= ik ∈
[n] and ∀j1, · · · , jk ∈ [l],

Pr
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

lk
.

Definition D.2 (Random Gaussian matrix). We say R ∈ Rb×n is a random Gaussian matrix if all entries are sampled from
N (0, 1/b) independently.

Definition D.3 (Subsampled randomized Hadamard/Fourier transform matrix (Lu et al., 2013)). We say R ∈ Rb×n is a
subsampled randomized Hadamard transform matrixi if it is of the form R =

√
n/bSHD, where S ∈ Rb×n is a random

matrix whose rows are b uniform samples (without replacement) from the standard basis of Rn, H ∈ Rn×n is a normalized
Walsh-Hadamard matrix, and D ∈ Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random
variables.

Definition D.4 (AMS sketch matrix (Alon et al., 1999)). Let h1, h2, · · · , hb be b random hash functions picking from
a 4-wise independent hash family H = {h : [n] → {− 1√

b
,+ 1√

b
}}. Then R ∈ Rb×n is a AMS sketch matrix if we set

Ri,j = hi(j).

Definition D.5 (Count-sketch matrix (Charikar et al., 2002)). Let h : [n] → [b] be a random 2-wise independent hash
function and σ : [n]→ {−1,+1} be a random 4-wise independent hash function. Then R ∈ Rb×n is a count-sketch matrix
if we set Rh(i),i = σ(i) for all i ∈ [n] and other entries to zero.

Definition D.6 (Sparse embedding matrix I (Nelson & Nguyên, 2013)). We say R ∈ Rb×n is a sparse embedding matrix
with parameter s if each column has exactly s non-zero elements being ±1/

√
s uniformly at random, whose locations are

picked uniformly at random without replacement (and independent across columns) ii.

Definition D.7 (Sparse embedding matrix II (Nelson & Nguyên, 2013)). Let h : [n]× [s]→ [b/s] be a a ramdom 2-wise
independent hash function and σ : [n]× [s]→ {−1, 1} be a 4-wise independent. Then R ∈ Rb×n is a sparse embedding
matrix II with parameter s if we set R(j−1)b/s+h(i,j),i = σ(i, j)/

√
s for all (i, j) ∈ [n]× [s] and all other entries to zero.iii

Definition D.8 (Uniform sampling matrix). We say R ∈ Rb×n is a uniform sampling matrix if it is of the form R =
√

n/bSD,
where S ∈ Rb×n is a random matrix whose rows are b uniform samples (without replacement) from the standard basis of
Rn, and D ∈ Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

iIn this case, we require logn to be an integer.
iiFor our purposes the signs need only be O(log d)-wise independent, and each column can be specified by a O(log d)-wise independent

permutation, and the seeds specifying the permutations in different columns need only be O(log d)-wise independent.
iiiThis definition has the same behavior as sparse embedding matrix I for our purpose.
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D.2. Coordinate-wise Embedding

We define coordinate-wise embedding as follows

Definition D.9 ((α, β, δ)-coordinate-wise embedding). We say a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-
coordinate wise embedding if

1. E
R∼Π

[g⊤R⊤Rh] = g⊤h,

2. E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
α

b
∥g∥22∥h∥22,

3. Pr
R∼Π

[
|g⊤R⊤Rh− g⊤h| ≥ β√

b
∥g∥2∥h∥2

]
≤ δ.

Remark D.10. Given a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-coordinate wise embedding and any orthogonal
projection P ∈ Rn×n, above definition implies

1. E
R∼Π

[PR⊤Rh] = Ph,

2. E
R∼Π

[(PR⊤Rh)2i ] ≤ (Ph)2i +
α

b
∥h∥22,

3. Pr
R∼Π

[
|(PR⊤Rh)i − (Ph)i| ≥

β√
b
∥h∥2

]
≤ δ.

since ∥P∥2 ≤ 1 implies ∥Pi,:∥2 ≤ 1 for all i ∈ [n].

D.3. Expectation and Variance

Lemma D.11. Let R ∈ Rb×n denote any of the random matrix in Definition D.2, D.3, D.4, D.6, D.7, D.8. Then for any
fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[g⊤R⊤Rh] = g⊤h

Proof.

E
R∼Π

[g⊤R⊤Rh] = g⊤ E
R∼Π

[R⊤R]h = g⊤Ih = g⊤h.

Lemma D.12. Let R ∈ Rb×n denote a subsampled randomized Hadamard transform or AMS sketch matrix as in
Definition D.3, D.4. Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
2

b
∥g∥22 · ∥h∥22.

Proof. If Ea[a] = b, it is easy to see that

E
a
[(a− b)2] = E

a
[a2 − 2ab+ b2] = E

a
[a2 − b2]

We can rewrite it as follows:

E
R∼Π

[(g⊤R⊤Rh)2 − (g⊤h)2] = E
R∼Π

[(g⊤(R⊤R− I)h)2],

It can be bounded as follows:

E
R∼Π

[(g⊤(R⊤R− I)h)2]
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= E
R∼Π

( b∑
k=1

(Rg)k(Rh)k − g⊤h

)2


= E
R∼Π


 b∑

k=1

n∑
i=1

Rk,igi ·
∑

j∈[n]\{i}

Rk,jhj

2


= E
R∼Π

 b∑
k=1

n∑
i=1

Rk,igi ·
∑

j∈[n]\{i}

Rk,jhj

 ·
 b∑

k′=1

n∑
i′=1

Rk′,i′gi′ ·
∑

j′∈[n]\{i′}

Rk′,j′hj′


= E

R∼Π

 b∑
k=1

n∑
i=1

R2
k,ig

2
i ·

∑
j∈[n]\{i}

R2
k,jh

2
j

+

 b∑
k=1

n∑
i=1

R2
k,igihi ·

∑
j∈[n]\{i}

R2
k,jgjhj


=

1

b

 n∑
i=1

g2i
∑

j∈[n]\{i}

h2
j

+
1

b

 n∑
i=1

gihi

∑
j∈[n]\{i}

gjhj


≤ 2

b
∥g∥22∥h∥22,

where the second step follows from R2
k,i = 1/b, ∀k, i ∈ [b]× [n], the forth step follows from E[Rk,iRk,jRk′,i′Rk′,j′ ] ̸= 0

only if i = i′, j = j′, k = k′ or i = j′, j = i′, k = k′, the fifth step follows from Rk,i and Rk,j are independent if i ̸= j
and R2

k,i = R2
k,j = 1/b, and the last step follows from Cauchy-Schwartz inequality.

Therefore,

E
R∼Π

[(g⊤R⊤Rh)2 − (g⊤h)2] = E
R∼Π

[(g⊤(R⊤R− I)h)2] ≤ 2

b
∥g∥22∥h∥22.

Lemma D.13. Let R ∈ Rb×n denote a random Gaussian matrix as in Definition D.2. Then for any fixed vector h ∈ Rn and
any fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
3

b
∥g∥22 · ∥h∥22.

Proof. Note

E
R∼Π

[(g⊤R⊤Rh)2]

= E
R∼Π


 b∑

k=1

n∑
i=1

Rk,igi ·
n∑

j=1

Rk,jhj

2


= E
R∼Π

 b∑
k=1

n∑
i=1

Rk,igi ·
n∑

j=1

Rk,jhj

 ·
 b∑

k′=1

n∑
i′=1

Rk′,i′gi′ ·
n∑

j′=1

Rk′,j′hj′


= E

R∼Π

[ b∑
k=1

∑
k′∈[b]\{k}

n∑
i=1

n∑
i′=1

R2
k,iR

2
k′,i′gihigi′hi′

+

(
b∑

k=1

n∑
i=1

R4
k,ig

2
i h

2
i

)

+

 b∑
k=1

n∑
i=1

∑
j∈[n]\{i}

R2
k,iR

2
k,jg

2
i h

2
j

+

 n∑
k=1

n∑
i=1

n∑
i′∈[n]\{i}

R2
k,iR

2
k,i′gihigi′hi′


+

 b∑
k=1

n∑
i=1

∑
j∈[n]\{i}

R2
k,iR

2
k,jgihjgjhi

]
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=
b− 1

b

n∑
i=1

n∑
i′=1

gihigi′hi′ +
3

b

n∑
i=1

g2i h
2
i

+
1

b

n∑
i=1

∑
j∈[n]\[i]

g2i h
2
j +

1

b

n∑
i=1

∑
i′∈[n]\[i]

gihigi′hi′ +
1

b

n∑
i=1

∑
j∈[n]\[i]

gihjgjhi

≤ (g⊤h)2 +
3

b
∥g∥22∥h∥22,

where the third step follows from that for independent entries of a random Gaussian matrix, E[Rk,iRk,jRk′,i′Rk′,j′ ] ̸= 0
only if 1. k ̸= k′, i = j, i′ = j′, or 2. k = k′, i = i′ = j = j′, or 3. k = k′, i = i′ ̸= j = j′, or 4. k = k′, i = j ̸= i′ = j′,
or 5. k = k′, i = j′ ̸= i′ = j, the fourth step follows from E[R2

k,i] = 1/b and E[R4
k,i] = 3/b2, and the last step follows

from Cauchy-Schwartz inequality.

Lemma D.14. Let R ∈ Rb×n denote a count-sketch matrix as in Definition D.5. Then for any fixed vector h ∈ Rn and any
fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
3

b
∥g∥22∥h∥22.

Proof. Note

E
R∼Π

[(g⊤R⊤Rh)2]

= E
R∼Π


 b∑

k=1

n∑
i=1

Rk,igi

n∑
j=1

Rk,jhj

2


= E
R∼Π

 b∑
k=1

n∑
i=1

Rk,igi

n∑
j=1

Rk,jhj

 ·
 b∑

k′=1

n∑
i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′


= E

R∼Π

[ b∑
k=1

∑
k′∈[b]\{k}

n∑
i=1

n∑
i′∈[n]\{i}

R2
k,iR

2
k′,i′gihigi′hi′

+

(
b∑

k=1

n∑
i=1

R4
k,ig

2
i h

2
i

)

+

 b∑
k=1

n∑
i=1

∑
j∈[n]\{i}

R2
k,iR

2
k,jg

2
i h

2
j

+

 n∑
k=1

n∑
i=1

n∑
i′∈[n]\{i}

R2
k,iR

2
k,i′gihigi′hi′


+

 b∑
k=1

n∑
i=1

∑
j∈[n]\{i}

R2
k,iR

2
k,jgihjgjhi

]

=
b− 1

b

n∑
i=1

∑
i′∈[n]\i

gihigi′hi′ +

n∑
i=1

g2i h
2
i

+
1

b

n∑
i=1

∑
j∈[n]\{i}

g2i h
2
j +

1

b

n∑
i=1

∑
i′∈[n]\{i}

gihigi′hi′ +
1

b

n∑
i=1

∑
j∈[n]\{i}

gihjgjhi

≤ (g⊤h)2 +
3

b
∥g∥22∥h∥22,

where in the third step we are again considering what values of k, k′, i, i′, j, j′ that makes
E[Rk,iRk,jRk′,i′Rk′,j′ ] ̸= 0. Since the hash function σ(·) of the count-sketch matrix is 4-wise independent, ∀k, k′, when
i ̸= i′ ̸= j ̸= j′, or i = i′ = j ̸= j′ (and the other 3 symmetric cases), we have that E[Rk,iRk,jRk′,i′Rk′,j′ ] = 0. Since the
count-sketch matrix has only one non-zero entry in every column, when k ̸= k′, if i = i′ or i = j′ or j = i′ or j = j′, we
also have E[Rk,iRk,jRk′,i′Rk′,j′ ] = 0. Thus we only need to consider the cases: 1. k ̸= k′, i = j ̸= i′ = j′, or 2. k = k′,
i = i′ = j = j′, or 3. k = k′, i = i′ ̸= j = j′, or 4. k = k′, i = j ̸= i′ = j′, or 5. k = k′, i = j′ ̸= i′ = j. And the fourth
step follows from E[R2

k,i] = 1/b and E[R4
k,i] = 1/b, and the last step follows from Cauchy-Schwartz inequality.
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Lemma D.15. Let R ∈ Rb×n denote a sparse embedding matrix as in Definition D.6, D.7. Then for any fixed vector h ∈ Rn

and any fixed vector g ∈ Rn, the following properties hold:

2. E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
2

b
∥g∥22 · ∥h∥22.

Proof. Note

E
R∼Π

[(g⊤R⊤Rh)2]

= E
R∼Π


 b∑

k=1

n∑
i=1

Rk,igi

n∑
j=1

Rk,jhj

2


= E
R∼Π

 b∑
k=1

n∑
i=1

Rk,igi

n∑
j=1

Rk,jhj

 ·
 b∑

k′=1

n∑
i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′


= E

R∼Π

[ b∑
k=1

n∑
i=1

R2
k,ig

2
i

∑
j∈[n]\{i}

R2
k,jh

2
j

+

 b∑
k=1

n∑
i=1

R2
k,igihi

∑
j∈[n]\{i}

R2
k,jgjhj


+

∑
k

∑
i ̸=i′

R2
k,iR

2
k,i′gihigi′hi′

+

(∑
k

∑
i

R4
k,ig

2
i h

2
i

)
+

∑
k ̸=k′

∑
i ̸=i′

R2
k,iR

2
k′,i′gihigi′hi′


+

∑
k ̸=k′

∑
i

R2
k,iR

2
k′,ig

2
i h

2
i

]
=

1

b

∑
i ̸=j

g2i h
2
j +

1

b

∑
i ̸=j

gihigjhj +
1

b

∑
i̸=i′

gihigi′hi′ +
1

s

∑
i

g2i h
2
i +

b− 1

b

∑
i̸=i′

gihigi′hi′ +
s− 1

s

∑
i

g2i h
2
i

≤ (g⊤h)2 +
2

b
∥g∥22∥h∥22,

where the third step follows from the fact that the sparse embedding matrix has independent columns and s non-zero entry
in every column, the fourth step follows from E[R2

k,i] = 1/b, E[R4
k,i] = 1/(bs), and E[R2

k,iR
2
k′,i] =

s(s−1)
b(b−1) ·

1
s2 ,∀k ̸= k′

and the last step follows from Cauchy-Schwartz inequality.

Lemma D.16. Let R ∈ Rb×n denote a uniform sampling matrix as in Definition D.8. Then for any fixed vector h ∈ Rn and
any fixed vector g ∈ Rn, the following properties hold:

2. E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
n

b
∥g∥22∥h∥22.

Proof. Note

E
R∼Π

[(g⊤R⊤Rh)2]

= E
R∼Π


 b∑

k=1

n∑
i=1

Rk,igi

n∑
j=1

Rk,jhj

2


= E
R∼Π

 b∑
k=1

n∑
i=1

Rk,igi

n∑
j=1

Rk,jhj

 ·
 b∑

k′=1

n∑
i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′


= E

R∼Π

(∑
k

∑
i

R4
k,ig

2
i h

2
i

)
+

∑
k ̸=k′

∑
i ̸=i′

R2
k,iR

2
k′,i′gihigi′hi′


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=
n

b

∑
i

g2i h
2
i +

(b− 1)n

(n− 1)b

∑
i ̸=i′

gihigi′hi′

≤ (g⊤h)2 +
n

b
∥g∥22∥h∥22,

where the third step follows from the fact that the random sampling matrix has one non-zero entry in every row, the fourth
step follows from E[R2

k,iR
2
k′,i′ ] = n/((n− 1)b2) for k ̸= k′, i ̸= i′ and E[R4

k,i] = n/b2.

Remark D.17. Lemma D.16 indicates that uniform sampling fails in bounding variance in some sense, since the upper
bound give here involves n.

D.4. Bounding Inner Product

Lemma D.18 (Gaussian). Let R ∈ Rb×n be a random Gaussian matrix (Definition D.2). Then we have:

Pr
[
max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. Note for i ̸= j, R∗,i, R∗,j ∼ N (0, 1
b Ib) are two independent Gaussian vectors. Let zk = Rk,iRk,j and z =

⟨R∗,i, R∗,j⟩. Then we have for any |λ| ≤ b/2,

E[eλzk ] =
1√

1− λ2/b2
≤ exp(λ2/b2),

where the first step follows from zk = 1
4 (Rk,i + Rk,j)

2 + 1
4 (Rk,i − Rk,j)

2 = b
2 (Q1 − Q2) where Q1, Q2 ∼ χ2

1, and
E[eλQ] = 1√

1−2λ
for any Q ∼ χ2

1.

This implies zk ∈ SE(2/b2, 2/b) is a sub-exponential random variable. Thus, we have z =
∑b

k=1 zk ∈ SE(2/b, 2/b), by
sub-exponential concentration Lemma B.7 we have

Pr[|z| ≥ t] ≤ 2 exp(−bt2/4)

for 0 < t < 1. Picking t =
√
log(n2/δ)/b, we have

Pr
[
|⟨R∗,i, R∗,j⟩| ≥

c
√

log(n/δ)√
b

]
≤ δ/n2.

Taking the union bound over all (i, j) ∈ [n]× [n] and i ̸= j, we complete the proof.

Lemma D.19 (SRHT). Let R ∈ Rb×n be a subsample randomized Hadamard transform (Definition D.3). Then we have:

Pr
[
max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. For fixed i ̸= j, let X = [R∗,i, R∗,j ] ∈ Rb×2. Then X⊤X =
∑b

k=1 Gk, where

Gk = [Rk,i, Rk,j ]
⊤[Rk,i, Rk,j ] =

[
1
b Rk,iRk,j

Rk,iRk,j
1
b

]
.

Note the eigenvalues of Gk are 0 and 2
b and E[X⊤X] = b · E[Gk] = I2 for all k ∈ [b]. Thus, applying matrix Chernoff

bound B.8 to X⊤X we have

Pr
[
λmax(X

⊤X) ≤ 1− t
]
≤ 2 exp (−t2b/2) for t ∈ [0, 1), and

Pr
[
λmax(X

⊤X) ≥ 1 + t
]
≤ 2 exp (−t2b/8) for t ≥ 0.
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which implies the eigenvalues of X⊤X are between [1− t, 1 + t] with probability 1− 4 exp (− t2b
8 ). So the eigenvalues of

X⊤X − I2 are between [−t, t] with probability 1− 4 exp (− t2b
8 ). Picking t =

c
√

log(n/δ)√
b

, we have

Pr
[
∥X⊤X − I2∥ ≥

c
√
log(n/δ)√

b

]
≤ δ

n2
.

Note

X⊤X − I2 =

[
0 ⟨R∗,i, R∗,j⟩

⟨R∗,i, R∗,j⟩ 0

]
,

whose spectral norm is |⟨R∗,i, R∗,j⟩|. Thus, we have

Pr
[
|⟨R∗,i, R∗,j⟩| ≥

c
√
log(n/δ)√

b

]
≤ δ/n2.

Taking a union bound over all pairs (i, j) ∈ [n]× [n] and i ̸= j, we complete the proof.

Lemma D.20 (AMS). Let R ∈ Rb×n be a random AMS matrix (Definition D.4). Let {σi, i ∈ [n]} be independent
Rademacher random variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then we have:

Pr
[
max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. Note for any fixed i ̸= j, R∗,i and R∗,j are independent. By Hoeffding inequality (Lemma B.2), we have

Pr
[
|⟨R∗,i, R∗,j⟩| ≥ t

]
≤ 2 exp

(
− 2t2∑b

i=1(
1
b − (− 1

b ))
2

)
≤ 2e−t2b/2

Choosing t =
√
2 log(2n2/δ)/

√
b, we have

Pr
[
|⟨R∗,i, R∗,j⟩| ≥

√
2 log(2n2/δ)/

√
b
]
≤ δ

n2
.

Taking a union bound over all pairs (i, j) ∈ [n]× [n] and i ̸= j, we complete the proof.

Lemma D.21 (Count-Sketch). Let R ∈ Rb×n be a count-sketch matrix (Definition D.5). Let {σi, i ∈ [n]} be independent
Rademacher random variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then we have:

max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≤ 1.

Proof. Directly follow the definition of count-sketch matrices.

Lemma D.22 (Sparse embedding). Let R ∈ Rb×n be a sparse embedding matrix with parameter s (Definition D.6 and
D.7). Let {σi, i ∈ [n]} be independent Rademacher random variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then
we have:

Pr
[
max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≥

c
√

log(n/δ)√
s

]
≤ Θ(δ).

Proof. Note for fixed i ̸= j, R∗,i and R∗,j are independent. Assume R∗,i and R∗,j has u non-zero elements at the same
positions, where 0 ≤ u ≤ s, then by Hoeffding inequality (Lemma B.2), we have

Pr[|⟨R∗,i, R∗,j⟩| ≥ t] ≤ 2 exp

(
− 2t2∑u

i=1(
1
s − (− 1

s ))
2

)
≤ 2 exp(−t2s2/(2u)) (3)

Let t =
√

(2u/s2) log(2n2/δ), we have

Pr
[
|⟨R∗,i, R∗,j⟩| ≥

√
2s−1 log(2n2/δ)

]
≤ Pr

[
|⟨R∗,i, R∗,j⟩| ≥

√
2us−2 log(2n2/δ)

]
≤ δ/n2 (4)

since u ≤ s. By taking a union bound over all (i, j) ∈ [n]× [n] and i ̸= j, we complete the proof.
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D.5. Infinite Norm Bound

Lemma D.23 (SRHT and AMS). Let R ∈ Rb×n denote a subsample randomized Hadamard transform (Definition D.3)
or AMS sketching matrix (Definition D.4). Then for any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following
properties hold:

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| > log1.5(n/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Proof. We can rewrite (g⊤R⊤Rh)− (g⊤h) as follows:,

(g⊤R⊤Rh)− (g⊤h) =

n∑
i=1

n∑
j∈[n]\i

gihj⟨R∗,i, R∗,j⟩+
n∑

i=1

gihi(∥R∗,i∥22 − 1)

=

n∑
i=1

n∑
j∈[n]\i

gihj⟨σiR∗,i, σjR∗,j⟩.

where σi’s are independent Rademacher random variables and R∗,i = σiR∗,i, ∀i ∈ [n], and the second step follows from
∥R∗,i∥22 = 1,∀i ∈ [n].

We define matrix A ∈ Rn×n and B ∈ Rn×n as follows:

Ai,j = gihj · ⟨R∗,i, R∗,j⟩, ∀i ∈ [n], j ∈ [n]

Bi,j = gihj ·max
i′ ̸=j′

|⟨R∗,i′ , R∗,j′⟩| ∀i ∈ [n], j ∈ [n]

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with removing diagonal entries, applying Hason-wright inequality
(Lemma B.5), we have

Pr
σ
[|σ⊤A◦σ| ≥ τ ] ≤ 2 · exp(−cmin{τ2/∥A◦∥2F , τ/∥A◦∥})

We can upper bound ∥A◦∥ and ∥A◦∥F .

∥A◦∥ ≤ ∥A◦∥F
≤ ∥A∥F
≤ ∥B∥F
= ∥g∥2 · ∥h∥2 ·max

i ̸=j
|⟨R∗,i, R∗,j⟩|

≤ ∥g∥2 · ∥h∥2 ·max
i ̸=j
|⟨R∗,i, R∗,j⟩|.

where the forth step follows from B is rank-1.

For SRHT, note R has the same distribution as R. By Lemma D.19 (for AMS, we use Lemma D.20) with probability at
least 1−Θ(δ), we have :

max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≤

√
log(n/δ)√

b
.

Conditioning on the above event holds.

Choosing τ = ∥g∥2 · ∥h∥2 · log1.5(n/δ)/
√
b, we can show that

Pr

[∣∣∣(g⊤R⊤Rh)− (g⊤h)
∣∣∣ ≥ ∥g∥2 · ∥h∥2 log1.5(n/δ)√

b

]
≤ Θ(δ).

Thus, we complete the proof.
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Lemma D.24 (Random Gaussian). Let R ∈ Rb×n denote a random Gaussian matrix (Definition D.2). Then for any fixed
vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| > log1.5(n/δ)√

b
∥g∥2∥h∥2

]
≤ Θ(δ).

Proof. We follow the same procedure as proving Lemma D.23.

We can rewrite (g⊤R⊤Rh)− (g⊤h) as follows:,

(g⊤R⊤Rh)− (g⊤h) =

n∑
i=1

n∑
j∈[n]\i

gihj⟨R∗,i, R∗,j⟩+
n∑

i=1

gihi(∥R∗,i∥22 − 1)

=

n∑
i=1

n∑
j∈[n]\i

gihj⟨σiR∗,i, σjR∗,j⟩+
n∑

i=1

gihi(∥R∗,i∥22 − 1). (5)

where σi’s are independent Rademacher random variables and R has the same distribution as R.

To bound the first term
∑n

i=1

∑n
j∈[n]\i gihj⟨σiR∗,i, σjR∗,j⟩, we define matrix A ∈ Rn×n and B ∈ Rn×n as follows:

Ai,j = gihj · ⟨R∗,i, R∗,j⟩, ∀i ∈ [n], j ∈ [n]

Bi,j = gihj ·max
i′ ̸=j′

|⟨R∗,i′ , R∗,j′⟩| ∀i ∈ [n], j ∈ [n]

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with removing diagonal entries, applying Hason-wright inequality
(Lemma B.5), we have

Pr
σ
[|σ⊤A◦σ| ≥ τ ] ≤ 2 · exp(−cmin{τ2/∥A◦∥2F , τ/∥A◦∥})

We can upper bound ∥A◦∥ and ∥A◦∥F .

∥A◦∥ ≤ ∥A◦∥F
≤ ∥A∥F
≤ ∥B∥F
= ∥g∥2 · ∥h∥2 ·max

i ̸=j
|⟨R∗,i, R∗,j⟩|

≤ ∥g∥2 · ∥h∥2 ·max
i ̸=j
|⟨R∗,i, R∗,j⟩|.

where the forth step follows from B is rank-1.

Using Lemma D.18 with probability at least 1−Θ(δ), we have :

max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≤

√
log(n/δ)√

b
.

Conditioning on the above event holds.

Choosing τ = ∥g∥2 · ∥h∥2 · log1.5(n/δ)/
√
b, we can show that

Pr

∣∣∣ n∑
i=1

n∑
j∈[n]\i

gihj⟨σiR∗,i, σjR∗,j⟩
∣∣∣ ≥ ∥g∥2 · ∥h∥2 log1.5(n/δ)√

b

 ≤ Θ(δ). (6)

To bound the second term
∑n

i=1 gihi(∥R∗,i∥22 − 1), note that b∥R∗,i∥22 ∼ χ2
b for every i ∈ [n]. Applying Lemma B.6, we

have

Pr

[∣∣∣∥R∗,i∥22 − 1
∣∣∣ ≥ c

√
log(n/δ)√

b

]
≤ δ/n.
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which implies

Pr

[
n∑

i=1

gihi

∣∣∣∥R∗,i∥22 − 1
∣∣∣ ≥ ∥g∥2∥h∥2 c√log(n/δ)√

b

]
≤ Θ(δ). (7)

Plugging the bounds Eq. (6) and (7) back to Eq. (5), we complete the proof.

Lemma D.25 (Count-sketch). Let R ∈ Rb×n denote a count-sketch matrix (Definition D.5). Then for any fixed vector
h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| ≥ log(1/δ)∥g∥2∥h∥2

]
≤ Θ(δ).

Proof. We follow the identical procedure as proving Lemma D.23 to apply Hason-wright inequality (Lemma B.5).

Then note Lemma D.21 shows

max
i ̸=j
|⟨R∗,i, R∗,j⟩| ≤ 1

Thus, choosing τ = c∥g∥2 · ∥h∥2 · log(1/δ), we can show that

Pr
[
|(g⊤R⊤Rh)− (g⊤h)| ≥ c∥g∥2 · ∥h∥2 log(1/δ)

]
≤ δ.

which completes the proof.

Lemma D.26 (Count-sketch 2). Let R ∈ Rb×n denote a count-sketch matrix (Definition D.5). Then for any fixed vector
h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| ≥ 1√

bδ
∥g∥2∥h∥2

]
≤ Θ(δ).

Proof. It is known that a count-sketch matrix with b = ϵ−2δ−1 rows satisfies the (ϵ, δ, 2)-JL moment property (see e.g.
Theorem 14 of (Woodruff, 2014)). Using Markov’s inequality, (ϵ, δ, 2)-JL moment property implies

Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| ≥ ϵ∥g∥2∥h∥2

]
≤ Θ(δ),

where ϵ = 1√
bδ

.

Lemma D.27 (Sparse embedding). Let R ∈ Rb×n denote a sparse-embedding matrix (Definition D.6 and D.7). Then for
any fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

3. Pr
R∼Π

[
|(g⊤R⊤Rh)− (g⊤h)| > log1.5(n/δ)√

s
∥g∥2∥h∥2

]
≤ Θ(δ).

Proof. We follow the identical procedure as proving Lemma D.23 to apply Hason-wright inequality (Lemma B.5).

Then note Lemma D.22 shows with probability at least 1− δ we have

max
i̸=j
|⟨R∗,i, R∗,j⟩| ≤

c
√
log(n/δ)√

s
.

Conditioning on the above event holds, choosing τ = c′∥g∥2 · ∥h∥2 · log1.5(1/δ), we can show that

Pr

[
|(g⊤R⊤Rh)− (g⊤h)| ≥ c′ log1.5(n/δ)√

s
∥g∥2 · ∥h∥2

]
≤ Θ(δ).

Thus, we complete the proof.
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Lemma D.28 (Uniform sampling). Let R ∈ Rb×n denote a uniform sampling matrix (Definition D.8). Then for any fixed
vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

3.|(g⊤R⊤Rh)− (g⊤h)| ≤ (1 +
n

b
)∥g∥2∥h∥2

where I ⊂ [n] be the subset of indexes chosen by the uniform sampling matrix.

Proof. We can rewrite (g⊤R⊤Rh)− (g⊤h) as follows:,

(g⊤R⊤Rh)− (g⊤h) =

n∑
i=1

n∑
j∈[n]\i

gihj⟨R∗,i, R∗,j⟩+
n∑

i=1

gihi(∥R∗,i∥22 − 1)

=
n

b

∑
i∈I

gihi −
n∑

i=1

gihi.

where the second step follows from the uniform sampling matrix has only one nonzero entry in each row.

Let I ⊂ [n] be the subset chosen by the uniform sampling matrix, then ∥R∗,i∥22 = n/b for i ∈ I and ∥R∗,i∥22 = 0 for
i ∈ [n] \ I . So we have

|(g⊤R⊤Rh)− (g⊤h)| =
∣∣∣∑
i∈I

gihi(
n

b
− 1)−

∑
i∈[n]\I

gihi

∣∣∣
≤ (1 +

n

b
)∥g∥2∥h∥2.

E. Analysis of Convergence: Single-step Scheme
E.1. Preliminary

Throughout the proof of convergence, we will use Ft to denote the sequence wt−1, wt−2, . . . , w0. Also, we use η as a
shorthand for ηglobal · ηlocal.

E.2. Strongly-convex f Convergence Analysis

Theorem E.1. Let f : Rd → R satisfying Assumption 3.1 with µ > 0. Let w∗ ∈ Rd be the optimal solution to f and assume
sk/desk functions satisfying Theorem 4.2. Suppose η := ηglobal · ηlocal has the property that η ≤ 1

(1+α)L , then

E[f(wt+1)]− f(w∗) ≤ (1− µη)t · (f(w0)− f(w∗))

Proof. We shall first bound f(wt+1)− f(wt):

f(wt+1)− f(wt) ≤⟨wt+1 − wt,∇f(wt)⟩+ L

2
∥wt+1 − wt∥22

=⟨deskt(∆w̃t),∇f(wt)⟩+ L

2
∥deskt(∆w̃t)∥22

=− ⟨ηglobal · deskt(
1

N

N∑
c=1

skt(ηlocal · ∇fc(wt))),∇f(wt)⟩

+
L

2
∥ηglobal · deskt(

1

N

N∑
c=1

skt(ηlocal · ∇fc(wt)))∥22

=− ηglobal · ηlocal · ⟨deskt(skt(∇f(wt))),∇f(wt)⟩
+ (ηglobal · ηlocal)2 · ∥deskt(skt(∇f(wt)))∥22
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where the first step uses the L-smoothness condition of f , and the last step uses the linearity property of sk/desk functions.

Taking expectation over iteration t conditioning on Ft and note that only wt+1 depends on randomness at t, we get

E[f(wt+1)− f(wt) | Ft]

≤ − η · ⟨E[deskt(skt(∇f(wt))) | Ft],∇f(wt)⟩+ Lη2

2
E[∥deskt(skt(∇f(wt)))∥22 | Ft]

≤ − η · ⟨∇f(wt),∇f(wt)⟩+ Lη2

2
(1 + α) · ∥∇f(wt)∥22

≤ − η

2
· ∥∇f(wt)∥22

≤ − µη · (f(wt)− f(w∗)) (8)

where the second step comes from the fact that deskt(skt(h)) is an unbiased estimator for any fixed h ∈ Rd and the bound
on its variance, the third step comes from η ≤ 1

(1+α)L , and the last step comes from Fact C.5.

Upon rearranging and subtracting both sides by f(w∗), we get

E[f(wt+1)]− f(w∗) | Ft] ≤ (1− µη) · (f(wt)− f(w∗)) (9)

Note that if we apply expectation over Ft on both sides of Eq. (9) we can get

E[f(wt+1)]− f(w∗) ≤ (1− µη) · (E[f(wt)]− f(w∗)) (10)

Notice since 1− µη ≤ 1, this is a contraction map, if we iterate this recurrence relation, we will finally get

E[f(wt+1)− f(w∗)] ≤ (1− µη)t · (f(w0)− f(w∗)). (11)

E.3. Convex f Convergence Analysis

Assume f is a convex function, we obtain a convergence bound in terms of the average of all parameters.

Theorem E.2. Let f : Rd → R satisfying Assumption 3.1 with µ = 0. Suppose sk/desk functions satisfying Theorem 4.2. If
η := ηglobal · ηlocal ≤ 1

2(1+α)L , then

E[f(wT )− f(w∗)] ≤ E[∥w0 − w∗∥22]
η · (T + 1)

where wT := 1
T+1

∑T
t=0 w

t and w∗ ∈ Rd is the optimal solution.

Proof. We shall first compute the gap between wt+1 and w∗:

∥wt+1 − w∗∥22
= ∥wt − deskt(∆w̃t)− w∗∥22
= ∥wt − η · deskt(skt(∇f(wt)))− w∗∥22
= ∥wt − w∗∥22 + η2 · ∥deskt(skt(∇f(wt)))∥22 − 2η · ⟨wt − w∗, deskt(skt(∇f(wt)))⟩ (12)

By unbiasedness of deskt ◦ skt, we have

E[⟨wt − w∗, deskt(skt(∇f(wt)))⟩ | Ft] = E[⟨wt − w∗,∇f(wt)⟩ | Ft] (13)

Taking total expectation of Eq. (12) and plug in Eq. (13), we get

E[∥wt+1 − w∗∥22 | Ft]

= E[∥wt − w∗∥22 | Ft] + η2 · E[∥deskt(skt(∇f(wt)))∥22 | Ft]− 2η · E[⟨wt − w∗,∇f(wt)⟩ | Ft]
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≤ E[∥wt − w∗∥22 | Ft] + η2 · (1 + α) · E[∥∇f(wt)∥22 | Ft] + 2η · E[⟨w∗ − wt,∇f(wt)⟩ | Ft]

≤ E[∥wt − w∗∥22 | Ft] + η2 · (1 + α) · E[∥∇f(wt)∥22 | Ft] + 2η · E[f(w∗)− f(wt) | Ft] (14)

where the second step follows from the variance of deskt ◦ skt, and the last step follows from the convexity of f . Taking the
expectation over Ft and re-organizing the above equation, we can get

2η · E[f(wt)− f(w∗)] ≤ E[∥wt − w∗∥22]− E[∥wt+1 − w∗∥22] + η2 · (1 + α) · E[∥∇f(wt)∥22]
≤ E[∥wt − w∗∥22]− E[∥wt+1 − w∗∥22] + η2 · (1 + α) · 2L · E[f(wt)− f(w∗)]

where the second step follows from the convexity and L-smoothness of f . Rearrange the above inequality, we have

(2η − η2 · (1 + α) · 2L) · E[f(wt)− f(w∗)] ≤ E[∥wt − w∗∥22]− E[∥wt+1 − w∗∥22]

Note η ≤ 1
2(1+α)L , we have

η · E[f(wt)− f(w∗)] ≤ E[∥wt − w∗∥22]− E[∥wt+1 − w∗∥22]

Sum over all T iterations, we arrive at

η ·
T∑

t=0

E[f(wt)− f(w∗)] ≤E[∥w0 − w∗∥22]− E[∥wT+1 − w∗∥22] ≤ E[∥w0 − w∗∥22] (15)

Let wT = 1
T+1

∑T
t=0 w

t denote the average of parameters across iterations, then by convexity of f , we conclude:

E[f(wT )− f(w∗)] ≤ E[∥w0 − w∗∥22]
η · (T + 1)

E.4. Non-convex f Convergence Analysis

Next, we prove a version when f is not even a convex function, due to loss of convexity, we can no longer bound the gap
between E[f(wt)] and f(w∗), but we can instead bound the minimum (or average) expected gradient.

Theorem E.3. Let f : Rd → R be an L-smooth function (Def. C.1) and sk/desk functions satisfying Theorem 4.2, let
w∗ ∈ Rd be the optimal solution to f . Suppose η := ηlocal · ηglobal ≤ 1

(1+α)L , then

min
t∈[T ]

E[∥∇f(wt)∥22] ≤
2

η(T + 1)
(E[f(w0)]− f(w∗))

Proof. Note that the only place we used strongly-convex assumption in the proof of Theorem E.1 is Eq. (8), so by the same
analysis, we can get

E[f(wt+1)− f(wt) | Ft] ≤−
η

2
· ∥∇f(wt)∥22

Rearranging and taking total expectation over Ft, we get

E[∥∇f(wt)∥22] ≤
2

η
(E[f(wt)]− E[f(wt+1)])

Averaging over all T iterations, we get

1

T + 1

T∑
t=0

E[∥∇f(wt)∥22] ≤
2

η(T + 1)

T∑
t=0

(E[f(wt)]− E[f(wt+1)])

=
2

η(T + 1)
(E[f(w0)]− E[f(wT )])
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≤ 2

η(T + 1)
(E[f(w0)]− f(w∗))

This implies our final result:

min
t∈[T ]

E[∥∇f(wt)∥22] ≤
2

η(T + 1)
(E[f(w0)]− f(w∗))

Remark E.4. Notice due to the structure of sk/desk functions, i.e., their variance is bounded in terms of true gradient,
the convergence rate depends completely on the term 1

(1+α)L . If it’s a constant, then we essentially recover a convergence
rate of gradient descent. On the other hand, if 1

(1+α)L ≤
1√
T

, then we get a similar convergence rate as SGD. One clear
advantage of our sk/desk functions is they don’t introduce extra noise term as in SGD, since we can choose appropriate
step size to absorb the variance term.

F. k-step Convex & Strongly-convex fc Analysis
F.1. Preliminary

In this section, we assume each fc satisfies Assumption 3.1 and ηglobal = 1. For notation simplicity, we also denote
ut,−1
c = ut−1,K−1

c for t ≥ 2.
Definition F.1. Let (t, k) ∈ {1, · · · , T + 1} × {−1, 0, 1, · · · ,K − 1}, we define the following terms for iteration (t, k):

ut,k :=
1

N

N∑
c=1

ut,k
c , rt,k := ut,k − w∗

to be the average of local parameters and its distance to the optimal solution,

gt,kc := ∇fc(ut,k
c ), gt,k :=

1

N

N∑
c=1

∇fc(ut,k
c )

to be the local gradient and its average,

V t,k :=
1

N

N∑
c=1

∥ut,k
c − ut,k∥22

to be the variances of local updates,

σ2 =
1

N

N∑
c=1

∥∇fc(w∗)∥2

to be a finite constant that characterize the heterogeneity of local objectives.

We also define the following indicator function: let l ∈ R, then we define 1{x=l} to be

1{x=l} =

{
1 if x = l,

0 otherwise.

F.2. Unifying the Update Rule of Algorithm 1

Lemma F.2. We have the following facts for ut,k
c and ũt,k:

ut,0
c = ut,0

ut,k
c = ut,k−1

c − ηlocal · gt,k−1
c , ∀k ≥ 1

ut,k = ut,k−1 − ηlocal · gt,k−1 + 1{k=0} · ηlocal · (Id − deskt ◦ skt)(
K−1∑
i=0

gt−1,i), ∀(t, k) ̸= (1, 0)

where Id : Rd → Rd is the identity function.
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Proof. First two equation directly follows from the update rule of Algorithm 1.
For k = 1, 2, · · · ,K − 1, taking the average of the second equation we obtain:

ut,k = ut,k−1 − ηlocal · gt,k−1

For k = 0 and t ≥ 2, we have

ut,0 = ut−1,0 − ηlocal · deskt(skt(
K−1∑
i=0

gt−1,i))

= ut−1,0 − ηlocal

K−1∑
i=0

gt−1,i + ηlocal

K−1∑
i=0

gt−1,i − ηlocal · deskt(skt(
K−1∑
i=0

gt−1,i))

= ut−1,K−1 − ηlocal · gt−1,K−1 + ηlocal · (Id − deskt ◦ skt)(
K−1∑
i=0

gt−1,i)

Combining above results together, we prove the third equation.

F.3. Upper Bounding ∥gt,k∥22
Lemma F.3. Suppose for any c ∈ [N ], fc : Rd → R is convex and L-smooth. Then

∥gt,k∥22 ≤ 2L2V t,k + 4L(f(ut,k)− f(w∗))

Proof. By triangle inequality and Cauchy-Schwartz inequality, we have

∥gt,k∥22 = ∥gt,k −∇f(ut,k) +∇f(ut,k)∥22
≤ 2∥gt,k −∇f(ut,k)∥22 + 2∥∇f(ut,k)∥22

where the first term can be bounded as

∥gt,k −∇f(ut,k)∥22 = ∥ 1
N

N∑
c=1

∇fc(ut,k
c )− 1

N

N∑
c=1

∇fc(ut,k)∥22

≤ 1

N

N∑
c=1

∥∇fc(ut,k
c )− fc(u

t,k)∥22

≤ L2

N

N∑
c=1

∥ut,k
c − ut,k∥22

and the second term can be bounded as follows:

∥∇f(ut,k)∥22 = ∥∇f(ut,k)−∇f(w∗)∥22
≤ 2L(f(ut,k)− f(w∗))

where the last step follows from that f is L-smooth and Fact C.4.

Combining bounds on these two terms, we get

∥gt,k∥22 ≤
2L2

N

N∑
c=1

∥ut,k
c − ut,k∥22 + 2L2∥ut,k − w∗∥22

≤ 2L2V t,k + 4L(f(ut,k)− f(w∗))
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F.4. Lower Bounding ⟨ut,k − w∗, gt,k⟩

Lemma F.4. Suppose each fc satisfies Assumption 3.1 with µ ≥ 0, then

⟨ut,k − w∗, gt,k⟩ ≥ f(ut,k)− f(w∗)− L

2
V t,k +

µ

2
∥ut,k − w∗∥22

Proof. We will provide a lower bound on this inner product:

⟨ut,k − w∗, gt,k⟩ = 1

N

N∑
c=1

⟨ut,k − w∗,∇fc(ut,k
c )⟩

It suffices to consider each term separately:

⟨ut,k − w∗,∇fc(ut,k
c )⟩ = ⟨ut,k − ut,k

c + ut,k
c − w∗,∇fc(ut,k

c )⟩
= ⟨ut,k − ut,k

c ,∇fc(ut,k
c )⟩+ ⟨ut,k

c − w∗,∇fc(ut,k
c )⟩

The first term can be lower bounded via L-smoothness:

⟨ut,k − ut,k
c ,∇fc(ut,k

c )⟩ ≥ fc(u
t,k)− fc(u

t,k
c )− L

2
∥ut,k − ut,k

c ∥22

The second term can be lower bounded via convexity:

⟨ut,k
c − w∗,∇fc(ut,k

c )⟩ ≥ fc(u
t,k
c )− fc(w

∗) +
µ

2
∥ut,k

c − w∗∥22

Combining these two bounds and average them, we get a lower bound:

⟨ut,k − w∗, gt,k⟩ ≥ 1

N

N∑
c=1

(fc(u
t,k)− fc(w

∗)− L

2
∥ut,k − ut,k

c ∥22 +
µ

2
∥ut,k

c − w∗∥22)

≥ 1

N

N∑
c=1

(fc(u
t,k)− fc(w

∗))− L

2
V t,k +

µ

2
∥ut,k − w∗∥22

= f(ut,k)− f(w∗)− L

2
V t,k +

µ

2
∥ut,k − w∗∥22

F.5. Upper Bounding Variance within K Local Steps

Lemma F.5. Suppose each fc is convex and L-smooth. Assume ηlocal ≤ 1
8LK . Then for any t ≥ 0,

K−1∑
k=0

V t,k ≤ 8η2localLK
2
K−1∑
k=0

(f(ut,k)− f(w∗)) + 4η2localK
3σ2

Proof. By Lemma F.2, we know V t,0 = 0 for any t ≥ 0. Consider k ∈ {1, 2, · · · ,K − 1}, we have

V t,k =
1

N

N∑
c=1

∥ut,k
c − ut,k∥22

=
1

N

N∑
c=1

∥ut,0
c −

k−1∑
i=0

ηlocal · gt,ic − ut,0 +

k−1∑
i=0

ηlocal · gt,i∥22

=
η2local
N

N∑
c=1

∥
k−1∑
i=0

(gt,i − gt,ic )∥22
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≤ η2localk

N

N∑
c=1

k−1∑
i=0

∥gt,i − gt,ic ∥22

≤ η2localK

N

N∑
c=1

k−1∑
i=0

∥gt,ic ∥22 (16)

where the second step follows from Lemma F.2, the last step follows from gt,i being the average of gt,ic . By Cauchy-Schwartz
inequality, we further have:

∥gt,ic ∥22 ≤ 3∥gt,ic −∇fc(ut,i)∥22 + 3∥∇fc(ut,i)−∇fc(w∗)∥22 + 3∥∇fc(w∗)∥22
≤ 3L2∥ut,i

c − ut,i∥22 + 6L(fc(u
t,i)− fc(w

∗) + ⟨w∗ − ut,0,∇fc(w∗)⟩) + 3∥∇fc(w∗)∥22.

where the last step follows from applying L-smoothness to the first and second term.

Averaging with respect to c,

1

N

N∑
c=1

∥gt,ic ∥22 ≤ 3L2V t,i + 6L(f(ut,i)− f(w∗)) + 3σ2.

Note that the inner product term vanishes since 1
N

∑N
c=1∇fc(w∗) = ∇f(w∗) = 0.

Plugging back to Eq. (16), we obtain

V t,k ≤ η2localK

N

N∑
c=1

k−1∑
i=0

∥gt,ic ∥22

≤ η2localK

k−1∑
i=0

(3L2V t,i + 6L(f(ut,i)− f(w∗)) + 3σ2).

Summing up above inequality as k varies from 0 to K − 1,

K−1∑
k=0

V t,k ≤ η2localK

K−1∑
k=0

k−1∑
i=0

(3L2V t,i + 6L(f(ut,i)− f(w∗)) + 3σ2)

≤ η2localK

K−1∑
k=0

K−1∑
i=0

(3L2V t,i + 6L(f(ut,i)− f(w∗)) + 3σ2)

= 3η2localL
2K2

K−1∑
i=0

V t,i + 6η2localLK
2
K−1∑
i=0

(f(ut,i)− f(w∗)) + 3η2localK
3σ2

Rearranging terms we obtain:

(1− 3η2localL
2K2)

K−1∑
k=0

V t,k ≤ 6η2localLK
2
K−1∑
i=0

(f(ut,i)− f(w∗)) + 3η2localK
3σ2

Since ηlocal ≤ 1
8LK , we have 1− 3η2localL

2K2 ≥ 3
4 , implying

K−1∑
k=0

V t,k ≤ 8η2localLK
2
K−1∑
i=0

(f(ut,i)− f(w∗)) + 4η2localK
3σ2
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F.6. Bounding the Expected Gap Between ut,k and w∗

Lemma F.6. Suppose each fc satisfies Assumption 3.1 with µ ≥ 0. If sk/desk satisfying Theorem 4.2 and ηlocal ≤ 1
4L , then

for any (t, k) ̸= (1, 0), we have

E[∥ut,k − w∗∥22] ≤ (1− µηlocal)E[∥ut,k−1 − w∗∥22] +
3

2
ηlocalLE[V t,k−1]− ηlocal E[f(ut,k−1)− f(w∗)]

+ 1{k=0}η
2
localαK

(
2L2

K−1∑
i=0

E[V t−1,i] + 4L

K−1∑
i=0

E[f(ut−1,i)− f(w∗)]
)

Proof. By Lemma F.2, we have for any (t, k) ̸= (1, 0),

ut,k = ut,k−1 − ηlocal · gt,k−1 + 1{k=0} · ηlocal · (Id − deskt ◦ skt)(
K−1∑
i=0

gt−1,i)

Therefore, denoting ht := (Id − deskt ◦ skt)(
∑K−1

i=0 gt−1,i), we have

∥ut,k − w∗∥22 = ∥ut,k−1 − w∗ − ηlocal · gt,k−1 + 1{k=0}ηlocal · ht∥22
= ∥ut,k−1 − w∗∥22 + η2local · ∥gt,k−1∥22 − 2ηlocal⟨ut,k−1 − w∗, gt,k−1⟩

+ 2ηlocal1{k=0}⟨ut,k−1 − w∗, ht⟩ − 2η2local1{k=0}⟨gt,k−1, ht⟩
+ η2local1{k=0} · ∥ht∥22 (17)

Note by Theorem 4.2, we have:

E[deskt(skt(h))] = h, E[∥deskt(skt(h))∥22] ≤ (1 + α) · ∥h∥22

hold for any vector h. Hence, by taking expectation over Eq. (17),

E[∥ut,k − w∗∥22|Ft] = E[∥ut,k−1 − w∗∥22|Ft] + η2local · E[∥gt,k−1∥22|Ft]

− 2ηlocal E[⟨ut,k−1 − w∗, gt,k−1⟩|Ft] + 1{k=0} · η2local · E[∥ht∥22|Ft]

Note that since E[ht | Ft] = 0, so the two inner products involving ht vanishes.

Since

E[∥ht∥22|Ft] = E[∥(Id − deskt ◦ skt)(
K−1∑
i=0

gt−1,i)∥22|Ft]

≤ αE[∥
K−1∑
i=0

gt−1,i∥22|Ft]

≤ αK

K−1∑
i=0

E[∥gt−1,i∥22|Ft]

Taking total expectation, we have

E[∥ut,k − w∗∥22]
≤ E[∥ut,k−1 − w∗∥22] + η2local · E[∥gt,k−1∥22]− 2ηlocal E[⟨ut,k−1 − w∗, gt,k−1⟩]

+ 1{k=0} · η2local · αK
K−1∑
i=0

E[∥gt−1,i∥22]

≤ E[∥ut,k−1 − w∗∥22] + η2local · E[2L2V t,k−1 + 4L(f(ut,k−1)− f(w∗))]

− 2ηlocal E[f(ut,k−1)− f(w∗)− L

2
V t,k−1 +

µ

2
∥ut,k−1 − w∗∥22]
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+ 1{k=0} · η2local · αK
K−1∑
i=0

E[2L2V t−1,i + 4L(f(ut−1,i)− f(w∗))]

≤ (1− µηlocal)E[∥ut,k−1 − w∗∥22] + ηlocal · L · (1 + 2ηlocalL) · E[V t,k−1]

− 2ηlocal · (1− 2ηlocalL) · E[f(ut,k−1)− f(w∗)]

+ 1{k=0} · η2local · αK ·
(
2L2

K−1∑
i=0

E[V t−1,i] + 4L

K−1∑
i=0

E[f(ut−1,i)− f(w∗)]
)

where the second step follows from Lemma F.3 and Lemma F.4. Since ηlocal ≤ 1
4L , we have

E[∥ut,k − w∗∥22] ≤ (1− µηlocal)E[∥ut,k−1 − w∗∥22] +
3

2
ηlocalLE[V t,k−1]− ηlocal E[f(ut,k−1)− f(w∗)]

+ 1{k=0}η
2
localαK

(
2L2

K−1∑
i=0

E[V t−1,i] + 4L

K−1∑
i=0

E[f(ut−1,i)− f(w∗)]
)

F.7. Main Result: Convex Case

Theorem F.7 (Formal version of Theorem 5.3). Assume each fc is convex and L-smooth. If Theorem 4.2 holds and
ηlocal ≤ 1

8(1+α)LK ,

E[f(wT )− f(w∗)] ≤ 4E[∥w0 − w∗∥22]
ηlocalKT

+ 32η2localLK
2σ2,

where wT = 1
KT (

∑T
t=1

∑K−1
k=0 ut,k) is the average over parameters throughout the execution of Algorithm 1.

Proof. Summing up Lemma F.6 as t varies from 1 to T and k varies from 0 to K − 1,

E[∥uT+1,0 − w∗∥22]− E[∥w0 − w∗∥22]

≤ 3

2
ηlocalL

T∑
t=1

K−1∑
k=0

E[V t,k]− ηlocal

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)]

+

T∑
t=1

K−1∑
k=0

1{k=0}η
2
localαK

(
2L2

K−1∑
i=0

E[V t,i] + 4L

K−1∑
i=0

E[f(ut,i)− f(w∗)]
)

=
3

2
ηlocalL

T∑
t=1

K−1∑
k=0

E[V t,k]− ηlocal

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)]

+ η2localαK
(
2L2

T∑
t=1

K−1∑
i=0

E[V t,i] + 4L

T∑
t=1

K−1∑
i=0

E[f(ut,i)− f(w∗)]
)

= ηlocalL(
3

2
+ 2ηlocalαLK)

T∑
t=1

K−1∑
k=0

E[V t,k]

− ηlocal(1− 4ηlocalαLK)

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)]

≤ 2ηlocalL

T∑
t=1

K−1∑
k=0

E[V t,k]− 1

2
ηlocal

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)]

≤ 2ηlocalL

T∑
t=1

(8η2localLK
2
K−1∑
i=0

E[f(ut,i)− f(w∗)] + 4η2localK
3σ2)− 1

2
ηlocal

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)]
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≤ − 1

4
ηlocal

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)] + 8η3localLK
3Tσ2

where the fourth step follows from ηlocal ≤ 1
8αLK , the last step follows from ηlocal ≤ 1

8LK . Rearranging the terms, we
obtain

1

KT

T∑
t=1

K−1∑
k=0

E[f(ut,k)− f(w∗)] ≤ 4E[∥w0 − w∗∥22]
ηlocalKT

+ 32η2localLK
2σ2

Finally, by the convexity of f we complete the proof.

Now we are ready to answer the question: how much communication cost is sufficient to guarantee E[f(wT )− f(w∗)] ≤ ϵ?
we have the following communication cost result:
Theorem F.8 (Formal version of Theorem 5.4). Assume each fc is convex and L-smooth. If Theorem 4.2 holds. With
O
(
E[∥w0 − w∗∥22]N max{Ld

ϵ , σ
√
L

ϵ3/2
}
)

bits of communication cost, Algorithm 1 outputs an ϵ-optimal solution wT satisfy-
ing:

E[f(wT )− f(w∗)] ≤ ϵ,

where wT = 1
KT (

∑T
t=1

∑K−1
k=0 ut,k).

Proof. To calculate the communication complexity, we first note communication only happens in sync steps. Specifically,
in each sync step, the algorithm requires O(Nbsketch) bits of communication cost, where bsketch denotes the sketching
dimension. Therefore, the total cost of communication is given by O(NbsketchT ). To obtain the optimal communication
cost for ϵ-optimal solution, we choose T,K, ηlocal and bsketch by solving the following optimization problem:

min
T,K,ηlocal,bsketch,α

NbsketchT

s.t. 0 < ηlocal ≤
1

8(1 + α)LK

4E[∥w0 − w∗∥22]
ηlocalKT

≤ ϵ

2

32η2localLK
2σ2 ≤ ϵ

2

d ≥ bsketch = O(
d

α
) ≥ 1

where d is the parameter dimension and the last constraint is due to Theorem 4.2. Above constraints imply:

T ≥ 8E[∥w0 − w∗∥22]
ηlocalKϵ

, ,Kηlocal ≤ min{ 1

8(1 + α)L
,
1

8σ

√
ϵ

L
}

Therefore, when ϵ ≥ σ2

(1+α)2L , the optimal solution is given by

Kηlocal =
1

8(1 + α)L
, T =

64E[∥w0 − w∗∥22](1 + α)L

ϵ
, bsketch = O(

d

α
)

and the corresponding optimal communication cost is O(
E[∥w0−w∗∥2

2LNd
ϵ ).

when ϵ < σ2

(1+α)2L , the optimal solution is given by

Kηlocal =
1

8σ

√
ϵ

L
, T =

64E[∥w0 − w∗∥22σ
√
L]

ϵ3/2
, bsketch = O(

d

α
)

and the corresponding optimal communication cost is O(
E[∥w0−w∗∥2

2σ
√
LNd

αϵ3/2
).

Combining above two cases, the optimal α is given by O(d), and the corresponding optimal communication cost will be
O(E[∥w0 − w∗∥22]N max{Ld

ϵ , σ
√
L

ϵ3/2
}).
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F.8. Main Result: Strongly-convex Case

Theorem F.9 (Formal version of Theorem 5.1). Assume each fc is µ-strongly convex and L-smooth. If Theorem 4.2 holds
and ηlocal ≤ 1

8(1+α)LK ,

E[f(wT+1)− f(w∗)] ≤ L

2
E[∥w0 − w∗∥22]e−µηlocalT + 4η2localL

2K3σ2/µ.

Proof. Summing up Lemma F.6 as k varies from 0 to K − 1, then we have for any t ≥ 1,

(E[∥ut+1,0 − w∗∥22] +
K−1∑
k=1

E[∥ut,k − w∗∥22])− (1− µηlocal)

K−1∑
k=0

E[∥ut,k − w∗∥22])

≤ 3

2
ηlocalL

K−1∑
k=0

E[V t,k]− ηlocal

K−1∑
k=0

E[f(ut,k)− f(w∗)]

+

K−1∑
k=0

1{k=0}η
2
localαK

(
2L2

K−1∑
i=0

E[V t,i] + 4L

K−1∑
i=0

E[f(ut,i)− f(w∗)]
)

=
3

2
ηlocalL

K−1∑
k=0

E[V t,k]− ηlocal

K−1∑
k=0

E[f(ut,k)− f(w∗)]

+ η2localαK
(
2L2

K−1∑
i=0

E[V t,i] + 4L

K−1∑
i=0

E[f(ut,i)− f(w∗)]
)

= ηlocalL(
3

2
+ 2ηlocalαLK)

K−1∑
k=0

E[V t,k]− ηlocal(1− 4ηlocalαLK)

K−1∑
k=0

E[f(ut,k)− f(w∗)]

≤ 2ηlocalL

K−1∑
k=0

E[V t,k]− 1

2
ηlocal

K−1∑
k=0

E[f(ut,k)− f(w∗)]

≤ 2ηlocalL(8η
2
localLK

2
K−1∑
i=0

E[f(ut,i)− f(w∗)] + 4η2localK
3σ2)− 1

2
ηlocal

K−1∑
k=0

E[f(ut,k)− f(w∗)]

≤ − 1

4
ηlocal

K−1∑
k=0

E[f(ut,k)− f(w∗)] + 8η3localLK
3σ2

where the fourth step follows from ηlocal ≤ 1
8αLK , the last step follows from ηlocal ≤ 1

8LK . Rearranging the terms, we
obtain

E[∥ut+1,0 − w∗∥22] ≤ (1− µηlocal)E[∥ut,0 − w∗∥22] + 8η3localLK
3σ2

implying

E[∥ut+1,0 − w∗∥22]− 8η2localLK
3σ2/µ ≤ (1− µηlocal)(E[∥ut,0 − w∗∥22]− 8η2localLK

3σ2/µ).

Therefore, we have

E[∥wT+1 − w∗∥22]− 8η2localLK
3σ2/µ ≤ (1− µηlocal)

T (E[∥w0 − w∗∥22]− 8η2localLK
3σ2/µ)

≤ E[∥w0 − w∗∥22]e−µηlocalT

Finally, by L-smoothness of function f , we obtain

E[f(wT+1)− f(w∗)] ≤ L

2
E[∥wT+1 − w∗∥22] ≤

L

2
E[∥w0 − w∗∥22]e−µηlocalT + 4η2localL

2K3σ2/µ.
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Theorem F.10 (Formal version of Corollary 5.2). Assume each fc is µ-strongly convex and L-smooth. If Theorem 4.2 holds.

With O
(

LN
µ max{d,

√
σ2

µϵ} log(
LE[∥w0−w∗∥2

2]
ϵ )

)
bits of communication cost, Algorithm 1 outputs an ϵ-optimal solution

wT satisfying:

E[f(wT )− f(w∗)] ≤ ϵ.

Proof. To calculate the communication complexity, we first note communication only happens in sync steps. Specifically,
in each sync step, the algorithm requires O(Nbsketch) bits of communication cost, where bsketch denotes the sketching
dimension. Therefore, the total cost of communication is given by O(NbsketchT ). To obtain the optimal communication
cost for ϵ-optimal solution, we choose T,K, ηlocal and bsketch by solving the following optimization problem:

min
T,K,ηlocal,bsketch,α

NbsketchT

s.t. 0 < ηlocal ≤
1

8(1 + α)LK

L

2
E[∥w0 − w∗∥22]e−µηlocalT ≤ ϵ

2

4η2localL
2K3σ2/µ ≤ ϵ

2

d ≥ bsketch = O(
d

α
) ≥ 1

where d is the parameter dimension and the last constraint is due to Theorem 4.2. Above constraints imply:

T ≥ 1

µηlocal
log(

LE[∥w0 − w∗∥22]
ϵ

), ηlocal ≤ min{ 1

8(1 + α)LK
,

1

2LKσ

√
µϵ

2K
}

Therefore, the optimal value is given when K = 1. When ϵ ≥ σ2

16(1+α)2µ , the optimal solution is given by

ηlocal =
1

8(1 + α)L
, T =

8(1 + α)L

µ
log(

LE[∥w0 − w∗∥22]
ϵ

), bsketch = O(
d

α
)

and the corresponding optimal communication cost is O(LNd
µ log(

LE[∥w0−w∗∥2
2]

ϵ )).

when ϵ < σ2

16(1+α)2µ , the optimal solution is given by

ηlocal =
1

2Lσ

√
µϵ

2
, T =

2Lσ

µ3/2

√
2

ϵ
log(

LE[∥w0 − w∗∥22]
ϵ

), bsketch = O(
d

α
)

and the corresponding optimal communication cost is O( σLNd
αµ3/2

√
ϵ
log(

LE[∥w0−w∗∥2
2]

ϵ )).

Combining above two cases, the optimal α is given by O(d), and the corresponding optimal communication cost will be

O(LN
µ max{d,

√
σ2

µϵ} log(
LE[∥w0−w∗∥2

2]
ϵ )).

G. k-step Non-convex f Convergence Analysis
In this section, we present convergence result for non-convex f case in the k-local-step regime. In order for the proof to go
through, we assume that for any c ∈ [N ] and any w ∈ Rd, there exists a universal constant G such that

∥∇fc(w)∥2 ≤ G.

Throughout the proof, we will use Ft to denote the sequence wt−1, wt−2, . . . , w0. Also, we use η as a shorthand for
ηglobal · ηlocal.

Note that in k-local-step scheme, the average of local gradients is no longer the true gradient, therefore, we can no longer
bound everything using the true gradients. This means it’s necessary to introduce the gradient norm upper bound assumption.
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Lemma G.1. Let f : Rd → R satisfying Assumption 3.1 and sk/desk functions satisfying Theorem 4.2. Further, assume
ηlocal ≤ 1

2LK . Then

E[f(wt+1)− f(wt) | Ft] ≤ − ηglobal · ∥∇f(wt)∥22 + η · L ·K2 ·G2 ·
(
ηlocal +

η

2
· (1 + α)

)
Proof. We start by bounding f(wt+1)− f(wt) without taking conditional expectation:

f(wt+1)− f(wt)

≤ ⟨wt+1 − wt,∇f(wt)⟩+ L

2
∥wt+1 − wt∥22

= ⟨deskt(∆w̃t),∇f(wt)⟩+ L

2
∥deskt(∆w̃t)∥22

= A+
L

2
B

where

A := − ⟨ηglobal · deskt(
1

N

N∑
c=1

skt(
K−1∑
k=0

ηlocal · ∇fc(ut,k
c ))),∇f(wt)⟩

B := ∥ηglobal · deskt(
1

N

N∑
c=1

skt(
K∑

k=1

ηlocal · ∇fc(ut,k
c )))∥22

Bounding E[A | Ft] Using the fact that skt/deskt are linear functions and E[deskt(skt(h))] = h, we get

E[A | Ft] = − ⟨ηglobal ·
1

N

N∑
c=1

K−1∑
k=0

ηlocal · ∇fc(ut,k
c ),∇f(wt)⟩

= − ηglobal · ⟨
1

N

N∑
c=1

(K−1∑
k=0

ηlocal · ∇fc(ut,k
c )−∇fc(wt) +∇fc(wt)

)
,∇f(wt)⟩

= − ηglobal · ∥∇f(wt)∥22 + ηglobal · ηlocal ·
1

N

N∑
c=1

K−1∑
k=0

⟨∇fc(ut,k
c )−∇fc(wt),∇f(wt)⟩

It suffices to bound the inner product, notice for k = 0, the inner product is 0, so assume k ≥ 1:

⟨∇fc(ut,k
c )−∇fc(wt),∇f(wt)⟩

≤ ∥∇fc(ut,k
c )−∇fc(wt)∥2 · ∥∇f(wt)∥2

≤ L · ∥ut,k
c − wt∥2 · ∥∇f(wt)∥2 (18)

where the gap between ut,k
c and wt can be further expanded:

∥ut,k
c − wt∥2 = ∥ut,k

c − ut,k
0 ∥2

= ∥ηlocal
k−1∑
i=0

∇fc(ut,i
c )∥2

≤ ηlocal

k−1∑
i=0

∥∇fc(ut,i
c )∥2

≤ ηlocal · k ·G (19)

Plug in Eq. (19) to Eq. (18), we get

⟨∇fc(ut,k
c )−∇fc(wt),∇f(wt)⟩ ≤ L · ηlocal · k ·G2
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Recall that η = ηglobal · ηlocal. Put things together, we finally obtain a bound on E[A | Ft]:

E[A | Ft] ≤ − ηglobal · ∥∇f(wt)∥22 + η · ηlocal · L · (
K−1∑
k=0

k) ·G2

≤ − ηglobal · ∥∇f(wt)∥22 + η · ηlocal · L ·K2 ·G2 (20)

Bounding E[B | Ft] Using the fact that skt/deskt are linear functions, we get

B = η2global · η2local ·
1

N2
· ∥

N∑
c=1

K−1∑
k=0

deskt(skt(∇fc(ut,k
c )))∥22

≤ η2global · η2local ·
1

N2
·N ·K

N∑
c=1

K−1∑
k=0

·∥deskt(skt(∇fc(ut,k
c )))∥22

= η2 · K
N
·

N∑
c=1

K−1∑
k=0

∥deskt(skt(∇fc(ut,k
c )))∥22

Using variance bound of deskt(skt(h)), we get

E[B | Ft] ≤ η2 · K
N
· (1 + α) ·

N∑
c=1

K−1∑
k=0

∥∇fc(ut,k
c )∥22

≤ η2 · K
N
· (1 + α) ·

N∑
c=1

K−1∑
k=0

G2

= η2 ·K2 · (1 + α) ·G2 (21)

Put things together Put the bound on E[A | Ft] and the bound on E[B | Ft], we get

E[f(wt+1)− f(wt) | Ft]

≤ − ηglobal · ∥∇f(wt)∥22 + η · ηlocal · L ·K2 ·G2 +
L

2
· η2 ·K2 · (1 + α) ·G2

= − ηglobal · ∥∇f(wt)∥22 + η · L ·K2 ·G2 ·
(
ηlocal +

η

2
· (1 + α)

)
Theorem G.2. Let f : Rd → R be L-smooth. Let w∗ ∈ Rd be the optimal solution to f and assume sk/desk functions
satisfying Theorem 4.2. Then

min
t∈[T ]

E[∥∇f(wt)∥22] ≤
1

(T + 1)ηglobal
· (E[f(w0)]− f(w∗)) + ηlocal · LK2G2 ·

(
ηlocal +

η

2
· (1 + α)

)
Proof. By Lemma G.1, we know that

E[f(wt+1) | Ft]− f(wt) ≤ − ηglobal · ∥∇f(wt)∥22 + η · L ·K2 ·G2 ·
(
ηlocal +

η

2
· (1 + α)

)
Rearranging the inequality and taking total expectation, we get

E[∥∇f(wt)∥22] ≤
1

ηglobal
· (E[f(wt)]− E[f(wt+1)]) + ηlocal · LK2G2 ·

(
ηlocal +

η

2
· (1 + α)

)
Sum over all T iterations and averaging, we arrive at

1

T + 1

T∑
t=0

E[∥∇f(wt)∥22]
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≤ 1

(T + 1)ηglobal
· (E[f(w0)]− E[f(wT )]) + ηlocal · LK2G2 ·

(
ηlocal +

η

2
· (1 + α)

)
≤ 1

(T + 1)ηglobal
· (E[f(w0)]− f(w∗)) + ηlocal · LK2G2 ·

(
ηlocal +

η

2
· (1 + α)

)

H. Differential Privacy
In this section, we consider a special case where each agent c trying to learn upon its local dataset Dc with corresponding
local loss fc(x) = 1

|Dc|
∑

zi∈Dc
fc(x, zi), where we overload the notation fc to denote the local loss for notation simplicity.

We assume fc is ℓc-Lipschitz for agent c = 1, 2, · · · , N . We also assume that the dataset for each agent c is disjoint.

H.1. Differentially Private Algorithm

Algorithm 3 Private Iterative Sketching-based Federated Learning Algorithm with K local steps

1: procedure PRIVATEITERATIVESKETCHINGFL
2: Each client initializes w0 using the same set of random seed
3: for t = 1→ T do ▷ T denotes the total number of global steps
4: /* Client */
5: parfor c = 1→ N do ▷ N denotes the total number of clients
6: if t = 1 then
7: ut,0

c ← w0 ▷ ut,0
c ∈ Rd

8: else
9: ut,0

c ← wt−1 + deskt(∆w̃t−1) ▷ deskt : Rbsketch → Rd de-sketch the change
10: end if
11: wt ← ut,0

c

12: σ2 ← O(log(1/δ̂)ℓ2c/ϵ̂
2)

13: for k = 1→ K do
14: ξt,kc ∼ N (0, σ2 · Id×d)← Independent Gaussian noise
15: Dt,k

c ← Sample random batch of local data points
16: ut,k

c ← ut,k−1
c − ηlocal · ( 1

|Dt,k
c |
·
∑

zi∈Dt,k
c
∇fc(ut,k−1

c , zi)+ξt,kc )

17: end for
18: ∆wc(t)← ut,K

c − wt

19: Client c sends skt(∆wc(t)) to server ▷ skt : Rd → Rbsketch sketch the change
20: end parfor
21: /* Server */
22: ∆w̃t ← ηglobal · 1

N

∑N
c=1 skt(∆wc(t)) ▷ ∆w̃t ∈ Rd

23: Server sends ∆w̃t to each client
24: end for
25: end procedure

H.2. Preliminary

We define (ϵ, δ)-differential privacy (Dwork et al., 2006b;a) as

Definition H.1. Let ϵ, δ be positive real number and M be a randomized mechanism that takes a dataset as input
(representing the actions of the trusted party holding the data). Let im(M) denote the image ofM. The algorithmM is
said to provide ϵ, δ-differential privacy if, for all datasets D1 and D2 that differ on a single element (i.e., the data of one
person), and all subsets S of im(M):

Pr[M(D1) ∈ S] ≤ exp(ϵ) · Pr[M(D2) ∈ S] + δ

where the probability is taken over the randomness used by the algorithm.

40



Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability

Lemma H.2 (Parallel Composition). LetMi be an (ϵi, δi)-DP mechanism and eachMi operates on disjoint subsets of the
private database, thenM1 ◦ . . . ◦Mk is (maxi∈[k] ϵi,maxi∈[k] δi)-DP.

Lemma H.3 (Advanced Composition (Dwork et al., 2010)). Let ϵ, δ′ ∈ (0, 1] and δ ∈ [0, 1]. IfM1, . . . ,Mk are each
(ϵ, δ)-DP mechanisms, thenM1 ◦ . . . ◦Mk is (ϵ′, δ′ + kδ)-DP where

ϵ′ =
√
2k log(1/δ′) · ϵ+ 2kϵ2.

Lemma H.4 (Amplification via Sampling (Lemma 4.12 of (Bun et al., 2015))). LetM be an (ϵ, δ)-DP mechanism where
ϵ ≤ 1. LetM′ be the mechanism that, given a database S of size n, first constructs a database T ⊂ S by sub-sampling with
repetition k ≤ n/2 rows from S then returnM(T ). Then,M′ is ( 6ϵkn , exp( 6ϵkn ) 4kn · δ)-DP.

Lemma H.5 (Post-processing (Proposition 2.1 in (Dwork & Roth, 2013))). LetM be an (ϵ, δ)-DP mechanism whose image
is R. Let f : R→ R̃ be an arbitrary randomized mapping. Then f ◦M is (ϵ, δ)-DP.

As the noise we consider follows from a Gaussian distribution, it is necessary to include notions related to the Gaussian
mechanism.

Definition H.6 (ℓ2 Sensitivity). Let f : X → Rd, the ℓ2 sensitivity of f is

∆
(f)
2 = max

S,S′
∥f(S)− f(S′)∥2,

where S, S′ are neighboring databases.

It is folklore that adding Gaussian noise with appropriate σ2 will provide DP guarantee we needed.

Lemma H.7 (Gaussian Mechanism). Let f : X → Rd and ∆2 denote its ℓ2 sensitivity. Suppose we defineM(Y ) =
f(Y ) + z, where z ∼ N (0, 2 log(1.25/δ)∆2

2/ϵ
2 · I). ThenM is (ϵ, δ)-DP.

H.3. ℓ2 Sensitivity of the Stochastic Gradient

In this section, we bound the ℓ2 sensitivity of the stochastic gradient, the proof relies on the assumption that each fc is
ℓc-Lipschitz.

Lemma H.8. Consider the stochastic gradient |Dc|
|Dt,k

c |
·
∑

zi∈Dt,k
c
∇fc(ut,k−1

c , zi) as in Algorithm 1. Assume that fc is
ℓc-Lipschitz. Then we have ∥∥∥∥∥∥ 1

|Dt,k
c |
·
∑

zi∈Dt,k
c

∇fc(ut,k−1
c , zi)

∥∥∥∥∥∥
2

≤ ℓc.

Proof. We first note that, since fc is ℓc-Lipschitz, we automatically have that

∥∇fc(ut,k−1
c , zi)∥2 ≤ ℓc.

Hence, we can bound the target quantity via triangle inequality:∥∥∥∥∥∥ 1

|Dt,k
c |
·
∑

zi∈Dt,k
c

∇fc(ut,k−1
c , zi)

∥∥∥∥∥∥
2

≤ 1

|Dt,k
c |
·
∑

zi∈Dt,k
c

∥∇fc(ut,k−1
c , zi)∥2

≤ ℓc,

as desired.

H.4. Privacy guarantee of our algorithm

In this section, we provide a formal analysis on the privacy guarantee of Algorithm 3. We will first analyze the privacy
property for a single agent, then combine them via composition lemma.
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Lemma H.9 (Formal version of Lemma 6.1). Let ϵ̂, δ̂ ∈ [0, 1), ϵ̂ < 1√
K

and c ∈ [N ]. For agent c, the local-K-step

stochastic gradient as in Algorithm 1 is (
√
K · ϵ̂, K · δ̂)-DP.

Proof. First, we note that σ2 is chosen as O(log(1/δ̂)ℓ2c/ϵ̂
2), hence, by Lemma H.7, we know that one step of stochastic

gradient is (ϵ̂, δ̂)-DP. Since we run the local SGD for K steps, by Lemma H.3, we have the process is

(O(
√
K · ϵ̂+Kϵ̂2), O(Kδ̂))

DP. Finally, since ϵ̂ ≤ 1√
K

, we conclude that the local-K-step for agent c is (O(
√
K · ϵ̂), O(K · δ̂))-DP.

Remark H.10. We want to point out that although we perform sketching on the sum of the local gradients, by Lemma H.5,
this does not change the privacy guarantee at all.

Theorem H.11. Let ϵ̂, δ̂ be as in Lemma 6.1. Then, Algorithm 1 is (ϵDP, δDP)-DP, with

ϵDP =
√
TK · ϵ̂, δDP = TK · δ̂.

Proof. Notice that each agent c works on individual subsets of the data, therefore we can make use of Lemma H.2 to
conclude that over all N agents, the process is (

√
K · ϵ̂, K · δ̂)-DP. Finally, apply Lemma H.3 over all T iterations, we

conclude that Algorithm 3 is (ϵDP, δDP)-DP, while

ϵDP =
√
TK · ϵ̂, δDP = TK · δ̂.

I. Preliminary on Gradient Attack
Throughout this section to the remainder of the paper, we use F (x;w) to denote the loss function of the model, where
x ∈ Rm is the data point and w ∈ Rd is the model parameter.

I.1. Definitions

We start with defining some conditions we will later study:

Definition I.1. Let F : Rm × Rd → R, we define the loss function L to be

L(x) := ∥∇wF (x;w)− g∥2.

Definition I.2 (Smoothness). We say L : Rm → R is b-smooth if for any x, y ∈ Rm, we have

L(y) ≤ L(x) + ⟨∇L(x), y − x⟩+ b∥y − x∥2.

Definition I.3 (Lipschitz). We say L : Rm → R is β-Lipschitz if for any x, y ∈ Rm, we have

∥L(x)− L(y)∥2 ≤ β2∥x− y∥2.

Definition I.4 (Semi-smoothness). For any p ∈ [0, 1], we say L is (a, b, p)-semi-smoothness if

L(y) ≤ L(x) + ⟨∇L(x), y − x⟩+ b∥y − x∥2

+ a∥x− y∥2−2pL(x)p

Definition I.5 (Semi-Lipschitz). For any p ∈ [0, 1], we say function L is (α, β, p)-semi-Lipschitz if

(L(x)− L(y))2 ≤ β2∥x− y∥2 + α2∥x− y∥2−2p · L(x)p.

Specifically, we say function L has (α, β, p)-semi-Lipschitz gradient, or L satisfies (α, β, p)-semi-Lipschitz gradient
condition, if

∥∇L(x)−∇L(y)∥2 ≤ β2∥x− y∥2

+ α2∥x− y∥2−2p · L(x)p.
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Definition I.6 (Non-critical point). We say L is (θ1, θ2)-non-critical point if

θ21 · L(x) ≤ ∥∇L(x)∥2 ≤ θ22 · L(x).

Definition I.7 (Pseudo-Hessian). Let F : Rm × Rd → R, suppose F is differentiable on both x and w, then we define
pseudo-Hessian mapping Φ : Rd × Rm → Rd×m as follows

Φ(x,w) = ∇x∇wF (x;w).

Correspondingly, we define a pseudo-kernel K : Rm × Rd → Rd×d with respect to∇xF (x;w) as:

K(x,w) = Φ(x,w)⊤Φ(x,w).

Note the weight vector w is fixed in our setting, we write K(x) = K(x,w) for simplicity.

I.2. Useful Lemmas

We prove two useful lemmas regarding Lipschitz gradient and smoothness, and extend this result to semi-Lipschitz gradient
and semi-smoothness.

Lemma I.8 (folklore). Suppose L : Rm → R has β-Lipschitz gradient, then L is b-smooth, where b = β/2.

Proof. Suppose L(x) has β-Lipschitz gradient. This means that for any x, y ∈ Rm, we have ∥∇L(x)−∇L(y)∥ ≤ β∥x−y∥.

By Cauchy-Schwartz,

⟨∇L(x)−∇L(y), x− y⟩ ≤ β∥x− y∥2.

Hence function G(x) = β
2 ∥x∥

2 − L(x) is convex. So

G(y) ≥ G(x) + ⟨∇G(x), y − x⟩,

which implies

L(y) ≤ L(x) +
β

2
⟨∇L(x), y − x⟩.

Thus L(x) is also b-smooth where b = β
2 .

Lemma I.9. Suppose L satisfies (α, β, p)-semi-Lipschitz gradient (Def. I.5), then L is also (α, β
2 , p/2)-semi-smooth

(Def. I.4).

Proof. First we can bound the inner product term

⟨∇L(x)−∇L(y), x− y⟩
≤ ∥∇L(x)−∇L(y)∥ · ∥x− y∥

≤
√

β2∥x− y∥2 + α2∥x− y∥2−2p · L(x)p · ∥x− y∥
≤
(
β∥x− y∥+ α∥x− y∥(1−p)L(x)p/2

)
· ∥x− y∥

= β∥x− y∥2 + α∥x− y∥2−pL(x)p/2. (22)

The first step is Cauchy-Schwartz, the second step is the definition of (α, β, p)-semi-Lipschitz, and the third step is the fact√
a2 + b2 ≤ a+ b for non-negative a and b.

Let G(x) = β
2 ∥x∥

2 − L(x). We could verify that

⟨∇G(y)−∇G(x), y − x⟩
= ⟨βy −∇L(y)− βx+∇L(x), y − x⟩
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= β∥y − x∥2 − ⟨∇L(y)−∇L(x), y − x⟩
≥ − α∥x− y∥2−pL(x)p/2. (23)

The first step is derived from the definition of gradient and the third step is by plugging in Eq. (22).

Let ϕ(t) = G(x+ t(y − x)). Notice that G(y)−G(x) = ϕ(1)− ϕ(0) =
∫ 1

0
dϕ
dt dt, hence we have

G(y)−G(x)

=

∫ 1

0

⟨∇G(x+ t(y − x)), y − x⟩dt

=

∫ 1

0

⟨∇G(x+ t(y − x))−∇G(x), y − x⟩dt

+

∫ 1

0

⟨∇G(x), y − x⟩dt

≥
∫ 1

0

(
⟨∇G(x), y − x⟩ − t1−p · α∥x− y∥2−pL(x)p/2

)
dt

≥
∫ 1

0

(
⟨∇G(x), y − x⟩ − α∥x− y∥2−pL(x)p/2

)
dt

= ⟨∇G(x), y − x⟩ − α∥x− y∥2−pL(x)p/2.

The third step follows from Eq. (23) and the fourth step follows from p ∈ (0, 1).

Hence,

G(y) ≥ G(x) + ⟨∇G(x), y − x⟩
− α∥x− y∥2−pL(x)p/2. (24)

Then plug in G(x) = β
2 ∥x∥

2 − L(x), Eq. (24) implies

β

2
∥y∥2 − L(y) ≥ β

2
∥x∥2 − L(x) + ⟨∇G(x), y − x⟩

− α∥x− y∥2−pL(x)p/2

which is equivalent to

L(y) ≤ L(x) + ⟨∇L(x), y − x⟩

+
β

2

(
∥y∥2 − 2⟨x, y⟩+ ∥x∥2

)
+ α∥x− y∥2−pL(x)p/2

= L(x) + ⟨∇L(x), y − x⟩+ β

2
∥y − x∥2

+ α∥x− y∥2−pL(x)p/2.

J. From F to L

In this section, we show that if we impose mild conditions on F , it will imply certain key conditions on L, which is critical
in proving the convergence of our loss function. We start with a list of assumptions of F .

Assumption J.1. Let x∗ denote the global minimum of L(x) in Rm. We without loss of generality assume L(x∗) = 0.
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Table 2: Summary of functions with different properties. We use semi-s. to denote semi-smooth, we use semi-Lg. to denote
semi-Lipschitz gradient. We use semi-sc. to denote semi-strongly convex. We use N/A because such function is impossible
due to we’ve proved semi-Lipschitz gradient implies the semi-smoothness in Lemma I.9. †: assume w⊤x ≥ 0.

Function assumption semi-s. semi-Lg. semi-sc. non-critical point
∥x∥22 ✓ ✓ ✓ ✓

N/A × ✓ ✓ ✓
x⊤Ax− λmin(A) ✓ ✓ ✓ ×
√
w⊤x+ b

†
w⊤x ≥ 0 ✓ ✓ × ×

ln(1 + ex) x ∈ [−1, 1]† ✓ ✓ × ✓
sigmoid(w⊤x+ b) ✓ ✓ × ×
(w⊤x)2 · sin(1/(w⊤x)) ∥w∥, ∥x∥ =

1, w⊤x ̸= 0
✓ × × ✓

(w⊤x)2 · sin(1/(w⊤x)) ✓ × × ×
ln(w⊤x) w⊤x > 0 ✓ × × ×
N/A × ✓ ✓ ×
N/A × ✓ × ✓
cosh(w⊤x) ∥w∥, ∥x∥ = 1 × × ✓ ✓

N/A × ✓ × ×
cosh(w⊤x) × × ✓ ×
ReLU(w⊤x) × × × ×
1/∥x∥2 × × × ×
tanh(w⊤x) × × × ×

We give a brief justification of this assumption. Notice that

L(x) = ∥∇wF (x;w)− g∥2

= ∥∇wF (x;w)−∇wF (x̃;w)∥2.

Hence L(x) ≥ 0 and L(x̃) = 0. So it is reasonable to assume minx∈Rm L(x) = 0. Even if L(x) has other forms and
minx∈Rm L(x) ̸= 0, we can define a dummy objective function L′(x) as

L′(x) = L(x)− C,

where C = minx L(x). Suppose we apply gradient descent with initialization x0 on L(x) and apply gradient descent with
initialization y0 on L′(y). Based on the fact that∇L(x) = ∇L′(x), we could show if xt = yt then

yt+1 = yt − η · ∇L′(yt) = xt − η · ∇L(xt) = xt+1.

Hence by induction, for all t, xt = yt when x0 = y0. Thus the convergence rate for L(x) and L′(x) are exactly the same as
long as the initialization is the same. Since we choose C = minx∈Rm L(x), we can easily verify that

min
x∈Rm

L′(x) = min
x∈Rm

L(x)− C = 0.

Therefore, without loss of generality, we make Assumption J.1.

The next assumption is a standard Lipschitz gradient assumption.

Assumption J.2. ∇wF (x,w) is β-Lipschitz with respect to x, i.e., for any x ∈ Rm we have

∥∇wF (x1;w)−∇wF (x2;w)∥ ≤ β · ∥x1 − x2∥.

The next assumption is necessary to ensure L has non-critical point property.

Assumption J.3. Let θ2 ≥ θ1 > 0. ∀x ∈ Rm, let K(x) be defined as Definition I.7. K(x)’s eigenvalues can be bounded by

θ21 ≤ λ2
1(x) ≤ · · · ≤ λ2

min(m,d)(x) ≤ θ22.
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J.1. What F Implies Semi-smoothness

Lemma J.4. Let Φ(x,w) be defined as Def. I.7. Suppose that

• (Assumption J.2)∇wF (x;w) is β-Lipschitz with respect to x, ∀x ∈ Rm;
• (Assumption J.3) spectral norm of Hessian matrix is bounded by ∥Φ(x,w)∥ ≤ θ2, ∀x ∈ Rm.

Then, L(x) = ∥∇wF (x;w)− g∥2 is (a, b, p)-semi-smooth, where b = β2, a = 2(β + θ2), and p = 1/2, i.e.

L(x) ≤ L(y) + ⟨∇L(y), x− y⟩+ b∥x− y∥2

+ a∥x− y∥L(y)1/2.

Proof. We define A1 and A2 as follows:

A1 := ⟨∇wF (y;w)−∇wF (x;w),

2g −∇wF (x;w)−∇wF (y;w)⟩,
A2 := ⟨Φ(y, w)(∇wF (y;w)− g), y − x⟩.

Notice that for A1,

A1 = ⟨∇wF (y;w)−∇wF (x;w),

2g −∇wF (x;w)−∇wF (y;w)⟩
≤ ∥∇wF (y;w)−∇wF (x;w)∥
· ∥2g −∇wF (x;w)−∇wF (y;w)∥

≤ β∥y − x∥ · ∥2g −∇wF (x;w)−∇wF (y;w)∥
≤ β∥y − x∥ · ∥∇wF (y;w)−∇wF (x;w)∥

+ β∥y − x∥ · 2∥g −∇wF (y;w)∥
≤ β∥y − x∥ · (β∥y − x∥+ 2∥g −∇wF (y;w)∥)
= β2∥y − x∥2 + 2β∥y − x∥L(y)1/2.

The second step is Cauchy–Schwartz inequality, the third step is derived from the assumption that F (x,w) has β-Lipschitz
gradient, and the fourth step is the triangle inequality.

For A2, it can be bounded as

A2 = ⟨Φ(y, w)(∇wF (y;w)− g), y − x⟩
≤ ∥Φ(y, w)(∇wF (y;w)− g)∥ · ∥y − x∥
≤ ∥Φ(y, w)∥ · ∥∇wF (y;w)− g∥ · ∥y − x∥
≤ θ2 · L(y)1/2 · ∥y − x∥.

The second step is Cauchy-Schwartz inequality and the third step is the assumption on spectral norm.

Let a, b, R be defined as

b := β

a := 2(β + θ2)

R := b∥y − x∥2 + a∥y − x∥L(y)1/2

Combining the bound for A1 and A2, we have the bound A1 + 2A2 ≤ R. Therefore

R ≥ A1 + 2A2

= ⟨∇wF (y, w)−∇wF (x,w), 2g −∇wF (x,w)

−∇wF (y, w)⟩+ 2⟨Φ(y, w)(∇wF (y, w)− g), y − x⟩
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= ⟨∇wF (y, w)−∇wF (x,w), 2g −∇wF (x,w)

−∇wF (y, w)⟩ − 2⟨Φ(y, w)(∇wF (y, w)− g), x− y⟩
= ∥∇wF (x,w)∥2 − ∥∇wF (y, w)∥2

+ 2⟨∇wF (y, w)−∇wF (x,w), g⟩
− 2⟨∇y∥∇wF (y, w)− g∥2, x− y⟩

= ∥∇wF (x,w)− g∥2 − ∥∇wF (y, w)− g∥2

− ⟨∇L(y), x− y⟩
= L(x)− L(y)− ⟨∇L(y), x− y⟩.

Therefore,

L(x)− L(y)

≤ ⟨∇L(y), x− y⟩+R

= ⟨∇L(y), x− y⟩+ b∥y − x∥2 + a∥y − x∥L(y)1/2,

which is equivalent to the statement that L(x) is (2(β + θ2), β
2, 1/2)-semi-smooth.

J.2. What F Implies Non-critical Point

Lemma J.5. Let K be defined as in Def. I.7. Denote the eigenvalues of K by λ2
1(x) ≤ λ2

2(x) ≤ · · · ≤ λ2
m(x). If

Assumption J.3 holds, i.e., for all x ∈ Rm

• θ21 ≤ λ2
1(x),

• θ22 ≥ λ2
min(m,d)(x).

then, L satisfies (θ1, θ2)-non-critical point condition., i.e.

θ21 · L(x) ≤ ∥∇L(x)∥2 ≤ θ22 · L(x).

Proof. Notice that

∥∇xL(x)∥2 = ∥Φ(x,w)(∇wF (x;w)− g)∥2

= (∇wF (x;w)− g)⊤K(x)(∇wF (x;w)− g)

Given conforming positive definite matrix A and vector y, it is well-known that

λmin(A) ≤ y⊤Ay

∥y∥2
≤ λmax(A),

hence,

∥∇xL(x)∥2 ≥ θ21 · ∥∇wF (x;w)− g∥2

∥∇xL(x)∥2 ≤ θ22 · ∥∇wF (x;w)− g∥2,

which is equivalent to

θ21 · L(x) ≤ ∥∇xL(x)∥2 ≤ θ22 · L(x).

K. Converge to Optimal Solution
One of the important conditions we need to impose on L if we want to converge to the optimal solution is L has a unique
minimum. In order to achieve this property, we introduce the notion of semi-strongly convex:
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Definition K.1 (semi-strongly convex). For any p ∈ [0, 1], we say function L : Rm → R is (c, d, p)-semi-strongly-convex if
for any x, y ∈ Rm, we have

L(x) ≥ L(y) + ⟨∇L(y), x− y⟩+ d∥x− y∥2

− c∥x− y∥2−2p · L(y)p.

K.1. Conditions for Unique Minimum

Theorem K.2 (Unique Local Minimum). If L(x) satisfies (θ1, θ2)-non-critical point condition (θ1 > 0), and (c, d, p)-semi-
strongly convex (d > 0, p ̸= 1), then there exists a unique local minima x∗ such that ∇L(x∗) = 0.

Proof. Suppose x∗
1 ∈ Rm and x∗

2 ∈ Rm are two local minima such that

∇L(x∗
1) = ∇L(x∗

2) = 0.

Since L(x) satisfies (θ1, θ2)-non-critical point condition,

θ21 · L(x∗
1) ≤ ∥∇L(x∗

1)∥2 ≤ θ22 · L(x∗
1).

Therefore L(x∗
1) = 0 holds. Similarly L(x∗

2) = 0 also holds. By (c, d, p)-semi-strongly convexity of L(x),

L(x∗
1) ≥ L(x∗

2) + ⟨∇L(x∗
2), x

∗
1 − x∗

2⟩
+ d∥x∗

2 − x∗
1∥2

− c∥x∗
2 − x∗

1∥2−2p · L(x∗
2)

p. (25)

Combining with L(x∗
1) = L(x∗

2) = 0 and∇L(x∗
2) = 0, Eq. (25) implies

0 ≥ d∥x∗
2 − x∗

1∥2.

Hence ∥x∗
2 − x∗

1∥2 = 0 and x∗
1 = x∗

2.

K.2. Conditions for Convergence of xt

Theorem K.3. Suppose we run gradient descent algorithm to update xt+1 in each iteration as follows:

xt+1 = xt − η · ∇L(x)|x=xt

Assume that∇L(x∗) = 0. If function L is

• (c, d, p)-semi-strongly convex (Def. K.1)
• (α, β, p)-semi-Lipschitiz gradient (Def. I.5)
• (θ1, θ2)-non-critical point (Def. I.6)

• d > c1/2p

θ1(θ1−α)1/p

(
β2 + (α/θp1)

1/(1−p)
)
+ c1/(2−2p)

• θ1 > α1/p

by choosing

η ≤ ξ/(2ζ)

where

ζ :=
θ1

θ1 − α1/p
·
(
β2 + (α/θp1)

1/(1−p)
)

and

ξ := 2(d− c1/2pθ−2
1 ζ − c1/(2−2p)).

we have

∥xt+1 − x∗∥ ≤ (1− γ) · ∥xt − x∗∥,

where γ = 1− ξη/2.
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Proof. We have

∥xt+1 − x∗∥2

= ∥xt+1 − xt + xt − x∗∥2

= ∥xt+1 − xt∥2︸ ︷︷ ︸
A1

+2 ⟨xt+1 − xt, xt − x∗⟩︸ ︷︷ ︸
A2

+∥xt − x∗∥2. (26)

For the first term in Eq. (26), we have

A1 = η2∥∇L(xt)∥2.

Consider xt, x
∗, using (α, β, p)-semi-Lipschitz gradient and∇L(x∗) = 0, we have

∥∇L(xt)∥2

≤ β2∥xt − x∗∥2 + α2∥xt − x∗∥2−2p · L(xt)
p

≤ β2∥xt − x∗∥2 + α2∥xt − x∗∥2−2p · ∥∇L(xt)∥2p/(θ2p1 ), (27)

where the second step follows from non-critical point (Definition I.6). For the last term of the above equation, we have

α2∥xt − x∗∥2−2p · ∥∇L(xt)∥2p/(θ2p1 )

≤ (α/θp1)
2/(2−2p) · ∥xt − x∗∥2 + (α/θp1)

1/p∥∇L(xt)∥2, (28)

where the step follows from a2−2pb2p ≤ a2 + b2.

Thus, Eq. (27) and (28) imply

∥∇L(xt)∥2 ≤
θ1

θ1 − α1/p
·
(
β2 + (α/θp1)

1/(1−p)
)

· ∥xt − x∗∥2.

For the second term in Eq. (26), we have

A2 = 2η⟨∇L(xt), xt − x∗⟩
≤ 2η

(
L(x∗)− L(xt)︸ ︷︷ ︸

≤0

−d∥xt − x∗∥2

+ c∥xt − x∗∥2−2p · L(xt)
p
)

≤ 2η(−d∥xt − x∗∥2 + c∥xt − x∗∥2−2p · L(xt)
p)

≤ (−2ηd+ 2ηc1/(2−2p))∥xt − x∗∥2 + 2ηc1/(2p)L(xt)

≤ (−2ηd+ 2ηc1/(2−2p))∥xt − x∗∥2

+ 2η
c1/2p

θ21
∥∇L(xt)∥2,

where the second step follows from (c, d, p)-semi-strongly convex, the third step follows from L(x∗) − L(xt) ≤ 0, the
fourth step follows from a2−2pb2p ≤ a2 + b2, and the last step is L(xt) ≤ (1/θ21)∥∇L(xt)∥2.

Putting it to the Eq. (26), we have

∥xt+1 − x∗∥2

= A1 +A2 + ∥xt − x∗∥2

≤
(
η2 + 2η

c1/2p

θ21

)
∥∇L(xt)∥2
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+ (1− 2ηd+ 2ηc1/(2−2p))∥xt − x∗∥2

≤ ∥xt − x∗∥2 ·

[
η2 · θ1

θ1 − α1/p

(
β2 +

(
α

θp1

)1/(1−p)
)

−2η

(
d− c1/2p

θ1(θ1 − α)1/p

(
β2 +

(
α

θp1

)1/(1−p)
)

− c1/(2−2p)
)
+ 1
]
.

Let

ζ =
θ1

θ1 − α1/p

(
β2 + (α/θp1)

1/(1−p)
)

and

ξ = 2(d− c1/2pθ−2
1 ζ − c1/(2−2p)).

Then we have

∥xt+1 − x∗∥2

≤ (ζη2 − ξη + 1)∥xt − x∗∥2

≤ (−ξη/2 + 1)∥xt − x∗∥2

≤ (1− γ)∥xt − x∗∥2,

where γ = ξη/2. The second step holds because we choose η ≤ ξ/(2ζ) and hence

ζη2 − ξη ≤ (ξ/2)η − ξη = −ξη/2.

This concludes our proof.

L. Converge to Optimal Cost
In this section, we provide the formal proof that if L is semi-smooth and non-critical point, then the loss converges linearly.

L.1. Conditions for Convergence of L(xt)

Theorem L.1. Suppose we run gradient descent algorithm to update xt+1 in each iteration as follows:

xt+1 = xt − η · ∇L(x)|x=xt

If we assume

• L is (a, b, p)-semi-smooth (Def. I.4),
• L is (θ1, θ2)-non-critical point (Def. I.6),
• θ21 > aθ2−2p

2 ,

using the choice

η ≤ (θ21 − aθ2−2p
2 )/(2bθ22),

then we have

L(xt+1)− L(x∗) ≤ (1− γ)(L(xt)− L(x∗)),

where γ = η(θ21 − aθ2−2p
2 )/2.
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Proof. We start by bounding the consecutive gap between L(xt+1) and L(xt):

L(xt+1)− L(xt)

≤ ⟨∇L(xt), xt+1 − xt⟩+ b∥xt+1 − xt∥2

+ a∥xt+1 − xt∥2−2p · L(xt)
p

= − η∥∇L(xt)∥2 + bη2∥∇L(xt)∥2

+ aη∥∇L(xt)∥2−2p · L(xt)
p

= − η∥Φ(xt, w)(∇wF (xt;w)− g)∥2

+ bη2∥Φ(xt, w)(∇wF (xt;w)− g)∥2

+ aη∥Φ(xt, w)(∇wF (xt;w)− g)∥2−2p · L(xt)

≤ − ηθ21L(xt) + bη2θ22L(xt) + aηθ2−2p
2 L(xt)

= (−ηθ21 + bη2θ22 + aηθ2−2p
2 )L(xt),

where the first step follows from (a, b, p)-semi-smoothness, the third step is due to the identity ∇L(x) =
Φ(x,w)(∇Fw(x;w)− g), the fourth step uses minimum and maximum eigenvalue to give a bound.

This implies that

L(xt+1) ≤ (1− ηθ21 + bη2θ22 + aηθ2−2p
2 )L(xt).

It remains to compute L(xt+1)− L(x∗):

L(xt+1)− L(x∗)

≤ (1− ηθ21 + bη2θ22 + aηθ2−2p
2 )L(xt)− L(x∗)

≤ (1− (θ21 − aθ2−2p
2 )η/2) · L(xt)− L(x∗)

≤ (1− η) · (L(xt+1)− L(x∗)).

This completes the proof.

M. Attack Sketched Gradient
In this section, we consider the setting where the gradient is sketched, i.e., we can only observe a sketched gradient S(g)
where S : Rd → Rbsketch is a sketching matrix. We can also observe the sketching matrix S, hence, our strategy will be
solving the new sketched objective LS(x) = ∥S(∇wF (x,w)) − S(g)∥2 and optimize over the sketched objective. We
remark this is similar to the classical sketch-and-solve paradigm (Clarkson & Woodruff, 2013; Woodruff, 2014). Let
S ∈ Rbsketch×d be a sketching matrix, popular sketching matrices are random Gaussian, Count Sketch (Charikar et al., 2002),
subsampled randomized Hadamard transform (Lu et al., 2013). We impose following assumptions on S.

Assumption M.1. Let τ > 0, for any in u, v ∈ Rd,

∥S(u)− S(v)∥ ≤ τ∥u− v∥.

The above assumption is a standard guarantee given by so-called subspace embedding property (Sarlós, 2006).

Assumption M.2. For any sketching matrix S ∈ Rbsketch×d, we have

0 < γ1 ≤ σ1(S⊤) ≤ . . . ≤ σs(S⊤) ≤ γ2.

For typical sketching matrices, the spectral norm is 1 and it is full rank almost-surely, hence, γ1 > 0 is a reasonable
assumption.
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M.1. What Sketching Implies Semi-smoothness

Lemma M.3. If the sketching mapping S satisfies ∥S(u)−S(v)∥ ≤ τ∥u−v∥ and ∥S∥ ≤ γ2, and F satisfies the conditions
of Lemma J.4, then L(x) := ∥S(∇wF (x;w))−S(g)∥2 is (A,B, 1/2)-semi-smooth where A = 2τβ+2θ2γ2 and B = τ2β.

Proof. For simplicity, let G(x) := ∇wF (x,w). Then the objective function L(x) can be represented in the form of
L(x) = ∥S(G(x))− S(g)∥2. The statement that L(x) is (A,B, 1/2)-semi-smooth is equivalent to

L(y) ≤ L(x) + ⟨∇L(x), y − x⟩+B∥y − x∥2 +A∥y − x∥L(x)1/2.

Define

A1 := ∥S(G(y))∥2 − ∥S(G(x))∥2

+ 2⟨S(G(x))− S(G(y)),S(g)⟩,
A2 := ⟨∇L(x), x− y⟩.

A1 can be bounded as

A1 = ⟨S(G(y))− S(G(x)),

S(G(y)) + S(G(x))− 2S(g)⟩
≤ ∥S(G(y))− S(G(x))∥
· ∥S(G(y)) + S(G(x))− 2S(g)∥

≤ ∥S(G(y))− S(G(x))∥ · ∥S(G(y))− S(G(x))∥
+ ∥S(G(y))− S(G(x))∥ · 2∥S(G(x))− S(g)∥

≤ τ∥G(y)−G(x)∥ · (τ∥G(y)−G(x)∥+ 2L(x)1/2)

= τ2∥G(y)−G(x)∥2 + 2τ∥G(y)−G(x)∥ · L(x)1/2

≤ τ2β∥y − x∥2 + 2τβ∥y − x∥L(x)1/2.

A2 can be bounded as

A2 ≤ ∥∇L(x)∥ · ∥x− y∥
= ∥2(∇xG(x))⊤ · (∇uS(u)

∣∣
u=G(x)

)⊤

· (S(G(x))− S(g))∥ · ∥x− y∥
≤ 2∥Φ(x)∥ ·

∥∥∇uS(u)
∣∣
u=G(x)

∥∥ · ∥S(G(x))− S(g)∥

· ∥x− y∥
≤ 2 · θ2 · γS · ∥S(G(x))− S(g)∥ · ∥x− y∥
= 2 · θ2 · γS · L(x)1/2 · ∥x− y∥.

Let A = 2τβ + 2θ2γS , B = τ2β, and R = B∥y − x∥2 +A∥y − x∥L(x)1/2. Combining the upper bound for A1 and A2,
we conclude that

R ≥ A1 +A2

= ∥S(G(y))∥2 − ∥S(G(x))∥2

+ 2⟨S(G(x))− S(G(y)),S(g)⟩+ ⟨∇L(x), x− y⟩
= ∥S(G(y))− S(g)∥2 − ∥S(G(x))− S(g)∥2

+ ⟨∇L(x), x− y⟩
= L(y)− L(x)− ⟨∇L(x), y − x⟩.
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Hence,

L(y) ≤ L(x) + ⟨∇L(x), y − x⟩+B∥y − x∥2

+A∥y − x∥L(x)1/2.

M.2. What Sketching Implies Non-critical Point

Lemma M.4. If the sketching mapping S satisfies Assumption M.2 and F satisfies Assumption J.3, then L(x) :=
∥S(∇wF (x,w))− S(g)∥2 is (2θ1γ1, 2θ2γ2)-non-critical-point.

Proof. Let G(x) := ∇wF (x;w). Notice that the norm of∇L(x) can be bounded as

∥∇L(x)∥
=
∥∥∇x∥S(G(x))− S(g)∥2

∥∥
=
∥∥∥2(∇xG(x))⊤ · (∇uS(u)

∣∣
u=G(x)

)⊤ · (S(G(x))− S(g))
∥∥∥

=
∥∥2Φ(x,w) · S⊤ · (S(G(x))− S(g))

∥∥
Hence we conclude that

(2θ1γ1)
2L(x) ≤ ∥∇L(x)∥2 ≤ (2θ2γ2)

2L(x).
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