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Abstract

Bayesian deep learning seeks to equip deep neural networks with the ability to pre-
cisely quantify their predictive uncertainty, and has promised to make deep learning
more reliable for safety-critical real-world applications. Yet, existing Bayesian
deep learning methods fall short of this promise; new methods continue to be
evaluated on unrealistic test beds that do not reflect the complexities of downstream
real-world tasks that would benefit most from reliable uncertainty quantification.
We propose a set of real-world tasks that accurately reflect such complexities and
are designed to assess the reliability of predictive models in safety-critical scenarios.
Specifically, we curate two publicly available datasets of high-resolution human
retina images exhibiting varying degrees of diabetic retinopathy, a medical condi-
tion that can lead to blindness, and use them to design a suite of automated diagnosis
tasks that require reliable predictive uncertainty quantification. We use these tasks
to benchmark well-established and state-of-the-art Bayesian deep learning methods
on task-specific evaluation metrics. We provide an easy-to-use codebase for fast
and easy benchmarking following reproducibility and software design principles.
We provide implementations of all methods included in the benchmark as well as
results computed over 100 TPU days, 20 GPU days, 400 hyperparameter configu-
rations, and evaluation on at least 6 random seeds each. A full version of this paper
is available at https://openreview.net/pdf?id=jyd4Lyjr2iB.

1 Introduction

Bayesian deep learning has been applied successfully to a wide range of real-world prediction
problems such as medical diagnosis [8, 27, 35, 64], computer vision [28, 29, 31], scientific discov-
ery [36, 41], and autonomous driving [2, 17, 26, 29–31, 40].

Despite the demonstrated usefulness of Bayesian deep learning for such practical applications and a
growing literature on inference methods [6, 14, 19, 21, 45, 46, 51, 60, 65], there exists no standardized
benchmarking task that reflects the complexities and challenges of safety-critical real-world tasks
while adequately accounting for the reliability of models’ predictive uncertainty estimates.

To make meaningful progress in the development and successful deployment of reliable Bayesian
deep learning methods, we need easy-to-use benchmarking tasks that reflect the real world and hence
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serve as a legitimate litmus test for practitioners that aim to deploy their models in safety-critical
settings. Further, such tasks ought to be usable without the extensive domain expertise often necessary
for appropriate experiment design and data preprocessing. Lastly, any such benchmarking task must
include evaluation methods that test for predictive performance and assess different properties of
models’ predictive uncertainty estimates, while taking into account application-specific constraints.

In this paper, we propose a set of realistic safety-critical downstream tasks that respect these desiderata
and use them to benchmark well-established and state-of-the-art Bayesian deep learning methods. To
do so, we consider the problem of using machine learning to detect diabetic retinopathy, a medical
condition considered the leading cause of vision impairment and blindness [53]. Unlike in prior works
on diabetic retinopathy detection, the benchmarking tasks presented in this paper are specifically
designed to assess the reliability of machine learning models and the quality of their predictive
uncertainty estimates using both aleatoric and epistemic uncertainty estimates (Appendix B.2).
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threshold: γ
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Figure 1: Automated Diagnosis Pipeline. For a
given input, a model provides a prediction and a
corresponding uncertainty estimate; if the estimate
is below a referral rate γ (indicating low uncer-
tainty) the diagnosis is processed without further
review; otherwise, it is referred to an expert.

Medical diagnosis problems are particularly well-
suited to assess reliability due to the severe harm
caused by predictive models that make confident but
poor predictions (for example, when a disease is not
recognized). As a general desideratum, we want a
model’s predictive uncertainty to correlate with the
correctness of its predictions. Good predictive uncer-
tainty estimates can be a fail-safe against incorrect
predictions. If a given data point might result in an in-
correct prediction because it is meaningfully different
from data in the training set—for example, because
it shows signs of the disease not captured there, ex-
hibits visual artifacts, or was obtained using different
measurement devices—a good predictive model will
express a high level of predictive uncertainty and flag
the example for further review by a medical expert.

Contributions. We present an easy-to-use, expert-
guided, open-source suite of diabetic retinopathy de-
tection benchmarking tasks for Bayesian deep learn-
ing. In particular, we design safety-critical downstream tasks from publicly available datasets. On
these downstream tasks, we evaluate well-established and state-of-the-art Bayesian and non-Bayesian
methods on a set of task-specific reliability and performance metrics. Lastly, we provide a modular
and extensible implementation of the benchmarking tasks and methods, as well as pre-trained models
obtained from an extensive hyperparameter optimization over more than 400 total configurations and
evaluation, using over 100 TPU days and 20 GPU days of compute.3

2 Benchmarking Tasks for Diabetic Retinopathy Detection

Below we present two real-world diabetic retinopathy detection problems and describe how we design
corresponding prediction tasks. We construct our tasks using retina images from the EyePACS [13]
and APTOS [3] datasets; see Appendix A.1 for further information on these source datasets. For
further details on task dataset construction, see Appendix A.2.

2.1 Diabetic Retinopathy Detection under Severity Shift

Although diabetes is increasingly widespread, cases of sight-threatening diabetic retinopathy are
still rare, and scans of retinas with no or mild retinopathy are more easily obtainable. As a result,
predictive models for detecting diabetic retinopathy may be trained on only a very small number of
retina images showing signs of severe or proliferative retinopathy. We design a prediction task to
simulate this setting, by training models on retina images showing signs of at most moderate diabetic
retinopathy, and evaluating them on a Severity Shift dataset composed of retina images showing
signs of severe or proliferative diabetic retinopathy. Given that many signs of moderate diabetic
retinopathy are similar in appearance to signs of severe or proliferative diabetic retinopathy (just
weaker), we would expect a good predictive model to be able to correctly classify the latter, but to

3Code to reproduce results and benchmark new methods at rebrand.ly/bdl-drd-github.
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exhibit increased predictive uncertainty. There are certain features of diabetic retinopathy progression
that are unique to more severe cases, such as vitreous hemorrhage, or bleeding into the vitreous
humor [12]. However, we consider uncertainty-aware downstream tasks that tolerate such unfamiliar
cases (cf. Appendix C.6).

2.2 Diabetic Retinopathy Detection under Country Shift

In countries without extensive screening, retina scans for training predictive models are scarce. Hence,
a predictive model may be trained on images collected in the United States—where many scans are
performed—and used to evaluate scans from another country, where scans are rarer and performed
using different medical devices. We design a corresponding Country Shift task, in which we train
models on retina images from the US-collected EyePACS dataset and evaluate them on images from
the Indian APTOS dataset. This allows us to evaluate the reliability of predictive models for settings
where training and evaluation data are not obtained from the same patient population or collected
with the same medical equipment.

2.3 Downstream Task: Selective Prediction and Expert Referral

In real-world settings where the evaluation data may be sampled from a shifted distribution, incorrect
predictions may become increasingly likely. To account for that possibility, predictive uncertainty esti-
mates can be used to identify datapoints where the likelihood of an incorrect prediction is particularly
high and refer them for further review as described in Figure 1. We consider a corresponding selective
prediction task, where the predictive performance of a given model is evaluated for varying expert
referral rates. That is, for a given referral rate of τ ∈ [0, 1], we refer the τ proportion of evaluation
images with the highest uncertainty estimates to a medical professional for further review. The model
is assessed on its predictions on the remaining (1 − τ) proportion of images. By repeating this
process for all possible referral rates and assessing the model’s predictive performance on the retained
images, we estimate how reliable it would be in a safety-critical downstream task, where predictive
uncertainty estimates are used in conjunction with human expertise to avoid harmful predictions.

To assess how well different models’ predictive uncertainty estimates can be used to separate correct
from incorrect diagnoses, we perform selective prediction on three different evaluation settings for
the prediction problems described in Sections 2.1 and 2.2 to account for the possibility that the
evaluation dataset may contain samples from the in-domain distribution, a shifted distribution, or both.
Appendix C.6 discusses the selective prediction task in further detail including its accommodation of
out-of-distribution examples, and best- and worst-case uncertainty estimates for the task.

2.4 Model Diagnostic: Predictive Uncertainty Histograms

We may also investigate how a model’s predictive uncertainty estimates vary with respect to the
ground-truth clinical label (0-to-4). For each task (Country or Severity Shift) and each uncertainty
quantification method (cf. Appendix B.3), we bin examples by their ground-truth clinical label. Then,
for each (task, method, clinical label) tuple, we plot the distribution of predictive uncertainty estimates
for correctly and incorrectly predicted examples (in blue and red, respectively). See Appendix D.1
for further setup details and plots for both tasks. A model that produces reliable uncertainty estimates
should assign low predictive uncertainty to examples that it classifies correctly (the blue distribution
should have most of its mass near x = 0) and high predictive uncertainty to examples that it classifies
incorrectly (the red distribution should have its mass concentrated at a higher x-value).

3 Benchmark

The aim of this benchmark is to adequately represent the challenges of real-world distributional shift,
and to rigorously assess the reliability of Bayesian deep learning methods. To do so, we implement a
suite of established and state-of-the-art methods, and evaluate them using selective prediction on the
Severity and Country Shift tasks. We additionally examine predictive uncertainty histograms for each
task, method, and ground-truth clinical label (cf. Section 2.4, Appendix D.1) to determine if methods
have particularly good or bad uncertainty estimates at particular severity levels.

We provide descriptions of each method in Appendix B.3 and uncertainty estimates are obtained as
described in Appendix B.2. All experiments use a ResNet-50 architecture [22]. See Appendix C
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(a) ROC: In-Domain
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(c) Selective Prediction
Accuracy: In-Domain
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(d) Selective Prediction
Accuracy: Severity Shift

Figure 2: Severity Shift. We jointly assess model predictive performance and uncertainty quantification on
the in-domain test dataset composed only of cases with either no, mild, or moderate diabetic retinopathy, and
the Severity Shift evaluation set composed only of severe and proliferative cases. Left: The receiver operating
characteristic curve (ROC) for (a) in-domain diagnosis and for (b) a joint dataset composed of examples from
both the in-domain and Severity Shift evaluation sets. The dot in black denotes the NHS-recommended 85%
sensitivity and 80% specificity ratios [62]. Right: Selective prediction on accuracy in the (c) in-domain and (d)
Severity Shift settings. Shading denotes standard error computed over six random seeds. See Section 3.1.

0.0 0.2 0.4 0.6 0.8
False Positive Rate

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) ROC: In-Domain

0.0 0.2 0.4 0.6 0.8
False Positive Rate

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) ROC: Country Shift
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(c) Selective Prediction
AUC: In-Domain
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(d) Selective Prediction
AUC: Country Shift

Figure 3: Country Shift. We jointly assess model predictive performance and uncertainty quantification on
both in-domain and distributionally shifted data. Left: The receiver operating characteristic curve (ROC) for
in-population diagnosis on the (a) EyePACS [13] test set and for (b) changing medical equipment and patient
populations on the APTOS [3] test set. The dot in black denotes the NHS-recommended 85% sensitivity and
80% specificity ratios [62]. Right: selective prediction on AUC in the (c) EyePACS [13] and the (d) APTOS [3]
settings. Shading denotes standard error computed over six random seeds. See Section 3.2.

for details on the network architecture, as well as on hyperparameter tuning and evaluation. In Ap-
pendix D.4, we investigate other robustness and uncertainty metrics including expected calibration
error and out-of-distribution detection AUC, and report full results.

3.1 Severity Shift

On the Severity Shift task (Figure 2, Table 2 in Appendix D.4), models are trained on EyePACS
images that show signs of at most moderate diabetic retinopathy. We assess their ability to generalize
to images showing signs of severe or proliferative retinopathy. Surprisingly, we find that models
generalize well from cases with no worse than moderate diabetic retinopathy (in-domain) (Figure 2(a))
to severe cases (Figure 2(b)), improving their AUC under the distribution shift.

Methods Generalize Reasonably Well Under Severity Shift. Reliable predictive uncertainty
estimates correlate with predictive error, and therefore we would expect a model’s performance (e.g.,
accuracy or AUC) to increase as more examples on which the model exhibits high uncertainty are
referred to an expert. On both the in-domain and Severity Shift evaluation sets (Figures 2(c) and (d)),
models demonstrate reasonable uncertainty in that accuracy monotonically increases as τ increases.
This highlights two ways that practitioners may use selective prediction to prepare models for a
real-world deployment in the presence of distribution shifts. First, given a performance target (e.g.,
≥ 95% accuracy) the referral curve can be used to determine the minimum τ achieving this target,
estimating a medical experts’ workload. Second, for a maximum acceptable referral rate (e.g., a
clinic has medical experts to handle referral of τ ≤ 20% of patients) the referral curve can be used to
determine the optimal τ value and the corresponding performance. For monotonically increasing
referral curves, the optimal τ is uniquely the maximum acceptable referral rate.

Taking into Account Epistemic Uncertainty Can Improve Reliability. On the Severity Shift
task (Figure 2(d)) many models achieve near-perfect accuracy well before all examples have been
referred. For example, MC DROPOUT, which incorporates both epistemic and aleatoric uncertainty
(cf. Appendix B.2), achieves 100% predictive accuracy near the 50% referral rate—nearly 20% lower
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than the referral rate at which a deterministic neural network (MAP), which only represents aleatoric
uncertainty, achieves this level of accuracy. Other variational inference methods underperform MAP,
underscoring the importance of continued work on approximate inference in BNNs.

Predictive Uncertainty Histograms Identify Harmful Uncertainty Quantification. In Figure 8
(Appendix D.1), we find that MAP, RANK-1, and MFVI generate worse uncertainty estimates than
other methods on the shifted data (labels 3 and 4); many of their incorrect predictions are assigned
low predictive uncertainty (i.e., the red distribution is concentrated near 0). These false negatives
with low uncertainty are particularly dangerous in automated diagnosis settings (cf. Figure 1), as a
medical expert would not be able to catch the model’s failure to recognize the condition.

3.2 Country Shift

In the Country Shift task (Figure 3, Table 1 in Appendix D.4), we consider the performance of models
trained on the US EyePACS [13] dataset and evaluated under distributional shift on the Indian APTOS
dataset [3]. The left two plots of Figure 3 present the ROC curves of methods evaluated on the (a)
in-domain and (b) Country Shift evaluation datasets. The black dot in Figures 3(a) and (b) denotes
the minimum sensitivity–specificity threshold for the deployment of automated diabetic retinopathy
diagnosis systems set by the British National Health Service (NHS) [62]. On the in-domain test
dataset, only the MC DROPOUT variants meet the NHS standard; on the APTOS dataset, essentially
all methods surpass the standard.4 Hence, practitioners using only the ROC curve and its AUC
(cf. Table 1 in Appendix D.4) might conclude that their model generalizes under the distribution
shift although the ROC curve provides no information on the application of uncertainty estimates to
real-world scenarios (cf. Figure 1).

Selective Prediction Can Indicate Failures in Uncertainty Estimation. Unlike the ROC curve,
the selective prediction metric conveys how a model would perform in an automated diagnosis
pipeline in which the reliability of models’ uncertainty estimates directly impacts performance
(cf. Figure 1). Recall that if a model generates reliable predictive uncertainty estimates, the AUC
should increase as more patients with uncertain predictions are referred for expert review. This
mechanism is illustrated well by the application of MFVI to the Country Shift task (Figure 3(d) and
Table 1), since the AUC improves from an initial 91.4% up to 93.8% when referring 50% of the
patients, but then deteriorates as the model is forced to refer patients on which it is both certain and
correct. In contrast, other models’ AUCs trend downwards; using uncertainty to refer patients actively
hurts model performance on this shifted dataset.

Different Prediction Tasks Yield Different Method Rankings. In Figure 3(c), variational infer-
ence methods, including MC DROPOUT, FSVI, and DEEP ENSEMBLE, outperform MAP inference. This
highlights that rankings are task-dependent, and underscores the importance of generic evaluation
frameworks to enable rapid benchmarking on many tasks.

4 Conclusions

The deployment of modern machine learning models in safety-critical real-world settings necessitates
trust in the reliability of the models’ predictions.

To encourage the development of Bayesian deep learning methods that are capable of generating
reliable uncertainty estimates about their predictions, we introduced a set of safety-critical real-world
clinical prediction tasks, which highlight various shortcomings of existing uncertainty quantification
methods. We demonstrate that by taking into account the quality of predictive uncertainty estimates,
selective prediction can help identify whether methods might fail when deployed as part of an
automated diagnosis pipeline (cf. Figure 1), whereas standard metrics such as ROC curves cannot.

While no single set of benchmarking tasks is a panacea, we hope that the tasks and evaluation methods
presented in this paper will significantly lower the barrier for assessing the reliability of Bayesian
deep learning methods on safety-critical real-world prediction tasks.

4We investigate this in Appendix D.4 and find that class proportions do not account for the improved
predictive performance on APTOS, implying other contributing factors such as demographics or camera type.
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Appendix A Task Construction

A.1 Source Datasets

(a) Retina images exhibiting non-sight-threatening diabetic retinopathy (y = 0).

(b) Retina images exhibiting sight-threatening diabetic retinopathy (y = 1).

Figure 4: Samples of retina scans from the EyePACS dataset showing varying degrees of diabetic retinopathy.

No DR (73.7%)
Mild DR (7.0%)
Moderate DR (14.8%)
Severe DR (2.4%)
Proliferative DR (2.2%)

(a) EyePACS [13].

No DR (49.3%)
Mild DR (10.1%)
Moderate DR (27.3%)
Severe DR (5.3%)
Proliferative DR (8.1%)

(b) APTOS [3].

Figure 5: Data class labels.

EyePACS Dataset. We construct training datasets for different tasks
from the EyePACS dataset, previously used for the Kaggle Diabetic
Retinopathy Detection Challenge [13]. It contains high-resolution
labeled images of human retinas exhibiting varying degrees of diabetic
retinopathy. The dataset consists of 35,126 training, 10,906 validation,
and 42,670 test images, each an RGB image of a human retina graded
by a medical expert on the following scale: 0 (no diabetic retinopathy), 1
(mild diabetic retinopathy), 2 (moderate diabetic retinopathy), 3 (severe
diabetic retinopathy), and 4 (proliferative diabetic retinopathy).

APTOS Dataset. To construct tasks that assess model performance
under distribution shift, we use the APTOS 2019 Blindness Detection
dataset [3]. The dataset also contains labeled images of human retinas
exhibiting varying degrees of diabetic retinopathy, but was collected
in India, from a different patient population, using different medical
equipment. We use 80% of the images (2,929 images) as a test set and
the other 20% (733 images) as a secondary validation set. Moreover,
the images are significantly noisier than the images in the EyePACS
dataset, with distinct visual artifacts (cf. Figure 7, Appendix C.8). Each
image was graded on the same 0-to-4 scale as the EyePACS dataset.

Prediction Targets. We follow Leibig et al. [35] and binarize all examples from both the EyePACS
and APTOS datasets by dividing the classes up into sight-threatening diabetic retinopathy—defined
as moderate diabetic retinopathy or worse (classes {2, 3, 4})—and non-sight-threatening diabetic
retinopathy—defined as no or mild diabetic retinopathy (classes {0, 1}). By international guidelines,
this is the threshold at which a case should be referred to an ophthalmologist [63]. Example EyePACS
retina images from the two classes are shown in Figure 4. Reflecting real-world challenges, the
datasets are unbalanced—e.g., for EyePACS, only 19.6% of the training set and 19.2% of the test set
have a positive label—and images have visual artifacts and noisy labels (some labels are incorrect).

Data Preprocessing. Data preprocessing on examples from both the EyePACS and APTOS datasets
follows the winning entry of the Kaggle Challenge [13]: Images are rescaled such that retinas have a
radius of 300 pixels, are smoothed using local Gaussian blur, and finally, are clipped to 90% size to
remove boundary effects. Examples of original and corresponding processed images are provided in
Figure 6 (Appendix C.8). We conduct an empirical study investigating how varying the strength of the
Gaussian blur smoothing affects downstream performance and uncertainty quality in Appendix D.6.
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A.2 Task Datasets

A.2.1 Severity Shift

For this prediction task, we partition the EyePACS dataset into a subset containing all retina images
labeled as no, mild, or moderate diabetic retinopathy (original classes {0, 1, 2}) and a subset of retina
images labeled as exhibiting signs of severe or proliferative diabetic retinopathy (original classes
{3, 4}).
Next, the samples in each subset are binarized as described in Appendix A.1: the subset of retina
images showing signs of at most moderate diabetic retinopathy (subset “moderate”) contains images
of binarized classes {0, 1}; and the subset of retina images showing signs of severe or proliferative
diabetic retinopathy (subset “severe”) only contains the binarized class 1. This results in 33,545
images in the training set, and 40,727 and 3,524 images in the in-domain and distributionally shifted
evaluation sets, respectively.

A.2.2 Country Shift

In the Country Shift task, we train on EyePACS data and use the APTOS data as a distributionally
shifted evaluation dataset. We use the entire training and test data provided in the EyePACS dataset
and convert the task into binary classification: we assign class labels 0 to images exhibiting “no or
mild signs of diabetic retinopathy” (original classes {0, 1}) and 1 to images exhibiting “moderate or
worse signs of diabetic retinopathy” (original classes {2, 3, 4}). This results in 35,126 images in the
training set, and 42,670 and 2,929 images in the in-domain and distributionally shifted evaluation
sets, respectively.
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Appendix B Background

B.1 Related Work

This benchmark builds on prior works that demonstrated the usefulness of predictive uncertainty
estimates in diabetic retinopathy detection and related downstream tasks [35]. We significantly extend
the empirical evaluation in Leibig et al. [35] by designing new prediction problems and corresponding
safety-critical downstream tasks for diabetic retinopathy detection, benchmarking a wide array of
Bayesian deep learning methods, and providing a modular, extensible, and easy-to-use codebase. We
also significantly extend Filos et al. [16] (of which this paper is a direct extension; with contributions
from some of the authors), which does not consider severity shifts, only compares two variational
inference methods, uses an outdated neural network architecture (with only ≈10% of the parameters
of the ResNet-50 architecture used in this work), and considers only a small subset of the evaluation
procedures included in this benchmark (cf. Appendix D for the full set of results).

Previous works have evaluated methods by predictive performance and quality of their predictive
uncertainty estimates on curated datasets such as CIFAR-10 and FashionMNIST [46, 47, 23, 51].
Some prior works provide datasets and benchmarks for robustness and uncertainty quantification
in real-world settings but have significant shortcomings. Le et al. [34] considers object detection
using a real-world dataset [20] but benchmarks only two methods, neither of which can quantify
epistemic uncertainty (cf. Appendix B.2), and does not consider distributionally shifted evaluation
data. [5, 15] use methods which quantify both epistemic and aleatoric uncertainty, and consider
distribution shifts, but use performance metrics which do not assess quality of uncertainty estimates,
such as average precision and log-likelihood (cf. Section 3.2). Finally, Koh et al. [32] considers
real-world datasets in domain adaptation problems, but restrictively assumes that the training data
is composed of multiple training distributions with domain labels, and does not take into account
models’ predictive uncertainty.

In contrast, our benchmark (i) considers real-world safety-critical tasks and accompanying uncertainty-
aware metrics in an important application domain, (ii) is composed of large amounts of high-
dimensional data (>80 GB), (iii) compares a larger set of methods than prior works and incorporates
both aleatoric and epistemic uncertainty, and is implemented in adherence to the Uncertainty Baselines
repository5 practices for easy future use and extension (see Appendix C.1), making it easier to
benchmark other Bayesian deep learning methods not only on the tasks presented but also on a range
of other datasets.

B.2 Uncertainty Estimation

Predictive models’ total uncertainty can be decomposed into aleatoric and epistemic uncertainty. A
model’s aleatoric uncertainty is an estimate of the uncertainty inherent in the data (e.g., due to noisy
inputs or targets), whereas a model’s epistemic uncertainty is an estimate of the uncertainty due to
constraints on the model (e.g., due to model misspecification) or the training process (e.g., due to
convergence to bad local optima) [10]. Optimal uncertainty estimates would be perfectly correlated
with the model error. Hence, because both aleatoric and epistemic uncertainty may contribute to
an incorrect prediction, total uncertainty is our uncertainty measure of choice. For a model with
stochastic parameters Θ, pre-likelihood outputs f(X;Θ), and a likelihood function p(y∗ |x∗; θ),
the model’s predictive uncertainty can be decomposed as

H(E[p(y∗ | f(x∗;θ))])︸ ︷︷ ︸
Total Uncertainty

= E[H(p(y∗ | f(x∗;θ)))]︸ ︷︷ ︸
Aleatoric Uncertainty

+ I(y∗; Θ)︸ ︷︷ ︸
Epistemic Uncertainty

, (B.1)

where the expectation is taken with respect to the distribution over the model parameters,H(·) is the
entropy functional, and I(y∗; Θ) is the mutual information between the model parameters and its
predictions [9, 54].

In binary classification settings with classes {0, 1}, the total predictive uncertainty is given by

H(E[p(y∗ | f(x∗;θ))]) = −
∑

c∈{0,1}

E[p(y∗ = c | f(x∗;θ))] logE[p(y∗ = c | f(x∗;θ))], (B.2)

5See https://github.com/google/uncertainty-baselines.
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where f(x∗;θ) are logits and p(y∗ = c | f(x∗;θ)) is a binary cross-entropy likelihood function. The
total predictive uncertainty is high when either the aleatoric uncertainty is high (e.g., because the
input is noisy), or when the epistemic uncertainty is high (e.g., because the model has many possible
explanations for the input). In practice, the total predictive uncertainty H(E[p(y∗ | f(x∗;θ))]) is
computed with a Monte Carlo estimator E[p(y∗ | f(x∗;θ))] ≈ 1

S

∑S
i p(y∗ | f(x∗;θ(i))), where

{θ(i)}Si=1 are sampled from some distribution over the network parameters, and p(y∗ | f(x∗;θ(i)))
is a deterministic forward pass given parameter realization θ(i).

The Monte Carlo estimator used to computed the total uncertainty is biased but consistent and
commonly used in practice [6, 10, 19]. A model’s aleatoric uncertainty, E[H(p(y∗ | f(x∗;θ)))] is
estimated analogously, and the epistemic uncertainty can then be computed as the difference between
the total and the aleatoric predictive uncertainty estimates.

Related Work in Uncertainty Estimation. Some other works consider uncertainty estimation
in medical imaging. [59] uses test-time augmentation for uncertainty estimation, but captures only
aleatoric uncertainty. [43, 50] considers uncertainty estimation with a Monte Carlo dropout model
but does not isolate how their various measures of uncertainty correspond to epistemic or aleatoric
uncertainty. None of the above works contribute and open-source tasks designed to emulate real-world
distribution shifts, nor do they implement and benchmark a significant number of baseline uncertainty
quantification models considering both aleatoric and epistemic uncertainty.

B.3 Uncertainty Quantification Methods

Estimating a model’s predictive uncertainty in terms of both aleatoric and epistemic uncertainty
requires a distribution over model predictions. Such a distribution over model predictions can
be obtained by treating the parameters of a neural network as random variables and inferring a
posterior distribution p(θ | D)—a distribution over the network parameters conditioned on a set
of training data D = (XD,yD)—according to the rules of Bayesian inference. Neural networks
with such distributions over the network parameters—referred to as a Bayesian neural networks
(BNN)—define distribution over predictions and are able to capture both aleatoric and epistemic
uncertainty [18, 37, 44]. Unfortunately, computing a posterior distribution over the parameters of a
neural network according to the rule of Bayesian inference is analytically intractable and requires
the use of approximate inference methods [18, 21, 24, 44, 49]. Below, we describe the baseline
and state-of-the-art methods for which we implement standardized and optimized runscripts in the
benchmark, which are readily extensible for experimentation and deployment in application settings.

B.3.1 Maximum A Posteriori Estimation in Bayesian Neural Networks

As an alternative to inferring a posterior distribution over neural network parameters, maximum a
posteriori (MAP) estimation yields network parameter values equal to the mode of the exact posterior
distribution. For a prior distribution over network parameters with zero mean and precision λ, the
maximum a posteriori estimate is equal to the solution of the `2-regularized optimization problem
argminθ{− log p(yD | f(X;θ)) + λ||θ||22}, and as such is equivalent to parameter values obtained
by training a neural network with weight decay. Since MAP estimation yields a point estimate of
the MAP parameters, the MAP solution defines a deterministic neural network and is thus unable
to capture any epistemic uncertainty. In classification tasks, they represent aleatoric uncertainty
estimates via the predicted class probabilities [30]. We use neural networks with MAP estimation as a
baseline for the benchmark.

B.3.2 Variational Inference in Bayesian Neural Networks

Variational inference is an approximate inference method that seeks to sidestep the intractability
of exact posterior inference over the network parameters by framing posterior inference as a varia-
tional optimization problem. In particular, variational inference in neural networks seeks to find an
approximation to the posterior distribution over parameters by solving the optimization problem

argmaxq∈Q{Eq[log p(yD | f(XD;θ))]− DKL(q ‖ p)}, (B.3)
where Q is a variational family of distributions and p is a prior distribution.

Gaussian Mean-Field Variational Inference. If p =̇ pΘ and q =̇ qΘ are distributions over pa-
rameters, Q is the family of mean-field (i.e., fully-factorized) Gaussian distributions, and the prior
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distribution over parameters pΘ is also a diagonal Gaussian, the resulting variational objective is
amenable to stochastic variational inference and can be optimized using stochastic gradient meth-
ods [6, 21, 24, 25, 58]. Henceforth, we refer to BNN inference methods that make these variational
assumptions as mean-field variational inference. To optimize this objective, the expectation is esti-
mated using Monte Carlo sampling and the network parameters are reparameterized as Θ =̇µ+σ�ε
with ε ∼ N (0, I). Throughout, we use the flipout estimator [60] to reduce the variance of the gradient
estimates, and temper the Kullback-Leibler divergence term in the variational objective [61].

Radial-Gaussian Mean-Field Variational Inference. Radial-Gaussian mean-field variational
inference [14] uses the same variational objective, prior, and variational distribution as standard
Gaussian mean-field variational inference, but uses an alternative gradient estimator to obtain an
improved signal-to-noise ratio in the gradient estimates. Specifically, the network parameters are
reparameterized as Θ =̇µ+ σ � ε

||ε||2 · |r| with ε ∼ N (0, I) and r ∼ N (0, 1).

Function-Space Variational Inference. Rudner et al. [51] proposed a tractable function-space
variational objective for Bayesian neural networks. If p =̇ pf([XD,XI ];Θ) and q =̇ qf([XD,XI ];Θ) are
distributions over functions evaluated at the training inputs XD and at a set of inducing inputs XI ,Q
is the family of distributions over functions induced by some distribution over network parameters,
and the Kullback-Leibler divergence between distributions over functions evaluated at [XD,XI ]
is approximated by a linearization of the neural network mapping, then the resulting variational
objective is amenable to stochastic variational inference [51, 52]. In our benchmark, we define a
Gaussian mean-field distribution over the final layer of the neural network and reparameterize the
parameters as Θ =̇µ+ σ � ε with ε ∼ N (0, I).

Monte Carlo Dropout. Gal and Ghahramani [19] showed that training a deterministic neu-
ral network with `2- and dropout regularization [56], that is, solving the optimization problem
argminθ{−Eq[log p(yD | f(X;θ))] + λ||θ||22}, where qΘ is the distribution over parameters ob-
tained by applying dropout with a given dropout rate, approximately corresponds to variational
inference in a Bayesian neural network. To sample from the approximate posterior predictive distri-
bution, dropout is applied to the deterministic network parameters. To optimize the objective above,
the expectation is estimated using a single Monte Carlo sample (i.e., by applying dropout).

Rank-1 Parameterization. Dusenberry et al. [11] propose a rank-1 parameterization of Bayesian
neural networks, where each weight matrix involves only a distribution on a rank-1 subspace, that is,
each stochastic weight matrix is defined as W′

k = Wk � rks>k , where Wk is a deterministic set of
weights, and rk and sk are random vectors of parameters. Variational distributions over rk and sk and
a Dirac delta distribution over Wk for all layers k are obtained by optimizing a variational objective.

B.3.3 Model Ensembling

Deep Ensembles. A deep ensemble [33] is a mixture of multiple independently-trained deterministic
neural networks. As such, unlike BNNs, deep ensembles do not explicitly infer a distribution over the
parameters of a single neural network. Instead, they marginalize over multiple deterministic models
to obtain a predictive distribution that captures both aleatoric and epistemic uncertainty. We construct
deep ensembles from multiple MAP neural networks trained with different random seeds.

Ensembles of Bayesian Neural Networks. Ensemble of Bayesian neural networks [16, 51, 55]
are mixtures of multiple independently-trained Bayesian neural networks. They can account for the
possibility that any individual approximate posterior distribution obtained via variational inference
may be a poor approximation to the exact posterior distribution and may hence yield a poor predictive
distribution. A common issue in the Bayesian deep learning literature is that ensembles are frequently
compared to single models, often due to computational constraints. In our benchmark, we provide a
unified comparison and construct ensembles for all predictive models, including BNNs.
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Appendix C Implementation, Training, and Evaluation Details

C.1 Benchmark Software Design Principles

Reproducibility in machine learning is often hampered by the wide variety of experimental artifacts
made available in papers. Perhaps the most common approach is a GitHub dump of experimental
code lacking documentation and testing. This common practice fails to enforce a rigorous standard
across works: for example, experiment protocol on cross-validation, access to distributionally shifted
validation data, and various tweaks in optimization such as learning rate annealing.

The Diabetic Retinopathy Detection Benchmark is implemented in the open-sourced Uncertainty
Baselines [42] repository. All models implemented in this repository conform to explicit design
principles intended to facilitate easy extension and reproduction of dataset loading utilities, metrics,
and evaluation.

Extensibility. Each model baseline (e.g., MAP, MC DROPOUT, FSVI) is implemented in its own
self-contained experiment pipeline. This minimizes external dependencies, and therefore provides
researchers and practitioners an immediate starting point for experimenting with a particular model.
Datasets are implemented as lightweight wrappers around TensorFlow Datasets [57]. Users that wish
to extend our benchmark with new datasets (e.g., clinical practitioners that wish to apply our methods
on their own diabetic retinopathy tasks) can follow our custom implementation of the APTOS [3] data
loader, which constructs the dataset from raw images and a CSV containing metadata, and applies the
preprocessing used by the winner of the EyePACS Kaggle competition [13]. Dataset implementation
can be found here.6

Framework Agnosticity. The Diabetic Retinopathy Detection Benchmark is framework-agnostic.
For example, FSVI is implemented in JAX, a variant of MC Dropout is in PyTorch [48] (though we use
in this work a TensorFlow variant to simplify TPU tuning), and other models in raw TensorFlow [1].
This interoperability means that users can easily incorporate our datasets and evaluation utilities,
including an arrangement of robustness and uncertainty metrics such as selective prediction, out-of-
distribution detection, and expected calibration error.

Reproducibility. All models include testing, and all results are reported over multiple seeds. For
each method (e.g., MC DROPOUT or MFVI), downstream task (Country and Severity Shift), and tuning
assumption (whether or not distributionally shifted validation data is available for tuning), we test
over at least 32 hyperparameter configurations. Instead of using a domain-specific and limiting
tuning framework for this, we simply provide hyperparameters through Python flags, and implement
for convenience of the user the ability to specify automatic logging to TensorBoard and Weights &
Biases, an increasingly popular deep learning experiment management service [4].

C.2 Network Architecture

We use a ResNet-50 architecture for all experiments [22]. A sigmoid transformation is applied to the
final linear layer of all networks to obtain class probabilities corresponding to the outcomes of the
binary classification problems described in Appendix A.1.

C.3 Class Imbalance Adjustment

We compensate for the class imbalance discussed in Appendix A.1 by reweighing the cross-entropy
portion of each objective function, placing more weight on the minority class based on the relative
class frequencies in each mini-batch of M samples, p(k)mini-batch [35]:

L = − 1

KM

M∑
i=1

Lcross-entropy(i)

p(k)mini-batch
, (C.4)

where k is the class of sample i. We also tried using constant class weights, but found that this
resulted in lower overall performance.

6https://github.com/google/uncertainty-baselines/tree/main/uncertainty_baselines/datasets
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C.4 Mean-Field Variational Inference Implementation

We employ a set of standard optimizations to improve training stability for the MFVI and RADIAL-
MFVI methods. We fix the mean of the prior to that of the variational posterior, which causes the KL
term to only penalize the standard deviation of the weight posterior, and not its mean. We use flipout
for lower-variance gradients in convolutional layers and the final dense layer [60], and KL annealing
using a cyclical schedule, following [7]. Finally, for RADIAL-MFVI, the prior’s standard deviation is
by default set to the He initializer standard deviation

√
2/fan_in [44].

C.5 Receiver Operating Characteristic Curves

The ROC curve (e.g., see Figure 3(a) and (b)) illustrates the diagnostic ability of a binary classification
system as a function of the discrimination threshold. The curve is created by plotting the true positive
rate (that is, the sensitivity) against the false positive rate (that is, 1− specificity). The quality of the
ROC curve can be summarized by the area under the curve, which ranges from 0.5 (chance level) to
1.0 (perfect classification).

C.6 Selective Prediction Curves

Selective prediction tolerates out-of-distribution examples. For example, even if unfamiliar vitreous
hemorrhages appear in certain Severity Shift images (cf. Section 2.1), a model with reliable uncertainty
estimates will perform better in selective prediction by assigning these images high epistemic (and
predictive) uncertainty, therefore referring them to an expert at a lower τ .

For the purposes of selective prediction, a model with optimal uncertainty estimates on a given dataset
would have uncertainty perfectly correlate rank-wise with the model error. For example, the image on
which the model has the highest error should be assigned the highest uncertainty, the image with the
second highest error should be assigned the second highest uncertainty, and so on. On the other hand,
the worst possible uncertainty estimates are random, which would be uninformative to referral.

Finally, we explain in more detail the dip observed at the right side of selective prediction curves
using AUC as the base metric (e.g., Figure 3(c) and (d)). At relatively high threshold values τ , models
begin to refer examples on which they are both confident and correct. This results in the selective
prediction curve decreasing. At the highest τ values (the last few examples), for many models, nearly
all remaining predictions are correct with high certainty, and the AUC increases.

C.7 Hyperparameter Tuning

We provide full tuning details so that users of the benchmark will be able to reproduce our results.

All tuning scripts across all methods, tasks (Country and Severity Shift), and tuning procedures
(on in-domain validation AUC and area under the selective prediction accuracy curve using the
joint validation dataset, described in Appendix D.3) are documented in the Uncertainty Baselines
repository.7

We tuned each model with a quasi-random search on several hyperparameters including learning rate,
momentum, `2 regularization, and method-specific variables including dropout rate and variational
posterior initializations. We used a minimum of 32 trials per model. Because of the large size of
the input data and significant expense of multiple Monte Carlo samples at training time for some
of the variational methods (in particular, MFVI, RANK-1, and RADIAL-MFVI), we were unable to
achieve a large batch size with multiple variational samples at training time. With a single variational
sample at training time, we were able to fit more reasonable batch sizes (≥ 64) and found this to
significantly improve convergence and performance on validation metrics. We attribute this to the
batch size increase and the usage of variance reduction techniques such as flipout layers [60], which
mitigate the impact of only using a single variational sample at training time.

We considered model selection for each of the models on each of the two tasks (Country and Severity
Shift) using two different validation metrics: in-domain validation AUC, and area under the accuracy
referral curve constructed using both in-domain and distributionally shifted validation data. We
describe the reasoning behind the latter metric in Appendix D.3. We used this validation performance

7https://github.com/google/uncertainty-baselines/tree/main/baselines/diabetic_retinopathy_detection
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to select the best hyperparameter setting and retrained a configuration for each combination of model,
task, and validation tuning metric for 6 random seeds. We evaluated single models by averaging
performance over those seeds, and evaluated ensembles by randomly sampling ensembles of size 3
without replacement from the 6 available models, and averaging over 6 such ensemble constructions.

Compute Resources. The majority of methods were tuned on TPU v2-8 nodes. MFVI had particu-
larly high memory requirements which required the use of TPU v3-8 nodes to achieve a reasonable
batch size and stable training. Evaluation was performed on NVIDIA A100 GPUs with 40 GB mem-
ory, though GPUs with standard sizes (e.g., >6 GB) will be sufficient to run evaluation and inference
with the models in the benchmark, e.g., using the model checkpoints. Approximately 100 TPU days
and 20 GPU days were used collectively across the initial hyperparameter tuning, fine-tuning with
selected configurations, and evaluation across the various tasks. Though a significant cost, we hope
that our open-sourcing of all code along with hyperparameter sweep details and checkpoints will
significantly decrease future energy consumption by researchers interested in designing deep models
for diabetic retinopathy, along with Bayesian deep learning researchers using our configurations to
inform their hyperparameter tuning, or our generally applicable evaluation utilities.
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C.8 EyePACS and APTOS Input Data Examples

(a) Original samples from the EyePACS Diabetic Retinopathy dataset [13].

(b) Processed and augmented samples from the EyePACS Diabetic Retinopathy
dataset, following the procedure of the Kaggle competition winner [13].

Figure 6: Illustrative examples of retina images in the original EyePACS dataset (top) and after preprocessing
(bottom).
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Figure 7: Illustrative examples of retina images in the APTOS dataset. The images are collected using different
measurement devices than the EyePACS dataset. Note the artifacts present in the images including blur, low
background lighting, and effects around the edges of the retina.
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Appendix D Further Empirical Results

D.1 Predictive Uncertainty Histograms

In the figures below, predictive uncertainty (cf. Appendix B.2) is displayed as a normalized density
for correct (blue) and incorrect (red) predictions. All histograms are normalized and are displayed
with the same range on the x- and y-axis. Some bars of the histograms are cut off because the plots
are zoomed-in along the y-axis to improve legibility. See Section 2.4 for a description of predictive
uncertainty histograms as a model diagnostic tool, including a discussion of the expected behavior of
reliable models. See Section 3 for a discussion of the results for single models on the shifted datasets.
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Figure 8: Clinical Label Binning – Severity Shift, Single Models. We analyze predictive uncertainty for each
underlying clinical severity label (rows, label on right) and each uncertainty quantification method (columns).
Here, we consider both the in-domain and distributionally shifted Severity Shift evaluation datasets, and single
models (K = 1). Predictive uncertainty, as measured by total uncertainty (cf. Appendix B.2), is displayed as a
normalized density for correct (blue) and incorrect (red) predictions.
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Figure 9: Clinical Label Binning – Country Shift (Shifted), Single Models. We analyze predictive uncer-
tainty for each underlying clinical severity label (rows, label on right) and each uncertainty quantification method
(columns). Here, we consider the distributionally shifted Country Shift evaluation dataset (APTOS), and single
models (K = 1). Predictive uncertainty, as measured by total uncertainty (cf. Appendix B.2), is displayed as a
normalized density for correct (blue) and incorrect (red) predictions.
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Figure 10: Clinical Label Binning – Country Shift (In-Domain), Single Models. We analyze predictive
uncertainty for each ground-truth clinical label (rows) and each uncertainty quantification method (columns).
Here, we consider the in-domain Country Shift evaluation dataset, and single models (K = 1). Predictive
uncertainty, as measured by total uncertainty (cf. Appendix B.2), is displayed as a normalized density for correct
(blue) and incorrect (red) predictions.
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Figure 11: Clinical Label Binning – Severity Shift, Ensembles. We analyze predictive uncertainty for each
ground-truth clinical label (rows, label on right) and each uncertainty quantification method (columns). Here,
we consider both the in-domain and distributionally shifted Severity Shift evaluation datasets, and ensembles
(K = 3). Predictive uncertainty, as measured by total uncertainty (cf. Appendix B.2), is displayed as a
normalized density for correct (blue) and incorrect (red) predictions.
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Figure 12: Clinical Label Binning – Country Shift (Shifted), Ensembles. We analyze predictive uncertainty
for each ground-truth clinical label (rows, label on right) and each uncertainty quantification method (columns).
Here, we consider the distributionally shifted Country Shift evaluation dataset (APTOS), and ensembles (K = 3).
Predictive uncertainty, as measured by total uncertainty (cf. Appendix B.2), is displayed as a normalized density
for correct (blue) and incorrect (red) predictions.

D
en

si
ty

MAP (Deterministic) MC DROPOUT FSVI RANK-1 MFVI RADIAL-MFVI

D
en

si
ty

D
en

si
ty

D
en

si
ty

0.0 0.5

D
en

si
ty

0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5

0

1

2

3

4

Figure 13: Clinical Label Binning – Country Shift (In-Domain), Ensembles. We analyze predictive uncer-
tainty for each ground-truth clinical label (rows, label on right) and each uncertainty quantification method
(columns). Here, we consider the in-domain Country Shift evaluation dataset (APTOS), and ensembles (K = 3).
Predictive uncertainty, as measured by total uncertainty (cf. Appendix B.2), is displayed as a normalized density
for correct (blue) and incorrect (red) predictions.
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D.2 Tuning without Distributionally Shifted Data: Country Shift Accuracy.

We provide referral curves on accuracy for Country Shift with in-domain validation tuning in
Figure 14.
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(a) Selective Prediction Accuracy: In-Domain
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(b) Selective Prediction Accuracy: Country Shift
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(c) Selective Prediction Accuracy: Joint
Deep Ensemble
MAP
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Figure 14: Selective Prediction: Country Shift (Accuracy). We use the binary accuracy for in-domain
diagnosis on the EyePACS [13] test set (a), for changing medical equipment and patient populations on the
shifted APTOS [3] evaluation set (b), and on a joint dataset composed of both the in-domain and APTOS datasets
(c). Shading denotes one standard error.
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D.3 Tuning in the Presence of Distributionally Shifted Data

In prior work in Bayesian deep learning, little emphasis has been placed on the standardization of
a training and evaluation protocol; in particular, the assumption of whether a model has access to
distributionally shifted validation data for hyperparameter tuning is often changed on an ad-hoc basis
across studies.

This is a significant assumption, and researchers in Bayesian deep learning should be expected to
outwardly declare their tuning procedure—in particular access to distributionally shifted data—as
is done in works such as Prior Networks [38, 39]. This will permit researchers and practitioners to
more fairly compare the performance of methods based on results reported in their respective papers.

We investigate what impact this assumption—access to distributionally shifted validation data—has
on downstream performance across all our tasks, and on held-out in-domain, distributionally shifted,
and joint (in-domain combined with distributionally shifted) evaluation datasets. We find that it has
a significant impact on metrics commonly used to assess robustness and uncertainty quantification,
including area under referral curves (Figure 15) and expected calibration error.

Joint Validation Metric. To consider the performance of our baseline models under this assump-
tion, we construct a metric that conveys both in-domain and distributionally shifted performance. In
particular, we construct an accuracy referral curve on a combined set of in-domain and distributionally
shifted validation examples. Because the in-domain validation dataset is significantly larger than the
distributionally shifted dataset for both of the tasks, we upsample the shifted dataset to avoid the
signal from the in-domain examples overwhelming that from the shifted examples. We construct an
upsampled shifted dataset by first duplicating the shifted validation dataset as many times as possible
without exceeding the size of the in-domain validation dataset, and then randomly sampling examples
from the shifted validation dataset without replacement until the upsampled shifted dataset contains
the same number of examples as the in-domain validation dataset. We construct the “balanced”
joint validation dataset as the union of the in-domain validation and upsampled shifted datasets. We
construct a “balanced” accuracy referral curve using this balanced joint validation dataset, sweeping
over τ to obtain all possible partitions of the dataset into “referral” and “non-referral”. We then tune
on the area under this curve.
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(a) Accuracy: In-Domain Tuning
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(b) Accuracy: Joint Tuning
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Figure 15: Hyperparameter Tuning on Distributionally Shifted Data. Accuracy referral curve on the
distributionally shifted APTOS dataset in the Country Shift task. Left: Performance of various methods
when using the in-domain validation AUC for hyperparameter tuning. Right: The same methods when using
the proposed balanced referral metric evaluated over a combination of in-domain and distributionally shifted
validation data. Even without permitting a model to explicitly train on distributionally shifted data, the model
selection process results in significantly improved predictive performance and quality of uncertainty estimates,
as demonstrated by curves for respective methods shifted upwards, and steeper slopes in each curve as the first
≈ 50% of cases are referred to an expert, respectively.
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D.4 Complete Tabular Results

We report full tabular results for standard predictive performance and robustness (expected calibration
error), referral metrics, and out-of-distribution detection across the Country and Severity Shift tasks,
considering hyperparameter tuning on either in-domain validation AUC or the joint validation metric
(cf. Appendix D.3), in Tables 1-11.

Table 1: Country Shift. Prediction and uncertainty quality of baseline methods in terms of the area under the
receiver operating characteristic curve (AUC) and classification accuracy, as a function of the proportion of data
referred to a medical expert. All methods are tuned on in-domain validation AUC, and ensembles have K = 3
constituent models (true for all subsequent tables unless specified otherwise). On in-domain data, MC DROPOUT
performs best across all thresholds. On distributionally shifted data, no method consistently performs best.

No Referral 50% Data Referred 70% Data Referred

Method AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy ↑
EyePACS Dataset (In-Domain)

MAP (Deterministic) 87.4±1.0 88.6±0.6 91.1±1.4 95.9±0.3 94.9±0.8 96.5±0.2
MFVI 83.3±0.1 85.7±0.1 85.5±0.5 94.5±0.1 88.2±0.5 95.9±0.1
RADIAL-MFVI 83.2±0.4 74.2±3.8 88.9±0.7 81.8±4.7 91.2±1.0 83.8±4.3
FSVI 88.5±0.1 89.8±0.0 91.0±0.3 96.4±0.0 94.3±0.2 97.2±0.0
MC DROPOUT 91.4±0.1 90.9±0.0 95.3±0.2 97.4±0.0 97.4±0.1 98.1±0.0
RANK-1 85.6±1.1 87.7±0.6 87.1±1.8 95.3±0.4 90.9±1.5 96.4±0.3
DEEP ENSEMBLE 90.3±0.1 90.3±0.2 91.7±0.5 97.2±0.0 95.0±0.4 97.9±0.0
MFVI ENSEMBLE 85.4±0.0 87.8±0.0 86.3±0.3 95.4±0.0 89.2±0.3 96.7±0.0
RADIAL-MFVI ENSEMBLE 85.1±0.0 77.8±1.7 91.6±0.3 87.9±1.7 94.0±0.3 90.5±1.6
FSVI ENSEMBLE 90.3±0.1 90.6±0.0 92.1±0.2 97.1±0.0 95.2±0.1 97.8±0.0
MC DROPOUT ENSEMBLE 92.5±0.0 91.6±0.0 95.8±0.1 97.8±0.0 97.7±0.1 98.4±0.0

RANK-1 ENSEMBLE 89.3±0.7 89.3±0.4 88.5±1.1 96.9±0.3 91.6±1.1 97.6±0.2

APTOS 2019 Dataset (Population Shift)

MAP (Deterministic) 92.2±0.2 86.2±0.4 80.1±2.8 87.6±1.1 55.4±3.3 85.4±0.9
MFVI 91.4±0.2 84.1±0.3 93.8±0.3 92.1±0.4 93.0±0.5 92.7±0.4
RADIAL-MFVI 90.7±0.5 71.8±3.5 82.0±2.0 81.5±2.1 66.4±1.7 85.9±0.7
FSVI 94.1±0.1 87.6±0.4 90.6±0.7 90.7±0.6 77.2±3.6 89.8±0.2
MC DROPOUT 94.0±0.2 86.8±0.2 87.4±0.3 88.1±0.2 65.3±1.3 88.2±0.3
RANK-1 92.5±0.2 86.2±0.4 90.1±1.9 91.4±0.8 75.1±6.0 89.5±1.2
DEEP ENSEMBLE 94.2±0.2 87.5±0.1 91.2±1.4 92.4±0.7 67.4±5.6 90.1±0.9
MFVI ENSEMBLE 93.2±0.1 87.0±0.2 94.9±0.3 93.7±0.3 94.2±0.2 94.0±0.3

RADIAL-MFVI ENSEMBLE 91.8±0.2 71.7±1.9 81.8±1.5 82.7±1.3 65.9±3.1 87.6±0.5
FSVI ENSEMBLE 94.6±0.0 88.9±0.1 90.7±0.4 91.1±0.5 74.1±2.6 89.8±0.2
MC DROPOUT ENSEMBLE 94.1±0.1 87.6±0.1 86.8±0.2 88.0±0.1 62.3±0.3 87.7±0.2
RANK-1 ENSEMBLE 94.1±0.1 88.2±0.1 94.8±0.3 93.3±0.2 92.1±1.2 93.7±0.3
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Table 2: Severity Shift. Prediction and uncertainty quality of baseline methods in terms of area under the
receiver operating characteristic curve (AUC) and classification accuracy, as a function of the proportion of data
referred to a medical expert for further review.

No Referral 50% Data Referred 70% Data Referred

Method AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy ↑
In-Domain (No, Mild, or Moderate DR, Clinical Labels {0,1,2})

MAP (Deterministic) 82.0±1.0 87.9±0.4 83.1±1.9 95.2±0.3 88.4±1.9 96.0±0.2
DEEP ENSEMBLE 85.1±0.7 89.3±0.2 82.0±0.9 96.3±0.2 85.3±0.9 97.3±0.2
MC DROPOUT 89.2±0.2 90.5±0.1 92.8±0.6 97.2±0.0 95.4±0.4 97.8±0.0
MC DROPOUT ENSEMBLE 90.6±0.0 91.4±0.1 93.1±0.2 97.8±0.0 95.7±0.2 98.2±0.0

FSVI 83.2±0.3 89.5±0.1 81.2±0.9 95.6±0.1 86.4±0.7 96.4±0.1
FSVI ENSEMBLE 86.2±0.1 90.0±0.0 81.2±0.3 96.4±0.0 86.1±0.3 97.3±0.0
RADIAL-MFVI 76.9±1.6 86.7±0.4 69.0±4.1 93.5±0.5 70.1±4.8 94.6±0.5
RADIAL-MFVI ENSEMBLE 81.3±1.2 87.4±0.3 66.3±2.3 95.1±0.4 66.2±3.0 96.1±0.4
RANK-1 81.6±1.5 88.3±0.5 79.4±2.9 95.1±0.4 82.9±2.9 96.0±0.4
RANK-1 ENSEMBLE 85.1±1.1 89.3±0.4 75.6±1.0 96.1±0.3 79.1±1.3 96.9±0.2
MFVI 81.3±1.4 87.8±0.6 79.5±2.4 95.0±0.4 82.6±2.6 95.9±0.3
MFVI ENSEMBLE 85.2±0.6 89.4±0.3 77.7±0.9 96.1±0.2 80.3±1.0 96.8±0.1

Severity Shift (Severe or Proliferate DR, Clinical Labels {3, 4})

MAP (Deterministic) − 74.4±1.9 − 93.2±2.6 − 98.6±1.1
DEEP ENSEMBLE − 74.5±1.2 − 89.8±1.0 − 97.0±0.7
MC DROPOUT − 86.4±1.3 − 99.5±0.2 − 100.0±0.0

MC DROPOUT ENSEMBLE − 87.4±0.3 − 99.4±0.1 − 100.0±0.0

FSVI − 68.6±1.0 − 88.5±1.0 − 99.6±0.2
FSVI ENSEMBLE − 69.3±0.3 − 86.3±0.5 − 99.4±0.2
RADIAL-MFVI − 52.0±7.6 − 59.3±10.8 − 63.9±11.1
RADIAL-MFVI ENSEMBLE − 54.4±4.7 − 58.0±7.6 − 60.6±8.3
RANK-1 − 67.5±3.5 − 82.6±4.2 − 92.7±2.2
RANK-1 ENSEMBLE − 69.7±1.9 − 81.6±1.6 − 92.0±1.3
MFVI − 71.5±2.3 − 86.7±3.1 − 94.1±2.0
MFVI ENSEMBLE − 73.5±1.2 − 87.4±0.7 − 94.2±0.7

Table 3: OOD Detection Metrics. We assess model uncertainty quantification across both shift tasks by using
predictive entropy to detect out-of-distribution data.

Country Shift Severity Shift

Method AUROC (%) ↑ AUPRC (%) ↑ AUROC (%) ↑ AUPRC (%) ↑
MAP (Deterministic) 37.6±1.3 5.2±0.2 44.0±2.7 9.3±0.6
DEEP ENSEMBLE 41.7±1.0 5.6±0.1 56.8±0.9 12.4±0.3
MC DROPOUT 37.6±0.7 5.1±0.1 34.9±1.1 7.1±0.4
MC DROPOUT ENSEMBLE 39.5±0.2 5.3±0.0 38.3±0.9 7.7±0.2
FSVI 42.2±0.7 5.7±0.1 49.0±0.8 11.6±0.3
FSVI ENSEMBLE 43.8±0.4 5.9±0.1 54.5±0.4 14.5±0.2
RADIAL-MFVI 39.2±2.1 5.3±0.3 66.8±4.8 19.9±2.6
RADIAL-MFVI ENSEMBLE 36.5±0.6 4.9±0.1 79.7±2.7 28.0±2.3

RANK-1 44.3±1.9 6.0±0.3 54.5±3.4 12.8±1.1
RANK-1 ENSEMBLE 48.9±1.0 6.4±0.2 65.6±0.7 17.4±0.5
MFVI 51.2±0.7 6.7±0.1 51.3±2.8 10.4±0.7
MFVI ENSEMBLE 52.4±0.3 6.9±0.1 60.4±0.8 13.5±0.4
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Table 4: Standard Metrics, Country Shift. We assess model predictive performance via standard metrics, and
evaluate uncertainty quantification using expected calibration error on in-domain, shifted, and joint datasets
(composed of the in-domain and shifted dataset, with no explicit balancing).

NLL ↓ Accuracy (%) ↑ AUPRC (%) ↑

Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain Shifted Joint

MAP (Deterministic) 1.27±0.06 2.68±0.14 1.36±0.05 88.6±0.5 86.2±0.4 88.5±0.5 75.2±1.7 89.7±0.2 77.2±1.4
DEEP ENSEMBLE 0.60±0.00 1.60±0.12 0.67±0.01 90.3±0.2 87.5±0.1 90.1±0.2 79.9±0.4 91.1±0.1 81.0±0.3
MC DROPOUT 0.29±0.00 1.07±0.02 0.34±0.00 90.9±0.0 86.8±0.2 90.6±0.0 82.6±0.2 88.8±0.4 82.9±0.2
MC DROPOUT ENSEMBLE 0.25±0.00 0.92±0.02 0.29±0.00 91.6±0.0 87.6±0.0 91.4±0.0 84.4±0.0 88.3±0.3 84.3±0.1

FSVI 0.35±0.01 0.72±0.04 0.38±0.01 89.8±0.0 87.6±0.3 89.6±0.0 77.7±0.1 88.3±0.4 78.9±0.0
FSVI ENSEMBLE 0.28±0.01 0.58±0.01 0.30±0.01 90.6±0.0 88.9±0.1 90.5±0.0 80.7±0.1 88.9±0.2 81.3±0.0
RADIAL-MFVI 0.56±0.05 0.70±0.07 0.57±0.05 74.2±3.5 71.8±3.2 74.1±3.5 66.0±0.7 84.8±0.6 69.0±0.6
RADIAL-MFVI ENSEMBLE 0.55±0.01 0.65±0.03 0.56±0.01 74.2±1.1 69.0±1.3 73.8±1.1 68.9±0.3 86.1±0.1 71.6±0.2
RANK-1 0.99±0.05 1.85±0.15 1.05±0.04 87.7±0.5 86.2±0.4 87.6±0.5 71.6±1.9 88.8±0.4 74.1±1.6
RANK-1 ENSEMBLE 0.49±0.03 0.96±0.05 0.52±0.02 89.3±0.3 88.3±0.1 89.2±0.3 78.0±1.0 89.6±0.2 79.3±0.8
MFVI 0.91±0.01 1.26±0.05 0.93±0.01 85.7±0.1 84.1±0.2 85.6±0.1 66.7±0.2 85.9±0.2 69.7±0.2
MFVI ENSEMBLE 0.53±0.00 0.72±0.02 0.54±0.00 87.8±0.0 87.0±0.2 87.7±0.0 71.2±0.1 87.4±0.1 73.7±0.0

AUROC (%) ↑ ECE ↓
MAP (Deterministic) 87.4±0.9 92.2±0.2 88.3±0.8 0.10±0.00 0.13±0.00 0.10±0.00
DEEP ENSEMBLE 90.3±0.1 94.2±0.1 90.9±0.1 0.06±0.00 0.08±0.00 0.06±0.00
MC DROPOUT 91.4±0.1 94.0±0.1 91.9±0.1 0.03±0.00 0.09±0.00 0.03±0.00
MC DROPOUT ENSEMBLE 92.5±0.0 94.1±0.1 92.9±0.0 0.02±0.00 0.09±0.00 0.02±0.00

FSVI 88.5±0.1 94.1±0.1 89.4±0.0 0.05±0.01 0.08±0.00 0.06±0.01
FSVI ENSEMBLE 90.3±0.1 94.6±0.0 90.9±0.0 0.03±0.00 0.07±0.00 0.03±0.00
RADIAL-MFVI 83.2±0.4 90.7±0.5 84.3±0.3 0.09±0.02 0.14±0.03 0.09±0.02
RADIAL-MFVI ENSEMBLE 84.9±0.1 91.8±0.1 85.9±0.1 0.06±0.01 0.10±0.01 0.05±0.01
RANK-1 85.6±1.0 92.5±0.2 86.7±0.9 0.10±0.00 0.11±0.00 0.10±0.00
RANK-1 ENSEMBLE 89.5±0.6 94.1±0.1 90.2±0.5 0.05±0.00 0.06±0.00 0.05±0.00
MFVI 83.3±0.1 91.4±0.2 84.6±0.1 0.11±0.00 0.13±0.00 0.12±0.00
MFVI ENSEMBLE 85.4±0.0 93.2±0.1 86.6±0.0 0.06±0.00 0.06±0.00 0.06±0.00

Table 5: Standard Metrics, Severity Shift. We assess model predictive performance and expected calibration
error on in-domain, shifted, and joint datasets (composed of the in-domain and shifted dataset, with no explicit
balancing).

NLL ↓ Accuracy (%) ↑ AUPRC (%) ↑

Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain Shifted Joint

MAP (Deterministic) 1.27±0.06 2.27±0.12 1.35±0.06 87.9±0.4 74.4±1.7 86.8±0.5 60.8±1.9 − 75.2±1.3
DEEP ENSEMBLE 0.62±0.02 1.03±0.05 0.65±0.02 89.3±0.2 74.5±1.1 88.1±0.3 65.6±1.2 − 79.2±0.8
MC DROPOUT 0.29±0.00 0.33±0.01 0.29±0.00 90.5±0.0 86.4±1.1 90.1±0.1 74.8±0.5 − 85.1±0.2
MC DROPOUT ENSEMBLE 0.25±0.00 0.28±0.00 0.25±0.00 91.4±0.1 87.4±0.2 91.1±0.0 77.0±0.0 − 86.7±0.1

FSVI 0.36±0.01 0.92±0.04 0.41±0.01 89.5±0.1 68.6±0.9 87.8±0.2 64.7±0.7 − 77.6±0.4
FSVI ENSEMBLE 0.31±0.00 0.76±0.01 0.34±0.00 90.0±0.0 69.3±0.2 88.4±0.1 70.0±0.1 − 81.6±0.1
RADIAL-MFVI 0.37±0.01 0.76±0.09 0.40±0.02 86.7±0.3 52.0±7.0 83.9±0.8 49.1±2.7 − 66.9±2.2
RADIAL-MFVI ENSEMBLE 0.35±0.01 0.73±0.05 0.38±0.01 87.4±0.3 54.4±4.3 84.8±0.6 56.2±2.0 − 73.5±1.5
RANK-1 0.56±0.05 1.14±0.12 0.61±0.05 88.3±0.5 67.5±3.2 86.6±0.7 59.4±2.8 − 74.1±1.9
RANK-1 ENSEMBLE 0.29±0.01 0.60±0.03 0.32±0.01 89.3±0.3 69.7±1.7 87.7±0.4 66.5±1.9 − 80.0±1.3
MFVI 0.66±0.08 1.26±0.16 0.71±0.09 87.8±0.5 71.5±2.1 86.5±0.6 59.0±2.5 − 73.7±1.8
MFVI ENSEMBLE 0.29±0.01 0.55±0.02 0.31±0.01 89.4±0.3 73.5±1.1 88.2±0.3 66.4±1.3 − 79.7±0.9

AUROC (%) ↑ ECE ↓
MAP (Deterministic) 82.0±0.9 − 86.3±0.7 0.11±0.00 0.23±0.01 0.12±0.00
DEEP ENSEMBLE 85.1±0.6 − 88.9±0.5 0.06±0.00 0.15±0.01 0.07±0.00
MC DROPOUT 89.2±0.2 − 92.0±0.1 0.02±0.00 0.06±0.00 0.02±0.00
MC DROPOUT ENSEMBLE 90.6±0.0 − 93.1±0.0 0.01±0.00 0.03±0.00 0.01±0.00

FSVI 83.2±0.3 − 86.9±0.2 0.06±0.00 0.23±0.01 0.07±0.00
FSVI ENSEMBLE 86.2±0.1 − 89.4±0.0 0.04±0.00 0.19±0.00 0.06±0.00
RADIAL-MFVI 76.9±1.4 − 82.2±1.2 0.05±0.01 0.23±0.06 0.04±0.01
RADIAL-MFVI ENSEMBLE 81.3±1.1 − 86.2±0.9 0.07±0.01 0.15±0.03 0.06±0.01
RANK-1 81.6±1.4 − 85.8±1.1 0.06±0.01 0.22±0.02 0.07±0.01
RANK-1 ENSEMBLE 85.1±1.0 − 89.1±0.7 0.02±0.00 0.12±0.01 0.03±0.00
MFVI 81.3±1.2 − 85.4±1.0 0.07±0.01 0.19±0.02 0.08±0.01
MFVI ENSEMBLE 85.2±0.6 − 88.9±0.4 0.02±0.00 0.10±0.01 0.02±0.00
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Table 6: Expert Referral Metrics, Country Shift. We assess model predictive performance and uncertainty
quantification in the context of expert referral. We construct referral curves on a variety of metrics—AUC,
Accuracy, NLL and AUPRC—by sweeping over the referral thresholds τ , obtaining a point for each possible
partition of the dataset into “referred” and “non-referred”. We report the area under the referral curve for metric
X as R-X AUC. All methods are tuned according to the area under the ROC curve on the in-domain dataset.
The Balanced evaluation dataset is constructed using the procedure described in Appendix D.3.

R-AUROC AUC ↑ R-Accuracy AUC ↑

Method In-Domain Shifted Joint Balanced In-Domain Shifted Joint Balanced

MAP (Deterministic) 94.7±0.5 91.4±0.6 95.1±0.4 95.1±0.4 97.0±0.2 94.1±0.2 96.8±0.2 95.4±0.1
DEEP ENSEMBLE 95.5±0.1 94.3±0.5 96.1±0.1 96.1±0.1 97.7±0.0 95.6±0.2 97.6±0.0 96.6±0.1
MC DROPOUT 96.9±0.1 93.6±0.1 97.1±0.1 97.1±0.1 97.9±0.0 94.3±0.1 97.6±0.0 95.9±0.0
MC DROPOUT ENSEMBLE 97.2±0.0 93.4±0.1 97.4±0.0 97.4±0.0 98.2±0.0 94.4±0.0 97.9±0.0 96.1±0.0
FSVI 94.9±0.1 94.9±0.2 95.6±0.1 95.6±0.1 97.4±0.0 95.2±0.2 97.2±0.0 96.2±0.1
FSVI ENSEMBLE 95.5±0.1 94.9±0.1 96.1±0.0 96.1±0.0 97.8±0.0 95.4±0.1 97.6±0.0 96.5±0.1
RADIAL-MFVI 93.4±0.3 91.9±0.5 93.8±0.3 93.8±0.3 89.8±2.0 89.1±1.3 89.8±1.9 89.3±1.6
RADIAL-MFVI ENSEMBLE 94.4±0.1 91.4±0.1 94.7±0.1 94.7±0.1 90.2±0.6 88.2±0.5 90.0±0.6 88.9±0.5
RANK-1 93.3±0.6 94.1±0.6 94.1±0.5 94.1±0.5 96.7±0.2 94.9±0.2 96.5±0.2 95.7±0.0
RANK-1 ENSEMBLE 94.4±0.4 96.6±0.2 95.3±0.3 95.3±0.3 97.5±0.1 96.2±0.1 97.4±0.1 96.8±0.1

MFVI 92.5±0.2 96.1±0.1 93.4±0.1 93.4±0.1 96.0±0.0 94.9±0.1 95.9±0.0 95.4±0.1
MFVI ENSEMBLE 93.1±0.1 97.0±0.1 94.0±0.1 94.0±0.1 96.7±0.0 96.0±0.1 96.6±0.0 96.3±0.0

R-NLL AUC ↓ R-AUPRC AUC ↑
MAP (Deterministic) 60.5±3.6 179.5±11.4 69.4±2.5 126.0±5.2 90.9±0.9 95.8±0.1 91.9±0.7 91.9±0.7
DEEP ENSEMBLE 28.7±0.2 110.5±9.7 34.7±0.8 73.0±5.5 91.7±0.3 96.6±0.1 92.8±0.2 92.8±0.2
MC DROPOUT 10.5±0.2 74.4±2.0 15.2±0.3 44.9±1.1 94.5±0.1 95.1±0.2 94.4±0.1 94.4±0.1
MC DROPOUT ENSEMBLE 8.2±0.1 63.6±1.4 12.2±0.2 38.0±0.8 94.9±0.1 94.8±0.1 94.7±0.0 94.7±0.0

FSVI 13.4±0.5 45.1±3.1 15.6±0.6 30.2±1.8 91.1±0.2 94.9±0.2 91.9±0.1 91.9±0.1
FSVI ENSEMBLE 9.8±0.3 35.5±0.8 11.6±0.3 23.5±0.5 91.9±0.1 95.2±0.1 92.5±0.1 92.5±0.1
RADIAL-MFVI 26.2±3.7 34.6±4.0 26.9±3.8 30.9±3.9 87.5±0.4 93.5±0.3 88.6±0.4 88.6±0.4
RADIAL-MFVI ENSEMBLE 24.4±0.8 31.1±1.6 24.9±0.9 28.3±1.3 88.9±0.1 93.9±0.1 89.8±0.1 89.8±0.1
RANK-1 48.0±3.0 123.5±12.0 53.6±1.9 89.2±5.5 88.1±1.2 95.8±0.1 89.6±1.0 89.6±1.0
RANK-1 ENSEMBLE 22.2±1.7 64.3±3.7 25.1±1.4 44.2±1.8 89.3±0.7 96.1±0.1 90.8±0.6 90.8±0.6
MFVI 42.5±0.6 76.4±3.9 44.7±0.8 59.8±2.2 86.3±0.3 94.6±0.1 87.9±0.2 87.9±0.2
MFVI ENSEMBLE 24.9±0.2 44.6±1.8 26.2±0.3 34.9±1.0 87.3±0.2 94.9±0.0 88.9±0.1 88.9±0.1

Table 7: Expert Referral Metrics, Severity Shift. We assess model predictive performance and uncertainty
quantification in the context of expert referral. We construct referral curves on a variety of metrics—AUC,
Accuracy, NLL and AUPRC—by sweeping over the referral thresholds τ , obtaining a point for each possible
partition of the dataset into “referred" and “non-referred". We report the area under the referral curve for metric
X as R-X AUC. All methods are tuned according to the area under the ROC curve on the in-domain dataset.
The Balanced evaluation dataset is constructed using the procedure described in Appendix D.3.

R-AUROC AUC ↑ R-Accuracy AUC ↑

Method In-Domain Shifted Joint Balanced In-Domain Shifted Joint Balanced

MAP (Deterministic) 91.5±0.7 − 94.0±0.5 94.0±0.5 96.6±0.2 92.7±0.9 96.4±0.2 94.9±0.4
DEEP ENSEMBLE 91.5±0.4 − 94.5±0.3 94.5±0.3 97.3±0.1 92.2±0.5 97.0±0.1 95.2±0.2
MC DROPOUT 95.7±0.2 − 97.2±0.1 97.2±0.1 97.8±0.0 97.5±0.3 97.8±0.0 97.7±0.1
MC DROPOUT ENSEMBLE 96.1±0.1 − 97.5±0.0 97.5±0.0 98.1±0.0 97.7±0.1 98.1±0.0 98.0±0.0

FSVI 90.7±0.3 − 93.6±0.2 93.6±0.2 97.0±0.1 90.3±0.4 96.7±0.1 94.2±0.2
FSVI ENSEMBLE 91.0±0.1 − 94.2±0.1 94.2±0.1 97.5±0.0 90.0±0.1 97.1±0.0 94.5±0.1
RADIAL-MFVI 85.6±1.5 − 88.5±1.5 88.5±1.5 95.9±0.2 78.4±4.4 95.2±0.3 89.5±1.6
RADIAL-MFVI ENSEMBLE 85.3±1.0 − 88.4±1.1 88.4±1.1 96.5±0.2 78.5±3.0 95.9±0.3 90.2±1.1
RANK-1 90.0±1.1 − 92.9±0.8 92.9±0.8 96.7±0.2 88.7±1.7 96.3±0.3 93.5±0.7
RANK-1 ENSEMBLE 89.3±0.4 − 93.1±0.4 93.1±0.4 97.3±0.2 89.4±0.8 96.9±0.2 94.3±0.4
MFVI 90.1±0.9 − 93.1±0.7 93.1±0.7 96.5±0.2 90.6±1.2 96.2±0.3 94.0±0.6
MFVI ENSEMBLE 90.0±0.3 − 93.6±0.2 93.6±0.2 97.3±0.1 91.4±0.4 97.0±0.1 94.9±0.2

R-NLL AUC ↓ R-AUPRC AUC ↑
MAP (Deterministic) 61.6±3.3 89.5±7.7 63.2±3.4 73.3±4.7 83.1±1.3 − 90.2±0.9 90.2±0.9
DEEP ENSEMBLE 29.7±1.1 49.2±2.9 30.7±1.2 37.5±1.8 82.0±0.7 − 90.2±0.5 90.2±0.5
MC DROPOUT 10.3±0.2 7.8±0.5 10.0±0.2 8.9±0.1 91.2±0.5 − 95.4±0.3 95.4±0.3
MC DROPOUT ENSEMBLE 7.8±0.2 6.6±0.1 7.7±0.2 7.0±0.1 91.6±0.2 − 95.8±0.1 95.8±0.1

FSVI 14.2±0.5 36.0±2.1 15.6±0.6 24.0±1.1 81.8±0.6 − 89.6±0.4 89.6±0.4
FSVI ENSEMBLE 11.0±0.1 30.9±0.4 12.1±0.1 19.3±0.2 81.3±0.3 − 89.8±0.2 89.8±0.2
RADIAL-MFVI 14.4±0.7 37.5±6.7 15.3±0.9 22.9±2.8 69.8±3.1 − 78.1±3.2 78.1±3.2
RADIAL-MFVI ENSEMBLE 13.3±0.4 36.9±4.0 14.2±0.5 21.9±1.6 66.1±2.1 − 75.1±2.5 75.1±2.5
RANK-1 25.1±2.8 50.4±7.7 26.4±3.0 35.5±4.5 79.7±2.2 − 87.7±1.5 87.7±1.5
RANK-1 ENSEMBLE 10.1±0.5 25.2±1.7 10.8±0.6 15.9±0.9 77.5±0.9 − 87.3±0.7 87.3±0.7
MFVI 30.0±4.5 52.8±8.0 31.4±4.6 39.9±5.7 80.4±1.8 − 88.4±1.2 88.4±1.2
MFVI ENSEMBLE 10.3±0.3 22.3±1.0 11.0±0.3 15.3±0.6 79.6±0.6 − 88.8±0.4 88.8±0.4
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Table 8: Standard Metrics, Country Shift, Tuned on Joint Dataset. Here all methods are tuned according to
the joint validation metric (Appendix D.3): area under the retention–accuracy curve constructed on the balanced
joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). Ensembles
have K = 3 constituent models. We assess model predictive performance and expected calibration error on
in-domain, shifted, and joint (union of in-domain and shifted, without explicit balancing) evaluation datasets.

NLL ↓ Accuracy (%) ↑ AUPRC (%) ↑

Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain Shifted Joint

MAP (Deterministic) 1.02±0.07 2.41±0.14 1.11±0.05 89.3±0.2 87.0±0.3 89.2±0.2 77.5±0.9 90.5±0.2 79.2±0.7
DEEP ENSEMBLE 0.54±0.00 1.65±0.13 0.61±0.01 90.8±0.0 88.3±0.1 90.7±0.0 81.1±0.1 91.3±0.2 82.0±0.1
MC DROPOUT 0.31±0.01 0.77±0.06 0.34±0.01 90.0±0.2 87.6±0.3 89.9±0.2 81.1±0.3 87.7±0.4 82.0±0.2
MC DROPOUT ENSEMBLE 0.25±0.00 0.58±0.03 0.28±0.00 91.2±0.0 88.3±0.1 91.0±0.0 83.3±0.1 87.7±0.3 83.7±0.1

FSVI 0.52±0.04 0.67±0.05 0.53±0.04 88.7±0.4 88.2±0.3 88.7±0.3 75.8±0.6 88.1±0.8 77.5±0.5
FSVI ENSEMBLE 0.39±0.02 0.42±0.02 0.39±0.01 89.2±0.2 89.7±0.1 89.3±0.2 79.5±0.3 88.9±0.4 80.5±0.2
RADIAL-MFVI 0.60±0.08 0.72±0.16 0.61±0.08 85.9±0.2 85.4±0.4 85.9±0.2 66.2±0.6 87.9±0.4 69.6±0.4
RADIAL-MFVI ENSEMBLE 0.38±0.00 0.34±0.01 0.38±0.00 87.2±0.2 87.8±0.1 87.2±0.2 69.7±0.3 89.3±0.2 72.6±0.2
RANK-1 0.88±0.06 1.95±0.21 0.95±0.07 87.0±0.6 85.1±0.4 86.9±0.6 71.3±1.9 88.4±0.3 73.8±1.6
RANK-1 ENSEMBLE 0.40±0.01 1.02±0.09 0.44±0.02 89.1±0.3 87.1±0.2 89.0±0.3 77.2±1.0 89.4±0.1 78.7±0.8
MFVI 1.09±0.10 1.69±0.20 1.12±0.11 85.9±0.4 84.5±0.6 85.8±0.4 67.1±1.5 87.6±0.7 70.3±1.2
MFVI ENSEMBLE 0.46±0.03 0.71±0.12 0.48±0.04 88.4±0.1 86.8±0.2 88.3±0.1 73.5±0.7 89.6±0.4 75.7±0.6

AUROC (%) ↑ ECE ↓
MAP (Deterministic) 88.6±0.5 93.2±0.2 89.5±0.4 0.09±0.00 0.12±0.00 0.09±0.00
DEEP ENSEMBLE 90.6±0.0 94.5±0.2 91.3±0.0 0.05±0.00 0.09±0.00 0.05±0.00
MC DROPOUT 90.7±0.2 93.9±0.2 91.4±0.1 0.03±0.00 0.08±0.00 0.04±0.00
MC DROPOUT ENSEMBLE 91.9±0.0 94.2±0.1 92.5±0.0 0.02±0.00 0.06±0.00 0.02±0.00

FSVI 87.4±0.3 94.0±0.3 88.5±0.3 0.08±0.01 0.08±0.00 0.08±0.01
FSVI ENSEMBLE 89.6±0.2 94.6±0.1 90.4±0.1 0.06±0.00 0.05±0.00 0.06±0.00
RADIAL-MFVI 83.0±0.3 92.7±0.3 84.3±0.2 0.09±0.01 0.07±0.01 0.09±0.01
RADIAL-MFVI ENSEMBLE 84.8±0.2 94.1±0.1 86.0±0.1 0.05±0.00 0.03±0.00 0.05±0.00
RANK-1 85.4±1.0 92.0±0.2 86.5±0.9 0.10±0.01 0.12±0.00 0.10±0.00
RANK-1 ENSEMBLE 89.0±0.6 94.0±0.1 89.8±0.5 0.05±0.00 0.07±0.00 0.05±0.00
MFVI 83.4±0.7 91.7±0.5 84.7±0.6 0.11±0.01 0.12±0.01 0.11±0.01
MFVI ENSEMBLE 86.8±0.4 94.0±0.3 87.9±0.3 0.05±0.00 0.06±0.01 0.05±0.00

Table 9: Standard Metrics, Severity Shift, Tuned on Joint Dataset. Here all methods are tuned according to
the joint validation metric (Appendix D.3): area under the retention–accuracy curve constructed on the balanced
joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). Ensembles
have K = 3 constituent models. We assess model predictive performance and expected calibration error on
in-domain, shifted, and joint (union of in-domain and shifted, without explicit balancing) evaluation datasets.

NLL ↓ Accuracy (%) ↑ AUPRC (%) ↑

Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain Shifted Joint

MAP (Deterministic) 1.05±0.11 1.48±0.20 1.09±0.12 87.6±0.6 81.5±0.9 87.1±0.6 63.6±2.0 − 77.5±1.3
DEEP ENSEMBLE 0.39±0.04 0.49±0.07 0.40±0.04 89.6±0.3 83.1±0.4 89.1±0.3 68.1±1.1 − 81.3±0.6
MC DROPOUT 0.32±0.02 0.31±0.03 0.32±0.02 89.0±0.6 87.5±0.9 88.9±0.6 72.6±1.7 − 83.5±1.2
MC DROPOUT ENSEMBLE 0.26±0.00 0.24±0.00 0.26±0.00 90.9±0.1 89.2±0.1 90.8±0.0 76.9±0.1 − 86.6±0.1

FSVI 0.40±0.02 0.57±0.03 0.41±0.02 87.8±0.6 79.8±0.8 87.1±0.5 63.3±1.6 − 77.1±1.1
FSVI ENSEMBLE 0.29±0.00 0.41±0.01 0.30±0.00 90.0±0.1 81.5±0.4 89.4±0.1 68.7±0.6 − 81.4±0.3
RADIAL-MFVI 0.37±0.01 0.76±0.09 0.40±0.02 86.7±0.3 52.0±7.0 83.9±0.8 49.1±2.7 − 66.9±2.2
RADIAL-MFVI ENSEMBLE 0.35±0.01 0.73±0.05 0.38±0.01 87.4±0.3 54.4±4.3 84.8±0.6 56.2±2.0 − 73.5±1.5
RANK-1 0.56±0.05 1.14±0.12 0.61±0.05 88.3±0.5 67.5±3.2 86.6±0.7 59.4±2.8 − 74.1±1.9
RANK-1 ENSEMBLE 0.29±0.01 0.60±0.03 0.32±0.01 89.3±0.3 69.7±1.7 87.7±0.4 66.5±1.9 − 80.0±1.3
MFVI 0.56±0.06 0.75±0.16 0.57±0.07 83.7±0.2 79.8±1.8 83.4±0.1 55.2±0.4 − 71.0±0.6
MFVI ENSEMBLE 0.35±0.00 0.37±0.01 0.36±0.00 86.2±0.3 81.6±0.6 85.8±0.2 59.9±0.2 − 75.3±0.1

AUROC (%) ↑ ECE ↓
MAP (Deterministic) 83.7±0.9 − 87.8±0.7 0.09±0.01 0.15±0.02 0.09±0.01
DEEP ENSEMBLE 86.3±0.4 − 90.0±0.3 0.03±0.01 0.07±0.01 0.03±0.01
MC DROPOUT 88.2±0.8 − 91.1±0.7 0.02±0.00 0.06±0.01 0.02±0.00
MC DROPOUT ENSEMBLE 90.6±0.1 − 93.1±0.0 0.02±0.00 0.02±0.00 0.02±0.00
FSVI 82.8±0.7 − 86.8±0.6 0.06±0.00 0.14±0.01 0.06±0.00
FSVI ENSEMBLE 86.1±0.2 − 89.7±0.1 0.03±0.00 0.08±0.00 0.03±0.00
RADIAL-MFVI 76.9±1.4 − 82.2±1.2 0.05±0.01 0.23±0.06 0.04±0.01
RADIAL-MFVI ENSEMBLE 81.3±1.1 − 86.2±0.9 0.07±0.01 0.15±0.03 0.06±0.01
RANK-1 81.6±1.4 − 85.8±1.1 0.06±0.01 0.22±0.02 0.07±0.01
RANK-1 ENSEMBLE 85.1±1.0 − 89.1±0.7 0.02±0.00 0.12±0.01 0.03±0.00
MFVI 79.8±0.4 − 84.3±0.4 0.07±0.01 0.12±0.03 0.07±0.01
MFVI ENSEMBLE 82.3±0.1 − 86.8±0.1 0.02±0.00 0.05±0.01 0.02±0.00
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Table 10: Expert Referral Metrics, Country Shift, Tuned on Joint Dataset. We assess model predictive
performance and uncertainty quantification in the context of expert referral. Here all methods are tuned
according to the joint validation metric (Appendix D.3): area under the retention–accuracy curve constructed on
the balanced joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). We
construct referral curves on a variety of metrics—AUC, Accuracy, NLL and AUPRC—by sweeping over the
referral thresholds τ , obtaining a point for each possible partition of the dataset into “referred" and “non-referred".
The Balanced evaluation dataset is constructed using the procedure described in Appendix D.3.

R-AUROC AUC ↑ R-Accuracy AUC ↑

Method In-Domain Shifted Joint Balanced In-Domain Shifted Joint Balanced

MAP (Deterministic) 95.1±0.5 92.1±0.5 95.6±0.3 95.6±0.3 97.3±0.1 94.6±0.3 97.1±0.1 95.8±0.1
DEEP ENSEMBLE 95.6±0.2 94.3±0.5 96.2±0.1 96.2±0.1 97.8±0.0 95.5±0.2 97.6±0.0 96.5±0.1
MC DROPOUT 96.5±0.2 95.4±0.4 96.9±0.2 96.9±0.2 97.7±0.0 95.3±0.3 97.5±0.1 96.4±0.1
MC DROPOUT ENSEMBLE 96.9±0.1 95.8±0.2 97.2±0.0 97.2±0.0 98.1±0.0 95.6±0.1 97.9±0.0 96.7±0.1
FSVI 93.0±0.4 97.0±0.3 94.0±0.3 94.0±0.3 97.1±0.1 96.4±0.2 97.0±0.1 96.7±0.1
FSVI ENSEMBLE 93.2±0.3 97.9±0.2 94.3±0.3 94.3±0.3 97.4±0.1 97.0±0.1 97.4±0.0 97.2±0.0

RADIAL-MFVI 90.0±0.7 96.9±0.3 91.3±0.6 91.3±0.6 96.0±0.1 95.8±0.3 96.0±0.1 95.8±0.1
RADIAL-MFVI ENSEMBLE 89.6±0.4 98.0±0.1 91.1±0.4 91.1±0.4 96.4±0.1 96.8±0.1 96.4±0.0 96.5±0.0
RANK-1 93.9±0.5 93.3±0.5 94.5±0.4 94.5±0.4 96.4±0.2 94.2±0.2 96.2±0.2 95.2±0.1
RANK-1 ENSEMBLE 95.1±0.3 95.5±0.1 95.8±0.2 95.8±0.2 97.4±0.1 95.4±0.1 97.3±0.1 96.4±0.1
MFVI 92.1±0.8 95.0±0.6 93.1±0.6 93.1±0.6 96.0±0.2 94.9±0.3 96.0±0.1 95.5±0.1
MFVI ENSEMBLE 91.8±0.8 97.4±0.4 93.3±0.6 93.3±0.6 96.9±0.1 96.5±0.2 96.9±0.1 96.7±0.1

R-NLL AUC ↓ R-AUPRC AUC ↑
MAP (Deterministic) 46.3±2.8 161.5±10.9 54.8±1.9 109.5±5.1 91.4±1.0 96.1±0.1 92.4±0.7 92.4±0.7
DEEP ENSEMBLE 25.0±0.2 113.0±9.8 31.4±0.9 72.4±5.6 92.0±0.5 96.6±0.1 93.0±0.3 93.0±0.3
MC DROPOUT 11.3±0.3 48.6±5.2 13.9±0.6 31.1±2.9 93.6±0.4 94.6±0.2 93.8±0.3 93.8±0.3
MC DROPOUT ENSEMBLE 8.3±0.1 34.9±2.5 10.2±0.3 22.4±1.4 94.3±0.2 94.5±0.2 94.4±0.1 94.4±0.1

FSVI 20.7±1.4 39.1±4.1 22.0±1.3 30.3±2.1 86.9±1.1 95.0±0.5 88.8±0.7 88.8±0.7
FSVI ENSEMBLE 14.6±0.7 21.2±1.7 15.1±0.6 18.1±0.7 86.3±0.9 95.4±0.3 88.5±0.6 88.5±0.6
RADIAL-MFVI 25.8±4.2 38.7±11.0 26.8±4.7 32.8±7.6 80.5±1.7 95.3±0.1 83.4±1.4 83.4±1.4
RADIAL-MFVI ENSEMBLE 14.9±0.2 13.0±1.0 14.8±0.2 14.3±0.5 79.0±1.0 95.9±0.1 82.4±0.9 82.4±0.9
RANK-1 42.8±3.6 132.7±15.8 49.2±3.8 91.1±9.4 89.4±0.9 95.5±0.0 90.6±0.7 90.6±0.7
RANK-1 ENSEMBLE 17.0±0.9 69.9±7.2 20.6±1.2 44.7±4.1 91.1±0.4 95.8±0.1 92.0±0.3 92.0±0.3
MFVI 51.7±5.4 106.8±14.6 55.5±5.9 80.6±9.8 85.2±1.9 95.5±0.3 87.4±1.4 87.4±1.4
MFVI ENSEMBLE 20.5±2.1 42.4±10.3 22.0±2.6 31.8±6.3 84.0±1.7 96.3±0.2 87.2±1.2 87.2±1.2

Table 11: Expert Referral Metrics, Severity Shift, Tuned on Joint Dataset. We assess model predictive
performance and uncertainty quantification in the context of expert referral. Here all methods are tuned
according to the joint validation metric (Appendix D.3): area under the retention–accuracy curve constructed on
the balanced joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). We
construct referral curves on a variety of metrics—AUC, Accuracy, NLL and AUPRC—by sweeping over the
referral thresholds τ , obtaining a point for each possible partition of the dataset into “referred" and “non-referred".
The Balanced evaluation dataset is constructed using the procedure described in Appendix D.3.

R-AUROC AUC ↑ R-Accuracy AUC ↑

Method In-Domain Shifted Joint Balanced In-Domain Shifted Joint Balanced

MAP (Deterministic) 93.0±0.4 − 95.2±0.3 95.2±0.3 96.6±0.2 95.9±0.4 96.6±0.2 96.3±0.2
DEEP ENSEMBLE 93.4±0.2 − 95.9±0.1 95.9±0.1 97.4±0.1 96.4±0.1 97.3±0.1 97.0±0.1
MC DROPOUT 95.7±0.4 − 97.0±0.3 97.0±0.3 97.3±0.2 97.9±0.3 97.3±0.2 97.6±0.3
MC DROPOUT ENSEMBLE 96.5±0.1 − 97.7±0.0 97.7±0.0 98.0±0.0 98.3±0.1 98.0±0.0 98.2±0.0

FSVI 92.7±0.4 − 94.9±0.2 94.9±0.2 96.5±0.2 95.7±0.3 96.4±0.2 96.0±0.2
FSVI ENSEMBLE 93.4±0.1 − 95.8±0.1 95.8±0.1 97.4±0.0 95.8±0.1 97.3±0.0 96.7±0.1
RADIAL-MFVI 85.6±1.5 − 88.5±1.5 88.5±1.5 95.9±0.2 78.4±4.4 95.2±0.3 89.5±1.6
RADIAL-MFVI ENSEMBLE 85.3±1.0 − 88.4±1.1 88.4±1.1 96.5±0.2 78.5±3.0 95.9±0.3 90.2±1.1
RANK-1 90.0±1.1 − 92.9±0.8 92.9±0.8 96.7±0.2 88.7±1.7 96.3±0.3 93.5±0.7
RANK-1 ENSEMBLE 89.3±0.4 − 93.1±0.4 93.1±0.4 97.3±0.2 89.4±0.8 96.9±0.2 94.3±0.4
MFVI 91.5±0.3 − 94.1±0.3 94.1±0.3 95.3±0.0 94.4±0.8 95.2±0.0 94.9±0.4
MFVI ENSEMBLE 92.7±0.0 − 95.2±0.0 95.2±0.0 96.2±0.1 95.9±0.2 96.2±0.1 96.1±0.1

R-NLL AUC ↓ R-AUPRC AUC ↑
MAP (Deterministic) 50.2±6.2 49.0±8.0 49.9±6.3 48.8±6.9 85.9±0.9 − 92.2±0.5 92.2±0.5
DEEP ENSEMBLE 16.2±2.5 14.8±2.7 15.9±2.5 15.1±2.6 86.5±0.6 − 93.2±0.3 93.2±0.3
MC DROPOUT 11.9±0.8 7.1±1.3 11.4±0.9 9.4±1.1 91.0±0.7 − 95.2±0.5 95.2±0.5
MC DROPOUT ENSEMBLE 8.3±0.1 4.7±0.2 8.0±0.1 6.3±0.1 92.4±0.2 − 96.2±0.1 96.2±0.1

FSVI 16.8±1.1 15.6±1.4 16.8±1.1 16.4±1.1 85.9±0.8 − 92.2±0.5 92.2±0.5
FSVI ENSEMBLE 10.4±0.1 11.6±0.3 10.5±0.1 10.8±0.2 86.6±0.4 − 93.1±0.2 93.1±0.2
RADIAL-MFVI 14.4±0.7 37.5±6.7 15.3±0.9 22.9±2.8 69.8±3.1 − 78.1±3.2 78.1±3.2
RADIAL-MFVI ENSEMBLE 13.3±0.4 36.9±4.0 14.2±0.5 21.9±1.6 66.1±2.1 − 75.1±2.5 75.1±2.5
RANK-1 25.1±2.8 50.4±7.7 26.4±3.0 35.5±4.5 79.7±2.2 − 87.7±1.5 87.7±1.5
RANK-1 ENSEMBLE 10.1±0.5 25.2±1.7 10.8±0.6 15.9±0.9 77.5±0.9 − 87.3±0.7 87.3±0.7
MFVI 24.4±3.4 30.7±8.4 24.9±3.8 27.4±5.9 82.3±0.5 − 89.8±0.4 89.8±0.4
MFVI ENSEMBLE 12.9±0.1 10.3±0.4 12.6±0.1 11.4±0.1 84.6±0.0 − 91.7±0.0 91.7±0.0
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D.5 Effect of Class Balancing the APTOS Dataset (Figure 16 and 17).

We additionally investigated to what extent the change in class distribution—in terms of the ground-
truth clinical labels ranging from 0 (No DR) to 4 (Proliferative DR)—contributed to the higher
performance of models in AUC, and weaker performance of models in selective prediction on the
APTOS dataset (the distributionally shifted dataset in the Country Shift task) than the in-domain test
dataset.

In order to normalize for the change in class distribution, we constructed a variant of the APTOS
dataset with the same clinical class proportions as the in-domain EyePACS dataset. This was done by
randomly sampling APTOS examples from each class, weighted by the empirical class probability of
the EyePACS dataset, until reaching 10,000 samples.

In Figure 16, we see that the ROC curves of models on the rebalanced APTOS dataset is shifted
further towards the upper left as compared to the original APTOS dataset. This suggests that the class
proportions of the original APTOS dataset were not the reason why models obtained stronger ROC
performance on APTOS than the in-domain test set—on the contrary, introducing the in-domain class
proportions in the class-balanced dataset improves model performance.

In Figure 17, we observe that the selective prediction performance of models on this rebalanced
APTOS dataset is slightly better than on the original APTOS dataset, but the ordering of models does
not notably change, and performance is still significantly worse at high referral thresholds than on the
in-domain data.

This supports the claim that factors other than simply a changed class distribution, such as meaningful
shifts in equipment or patient demographics, result in both stronger predictive performance at 0% of
data referred and poor quality of uncertainty estimates in the shifted setting.
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(a) ROC: In-Domain
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(b) ROC: Country Shift
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(c) ROC: Class-Balanced Country Shift
Deep Ensemble
MAP

MC Dropout Ensemble
MC Dropout

FSVI Ensemble
FSVI

Radial Ensemble
Radial BNN

Rank-1 Ensemble
Rank-1 BNN

MFVI Ensemble
MFVI

Figure 16: Class Balancing the Country Shift Dataset (ROC Curves). We consider how balancing the
proportions of the ground-truth clinical class labels—ranging from 0 (No DR) to 4 (Proliferative DR)—affects
performance on the Country Shift receiver-operating characteristic (ROC) curve. (a): ROC curve on in-domain
test data. (b): ROC curve for changing medical equipment and patient populations on the shifted APTOS [3] test
set. (c): ROC curve on the class rebalanced APTOS dataset. Shading denotes one standard error.
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(a) Selective Prediction AUC: In-Domain
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(b) Selective Prediction AUC: Country Shift
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(c) Selective Prediction AUC:
Class-Balanced Country Shift

Deep Ensemble
MAP

MC Dropout Ensemble
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Radial BNN

Rank-1 Ensemble
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Figure 17: Class Balancing the Country Shift Dataset (Selective Prediction). We consider how balancing
the proportions of the ground-truth clinical class labels—ranging from 0 (No DR) to 4 (Proliferative DR)—
affects performance on the Country Shift selective prediction over AUC. (a): selective prediction AUC on
in-domain test data. (b): selective prediction AUC for changing medical equipment and patient populations on
the shifted APTOS [3] test set. (c): selective prediction AUC on the class rebalanced APTOS dataset. Shading
denotes one standard error.
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D.6 Effect of Preprocessing on Downstream Tasks

Preprocessing played an important role in the EyePACS Kaggle challenge [13]. Here, we inves-
tigate how changes in preprocessing affect downstream predictive performance and uncertainty
quantification.

In the above experiments, we used the preprocessing procedure of the Kaggle competition winner
which consisted of the following steps:

1. Rescaling the images such that the retinas have a radius of 300 pixels,
2. Subtracting the local average color, computed using Gaussian blur, and finally,
3. Clipping the images to 90% size to remove “boundary effects”.

While (1) and (3) are (somewhat) standard techniques used to make the data more amenable for use
in non-convex optimization, the standard deviation hyperparameter of the Gaussian blur kernel in (2)
presupposes some amount of expert knowledge as the size of the standard deviation governs how
visible certain visual artifacts are. As such, varying it has a dramatic visual effect on the preprocessed
image, and likely required significant tuning.

In the preprocessing procedure, the standard deviation of the kernel is computed as
σ = (target_radius/blur_constant), where by default, target_radius = 300 and
blur_constant = 30.

Decreasing the blur_constant results in a larger kernel standard deviation, and hence the local
average color at each pixel location is computed using a larger window. This ultimately results in
the preservation of more signal as well as more noise in the input image (because lower-frequency
patterns are subtracted). See Figure 18 for examples of unprocessed retina images along with
processed images with various blur constants.

We test the downstream performance of MAP estimation (a deterministic model), a DEEP ENSEMBLE,
MC DROPOUT, and an MC DROPOUT ENSEMBLE on the Country and Severity Shift prediction
tasks, varying the blur_constant ∈ {5, 10, 20, 30}.
Severity Shift: Varying Blur Constant (Figure 19, Table 12). On the in-domain evaluation dataset,
higher blur_constant (corresponding to stronger smoothing) tends to perform better across MAP
and MC DROPOUT, single and ensembled models, and the various referral thresholds. However, on
the Severity Shift (distributionally shifted evaluation dataset), the MC DROPOUT variants perform
better with lower blur_constant. This highlights the importance for practitioners to test changes in
experimental settings, including preprocessing, across a variety of uncertainty quantification methods.

Country Shift: Varying Blur Constant (Figure 20, Table 13). Similarly to the Severity Shift
results, higher blur_constant tends to perform better on the in-domain evaluation data across
methods and referral rates. Notably, on the distributionally shifted APTOS data, DEEP ENSEM-
BLE outperforms MC DROPOUT ENSEMBLE, and blur_constant = 20 significantly improves
performance from the default blur_constant = 30 for DEEP ENSEMBLE between referral rates
0.4 and 0.7. For example, for DEEP ENSEMBLE at τ = 0.7, we observe 82.2 ± 2.5 AUC with
blur_constant = 20 versus 67.4± 5.6 AUC with blur_constant = 30.
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Figure 18: Preprocessing Examples. Input unprocessed EyePACS images (top row), and images processed
with varying blur_constant (labeled on left side of grid). Higher blur_constant corresponds to stronger
smoothing.
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(a) ROC: In-Domain
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(b) ROC: Joint

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Cases Referred to Expert

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(c) Selective Prediction
Accuracy: In-Domain
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(d) Selective Prediction
Accuracy: Severity Shift

Deep Ensemble-blur5
MAP-blur5

Deep Ensemble-blur20
MAP-blur20
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MAP-blur30

MC Dropout Ensemble-blur5
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Figure 19: Severity Shift, Varying Blur Constant. We consider how preprocessing affects model predictive
performance and uncertainty quantification on the in-domain test dataset composed only of cases with either
no, mild, or moderate diabetic retinopathy, and the Severity Shift evaluation set composed only of severe and
proliferate cases. Left: The receiver operating characteristic curve (ROC) for in-domain diagnosis (a) and for
a joint dataset composed of examples from both the in-domain and Severity Shift evaluation sets (b). The dot
in black denotes the NHS-recommended 85% sensitivity and 80% specificity ratios [62]. Right: Selective
prediction on accuracy in the in-domain (c) and Severity Shift (d) settings. Shading denotes standard error
computed over six random seeds. We vary the standard deviation hyperparameter of the Gaussian blur kernel
through a blur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant
results in a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix D.6. The
default blur_constant used in other experiments throughout this work is 30.
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(a) ROC: In-Domain

0.0 0.2 0.4 0.6 0.8
False Positive Rate

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) ROC: Country Shift
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(c) Selective Prediction
AUC: In-Domain

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Cases Referred to Expert

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

(d) Selective Prediction
AUC: Country Shift
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Figure 20: Country Shift, Varying Blur Constant. We consider how preprocessing affects model predictive
performance and uncertainty quantification on both in-domain and distributionally shifted data. Left: The
receiver operating characteristic curve (ROC) for in-population diagnosis on the EyePACS [13] test set (a)
and for changing medical equipment and patient populations on the APTOS [3] test set (b). The dot in black
denotes the NHS-recommended 85% sensitivity and 80% specificity ratios [62]. Right: selective prediction
on AUC in the EyePACS [13] (c) and the APTOS [3] (d) settings. Shading denotes standard error computed
over six random seeds. We vary the standard deviation hyperparameter of the Gaussian blur kernel through a
blur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant results in
a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix D.6. The default
blur_constant used in other experiments throughout this work is 30.
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Table 12: Severity Shift, Varying Blur Constant. We consider how preprocessing affects downstream
prediction and uncertainty quality of baseline methods in terms of the area under the receiver operating
characteristic curve (AUC) and classification accuracy, as a function of the proportion of data referred to a
medical expert for further review. All methods are tuned on in-domain validation AUC, and ensembles have
K = 3 constituent models. We vary the standard deviation hyperparameter of the Gaussian blur kernel through
a blur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant results
in a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix D.6. The default
blur_constant used in other experiments is 30.

No Referral 50% Data Referred 70% Data Referred

Method AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy ↑
In-Domain (No, Mild, or Moderate DR, Clinical Labels {0,1,2})

MAP (Deterministic)-blur5 73.7±1.3 79.4±1.4 75.5±3.1 89.0±0.9 79.1±3.4 89.3±1.0
MAP (Deterministic)-blur10 78.7±1.1 84.6±0.6 80.0±2.3 93.4±0.3 84.5±2.2 94.1±0.4
MAP (Deterministic)-blur20 79.9±1.3 87.3±0.5 77.2±3.4 94.5±0.4 80.9±4.1 95.3±0.3
MAP (Deterministic)-blur30 82.0±1.0 87.9±0.4 83.1±1.9 95.2±0.3 88.4±1.9 96.0±0.2

MC DROPOUT-blur5 84.8±0.4 76.1±2.3 91.4±0.3 86.0±2.4 94.1±0.4 88.6±2.2
MC DROPOUT-blur10 86.3±0.1 84.2±1.3 92.4±0.4 93.5±0.8 95.2±0.2 95.1±0.6
MC DROPOUT-blur20 88.7±0.3 90.1±0.2 92.5±0.5 97.0±0.1 95.3±0.3 97.7±0.1
MC DROPOUT-blur30 89.2±0.2 90.5±0.1 92.8±0.6 97.2±0.0 95.4±0.4 97.8±0.0

DEEP ENSEMBLE-blur5 78.6±0.6 84.3±0.8 75.0±2.6 93.3±0.5 75.9±3.3 94.8±0.3
DEEP ENSEMBLE-blur10 82.4±0.3 87.7±0.1 80.9±1.3 95.1±0.1 84.1±1.3 96.1±0.1
DEEP ENSEMBLE-blur20 84.2±0.8 88.6±0.3 70.9±1.1 95.8±0.2 71.4±1.4 96.7±0.2
DEEP ENSEMBLE-blur30 85.1±0.7 89.3±0.2 82.0±0.9 96.3±0.2 85.3±0.9 97.3±0.2

MC DROPOUT ENSEMBLE-blur5 86.5±0.1 79.4±1.0 93.2±0.1 90.2±1.1 95.7±0.2 92.5±0.9
MC DROPOUT ENSEMBLE-blur10 87.5±0.0 86.7±0.6 93.4±0.2 95.4±0.3 96.0±0.2 96.5±0.3
MC DROPOUT ENSEMBLE-blur20 90.3±0.0 91.1±0.1 93.5±0.2 97.6±0.0 96.0±0.1 98.2±0.0

MC DROPOUT ENSEMBLE-blur30 90.6±0.0 91.4±0.1 93.1±0.2 97.8±0.0 95.7±0.2 98.2±0.0

Severity Shift (Severe or Proliferate DR, Clinical Labels {3, 4})

MAP (Deterministic)-blur5 − 70.8±6.2 − 81.4±7.9 − 87.7±7.9
MAP (Deterministic)-blur10 − 77.3±2.2 − 91.9±2.8 − 97.2±1.5
MAP (Deterministic)-blur20 − 69.1±4.0 − 81.8±5.3 − 88.8±4.4
MAP (Deterministic)-blur30 − 74.4±1.9 − 93.2±2.6 − 98.6±1.1

MC DROPOUT-blur5 − 93.5±0.6 − 100.0±0.0 − 100.0±0.0

MC DROPOUT-blur10 − 91.0±1.3 − 99.9±0.0 − 100.0±0.0

MC DROPOUT-blur20 − 87.2±0.9 − 99.7±0.1 − 100.0±0.0

MC DROPOUT-blur30 − 86.4±1.3 − 99.5±0.2 − 100.0±0.0

DEEP ENSEMBLE-blur5 − 72.0±3.9 − 85.1±3.7 − 87.5±3.3
DEEP ENSEMBLE-blur10 − 80.0±1.2 − 94.0±1.0 − 97.8±0.5
DEEP ENSEMBLE-blur20 − 69.8±2.1 − 82.4±1.5 − 89.1±1.5
DEEP ENSEMBLE-blur30 − 74.5±1.2 − 89.8±1.0 − 97.0±0.7

MC DROPOUT ENSEMBLE-blur5 − 94.7±0.3 − 100.0±0.0 − 100.0±0.0

MC DROPOUT ENSEMBLE-blur10 − 91.9±0.7 − 100.0±0.0 − 100.0±0.0

MC DROPOUT ENSEMBLE-blur20 − 88.6±0.4 − 99.8±0.0 − 100.0±0.0

MC DROPOUT ENSEMBLE-blur30 − 87.4±0.3 − 99.4±0.1 − 100.0±0.0
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Table 13: Country Shift, Varying Blur Constant. We consider how preprocessing affects downstream
prediction and uncertainty quality of baseline methods in terms of the area under the receiver operating
characteristic curve (AUC) and classification accuracy, as a function of the proportion of data referred to a
medical expert for further review. All methods are tuned on in-domain validation AUC, and ensembles have
K = 3 constituent models. We vary the standard deviation hyperparameter of the Gaussian blur kernel through
a blur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant results
in a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix D.60. The default
blur_constant used in other experiments is 30.

No Referral 50% Data Referred 70% Data Referred

Method AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy (%) ↑ AUC (%) ↑ Accuracy ↑
EyePACS Dataset (In-Domain)

MAP (Deterministic)-blur5 82.9±0.7 80.3±0.8 89.1±0.6 91.0±0.7 91.4±0.3 91.6±0.6
MAP (Deterministic)-blur10 87.1±0.1 85.6±0.3 92.6±0.1 95.0±0.2 95.0±0.2 94.9±0.3
MAP (Deterministic)-blur20 86.7±1.0 88.0±0.5 90.5±1.4 95.6±0.3 94.4±0.9 96.3±0.2
MAP (Deterministic)-blur30 87.4±1.0 88.6±0.6 91.1±1.4 95.9±0.3 94.9±0.8 96.5±0.2

MC DROPOUT-blur5 88.1±0.2 85.9±0.4 94.0±0.1 95.0±0.2 96.5±0.1 96.4±0.1
MC DROPOUT-blur10 89.0±0.2 85.5±0.5 94.7±0.2 94.9±0.3 96.9±0.1 96.3±0.2
MC DROPOUT-blur20 91.4±0.1 90.2±0.2 95.7±0.2 97.3±0.1 97.5±0.1 98.0±0.1
MC DROPOUT-blur30 91.4±0.1 90.9±0.0 95.3±0.2 97.4±0.0 97.4±0.1 98.1±0.0

DEEP ENSEMBLE-blur5 85.6±0.2 84.6±0.1 90.9±0.3 94.3±0.0 93.6±0.3 95.8±0.2
DEEP ENSEMBLE-blur10 88.8±0.0 88.0±0.1 94.2±0.1 96.2±0.0 96.4±0.1 97.3±0.0
DEEP ENSEMBLE-blur20 89.2±0.2 89.5±0.2 90.5±0.3 96.9±0.1 93.8±0.3 97.7±0.0
DEEP ENSEMBLE-blur30 90.3±0.1 90.3±0.2 91.7±0.5 97.2±0.0 95.0±0.4 97.9±0.0

MC DROPOUT ENSEMBLE-blur5 89.3±0.0 87.3±0.1 94.7±0.0 95.7±0.1 97.1±0.0 96.9±0.0
MC DROPOUT ENSEMBLE-blur10 90.1±0.0 87.4±0.1 95.4±0.0 96.0±0.0 97.3±0.0 97.0±0.1
MC DROPOUT ENSEMBLE-blur20 92.4±0.0 91.2±0.0 96.2±0.1 97.7±0.0 97.9±0.0 98.3±0.0
MC DROPOUT ENSEMBLE-blur30 92.5±0.0 91.6±0.0 95.8±0.1 97.8±0.0 97.7±0.1 98.4±0.0

APTOS 2019 Dataset (Shifted)

MAP (Deterministic)-blur5 87.9±0.7 69.9±1.4 64.0±5.3 78.6±1.7 55.3±3.2 78.9±1.9
MAP (Deterministic)-blur10 90.2±0.2 77.0±0.7 63.1±2.0 81.1±0.6 51.1±0.0 80.0±0.6
MAP (Deterministic)-blur20 92.1±0.2 85.2±0.3 79.8±3.8 87.9±1.5 60.0±4.6 86.0±1.2
MAP (Deterministic)-blur30 92.2±0.2 86.2±0.4 80.1±2.8 87.6±1.1 55.4±3.3 85.4±0.9

MC DROPOUT-blur5 93.4±0.2 78.4±0.7 82.2±0.4 84.6±0.1 62.5±0.6 88.0±0.5
MC DROPOUT-blur10 93.3±0.2 77.3±0.9 79.7±0.3 83.3±0.3 59.6±1.0 87.2±0.4
MC DROPOUT-blur20 93.9±0.1 84.9±0.4 83.8±1.2 86.2±0.6 63.8±2.4 87.9±0.2
MC DROPOUT-blur30 94.0±0.2 86.8±0.2 87.4±0.3 88.1±0.2 65.3±1.3 88.2±0.3

DEEP ENSEMBLE-blur5 92.1±0.1 70.8±0.6 82.5±1.7 85.0±0.3 63.2±4.2 87.1±0.6
DEEP ENSEMBLE-blur10 91.8±0.0 78.8±0.3 73.5±0.3 84.5±0.1 51.1±0.0 82.0±0.1
DEEP ENSEMBLE-blur20 94.1±0.0 87.0±0.1 93.7±0.4 93.6±0.3 82.2±2.5 91.7±0.5

DEEP ENSEMBLE-blur30 94.2±0.2 87.5±0.1 91.2±1.4 92.4±0.7 67.4±5.6 90.1±0.9

MC DROPOUT ENSEMBLE-blur5 93.7±0.1 80.1±0.3 81.9±0.2 84.7±0.1 63.2±0.4 87.2±0.2
MC DROPOUT ENSEMBLE-blur10 93.6±0.1 78.7±0.4 79.1±0.1 83.4±0.1 59.6±0.2 87.3±0.3
MC DROPOUT ENSEMBLE-blur20 94.0±0.0 86.4±0.3 83.3±0.7 85.7±0.3 58.3±0.9 87.6±0.1
MC DROPOUT ENSEMBLE-blur30 94.1±0.1 87.6±0.1 86.8±0.2 88.0±0.1 62.3±0.3 87.7±0.2
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