
Navigating Conflicting Views: Harnessing Trust for Learning

Jueqing Lu 1 Wray Buntine 2 Yuanyuan Qi 1 Joanna Dipnall 3 Belinda Gabbe 3 Lan Du 1

Abstract
Resolving conflicts is critical for improving the re-
liability of multi-view classification. While prior
work focuses on learning consistent and infor-
mative representations across views, it often as-
sumes perfect alignment and equal importance
of all views, an assumption rarely met in real-
world scenarios, as some views may express dis-
tinct information. To address this, we develop
a computational trust-based discounting method
that enhances the Evidential Multi-view frame-
work by accounting for the instance-wise reliabil-
ity of each view through a probability-sensitive
trust mechanism. We evaluate our method on six
real-world datasets using Top-1 Accuracy, Fleiss’
Kappa, and a new metric, Multi-View Agreement
with Ground Truth, to assess prediction reliabil-
ity. We also assess the effectiveness of uncer-
tainty in indicating prediction correctness via AU-
ROC. Additionally, we test the scalability of our
method through end-to-end training on a large-
scale dataset. The experimental results show that
computational trust can effectively resolve con-
flicts, paving the way for more reliable multi-view
classification models in real-world applications.
Codes available at: https://github.com/
OverfitFlow/Trust4Conflict

1. Introduction
Multi-View Classification (MVC) plays a critical role in
deep learning by greatly enhancing the ability to make ac-
curate decisions through integrating multi-source informa-
tion. Its effectiveness has been verified with the successful
application in many domains such as autonomous driving
(Yurtsever et al., 2020) and AI-assisted medical diagnostic
systems (Kang et al., 2020). Most of the existing studies
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Figure 1. Example of conflicting multi-view opinions. The Ti-
tanic’s route is safe in Captain’s and Polar Bear’s View, while
unsafe in Dolphin’s view.

on MVC rely on the assumption that data from different
views consistently provide reliable information about the
ground truth (Liang et al., 2024; Zhang et al., 2023a; Xu
et al., 2024a). Nevertheless, this assumption may not always
be valid in real-world scenarios. Substantial variations in the
informativeness of data from different views can produce
conflicting results, thereby undermining the reliability of
the model’s predictions.

A possible solution for resolving conflicts is to project data
from different views into a shared latent space (Hardoon
et al., 2004; Wang et al., 2015; Federici et al., 2020; Hjelm
et al., 2019), and then draw a joint representation from the
latent space for the classification task. This is achieved by
integrating essential features via weighting schemes, such as
attention mechanisms (Zheng et al., 2021) and weighted fu-
sion (Atrey et al., 2010; Zhang et al., 2019). These methods
typically assign higher weights to more informative views
or features, thus reducing the impact of potential conflicting
information. Although these methods have achieved promis-
ing results in MVC, their focus on the joint representation
can be a limitation. Solely relying on the joint representa-
tion hinders the capacity to thoroughly grasp information
provided by different views. In contexts such as ocean navi-
gation, characterized by observations sources from various
views (e.g., the perspectives of the captain, dolphin and Po-
lar Bear when observing an iceberg as shown in Figure 1),
it is crucial to thoroughly analyze and comprehend each
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view before making the decision to cross and face or de-
tour, as different views provide unique and complementary
information.

Existing approaches to resolve conflicts build neural net-
works to generate view-specific predictions and then com-
bine view-specific predictions together. As a prime exam-
ple, the Evidential Multi-view framework (Han et al., 2021)
is emerging as a promising approach, offering a reliable
means for the final fusion stage. Within this framework,
evidence acts as a metric of endorsement for the associ-
ated predicted label, and the evidence is collected through
view-specific neural networks. Subsequently, evidence from
diverse viewpoints is fused, considering their respective
epistemic uncertainties. However, there may exist cases
where the view-specific information is not well aligned with
the ground truth, resulting in misleading predictions with
high confidence (low uncertainty). For example, as shown in
Figure 1, while the dolphin can clearly observe the massive
structure hidden beneath the water’s surface, the captain
may only see the tip of the iceberg.

In this work, we take a significant step further: leveraging
the Evidential Multi-view framework, we propose a new
computational trust based opinion fusion method to resolve
potential conflicts in MVC. Specifically, the computational
trust is modeled through an evidence network that operates
on a view-specific and instance-wise basis. Drawing upon
the principle of trust discounting in subjective logic, it eval-
uates the reliability of view-specific predictions generated
by existing Evidential frameworks, such as Evidential Deep
Learning (EDL) (Sensoy et al., 2018). Within the proposed
method, each view-specific evidence is transformed into a
degree of trust using the Binomial opinion theory (Jøsang,
2018). These degrees of trust are then utilized to establish
uncertainty and a trust-aware opinion, ultimately facilitat-
ing the generation of reliable predictions. In summary, the
contributions of this paper include:

1. We present a novel learnable trust-discounting mecha-
nism to extend the widely-used Evidential MVC frame-
work, enhancing its conflict resolution capabilities.
Drawing from the Binomial opinion theory within
subjective logic, it operates on a view-specific and
instance-wise basis, adeptly resolving conflicts among
views through a probability-sensitive trust discounting
rule;

2. We develop a stage-wise training strategy to optimize
the parameters of the proposed mechanism, which
works robustly on different datasets;

3. We conduct extensive experiments on six real-world
datasets, showing that our method outperforms the
existing Evidential MVC methods, particularly on
the datasets exhibiting large discrepancy among view-

specific predictions. In addition, our method can also
enhance the consistency among opinions derived from
different views.

2. Related Work
Multi-View Classification leverages multiple data sources,
offering varied perspectives on the same object, to enhance
the classification performance. Recent advancements in
MVC have focused on generating noise-robust representa-
tions through cluster-based (Huang et al., 2023; Wen et al.,
2023a; Zhang et al., 2023b), self-representation-based (Hou
et al., 2020), and partially view-aligned (Wen et al., 2023b;
Huang et al., 2020) methods, harnessing the expressive
power of deep neural networks. However, noise-robust rep-
resentations may not fully resolve conflicts in opinions for
a given data instance, as conflicts may arise by discrepant
information from distinct views, and the discrepancy cannot
be eliminated by addressing noises. Our method addresses
this limitation by introducing a separate evidence network
that evaluates the reliability of view-specific predictions and
adjusts the final predictions according to the degree of trust.

Trusted Multi-View Classification has emerged as a cru-
cial area and a pivotal domain within Multi-View Learning.
This research area aims to enhance the accuracy and de-
pendability of classification models by integrating data from
multiple views, guided by their prediction confidence and
epistemic uncertainty. The seminal work, Trusted Multi-
View Classification (TMC) (Han et al., 2021), introduced
the fusion of different views from an opinion perspective
using the Dempher-Shafer Combination rule. Building upon
TMC, Han et al., 2022 extended the approach by incorpo-
rating the pseudo-view, a concatenation of all other views,
resulting in improved performance. Subsequent studies by
Liu et al., 2022 and Xu et al., 2024a explored alternative
opinion fusion methods. Concurrent research efforts, such
as those by Jung et al., 2022 and Jung et al., 2023, focus
on multiview uncertainty estimation, enhancing the model’s
reliability. Recently, TEF (Liang et al., 2025) proposed evo-
lutionary fusion to enhance pseudo-view quality in Trusted
Multi-View Classification. Similar to the TMC, our method
is also built upon the Evidential Neural Network (ENN), but
with a novel Trust Discounting module integrated, which ad-
just the original evidence and opinions before the Dempher-
Shafer Combination based on the reliability of evidence and
opinion.

Conflictive Multi-View Classification argues that existing
work primarily focusing on either learning joint aligned rep-
resentations or better quantifying uncertainty overlook the
problem of potential contradictory in the prediction space.
Recognizing this gap, the pioneer work by Xu et al., 2024a
highlighted this issue and introduced the Degree of Conflict
loss. This loss quantifies the disparity between different
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predictions in the prediction space while accounting for
uncertainty, aiming to mitigate conflict-related challenges.
However, this approach may inadvertently lead correct pre-
dictions to converge towards incorrect ones, potentially jeop-
ardizing model stability. In the case, if most views are mak-
ing incorrect predictions, the minority of correctly predicted
views may be forced to align with the majority of incorrect
ones. In contrast, our method can generate more accurate
predictions with properly estimated uncertainty. As the trust
discount module of our method is trained based on the cor-
rectness of the view-specific prediction and directly assess
the reliability of it, instead of using other views’s predictions
which may provide incorrect optimization direction.

3. Trust Fusion Enhanced Evidential MVC
3.1. Preliminaries

Given training data D = {{xv
i }Vv=1, yi}

N

i=1 where N is
the number of training data, each instance xi has V views,
ground truth label yi and an one-hot encoded label yi (i.e.,
for a K-class classification problem, yi,k is 1 if k is the
index of ground truth label for i-th instance, otherwise it
is 0). The task of MVC is to learn a function f that maps
{xv

i }Vv=1 to yi.

The Evidential MVC framework applies Subjective Logic
(SL) to the K-class classification problem by assigning
belief masses to individual class labels and computing epis-
temic uncertainty for the generated belief masses. The for-
mulation links the evidence collected from instance view-
specific observation to the concentration parameter of the
Dirichlet Distribution. Let fvθ (·) denote the view-specific
neural network for evidence generation, where the view-
specific evidence for an instance is ev = fvθ (x

v), the asso-
ciation between the evidence and the Dirichlet parameters
is simply αk = ek + 1 (Sensoy et al., 2018; Han et al.,
2021) . The belief mass on class label k, denoted as bk, and
uncertainty u are subject to the additive requirement, i.e.,
u+

∑K
k=1 bk = 1. With respect to MVC, the view-specific

belief mass bvk and uncertainty uv can then be computed as

Sv =

K∑
k=1

αv
k, b

v
k =

evk
Sv

=
αv
k − 1

Sv
, uv = 1−

K∑
k=1

bvk =
K

Sv

(1)

To generate the final prediction, SL models the view-
specific predictions as multinomial opinions, denoted as
ωv = [bv, uv,av], with av being the base rate (i.e., a prior
probability distribution over classes, generally a discrete uni-
form distribution), and then combine them together with an
appropriate belief fusion rules based on the context (Jøsang
et al., 2013). The Belief Constraint Fusion (BCF) (Jøsang
et al., 2013), an extension of Dempher-Shafer combination
rule (Shafer, 1976), was first adopted by Han et al., 2021 in

trusted MVC. Other fusion rules, such as Aleatory Cumula-
tive Belief Fusion (A-CBF) (Liu et al., 2022) and Averaging
Belief Fusion (ABF) (Xu et al., 2024a) have also been ex-
plored. We choose to stay with BCF in our experiments
due to its intuitive foundation (Jøsang et al., 2013; Jøsang,
2018) and the effectiveness demonstrated by Han et al.,
2021; 2022.

The fusion rule, ⊕, of BCF, among two views, i.e., ω =
ω1 ⊕ ω2, can be formulated as follows:

bk =
1

1− C
(b1kb

2
k+b

1
ku

2+b2ku
1), u =

1

1− C
u1u2 (2)

where C =
∑

i ̸=j b
1
i b

2
j is the normalization factor, and bk

is the belief mass of label k and u is the uncertainty the
fused opinion ω. Since the order of combination does not
affect the final result (Jøsang, 2018), applying Eq. 2 by
sequentially combining the V views in pairs, where the
result of each combination is then combined with the next
view, will derive the final fused opinion, which is as follows,

ω = ω1 ⊕ ω2 ⊕ · · ·ωV (3)

For the fused opinion ω, we can derive the parameters of
the Dirichlet αk by reversing the computation of Eq. 1.

Corollary 3.1. An alternative representation for BCF is
based on combining the evidence 1, from which the opinion
ω = [b, u,a] can be derived:

ek = e1k + e2k +
e1ke

2
k

K
(4)

3.2. Conflict Resolving By Trust Fusion

We realize conflicts can happen when view-specific opin-
ions express conflicting preferences, leading to ambiguity
in the fused opinion, for example, two views’ candidate
labels has same confidence(belief), and subsequently draws
potential inaccurate predictions. Based upon this, we define
the conflict problem as follows:

Definition 3.2 (Conflicts within Multi-view Classification).
In a K-class multi-class classification problem involving a
multi-view dataset, a classification conflict arises when mul-
tiple views that predict different classes. This conflict leads
to ambiguity in aggregating these predictions, as it becomes
challenging to determine a single, coherent classification
result from those inconsistent predictions.

Although Belief Fusion has been verified effectively to fuse
different opinions under SL, it still can generate unreliable
fused opinions and lead to inaccurate predictions, for exam-
ple, the Titanic navigation route case used in Figure 1. The
data of different views’ opinions have been recollected, and

1We provide the proof in Appendix C.2 and we implement BCF
based on this equation due to its computational efficiency.
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Table 1. Opinions from Different views and BCF Fused opinion

Belief(b) Uncertainty(u)
View Safe Unsafe
Captain(functional) 0.85 0.05 0.10
Dolphin(functional) 0.05 0.90 0.05
PolarBear(functional) 0.75 0.20 0.05
Fused (via BCF) 0.68 0.31 0.01

shown in Table 1. Besides, we also compute the fused opin-
ion generated through BCF by substituting the data of three
(i.e., Captain, Dolphin and PolarBear) functional opinions
into Eq. 2 and Eq. 3, and the fused opinion has also been
appended to the Table 1.

From Table 1, we can see that compared to the ”unsafe”
option, the fused opinion assigns a higher belief mass to the
”safe” option (0.68 vs. 0.31). As a result, the prediction will
be ”safe”, which is factually incorrect, as indicated in Figure
1. We attribute this error to insufficient evidence being col-
lected, resulting in less belief mass supporting the factually
correct option, ”unsafe,” in the opinions of both Captain and
PolarBear. Additionally, the fused opinion exhibits lower
uncertainty (0.01) compared to the original views’ opinions
(0.1, 0.05 and 0.05), however, the uncertainty is expected to
be higher than that of all views to reflect the struggle among
different opinions in the presence of conflict.

We utilize the principle of Trust Fusion (TF) by Trust Dis-
counting (TD) (Jøsang et al., 2015) to handle the incorrect
prediction caused by conflicting opinions. The basic idea
of TD is to discount evidence or opinion from an individual
view as a function of trust on that view. It can be used to
weigh the current view-specific opinion according to the
degree of trust, thus guiding the fusion process to generate
more reliable prediction. Here we present a Probability-
sensitive Trust Discounting rule, as show in Eq. 5, and use
it in an instance-wise manner in our experiments as follows,

Definition 3.3 (Instance-wise Probability-Sensitive Trust
Discounting). For each view of each individual instance,
the trust-discounted opinion is defined as

ω̆v
i = ω̈v

i ⊗ ώv
i =

{
b̆vi = p̈vt,i ∗ b́vi ,
ŭvi = 1− p̈vt,i ∗

(∑K
k=1 b́

v
k,i

)
.

(5)

where i, v are the index for v-th view of i-th instance, ⊗
indicates the TD operator, ω̆ denotes the discounted opinion,
and ω̈, ώ denote referral opinion and functional opinion 2

(e.g., opinions in Table 1), respectively. The scalar proba-
bility p̈t denotes the Degree of Trust (DoT), representing
how much we are confident with the opinion given by the
view-specific evidential model. Given Eq. 5, we fuse the
trust-discounted opinions from V views of i-th instance with

2Definitions of different opinion can be found in Appendix A.

Table 2. Referral Opinions of Different views

Belief(b) Uncer-
tainty(u)

DoT(p̈t)
View Trust Distrust
Captain(referral) 0.6 0.3 0.1 0.65
Dolphin(referral) 0.9 0.0 0.1 0.95
PolarBear(referral) 0.2 0.7 0.1 0.25

Table 3. Discounted Opinions from Different views and BCF
Fused opinion

Belief(b) Uncertainty(u)
View Safe Unsafe
Captain(discounted) 0.55 0.03 0.42
Dolphin(discounted) 0.04 0.86 0.10
PolarBear(discounted) 0.19 0.05 0.76
Fused (BCF) 0.22 0.70 0.08

BCF by:

ω̄i = ω̆1
i ⊕ ω̆2

i ⊕ · · · ⊕ ω̆V
i

=
(
ω̈1
i ⊗ ώ1

i

)
⊕
(
ω̈2
i ⊗ ώ2

i

)
⊕ · · · ⊕

(
ω̈V
i ⊗ ώV

i

)
(6)

Note that 1) the referral opinion is different from the func-
tional opinion shown in Table 1, which aims for assessing
reliability of corresponding views’ functional opinion, and
2) comparing with original Probability-Sensitive TD (Jøsang
et al., 2012), our proposed instance-wise manner takes into
consideration the opinions reliability of each instance, in-
stead of global reliability of view only.

According to Jøsang et al., 2015, the probability p̈t can be
computed by p̈t = b̈t + ät ∗ ü 3 with ä being the uniformly
distributed base rate, i.e., ät = 1/2 for each individual in-
stance on each view. Assuming we have the referral opinions
for each view’s functional opinion in Table 1, and defined
in the Table 2. By substituting trust scores p̈t with the data
in Table 2 and functional beliefs b́ with the data in Table 1
in Eq. 5 and Eq. 6, we effectively apply TD to original
functional opinions. This process enabled us to compute
the discounted opinions for each view as well as their fused
opinion through BCF combination, which is shown as in
Table 3.

We can see that with the intervention of TD, the BCF fused
opinion now assigns more belief mass to ”unsafe,” which
aligns with the factual label. Additionally, the uncertainty
of the fused opinion is now 0.08, which is rational given that
Captain’s and PolarBear’s opinions have high uncertainty.
Therefore, the decision aligning with Dolphin’s opinion,
which has significantly lower uncertainty than the others, is
reasonable.

Corollary 3.4. Above Eq. 3.3 also corresponds to updating

3We prove that pt = bt+at ∗u is equivalent to pt = α2/(α1+
α2) with the assumption that base rate at is uniformly distributed
in Appendix C.1.
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Figure 2. The TF Enhanced Evidential MVC Framework. The top half illustrates the overall pipeline of the Evidential MCV framework,
while the bottom half zooms in to highlight the view-specific Trust Fusion.

the Dirichlet evidence by 4 :

ĕvk,i =
p̈vt,iú

v
t,i

1− p̈vt,i + p̈vt,iú
v
t,i

évk,i (7)

The following propositions provide theoretical analysis of
the proposed TD rule for achieving TF, and their detailed
proof can be found in Appendix C.4.
Proposition 3.5. Instance-wise Probability-Sensitive TD
maximizes the belief mass of the Ground truth label after
BCF, under the assumption that at least one view’s predic-
tion is correct.
Proposition 3.6. The combined opinion generated by pro-
posed TF (TD+BCF) for conflicting views, will exhibit
greater uncertainty than obtained through fusion with non-
discounted functional opinions.

3.3. Learning to Form Opinions

We depict the proposed TF (TD+BCF) along with entire
Evidential MVC framework in Figure 2. The view-specific
functional evidence is generated through an Evidential Neu-
ral Network (ENN), i.e., évi = fv

θ́
(xv

i ), which is same as
(Han et al., 2021). Similar to the functional evidence gener-
ation process, we construct another view-specific evidential
network parameterized by θ̈, for collecting referral evidence
ë, i.e., ëvi = fv

θ̈
([xv

i , b́
v
i ])

5, where both feature representa-

4We provide the proof in Appendix C.3.
5We use Bi-Linear layer instead of Dense/Linear Layer in our

experiments.

tion xv
i and functional opinion b́vi are used as inputs.

In terms of loss function, we follow Sensoy et al., 2018; Han
et al., 2021; 2022; Xu et al., 2024a and optimize parameters
of each view-specific evidential network. The loss term for
i-th instance on v-th view is defined as follows,

Lv
i =

K∑
k=1

yi,k(ψ(S
v
i )− ψ(αv

i,k))

+ λoDKL[Dir(pv
i |α̃v

i )||Dir(pv
i |1)] (8)

where ψ is the digamma function, λo = min(1.0, o/10) is
the annealing factor, and o is the index of the current training
epoch, α̃ = y+(1−y)⊙α is the Dirichlet parameters after
removing misleading evidence from predicted distribution
parameters α , and p is the projected probability, i.e., p =
α/S.

Note that, 1) the loss term above is directly linked with
the distribution parameters that are generated through ENN
parameterized by θ, which will also be updated through
back-propagation during training stage; 2) even though we
omit the notation for distinguishing the distribution param-
eters that govern the variational transformation of referral
and functional opinions, this loss term will still be applied
to the referral and functional nets respectively; 3) the above
equation will be also applied to the final fused opinion since
its corresponding variational Dirichlet has parameter ᾱ as
well. We illustrate when and how to use the loss term in our
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Algorithm 1 Algorithm For Training (simplified version)
Input: Multi-view dataset D = {{xv

i }Vv=1, yi}Ni=1.
Initialize: The parameters θ́, θ̈ of Functional and Referral
ENNs, respectively.
Stage-1 Warm-up Referral Network
Obtain {ëv}V ← Referral ENNs outputs and {α̈v}V ;
Update the parameters θ̈ by Gradient Descent (GD) with
loss of Eq. 10 for all {α̈v}V ;
Stage-2 Update Functional Network
/*Substage-2a*/
Obtain {év}V ← Functional ENNs outputs and {άv}V ;
Update the parameters θ́ by GD with loss of Eq. 8 for all
{άv}V ;
/*Substage-2b*/
Obtain {ëv}V ← Referral ENNs outputs and {α̈v}V ;
Obtain {év}V ← Functional ENNs outputs and {άv}V ;
Obtain ω̈v and ώv by Eq. 1 with ëv and év for all views;
Obtain BCF fused opinion ω̄ by Eq. 6 and ᾱ by Eq. 1;
Update the parameters θ́ by GD with loss of Eq. 8 for ᾱ ;
Stage-3 Adjust Referral Network
By repeating Stage-2b and update θ̈ instead of θ́ only ;
Stage-4 Adjust Functional Network
By repeating entire Stage-2;
Output: Functional and Referral networks parameters.

proposed stage-wise training algorithm ( Algorithm 1) 6.

We also adopt a warm-up stage for the referral nets since
the randomly initialized parameters of them could introduce
unreliable trust scores for discounting at early training stage.
The loss term used at the warm-up stage is simply the left
summation term of Eq. 8 with a different target label which
is defined as

zvi =

{
1 if ŷvi = yi

0 otherwise
(9)

where ŷvi = argmaxk b́ which is predicted label of func-
tional opinion, so the target label zvi primarily indicates the
correctness of such prediction. Following Müller et al.,
2019, we apply label smoothing with smoothing factor
η = 0.9 to the hard label. The association between one-
hot encoded hard label zvi of target zvi and smooth label
is z̊vi = zvi ⊙ η + (1 − η)/2. since the smoothed label
could provide training signals for neurons of both target and
non-target labels, we omit the KL term here. The summa-
tion term, with Beta distribution parameters α̈v

i of referral
opinion, changes to follows,

2∑
j=1

z̊vij(ψ(α̈
v
i1 + α̈v

i2)− ψ(α̈v
ij)) (10)

6Due to space limitation, we provide a simplified version of
training algorithm here for improving the readability and we direct
readers to Appendix B for the detailed training algorithm.

4. Experiment
4.1. Experimental Setup

Datasets. Following previous work (Han et al., 2021; 2022;
Jung et al., 2022; Xu et al., 2024a), we conducted experi-
ments on six benchmark datasets: Handwritten7, Caltech101
(Fei-Fei et al., 2004), PIE 8, Scene15 (Fei-Fei & Perona,
2005), HMDB (Kuehne et al., 2011) and CUB (Wah et al.,
2011) with train-test split of 80% vs. 20%. A detailed
description of these datasets is provided in the Appendix,
we direct readers to the Appendix D.2 for further details
regarding these datasets.

Compared Methods. We aim to resolve conflicts among
predictions of different views, so we consider the methods
that generate view-specific predictions which could have
potential conflicts, and thus consider existing Evidential
MVC baselines, TMC (Han et al., 2021), and the conflict
resolution pioneering work ECML (Xu et al., 2024a). Re-
cent work, TMNR (Xu et al., 2024b) applied Evidential
MVC for noisy label learning, and CCML (Liu et al., 2024)
derived consistent evidence among shared information by
dynamically decoupling the consistent and complementary
evidence 9. Our method can also be extended to leverage the
pseudo view, as demonstrated by its application to ETMC
(Han et al., 2022), an extended version of TMC that incorpo-
rates pseudo views. We also compare with one multi-view
uncertainty estimation baseline, MGP (Jung et al., 2022),
in our experiments. We term our methods as TF and ETF
where E indicates the pseudo-view is incorporated. All
methods were run on a single 24GB RTX3090 card for fair
comparison.

Evaluation Metrics. We evaluate MVC methods based
on the reliability from prediction accuracy of fused opin-
ion and the consistency among different views predictions.
Similar to (Han et al., 2021; 2022; Jung et al., 2022; Xu
et al., 2024a), we measure the prediction accuracy using
Top-1 Classification Accuracy, which checks whether the
final predicted label of fused opinion is same as ground
truth. Regarding to the consistency among various views’
predictions, we apply the Fleiss Kappa (Fleiss, 1971), which
is a statistical measure for assessing the agreement between
different raters, with scores closer to 1 indicating higher
agreement among the different predictions. The intuition
behind using this two metrics is a reliable prediction should
not be accurate only but also from most agreements.

7https://archive.ics.uci.edu/ml/datasets/
Multiple+Features

8http://www.cs.cmu.edu/afs/cs/project/
PIE/MultiPie/Multi-Pie/Home.html

9We re-run the official implementation of ECML, TMNR,
CCML with our data loader to ensure a fair comparison.
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Table 4. Top-1 accuracy on test split. The best results are highlighted in bold and the second-best results are underlined.

Method Handwritten Caltech101 PIE Scene15 HMDB CUB AVG
MGP 99.60±0.10 94.42±0.20 90.13±0.87 74.30±0.41 73.97±0.15 90.79±1.03 87.03
ECML 99.57±0.11 94.25±0.08 91.40±0.47 64.34±0.11 72.90±0.11 92.58±0.25 85.84
TMNR 99.72±0.08 94.31±0.09 89.34±0.59 74.14±0.13 73.46±0.15 92.25±0.38 87.21
CCML 99.00±0.00 94.64±0.10 93.09±0.36 73.97±0.15 72.59±0.42 93.83±0.41 87.91
TMC 99.63±0.13 94.30±0.13 87.43±0.90 73.99±0.19 73.30±0.18 92.50±0.37 86.60
ETMC 99.75±0.00 94.41±0.11 91.69±0.47 78.41±0.20 74.01±0.19 93.67±0.41 88.74
TF (ours) 99.68±0.11 95.26±0.10 93.31±0.40 77.83±0.32 74.35±0.09 93.33±0.75 88.96
ETF (ours) 99.98±0.07 95.07±0.08 94.63±0.34 82.01±0.17 75.55±0.15 94.08±0.38 90.22

Table 5. Fleiss’ Kappa on test splits. The best results are highlighted in bold and the second-best results are underlined.

Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB AVG
MGP 0.59±0.05 0.94±0.00 0.21±0.01 0.33±0.00 0.51±0.00 0.43±0.07 0.50
ECML 0.42±0.05 0.95±0.00 0.40±0.01 0.26±0.00 0.53±0.01 0.44±0.07 0.50
TMNR 0.59±0.02 0.94±0.01 0.29±0.02 0.30±0.00 0.53±0.00 0.37±0.06 0.50
CCML 0.64±0.04 0.91±0.01 0.39±0.01 0.36±0.01 0.53±0.01 0.63±0.04 0.58
TMC 0.54±0.07 0.94±0.01 0.23±0.02 0.30±0.01 0.52±0.01 0.37±0.19 0.48
ETMC 0.66±0.01 0.84±0.00 0.28±0.04 0.37±0.00 -0.15±0.04 0.45±0.10 0.41
TF (ours) 0.65±0.02 0.95±0.00 0.36±0.01 0.39±0.00 0.54±0.00 0.51±0.10 0.57
ETF (ours) 0.76±0.02 0.95±0.00 0.48±0.01 0.48±0.01 0.65±0.00 0.64±0.03 0.66

4.2. Experiment Results and Analysis

For each individual metric, mean and standard deviation
from ten runs with ten different random seeds are reported.
In all tables, the best-performing method is highlighted in
bold, and the second-best method is underlined.

Predictions Accuracy via Top-1 Accuracy. Similar to
(Han et al., 2021; 2022; Jung et al., 2022; Xu et al., 2024a),
we first evaluated the model performance on the test split by
Top-1 Classification Accuracy, as shown in Table 4. Build-
ing on the strengths of pseudo view, our method (ETF)
consistently outperforms all baselines over six datasets. For
example, on the PIE and Scene15 datasets, the use of referral
trust boosts the accuracy of ETMC by 2.94% and 3.60%, re-
spectively. Moreover, ETF surpasses the pioneering conflict
resolving method ECML by a substantial margin of 3.23%
on PIE, 9.66% on Scene15 and 2.65% on HMDB, highlight-
ing better power of conflicts handling of our method. It
is worth noting that Caltech101 inherently has lower level
of conflicts, as corroborated by high accuracy and Fleiss’
Kappa scores (Table 5) of all baselines.

When compared to well-established methods like TMC,
MGP, and ECML without pseudo views, our method TF
consistently demonstrates superior performance across all
datasets. For example, our proposed trust discounting
method enhance TMC’s performance by 3.84% on Scene15
and 5.88% on PIE, while also achieving the highest Top-1
accuracy on other datasets. Notably, our method TF, even
without incorporating pseudo views, exhibits comparable
performance to ETMC with pseduo views. For instance, TF
outperforms ETMC on three datasets (Caltech101, PIE, and
HMDB) out of a total of six.

Predictions Consistency via Fleiss’ Kappa. To further
validate the effectiveness of our proposed method, we eval-
uate it with Fleiss’ Kappa (Fleiss, 1971). our methods (ETF
and TF) achieves the highest Fleiss’ Kappa score on all six
datasets (Handwritten, PIE, Scene15, HMDB and CUB).
ETF enhances the robustness of ETMC with an improve-
ment of approximately 13% on Caltech101. Moreover,
it’s essential to highlight that ETMC exhibits extremely
poor agreement on HMDB with a negative value of -0.15.
However, by applying our method, ETF significantly im-
proves performance by an absolute value of 0.8. This under-
scores the relative robustness of our method across different
datasets.

Discussion on Consistency Improvement of Opinions
from Different Views. It is worth noting that applying TD
solely on existing functional opinions cannot improve the
consistency among different views, however, our methods
show that the consistency of opinions from different views
is significantly improved, as measured by Fleiss Kappa. We
attribute this improvement to the incorporation of TD in the
training stage. The functional opinion will be discounted
accordingly by the referral opinion, and it thus receive larger
magnitude of gradients from the loss term, e.g., Algorithm 1
stage 2b, due to interactions between different opinions, e.g.,
Eq.2. Therefore, the functional opinion will be enforced
to align with the ground truth which leads to the improved
consistency among different views’ opinions.

4.3. Ablation Study

Effectiveness of the TD module. We conducted the abla-
tion study to validate the effectiveness of TD module on
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Table 6. Test Performance with or without the TD module.

Method Top-1 Acc(%) Fleiss’ Kappa
ETF(w/ TD) 82.01±0.17 0.48±0.01
ETF(w/o TD) 81.06±0.16 0.46±0.01
TF(w/ TD) 77.83±0.32 0.39±0.00
TF(w/o TD) 76.82±0.33 0.37±0.01

Table 7. Test Performance with Different Smoothing Factors.

Method Top-1 Acc(%) Fleiss’ Kappa
ETF(0.9, reported) 82.01±0.17 0.48±0.01
ETF(1.0) 82.07±0.12 0.48±0.01
ETF(0.8) 82.04±0.23 0.49±0.01
ETF(0.7) 82.07±0.10 0.48±0.01
ETF(0.6) 81.96±0.16 0.47±0.01

Scene15. In the case without the TD module, the correspond-
ing training stages in Algorithm 1 related to TD module will
be disabled, for example, the warm-up stage and training
stage 2b.

We can see from Table 6 that without the core module TD,
the performance over four metrics drops, which indicates the
effectiveness of our proposed TD module. It is also worth
noting that, without TD, the model architecture is almost
identical to TMC. However, both accuracy and Fleiss Kappa
have improved, further demonstrating the effectiveness of
our stage-wise training algorithm.

Various Smoothing Factors. We varied the smoothing
factor used in the warm-up stage for ablation on Scene15.
we set warm-up epoch equal to 1, which is same as the
reported results in the main text. The equation we used
for smoothing hard label is z̊vi = zvi ⊙ η + (1 − η)/2.
With a larger smoothing factor, the smoothed label becomes
meaningless, so we varied the factor from 0.6 to 1.0 by
step size 0.1. According to Table 7, we can see that our
method is relatively robust to different smoothing factors,
and even gains performance improvement with adjusted
smoothing factors on Scene15 Dataset, e.g., factor equals
to 1.0, the smoothing factor we used in Table 4 (i.e., 0.9) is
the empirical value suggested in the original paper, to avoid
hyper-parameters over-tuning.

Effectiveness of Leveraging Different Views. We use the
Scene15 dataset as an example and ablate the number of
views to evaluate the performance of the trust discounting
mechanism under varying numbers of views. From Table
8, we observe that the effectiveness of each individual view
on classification varies significantly, as reflected in the test
accuracy of individual views. However, our method con-
sistently improves accuracy by effectively incorporating
different views. The highest accuracy is achieved when all
views are utilized together, which proves the effectiveness
of our method.

Table 8. Test Accuracy by using different views.

view 1 view 2 view 3 Top-1 Accuracy
✓ x x 57.16±0.22
x ✓ x 75.15±0.01
x x ✓ 62.97±0.45
✓ ✓ x 78.70±0.00
✓ x ✓ 68.21±0.01
x ✓ ✓ 80.21±0.00
✓ ✓ ✓ 82.01±0.17

Table 9. Test Performance on Food101 via End2End training.

Method Top-1 Acc Fleiss’ Kappa
TMC 92.35±0.34 -0.0377±0.0130
ETMC 92.49±0.13 0.0252±0.0286
ECML 92.53±0.15 -0.0207±0.0215
CCML 92.70±0.06 -0.0342±0.0224
TF (ours) 92.79±0.15 -0.0375±0.0255
ETF (ours) 93.09±0.02 0.0487±0.0228

4.4. End2End Training on Food101 Dataset

In order to further validate the effectiveness of our model,
we use a larger dataset, Food101, which has both an image
and text view. This is one dataset has the same number
of class labels, 101, as Caltech101, and has more training
(i.e., 61127), validation (i.e, 6845) and testing (i.e., 22716)
instances. We train all methods using pre-trained Resnet50
and base-uncased Bert as image and text encoder, and we
adopt AdamW Optimizer for fine-tuning parameters. All
other settings, e.g., maximum number of epochs, are identi-
cal, and we run each method three times for reporting mean
and standard deviation.

As indicated in Table 9, our method ETF consistently out-
performs all other methods. Please note that TMNR is not
included here as it requires pre-extracted feature vectors for
computing similarity matrix, which works for noisy label
learning and are kept frozen during training, but feature
vectors are not able to be kept in this End2End training as
the parameters of encoder will be updated.

5. Conclusion
In this paper, we introduced a theoretically-grounded ap-
proach for resolving conflicts in Multi-View Classification.
This approach is built on top of the principle of the Trust
Discounting in Subjective Logic, where the computational
trust, aka referral trust, is represented as a Binomial opinion
with a Beta probability density function.The functional trust
is then discounted by the amount computed as a function
of the degree of trust. We demonstrated through extensive
experiments that the proposed trust discounting method not
only benefits classification accuracy but also increases con-
sistency among different views, providing a new reliable
approach to handling conflicts in MVC.
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A. The Definition of Opinions
A Functional Opinion expresses belief in a model’s own ability to perform a certain task—such as a classification task.
It reflects direct trust in the model’s prediction. Let model A A be evaluated for its ability to perform a function f (e.g.,
classification). Then, a functional opinion is a subjective opinion represented as:

ώ = [b́, ú, á]

A Referral Opinion, in contrast, expresses belief in a model’s ability to provide reliable referrals regarding another model’s
ability to perform a task. It reflects trust in the model’s judgment, not in its own functional capability. Let model B be
asked to refer another model A for the function f . A referral opinion captures our belief that model B is reliable in making
referrals about anther’s (i.e., model A’s) ability to perform f , and is denoted as:

ω̈ = [b̈, ü, ä]

Regardless of whether the opinion is functional or referral, b is the belief mass vector, ü is uncertainty score, with a being
the base rate (i.e., a prior probability distribution over classes, generally a discrete uniform distribution).

B. Proposed Algorithm For Training and Testing

Algorithm 2 Algorithm For Training
Input: Multi-view dataset: D = {{xv

i }Vv=1, yi}Ni=1.
Initialize: The parameters θ́ of the Functional networks; initialize the parameters θ̈ of the Referral networks.
/*Stage-1 Warm-up Referral Network*/
for minibatch do

for v = 1 : V do
ëv ← Referral Evidential network batch output;
Obtain α̈v ← ëv + 1 ;

end forObtain overall loss by summing losses calculated by Eq. 10 of all {α̈v}Vv=1;
Update the parameters θ̈ by gradient descent with the loss from above;

end for/*Stage-2 Update Functional Network*/
for minibatch do

/*Substage-2a*/
for v = 1 : V do
év ← Functional Evidential network batch output;
Obtain άv ← év + 1 ;

end for
Obtain overall loss by summing losses calculated by Eq. 8 of all {άv}Vv=1;
Update the parameters θ́ by gradient descent with the loss from above;
/*Substage-2b*/
for v = 1 : V do
ëv ← Referral Evidential network batch output;
év ← Functional Evidential network batch output;
Obtain ω̈v and ώv by Eq. 1 with ëv and év , respectively ;

end for
Obtain joint opinion ω̄ by Eq. 6 and ᾱ of this opinion by reversing Eq. 1;
Obtain loss by Eq. 8 with ᾱ and update the parameters θ́ with gradient descent;

end for/*Stage-3 Adjust Referral Network*/
By repeating Stage-2b only and update θ̈ instead of θ́;
/*Stage-4 Adjust Functional Network*/
By repeating entire Stage-2;
Output: Functional and Referral networks parameters.
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Algorithm 3 Algorithm For Testing

Requires: The parameters θ́ of the Functional networks; the parameters θ̈ of the Referral networks.
/*Testing Phase*/
for minibatch do

for v = 1 : V do
ëv ← Referral Evidential network batch output;
év ← Functional Evidential network batch output;
Obtain ω̈v and ώv by Eq. 1 with ëv and év , respectively ;

end for
Obtain joint opinion ω̄ by Eq. 6 and ᾱ of this opinion by reversing Eq. 1;
Obtain predicted labels of minibatch using argmax over belief masses.

end for
Output: Predicted Labels and Opinions including fused opinion, functional opinions, referral opinions, discounted
opinions for each instance of each view.

C. Proofs And Derivations
C.1. Calculation of Predictive Probability

According to Subjective Logic (SL) (Jøsang, 2018), the predictive probability pk for class k, can be calculated by

pk = bk + ak ∗ u (11)

where bk is the belief mass for k-th label, u is the predictive uncertainty or epistemic uncertainty (Sensoy et al., 2018). We
usually assume the prior ak conforms to a uniform discrete distribution, i.e., ak = 1/K, so the above equation is identical to

pk =
αk

S
(12)

where αk is the Dirichlet concentration parameter for k-th label, and S is the Dirichlet strength, i.e., S =
∑

k αk.

Proof.

pk = bk + ak ∗ u

= bk +
1

K
∗ K
S

=
ek
S

+
1

S

=
αk

S

Since Beta Distribution is 2-dimensional Dirichlet Distribution, above equations for calculating probabilities of multinomial
opinions could also be applied to binomial opinions.
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C.2. Alternative Representation of Belief Constraint Fusion(BCF)

Proof. We the proof for Eq. 4 as follows,

ek = S ∗ bk

= S
1

1− C
(b1kb

2
k + b1ku

2 + b2ku
1)

= S
1−

∑
k bk

u1u2
(b1kb

2
k + b1ku

2 + b2ku
1)

= (S − S ∗
∑
k

bk)
1

u1u2
(b1kb

2
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2 + b2ku
1)
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1

u1u2
(b1kb

2
k + b1ku
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C.3. Dirichlet Evidence Updating by Trust Discounting (TD)

As mentioned earlier, the TD in Definition 3.3 also corresponds to updating Dirichlet evidence using following equation,

ĕk =
p̈tú

1− p̈t + p̈tú
ék (13)

where p̈t is the probability representing trust degree and ú is the uncertainty for functional opinion. ék is Dirichlet evidence
of functional opinion, and ĕk is Dirichlet evidence after discounting.

Proof.

ĕk = b̆k ∗ S̆

=
p̈tb́kK

ŭ

=
p̈tb́kK

1− p̈t + p̈tú

=
p̈t

1− p̈t + p̈tú

ék

Ś
K

=
p̈t

1− p̈t + p̈tú

K

Ś
ék

=
p̈tú

1− p̈t + p̈tú
ék

14



Navigating Conflicting Views: Harnessing Trust For Learning

C.4. Detailed Proof of Propositions

Proof. Proof details of Proposition 3.5. Recall that scalar probability p̈t represents the degree of trust as mentioned before.
The belief mass for k-th label of final fused opinion is as follows,

b̄k =
1

1− C̆
(b̆1k b̆

2
k + b̆1kŭ

2 + b̆2kŭ
1)

=
1

1− C̆
((b́1kp̈

1
t )(b́

2
kp̈

2
t ) + b́1kp̈

1
t ŭ

2 + b́2kp̈
2
t ŭ

1)

We use g to denote the index of ground-truth label, and we have

b̄g =
1

1− C̆
((b́1gp̈

1
t )(b́

2
gp̈

2
t ) + b́1gp̈

1
t ŭ

2 + b́2gp̈
2
t ŭ

1)

The discounted opinion’s uncertainty ŭ is

ŭ = 1− p̈t(
∑
k

b́k)

= 1− p̈t(1− ú)
= 1− p̈t + p̈t ∗ ú

In the warm-up training stage, the Eq. 10 is used to make sure p̈t → 1 (with hard targets for simplicity here) for those views’
predictions are same as the ground truth label, and ŭ → 0 for those views’ predictions are incorrect. Therefore, ŭ → ú
when b́g = max(b́), and ŭ→ 1 when b́g ̸= max(b́).

Therefore, with the assumption that at least one-view’s prediction is same the ground truth (i.e., correct label, let’s say view
1’s prediction is correct), we have

b̄g =
1

1− C̆
((b́1gp̈

1
t )(b́

2
gp̈

2
t ) + b́1gp̈

1
t ŭ

2 + b́2gp̈
2
t ŭ

1)

≥ 1

1− C̆
((b́1kp̈

1
t )(b́

2
kp̈

2
t ) + b́1kp̈

1
t ŭ

2 + b́2kp̈
2
t ŭ

1(equality holds iif. k = g))

=
1

1− C̆
(b̆1k b̆

2
k + b̆1kŭ

2 + b̆2kŭ
1) = b̄k

Besides the warm-up stage, in other training stages, such as training stage 3 in Alg.B, the p̈t will also be updated to maximize
b̄g based on the Eq. 8, i.e., b̄g ≥ b̄k(equality holds iif. k = g. Therfore, the referral opinion is learnt to maximize the belief
mass of ground truth label of the final fused opinion as well.

Proof. Proof details of Proposition 3.6. Let ū and ū′ denote the uncertainty of BCF combined opinion with or without Trust
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Discounting, respectively.
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C.5. Loss Functions and Hyperparameters for Optimization

Recall that the probability density function (pdf) of the Dirichlet distribution, Dir(p | α), is given by:

Dir(p | α) =
1

B(α)

K∏
i=1

pαi−1
i

where:

• p = (p1, p2, . . . , pK) is a probability vector, such that
∑K

k=1 pk = 1 and pk ≥ 0 for all k.

• α = (α1, α2, . . . , αK) is a vector of concentration parameters, with αk > 0.

• B(α) is the multivariate Beta function, defined as B(α) =
∏K

k=1 Γ(αk)

Γ(
∑K

k=1 αk)
.

• Γ(·) is the Gamma function.

Recall that our loss function for Dirichlet Parameters α is

Lv
i =

K∑
k=1

yi,k(ψ(S
v
i )− ψ(αv

i,k)) + λoDKL[Dir(pv
i |α̃v

i )||Dir(pv
i |1)]

Specifically, the left summation term is derived from the Bayes risk for Cross-Entropy loss with a Dirichlet distribution,
which is also dentoed as Lace in previous work (Han et al., 2021). We omit the index of view v and instance i for simplicity,
so Lace is defined as follows,

Lace =

∫ [ K∑
k=1

−yklog(pk)

]
1

B(α)

K∏
k=1

(pk)
αk−1dp

=

K∑
k=1

yk(ψ(S)− ψ(αk)) (14)

Where ψ is the digamma function.
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Recall that our referral network will generate the evidence for binomial opinion, and the evidence will be converted
into parameters of Beta Distribution, i.e., Beta(α0, α1) Subsequently, by replacing the Dirichlet Distribution with Beta
Distribution, and the label yk in above equation with another label, we can have the ace loss for Beta Distribution, as Eq. 10.

And the right term, KL divergence loss is

DKL [Dir(p | α) ∥ Dir(p | 1)]

= log

 Γ
(∑K

k=1 αk

)
Γ(K)

∏K
k=1 Γ(αk)

+

K∑
k=1

(αk − 1)

ψ(αk)− ψ

 K∑
j=1

αj

 (15)

D. Additional Details of The Experiment
D.1. Hyper-parameters of Proposed Methods

The hyper-parameters for training TF and ETF has been shown in in Table 10. Concretely, ”lr” is the learning rate for
functional networks, ”rlr” indicates the learning rate for referral networks. For the ”lr”, we follow ETMC (Han et al., 2022),
and used same strategy to select learning rate for the functional nets. When tuning the learning rate for referral networks, we
follow a basic principle of starting with a value less than or equal to the base learning rate, and then gradually decreasing
the learning rate of referral network by a factor of three. For fair comparison, we used same learning rate for functional
networks for evidence-based methods, except MGP (Jung et al., 2022), for which we followed their paper.

Table 10. TF and ETF hyper-parameters

Hyper-parameter Handwritten Caltech101 PIE Scene15 HMDB CUB
lr 3e-3 1e-4 3e-3 1e-2 3e-4 1e-3
rlr 3e-4 3e-5 1e-3 3e-3 1e-4 3e-4
weight-decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
warm-up epochs 1 1 1 1 1 1

The Adam optimizer (Kingma & Ba, 2015) is used for updating model parameters with beta coefficients = (0.9, 0.999) and
epsilon = 1e-8.

D.2. Summary of Dataset

Table 11. Summary of Datasets

Dataset Size K Dimensions #Train #Test
HandWritten 2000 10 240/76/216/47/64/6 1600 400
Caltech101 8677 101 4096/4096 6941 1736
PIE 680 68 484/256/279 544 136
Scene15 4485 15 20/59/40 3588 897
HMDB 6718 51 1000/1000 5374 1344
CUB 600 10 1024/300 480 120

We provide the summary of the dataset in Table 11, we direct readers to (Han et al., 2021) for further details regarding these
datasets. The datasets used in our experiments are 1) Handwritten dataset has 2000 samples of 10 classes. Each class is one
of the digit 0 to 9 with samples evenly distributed (i.e., 200 samples per class). We use six descriptors to represent different
views, and they are Pixel averages in 2 × 3 windows (Pix) feature with 240 dimensions, Fourier coefficients of the character
shapes (FOU) with 76 dimensions, Profile correlations (FAC) features with 216 dimensions, Zernike moments (ZER) with 47
dimensions, Karhunen-Love coefficients (KAR) with 64 dimensions, and Morphological (MOR) features with 6 dimensions;
2) Caltech101 dataset has 101 classes and 8677 images in total; We used the extracted features from DECAF (Donahue
et al., 2014) and VGG19 (Simonyan & Zisserman, 2015). Both views have 4096 dimensions. 3) PIE dataset includes
intensity (484 dimensions), Local binary patterns (LBP) (256 dimensions) and Gabor feature (279 dimensions) of 680 facial
images, with 68 subjects; 4) Scene15 dataset has 4485 images from 15 indoor and outdoor scene categories. There are 3
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different views information, and they are GIST, Pyramid Histogram of Oriented Gradients (PHOG) and Local binary patterns
(LBP) feature. These views are in 20, 59 and 40 dimensions respectively; 5) HMDB has 6718 samples of 51 categories of
actions, which is consisted of Histogram of oriented gradients (HOG) feature and Motion Boundary Histograms (MBH)
features as a 2-view dataset. Both views have 1000 dimensions; 6) CUB dataset has 200 different categories of birds and
11788 images in total. Same as (Han et al., 2021), we used first 10 categories in our experiment and GoogleNet (Szegedy
et al., 2015) and doc2vec (Le & Mikolov, 2014) to extract the image features and text features to simulate a 2-view dataset.
Image view and text view has 1024 and 300 dimensions respectively.

E. Supplementary Insights and Additional Analysis
E.1. Multi-View Agreement with Ground Truth (MVAGT)

The MVAGT (Multi-View Agreement with Ground Truth) is a novel evaluation metric designed specifically for multi-view
classification problems with conflicting views. It assesses the model’s performance on the test set by considering the ground
truth labels, thus providing a more reliable and realistic measure of the model’s ability to handle view disagreements. The
rationality behind MVAGT lies in its alignment with real-world scenarios, where the majority agreement among multiple
views is often considered more reasonable for the final decision. In the presence of view conflicts, a model that can make
predictions consistent with the majority of views is deemed more trustworthy and reliable. By evaluating models using
MVAGT, we can examine the reasonableness of the fused decision and assess the model’s capability to handle view conflicts
effectively. Mathematically, MVAGT calculates the accuracy of the model on the test set as follows:

MVAGT =
1

M

M∑
i=1

1

(
V∑

v=1

1((ŷvi = yi) >
V

2

)
(16)

where M is the total number of test samples, V is the number of views, ŷvi is the predicted label of the i-th sample from the
v-th view, yi is the ground truth label of the i-th sample, and 1(·) is the indicator function that returns 1 if the condition is
satisfied and 0 otherwise.

Table 12. MVAGT on test split. The best results are highlighted in bold and the second-best results are underlined.

Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB
MGP 81.37±5.73 91.55±0.29 63.20±2.31 52.10±0.41 50.43±0.42 42.50±9.26
ECML 74.08±0.61 91.05±0.27 78.46±1.19 41.91±0.31 50.95±0.48 48.58±5.36
TMNR 86.80±1.03 90.92±0.18 65.15±3.68 51.86±0.61 50.48±0.47 36.58±6.42
CCML 86.78±1.42 88.97±1.09 81.91±1.40 55.23±0.84 51.34±0.91 63.67±2.61
TMC 81.58±6.57 90.27±0.38 51.54±3.00 51.42±0.46 50.37±0.45 43.25±14.8
ETMC 98.10±0.17 92.41±0.32 75.15±4.13 73.75±0.45 8.45±1.09 91.08±1.06
TF (ours) 88.97±0.61 92.01±0.22 80.59±0.75 60.41±0.52 52.47±0.35 54.33±7.54
ETF (ours) 98.53±0.08 94.47±0.12 90.37±0.40 79.18±0.38 71.43±0.32 91.17±0.67

E.2. AUROC for Uncertainty.

The uncertainty score, as illustrated in Proposition 3.6, will be more accurate withou introducing biases, so it is essential to
validate the increased uncertainty. Following the approach of prior work (Filos et al., 2019), we assess uncertainty to ensure
a thorough evaluation. Specifically, we employed AUROC to measure the model’s discriminate power in distinguishing
incorrect predictions using uncertainty scores. As shown in Table 13, TF and ETF consistently demonstrate the best
performance on five out of the six datasets, showcasing their robust generalizability. Despite a performance decrease
on the CUB dataset, our method (ETF) still maintains the second-best result, outperforming other approaches, whether
incorporating pseudo views or not. One possible reason for the decreased performance on CUB could be the unstable
optimization caused by the limited number of training instances (e.g., 480), whereas other datasets, such as Scene15, contain
significantly more instances (e.g., 3588).

E.3. Ablation Study of Warm-up Epochs

In the proposed stage-wise training algorithm, we adopt a warm-up stage (i.e., training stage 1) for better initialization
of referral networks. As random initialized parameters may not able to assess the reliability of corresponding functional
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Table 13. AUROC of uncertainty scores for identifying incorrect predictions. The best results are highlighted in bold and the second-best
results are underlined.

Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB
MGP 99.29±0.30 87.62±0.90 88.43±0.67 63.92±1.96 82.87±0.60 58.20±11.4
ECML 79.05±5.62 86.31±0.50 87.51±0.49 60.50±0.25 81.63±0.15 57.30±8.50
TMNR 99.42±0.16 87.22±0.57 91.30±1.12 62.39±0.52 82.11±0.41 57.84±3.84
CCML 97.29±0.76 85.87±0.89 86.98±1.06 62.57±0.52 82.53±0.82 64.29±4.35
TMC 99.23±0.22 87.33±0.47 90.16±0.99 62.60±0.54 82.63±0.48 63.80±10.5
ETMC 99.30±0.19 88.35±0.63 93.02±1.40 66.49±0.44 85.42±0.34 72.56±8.11
TF (ours) 99.32±0.35 88.99±0.54 95.90±0.08 64.56±2.02 83.59±0.23 53.52±14.3
ETF (ours) 99.90±0.30 88.70±0.54 92.47±1.19 70.44±1.10 86.23±0.49 64.41±3.54

Handwritten Caltech101 PIE

Scene15 HMDB CUB

Figure 3. The effect of different warm-up epochs on testing accuracy.

opinions correctly. The key hyper-parameter of the warm-up stage, is the warm-up epochs. We ablate different values of this
hyper-parameter and evaluate the effect of it on the performance of our method.

Specially, we used an empirical value, i.e., one single epochs, for all reported results in the experiment section. And here we
provide more analysis with finely grain values, starting from 0 and increasing steadily, for example, to 2, 5, and 10, that is
first random initializing the parameters of the referral networks and then not warm-up training or training with 2, 5, 10, and
followed by each, finish the rest training stages. Please note that if this value is set to be 0, which means we disable the
warm-up stage, and reported results with warm-up epoch 1 are also included, as shown in Figure 3.

From Figure 3, we can find that incorporating warm-up stage (warm-up epochs ≥ 1) can generally results in better accuracy.
For some datasets (e.g. HMDB), increasing the number of warm-up epochs further improves accuracy compared to the
results previously reported. This observation suggests that adjusting this value based on the specific dataset can lead to
enhanced performance.
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Table 14. View-Specific Pairwise Feature Similarity For Six Datasets

View Mean Median Min Max

Handwritten

1 0.6268 0.6329 0.1249 1.0000
2 0.8043 0.8095 0.4456 1.0000
3 0.8586 0.8592 0.6304 1.0000
4 0.7917 0.8038 0.2970 1.0000
5 0.9167 0.9168 0.8137 1.0000
6 0.7036 0.7964 0.0097 1.0000

AVG 0.7836 0.7889 0.5350 1.0000

Caltech101 1 0.9684 0.9725 0.6968 1.0000
2 0.9748 0.9792 0.5175 1.0000

AVG 0.9716 0.9756 0.6263 1.0000

PIE
1 0.7518 0.7696 0.2842 0.9954
2 0.7173 0.7203 0.4939 0.8530
3 0.8613 0.8682 0.5598 0.9895

AVG 0.7768 0.7829 0.5471 0.9395

Scene15
1 0.9038 0.9234 0.0538 1.0000
2 0.8689 0.8904 0.1185 1.0000
3 0.8133 0.8385 0.0072 1.0000

AVG 0.8620 0.8789 0.1170 1.0000

HMDB 1 0.9372 0.9375 0.9002 1.0000
2 0.9418 0.9418 0.8898 1.0000

AVG 0.9395 0.9397 0.8970 1.0000

CUB 1 0.4112 0.3952 0.1346 0.9577
2 0.9033 0.9128 0.5949 0.9972

AVG 0.6572 0.6494 0.4153 0.9674

E.4. Instance Similarity of Vector Datasets

We also calculated the pair-wise cosine similarities and provided both the results and an analysis accordingly. Specifically,
we considered to calculate the instance similarity using pair-wise cosine similarity. Please note the AVG view means
calculating instance similarity on each view first, then averaging over all views.

Based on the Table above, we can see that for some datasets, like Handwritten and CUB, different views show different
statistics indicating the similarity varies significantly in different views. However, for other datasets, like HMDB and
Caltech101, the instance similarity among different views are pretty similar.

As we calculated the pairwise similarity using the feature vectors of instances, this similarity also reflects the semantic
similarity. Consequently, similar statistics among different views suggest that their classification performance is likely to be
comparable.

1) For similar views: If one view achieves high accuracy, the other is likely to perform similarly, resulting in both high
accuracy and consistency. For example, this is observed in the Caltech101 dataset (refer to Top-1 Accuracy and Fleiss
Kappa). If one view performs with low accuracy, the other tends to perform similarly, leading to fused predictions that are
consistently low in accuracy across views. An example of this can be seen in the HMDB dataset.

2) For dissimilar views: If one view achieves high accuracy while the other produces low-accuracy predictions, this leads
to higher conflicts. But the accuracy of the fused prediction depends on the specific fusion mechanism employed by the
method. Examples of this scenario can be observed in the Handwritten and CUB datasets.

E.5. Reduce Conflicts by Trust Fusion

We calculate the Conflict Ratio (CR) by normalizing the number of times that the v-th view prediction is different from w-th
view, i.e., CR(ŷv, ŷw) = 1

M

∑M
i=1 1(ŷ

v
i ̸= ŷwi ), where M is total number of test instances, ŷwi is the predicted label of i-th

instance on w-th view, and 1 is the indicator function that returns 1 if the condition is satisfied and 0 otherwise. By applying
Trust Discounting, both TMC’s and ETMC’s conflicts between different views are significant reduced. As an example, the
CR on Scene15 is visualized by heatmap, shown in Figure E.5. The colors in the heatmap generated by our method are
noticeably more blue (or less red) than those of the baselines, indicating that the conflict ratio has been reduced by our
method.
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TMC TF

ETMC ETF

Figure 4. Conflict Ratio on Scene15, Four Methods TMC, TF, ETMC, ETF are compared. GT, Pred, 1, 2, 3 and PS are ground-truth,
prediction, GIST, PHOG, LBP and pseudo view respectively.

E.6. Explanation for the Decrease of AUROC for Uncertainty

We argue the decreased performance of AUROC on whether uncertainty can indicate the correctness of predicted label in
caused by insufficient training instances. As shown in Table 11, there are less than 550 training instances on PIE and CUB
datasets, where our methods, ETF and TF, have decreased performance, compared to ETMC and TMC, in which the only
difference is the TD module.

Besides, we also investigate a particular testing instance of CUB dataset for the decreased performance on AUROC of
uncertainty. As the error case displayed in Figure 5, ETF corrects the error prediction made by ETMC. However, even
though the combined prediction is correct after applying trust discounting, the predictive uncertainty is still relatively high.
If ETF corrects previously incorrect predictions but assigns them relatively high uncertainty scores (e.g., 0.4), it may lead to
a decrease in the AUROC for predictive uncertainty. This is because AUROC evaluates the model’s ability to discriminate
between correct and incorrect predictions based on uncertainty scores. Correcting predictions while maintaining high
uncertainty scores can make it more challenging for the model to distinguish between correct and incorrect predictions,
resulting in a lower AUROC score, even though the accuracy improves.

E.7. Simulating Conflicting Predictions with Noisy Instances

We plot the model performance for Evidential MVC methods with various level of noises introduced to inputs in Figure 6 and
Figure 7, for methods incorporate pseudo views and not incorporate pseudo views respectively. Our methods consistently
outperforms other methods like TMC and ECML.
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Combined View Pseudo View

Feat View 1 Feat View 2

Figure 5. Bar chart for each label’s belief mass and predictive uncertainty of one testing instance of CUB dataset. GT indicates the ground
truth label of the selected instance.

Handwritten Caltech101 PIE

Scene15 HMDB CUB

Figure 6. Performance of pseudo-view incorporated Evidential MVC methods on multi-view data with different levels of noise.
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Handwritten Caltech101 PIE

Scene15 HMDB CUB

Figure 7. Performance of non pseudo-view incorporated Evidential MVC methods on multi-view data with different levels of noise.

F. Technical Requirement and Execution
F.1. Limitations

One possible limitation of our work is that the warm-up loss is not optimal solution, even though we explored the impact of
different warm-up epochs and showed the effectiveness with using warm-up loss. Another possible limitation would be
stage-wise training algorithm is time consuming, we leave it to future work for improving its efficiency.

F.2. Execution Time

The proposed instance-wise approach does indeed introduce additional time complexity compared to the baselines, par-
ticularly compared to methods like TMC and ETMC that do not incorporate the TF Module but with same Belief Fusion
method. However, our method does not rely on the dependencies between instances for computation. This allows us to
perform batch-wise calculations during both training and testing, a practice widely adopted in most deep learning algorithms,
which can enhance efficiency.

From another perspective, we can view the TF stage as an additional layer appended to the existing framework (e.g., TMC).
Let h be the input vector with dimension dh used for the classification task. For a K-class classification problem, we obtain
a K + 1-dimensional functional opinion (1 dimension for uncertainty). The weight matrix W of the proposed BiLinear
layer will have dimensions dh x dK+1 x d2, and the bias vector will have dimension d2. The time complexity for matrix
multiplication is O(dh x dK+1 x d2) and the time complexity for bias addition is O(d2). Thus, the overall time complexity is
O(dh x dK+1 x d2). Given the dataset for a classification task, the additional layer exhibits linear time complexity with
respect to only the hidden size. Since this hidden size is relatively small and compact to the classification dimension, we
argue that the increase in time complexity is not substantial as shown in following tables. We report the training and testing
time by averaging 10 times running as shown in Tables 15 - 20.

F.3. Framework and Reproducibility

For experimental results to be reproducible, we will release our official implementation upon the paper’s acceptance.
Specifically, we used PyTorch (Paszke et al., 2019) version 1.13.0, built with CUDA 11.7, to implement our codes. The
Python environment version is 3.8, and the operating system is Ubuntu 22.04.4. All Experiments are conducted on a single
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Table 15. Handwritten

Method Train(Seconds) Test(Seconds)
F-Avg 22.88±0.30 0.040±0.09
F-Mode 26.26±0.36 0.041±0.09
MGP 452.31±1.43 0.428±0.10
EMCL 52.63±1.15 0.041±0.09
TMC 55.46±0.78 0.042±0.09
TF 183.51±1.81 0.043±0.09
ETMC 62.45±0.95 0.042±0.09
ETF 202.15±2.24 0.044±0.09

Table 16. Caltech101

Method Train(Seconds) Test(Seconds)
F-Avg 78.62±0.95 0.063±0.09
F-Mode 94.01±0.87 0.063±0.09
MGP 2439.60±7.35 3.428±0.13
ECML 152.99±5.96 0.064±0.10
TMC 114.77±1.89 0.066±0.10
TF 463.41±10.65 0.067±0.09
ETMC 153.64±1.690 0.066±0.09
ETF 543.99±24.88 0.067±0.010

Table 17. PIE

Method Train(Seconds) Test(Seconds)
F-Avg 4.94±0.26 0.033±0.09
F-Mode 6.06±0.27 0.034±0.09
MGP 123.63±2.38 0.374±0.11
ECML 12.92±1.50 0.035±0.09
TMC 11.39±0.31 0.035±0.09
TF 41.63±0.68 0.037±0.09
ETMC 10.36±0.37 0.036±0.09
ETF 50.39±0.71 0.037±0.09

Table 18. Scene15

Method Train(Seconds) Test(Seconds)
F-Avg 27.33±0.37 0.039±0.09
F-Mode 33.77±0.65 0.040±0.09
MGP 576.76±1.27 0.420±0.15
ECML 63.24±0.72 0.040±0.09
TMC 73.26±0.53 0.042±0.10
TF 229.05±2.86 0.042±0.09
ETMC 86.81±3.11 0.042±0.09
ETF 271.99±2.26 0.043±0.09

Table 19. HMDB

Method Train(Seconds) Test(Seconds)
F-Avg 38.26±0.65 0.045±0.09
F-Mode 48.86±0.64 0.048±0.09
MGP 654.42±1.35 0.971±0.13
ECML 82.32±1.17 0.047±0.09
TMC 74.62±0.65 0.047±0.09
TF 278.99±3.47 0.047±0.09
ETMC 99.54±0.93 0.046±0.09
ETF 365.94±8.12 0.047±0.09

Table 20. CUB

Method Train(Seconds) Test(Seconds)
F-Avg 3.57±0.29 0.033±0.09
F-Mode 4.48±0.29 0.033±0.09
MGP 136.74±0.76 0.239±0.10
ECML 8.17±0.28 0.036±0.09
TMC 7.66±0.30 0.034±0.09
TF 29.21±0.41 0.035±0.09
ETMC 13.98±0.38 0.035±0.09
ETF 37.57±0.56 0.036±0.09

Nvidia RTX 3090 GPU with 24GB of memory.

G. More Discussions
G.1. Comparison to ECML

The differences between ECML and our work can be summarized as follows,

1. Different Conflict Resolving Mechanism: our method uses a trust discounting module to modulate the trust on the
functional opinions, while ECML uses a loss function to harmonize different views’ functional opinions (this is already
mentioned in the related work section).

2. Our method is built upon TMC and ETMC, so using the same belief fusion method, which is the Dempher-Shafer rule
for combining different views from opinion perspective. However, ECML uses a different, evidence averaging based
method to fused opinions.

3. To keep the effectiveness of the introduced TD module, we proposed stage-wise training algorithm, which is also
different from ECML.

G.2. Comparison to Original Trust Discounting

1. While the original subjective logic framework proposes a global trust-discounting mechanism, we extend it to operate
in an instance-wise manner. This critical advancement enables adaptive handling of varying conflict patterns across
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different samples, significantly enhancing the framework’s flexibility.

2. We introduce a novel stage-wise training approach that is essential for keeping the effectiveness of our Trust-Discounting
(TD) module. Based on our study, simply incorporating the TD module into existing training frameworks (e.g., ETMC’s
approach) would actually degrade performance. Our designed training strategy ensures stable optimization and reliable
conflict handling.

G.3. Potential Limitations

We analyze potential limitations from both global and local perspectives.

1. From a global perspective, the evidential multi-view classification framework relies on late fusion. This means that
there is no early interaction between views during feature extraction. Although effective in many cases, this design
might limit knowledge integration when different views provide complementary but partial information about the
complete pattern.

2. From a local perspective, our Trust Discounting (TD) module has a potential limitation: it may still use referral opinions
with high uncertainty. Since high uncertainty suggests lower reliability, this indicates that our current trust adjustment
mechanism could benefit from more fine-grained handling of such cases. We acknowledge this as an area for future
improvement.
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