
MEBench: Benchmarking Large Language Models for Cross-Document
Multi-Entity Question Answering

Anonymous ACL submission

Abstract

Cross-Document Multi-entity question answer-001
ing (MEQA) demands the integration of scat-002
tered information across documents to resolve003
complex queries involving entities, relation-004
ships, and contextual dependencies. Although005
large language models (LLMs) and retrieval-006
augmented generation (RAG) systems show007
promise, their performance on cross-document008
MEQA remains underexplored due to the ab-009
sence of tailored benchmarks. To address this010
gap, we introduce MEBench, a scalable multi-011
document, multi-entity benchmark designed to012
systematically evaluate LLMs’ capacity to re-013
trieve, consolidate, and reason over scattered014
and dense information. Our benchmark com-015
prises 4,780 questions which are systemati-016
cally categorized into three primary categories:017
Comparative Reasoning, Statistical Reasoning018
and Relational Reasoning, further divided into019
eight distinct types, ensuring broad coverage020
of real-world multi-entity reasoning scenarios.021
Our experiments on state-of-the-art LLMs re-022
veal critical limitations: even advanced mod-023
els achieve only 59% accuracy on MEBench.024
Our benchmark emphasizes the importance of025
completeness and factual precision of informa-026
tion extraction in MEQA tasks, using Entity-027
Attributed F1 (EA-F1) metric for granular eval-028
uation of entity-level correctness and attribu-029
tion validity. MEBench not only highlights030
systemic weaknesses in current LLM frame-031
works but also provides a foundation for ad-032
vancing robust, entity-aware QA architectures.033
The source code and data have been made avail-034
able at https://github.com/tl2309/SRAG.035

1 Introduction036

The emergence of large language models (LLMs)037

has significantly advanced natural language pro-038

cessing capabilities, demonstrating exceptional per-039

formance in diverse tasks spanning text genera-040

tion to complex logical reasoning Achiam et al.041

(2023) Meta Llama3 (2024). Nevertheless, long-042

context LLMs exhibit notable limitations in pro- 043

cessing entity-dense analytical reasoning, par- 044

ticularly when contextual dependencies are dis- 045

tributed across multiple documents, and we an- 046

alytically argue that context window limitations, 047

over-reliance on parametric knowledge, and poor 048

cross-document attention as the key bottlenecks. 049

On the other hand, current implementations of 050

retrieval-augmented generation (RAG) architec- 051

tures Wu et al. (2025) Fan et al. (2024) Tang 052

et al. (2024) frameworks’ effectiveness in address- 053

ing cross-document multi-entity question answer- 054

ing (MEQA) remains insufficiently investigated. 055

Furthermore, the field lacks comprehensive bench- 056

marking frameworks specifically designed to evalu- 057

ate the performance of LLMs and RAG systems for 058

cross-document entity-intensive tasks. As shown 059

in Figure 1, existing evaluation metrics frequently 060

inadequately represent the complexities inherent in 061

real-world MEQA applications Song et al. (2024), 062

where queries such as “What is the number distribu- 063

tion of all Turing Award winners by fields of study 064

by 2023?” necessitate not only high-precision infor- 065

mation retrieval but also reasoning over fragmented, 066

entity-specific information across heterogeneous 067

document sources. 068

To address this methodological gap, we present 069

MEbench, a novel benchmarking framework specif- 070

ically designed to assess the performance of large 071

language models and RAG systems in cross- 072

document multi-entity question answering scenar- 073

ios. The benchmark simulates real-world infor- 074

mation integration challenges where correct an- 075

swers require synthesizing entity-centric evidence 076

distributed across multiple documents, with a sin- 077

gle instance of document omission or entity misin- 078

terpretation can propagate errors through the rea- 079

soning chain. As shown in Table 2, MEBench 080

features a mean entity density of 409 entities per 081

query, with systematically varied entity cardinal- 082

ity across three operational tiers: low (0-10 enti- 083
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ties), medium (10-100 entities), and high complex-084

ity (>100 entities). This stratified design enables085

granular performance evaluation across different086

entity scales and task difficulty levels. The frame-087

work comprises 4,780 validated question-answer088

pairs systematically categorized into three primary089

categories and eight distinct types, MEBench spans090

diverse real-world scenarios, from academic field091

distributions to geopolitical event analysis. Our092

experiments with state-of-the-art models, including093

GPT-4 and Llama-3, reveal significant shortcom-094

ings: even the most advanced LLMs achieve only095

59% accuracy on MEBench. This underscores sys-096

temic weaknesses in current frameworks, for exam-097

ple, models frequently fail to locate all entity and098

their attributes or infer implicit relationships, high-099

lighting the need for architectures that prioritize100

entity-aware retrieval and contextual consolidation.101

Our main contributions are summarized as fol-102

lows:103

• Development of MEBench. A scalable104

benchmark designed to evaluate LLMs and105

RAG systems in cross-document aggregation106

and reasoning. It includes 4,780 validated107

question-answer pairs spanning three cate-108

gories and eight types, simulating real-world109

scenarios that demand integration of scattered,110

entity-specific information.111

• Entity-centric Task Categories and Eval-112

uation. Utilization of Entity-Attributed F1113

(EA-F1), a granular metric for assessing114

entity-level correctness and attribution valid-115

ity, alongside a stratified entity density design116

(low: 0–10, medium: 11–100, high: >100 en-117

tities per query). Our framework emphasizes118

completeness and factual precision in infor-119

mation extraction, addressing gaps in existing120

metrics for entity-dense MEQA tasks.121

• Scalable Benchmark Construction. A122

scalable, automated pipeline: Knowledge123

graph extraction from structured Wikipedia124

for cross-document relationship discovery;125

Relational table generation to preserve entity-126

property relationships; Template-based QA127

generation ensuring reproducibility and reduc-128

ing cost and labor.129

2 Related Work130

Recent advancements in question answering (QA)131

have been driven by breakthroughs in LLMs and132

Figure 1: Existing benchmarks vs. MEBench. Unlike
existing benchmarks which feature centralized evidence
distributions and sparse entity mentions, MEBench
presents entity-dense scene where critical evidences are
dispersed across multiple documents, necessitating that
when seeking an answer, no document or entity can be
ignored.

RAG systems. While these technologies excel in 133

single or a few document settings, demonstrating 134

proficiency in tasks like fact extraction, summariza- 135

tion, and reasoning within a single source, their 136

performance in cross-document, multi-entity sce- 137

narios remains underexplored. This section contex- 138

tualizes our work within three key research areas: 139

single-document QA, cross-document aggregation, 140

and entity-centric evaluation. 141

2.1 Single-Document QA and LLM Progress. 142

Many QA benchmarks, such as SQuAD Rajpurkar 143

et al. (2016), Natural Questions Kwiatkowski et al. 144

(2019), L-eval An et al. (2024) and needle-in-a- 145

haystack Kamradt (2023), focus on extracting an- 146

swers from individual document. Modern LLMs 147

like GPT-4 Achiam et al. (2023), Llama-3 Meta 148

Llama3 (2024), and PaLM Chowdhery et al. (2023) 149

have achieved near-human performance on these 150

tasks, leveraging their ability to parse and reason 151

within localized contexts. However, these bench- 152

marks do not address the complexities of integrat- 153

ing information across multiple documents, a criti- 154

cal limitation for real-world applications. 155

2.2 Cross-Document Aggregation Challenges. 156

Efforts to extend QA to multi-document set- 157

tings include datasets like HotpotQA Yang et al. 158

(2018), MuSiQue Trivedi et al. (2021), LooGLE Li 159

et al. (2024), LM-Infinit Han et al. (2024), ∞ 160

Bench Zhang et al. (2024), CLongEval Qiu 161

et al. (2024), BAMBOO Dong et al. (2024) and 162

Loong Wang et al. (2024), which emphasize multi- 163

hop reasoning and cross-source synthesis. While 164
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these benchmarks highlight the need for systems165

to connect disparate information, they often priori-166

tize breadth over depth in entity-centric reasoning.167

For instance, questions in these datasets rarely de-168

mand the consolidation of attributes for dozens of169

or more entities (e.g., aggregating ACM Fellows’170

expertise across fields), a gap that limits their util-171

ity in evaluating entity-dense scenarios. Recent172

RAG frameworks Fan et al. (2024) aim to enhance173

retrieval-augmented QA but struggle with ensuring174

completeness and attribution validity when han-175

dling multi-entity queries.176

2.3 Entity-Centric Evaluation Metrics.177

Existing evaluation metrics for QA, such as F1178

score and exact match (EM), focus on answer179

surface-form correctness but overlook granular180

entity-level attribution Rostampour et al. (2010).181

Metrics in FEVER Thorne et al. (2018) Attributed182

QA Bohnet et al. (2023) and emphasize source183

verification, yet they lack the specificity to assess184

multi-entity integration. For example, they do not185

systematically measure whether all relevant enti-186

ties are retrieved, their attributes are correctly ex-187

tracted, or their sources are accurately used, which188

is a shortcoming that becomes critical in MEQA189

tasks.190

2.4 The Gap in Multi-Entity QA Benchmarks.191

Prior work has yet to establish a benchmark that192

systematically evaluates LLMs and RAG systems193

on entity-dense, cross-document reasoning. Cur-194

rent datasets either lack the scale and diversity of195

real-world multi-entity questions or fail to provide196

fine-grained metrics for assessing entity-level com-197

pleteness and attribution Song et al. (2024) Wang198

et al. (2024) Bai et al. (2025). MEBench addresses199

these limitations by introducing a comprehensive200

evaluation framework that challenges models to re-201

trieve, consolidate, and reason over scattered entity-202

centric data across heterogeneous sources. By in-203

corporating the Entity-Attributed F1 (EA-F1) met-204

ric, our benchmark advances the field toward more205

precise, entity-aware QA systems.206

3 MEBench207

3.1 Task overview208

MEBench is a structured evaluation framework209

designed to systematically assess the capabilities210

of LLMs and RAG systems in performing cross-211

document multi-entity question answering. This212

framework targets three core reasoning modalities: 213

comparative analysis, statistical inference, and re- 214

lational reasoning, and each decomposed into spe- 215

cialized subtasks that rigorously test distinct facets 216

of LLM performance. (Examples of tasks are pro- 217

vided in Table 1), ensuring broad coverage of real- 218

world multi-entity reasoning scenarios. Each of 219

three primary task categories addresses distinct rea- 220

soning challenges: 221

Comparative Reasoning Comparative reason- 222

ing tasks evaluate LLM’s ability to juxtapose enti- 223

ties across heterogeneous documents, demanding 224

both attribute alignment and contextual synthesis. 225

Statistical Reasoning Statistical tasks Zhu et al. 226

(2024) assess LLM’s proficiency in quantitative 227

synthesis, including aggregation, distributional 228

analysis, correlation analysis, and variance anal- 229

ysis across multi-document. 230

Relational Reasoning Relational tasks probe 231

model’s capacity to model explicit interactions and 232

counterfactual dependencies among entities. 233

3.2 Benchmark Construction 234

MEBench was constructed through a systematic 235

pipeline: 236

3.2.1 Data Collection 237

Concept Topic Identification. In the initial 238

phase of data collection for MEbench, a meticu- 239

lous process is employed to determine the concept 240

topics that are applicable to multi-entity scenar- 241

ios. These topics are carefully selected based on 242

their significance, prevalence, and the potential for 243

generating complex multi-entity questions, and ex- 244

amples can be seen in Appedix Table 5. 245

Entity and Property Identification. Once the 246

concept topics are determined, We input descrip- 247

tions related to the concept topic into the LLM (we 248

use GPT-4), which then processes the text to iden- 249

tify concept entity and property, as illustrated in 250

Figure 2-a1. After the LLM identifies the entity 251

and Property via iterative semantic refinement, we 252

map them to entity IDs and Property IDs in the 253

Wiki graph. This mapping is crucial as it allows 254

for seamless integration with the vast amount of 255

structured data available in Wikipedia. The detailed 256

method is in Appendix A.1. Using the Entity ID 257

and property ID, we synthesise SPARQL. We then 258

utilize the API provided by Wikipedia to retrieve 259

the wiki web pages of all entities related to the 260
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Table 1: Examples of multi-entities queries.

Categories Types Examples

Comparison
Intercomparison Which has more ACM fellow, UK or USA?

Superlative Which city has the highest population?

Statistics

Aggregation How many ACM fellow are from MIT?

Distribution Compliance
Does the nationality of ACM fellows follow a
normal distribution?

Correlation Analysis
Is there a linear relationship between number of
events and records broken in Olympic Games?

Variance Analysis
Do the variances in the number of participat-
ing countries and total events in the Summer
Olympics differ significantly?

Relationship
Descriptive Relationship

Is there a relationship between the year of ACM
fellowship induction and the fellows’ areas of
expertise?

Hypothetical Scenarios
If China wins one more gold medal, will it over-
take the US in the gold medal tally at the 2024
Olympics?

Table 2: Statistics of MEBench benchmark.

Categories MEBench-train MEBench-test MEBench-total

#-Queries 3406 1374 4780
#-Topics 165 76 241
Ave. #-entities /Q 460 391 409

Hops
#-one-hop Q 1406 606 2012
#-multi-hop Q 1322 768 2090

Categories
#-Comparison 1107 438 1545
#-Statistics 1440 585 2025
#-Relationship 859 351 1210

Entity Density
#-low (0–10) 487 196 683
#-medium(11–100) 973 393 1366
#-high (>100) 1946 785 2731

topic. For example, if our concept topic is "ACM261

Fellows", we would obtain the Wikipedia pages262

of all ACM Fellows, which contain their detailed263

information. We use GPT-4 to generate a set of264

interesting entity attributes. These attributes are265

carefully chosen based on the general interest and266

relevance in the domain. For ACM Fellows, as267

example, nationality, research field, institution, and268

academic contribution maybe the attributes that269

people commonly pay attention to. 270

Structured Information Processing. Once the 271

document set is collected, we proceed to the struc- 272

tured information processing stage. The docu- 273

ments we have gathered from Wikipedia have well- 274

defined and accurate structural relations. Due to 275

the structured nature of the documents, we do not 276

need to rely on the long context ability of large lan- 277
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Figure 2: The systematic pipeline of Benchmark Construction. It comprising three phases: documents collection,
information extraction and question-answer generation. In the documents collection phase, concept topics relevant
to multi-entity scenarios are selected, followed by GPT-4 processing descriptions to extract entities and properties
mapped to Wikipedia IDs for integration with structured Wiki data. Structured information from Wikipedia
documents is processed using small language models (SLMs) due to the structured nature of the documents,
culminating in table creation with entity attributes as columns. For QA generation, questions are generated following
a "template-driven, entity-attribute coupling" paradigm using GPT-4 with predefined templates, and undergo
syntactic, semantic, and ambiguity checks, while answers are programmatically derived via SQL queries against the
table and standardized into canonical forms. The final dataset ensures traceability (SQL-linked answers), scalability
(template-driven approach), and rigor (execution-based answering reduces hallucination risks).

guage models. Instead, we can use small language278

models (SLMs) for information extraction. They279

are well-suited for tasks where the information is280

already structured and the focus is on extracting281

specific details Fan et al. (2025).282

Table Generation. The final step in the data col-283

lection process is to generate a table, as shown in284

Figure 2-b1. We use the the entity attributes as the285

column headers of the table. Each row in the table286

represents an individual entity. For example, in the287

case of ACM Fellows, each row would correspond288

to an individual ACM Fellow.289

3.2.2 Question and answer Generation290

The question and answer generation framework for291

MEBench is a structured, multi-phase process that292

leverages LLM and tabular data to produce both se-293

mantically coherent questions and computationally294

verifiable answers.295

Question Generation. The foundational input296

for the QA generation pipeline is the table gener-297

ated in last step. The generation of questions fol-298

lows a "template-driven, entity-attribute coupling"299

paradigm, implemented through LLM (GPT-4), as300

illustrated in Figure 2-c1. Predefined syntactic and301

semantic templates govern the grammatical struc-302

ture and intent of questions. These templates are 303

shown in Appendix Table 6. The LLM instanti- 304

ates templates with entity-attribute pairs, ensuring 305

syntactic diversity while adhering to logical con- 306

straints. Generated questions undergo validation 307

via: Syntactic Checks, ensuring grammatical cor- 308

rectness; Semantic Grounding, verifying that the 309

question is answerable using the table’s data; Ambi- 310

guity Reduction, pruning underspecified questions 311

(e.g., "Describe the economy" revised to "Describe 312

the GDP growth rate of Brazil in 2023"). 313

Answer Generation. Answers are derived pro- 314

grammatically through automated SQL query exe- 315

cution, ensuring reproducibility and alignment with 316

the table’s ground-truth data. The synthesized SQL 317

is executed against the table, yielding direct an- 318

swers or sub-tables (Intermediate results requiring 319

post-processing), as illustrated in Figure 2-c3. An- 320

swers are standardized to ensure consistency: Nu- 321

meric results are rounded to significant figures; Cat- 322

egorical answers are converted to canonical forms 323

(e.g., "USA" to "United States"). 324

3.3 Data Statistics 325

The benchmark comprises 4,780 methodically 326

structured questions partitioned into two subsets: a 327

training set (3,406 questions) for model fine-tuning 328
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or train, and a test set (1,374 questions) for rigor-329

ous evaluation. Based on entity count, the data is330

divided into three groups: “low” (0-10), “Medium”331

(11-100), and “high” (>100), containing 683, 1366,332

and 2731 entries, respectively. Table 2 details com-333

prehensive statistics of the benchmark. We also334

analyze the proportion of questions rejected during335

manual review and about 21% of the questions are336

failure to meet quality standards.337

4 Experiment338

4.1 Experiment Setup339

4.1.1 Models340

For open-source LLMs, we conduct experi-341

ments using the representative Meta-Llama-3-342

8B-Instruct Meta Llama3 (2024) and apply343

QLoRA Dettmers et al. (2023) to fine-tune it with344

the training set of MEBench. For proprietary345

LLMs, we select the widely recognized GPT mod-346

els, including GPT-3.5-turbo Ouyang et al. (2022)347

and GPT-4 Achiam et al. (2023).348

4.1.2 RAG349

We implement a hierarchical retrieval framework350

that explicitly incorporates document organiza-351

tional structures into the RAG pipeline to explore352

whether RAG can enhance the model’s perfor-353

mance on MEBench. For the Embedding choice,354

we employ the OpenAI Embedding model OpenAI,355

and the chunk size is 1024. For each document, we356

retrieve the top-5 most related chunks and concate-357

nate them in their original order to form the context358

input for the model.359

4.1.3 Evaluation Metrics360

We adopt Accuracy (Acc) as the primary metric361

to assess the performance of LLMs on MEBench362

tasks. For the subcategories of Variance Analysis,363

Correlation Analysis, and Distribution Compliance364

within the Statistics tasks, which are shown in Ta-365

ble 1, we focus solely on prompting LLMs to iden-366

tify relevant columns and applicable methods, eval-367

uating the accuracy of their selections instead of the368

computational results, as LLMs’ abilities in precise369

calculations are not the central focus of this study.370

In addition, we evaluate performance of informa-371

tion extraction using Entity-Attributed F1 (EA-F1).372

This is an F1 score applied to the predicted vs. gold373

sets of the (entity, atrribution, value) . All three el-374

ements in the tuple must exactly match the tuple in375

the ground truth to be marked correct.376

4.2 Results and Analysis 377

Various models exhibit notable variations in perfor- 378

mance on MEBench. Table 3 presents experimental 379

results alongside overall accuracy on MEBench, 380

and Figure 3 shows accuracy on eight further- 381

divided tasks. 382

4.2.1 Main result 383

GPT-4 + RAG achieved superior accuracy (59.3%), 384

outperforming the second-ranked model (FT 385

Llama-3-Instruct: 55.6% ) by a statistically signifi- 386

cant margin. Notably, GPT-4 + RAG excelled in re- 387

lational (68.7%) and comparative (76.3%) queries, 388

likely due to its superior contextual understanding. 389

However, all models exhibited markedly lower ac- 390

curacy in statistical queries (GPT-4 + RAG: 41.0%), 391

suggesting inherent challenges in numerical reason- 392

ing. In our evaluation, we focused on analyzing 393

the capability of LLMs to extract question-related 394

data. This assessment aimed to understand how 395

well these sophisticated models can organize and 396

present data for the question. The result is shown in 397

Table 4. These results underscore the critical role 398

of information extraction architectures in mitigat- 399

ing hallucinations and grounding outputs in factual 400

data. Introducing RAG significantly improves over- 401

all performance, particularly in comparison tasks, 402

while fine-tuning LLaMA-3-Instruct alone does not 403

yield substantial gains without RAG. On MEBench, 404

open-source models like LLaMA-3-Instruct, even 405

with RAG, can’t match proprietary models like 406

GPT-4, which achieves a 59.3% accuracy compared 407

to LLaMA-3-Instruct’s 32.5%. 408

4.2.2 Fine-grained Performance on Sub-tasks. 409

Figure 3 shows that vanilla LLMs perform well 410

in correlation analysis and descriptive relationship 411

tasks, while RAG significantly improves intercom- 412

parison and superlative tasks. However, neither 413

fine-tuning nor RAG overcomes challenges in vari- 414

ance analysis and aggregation tasks, while GPT-4 415

+ RAG achieves accuracy of 15.3% and 32.1%. 416

4.2.3 Entity density Analysis. 417

As we can see from Table 3, our experiments un- 418

derscore the impact of entity density on model per- 419

formance in MEQA tasks. This phenomenon arises 420

because higher entity densities amplify two critical 421

challenges inherent to MEQA systems: (1) Seman- 422

tic ambiguity due to overlapping relational pred- 423

icates among entities (e.g., distinguishing "Paris 424

[person]" vs. "Paris [location]" within narrow con- 425
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Table 3: Experimental results for MEBench.

Models Accuracy

Comparison Statistics Relationship Overall

All sets
GPT-3.5-turbo 0.105 0.198 0.476 0.239
GPT-3.5-turbo + RAG 0.605 0.260 0.476 0.425
GPT-4 0.199 0.289 0.507 0.316
GPT-4 + RAG 0.763 0.410 0.687 0.593
Llama-3-Instruct 0.046 0.118 0.256 0.130
Llama-3-Instruct + RAG 0.447 0.181 0.410 0.325
FT Llama-3-Instruct 0.046 0.253 0.259 0.189
FT Llama-3-Instruct + RAG 0.687 0.448 0.573 0.556

Set1 (0-10)
GPT-3.5-turbo 0.435 0.583 0.560 0.530
GPT-3.5-turbo + RAG 0.548 0.654 0.620 0.612
GPT-4 0.451 0.595 0.540 0.535
GPT-4 + RAG 0.870 0.619 0.740 0.729
Llama-3-Instruct 0.322 0.500 0.400 0.418
Llama-3-Instruct + RAG 0.419 0.571 0.480 0.500
FT Llama-3-Instruct 0.322 0.511 0.380 0.418
FT Llama-3-Instruct + RAG 0.580 0.677 0.690 0.676

Set2 (11-100)
GPT-3.5-turbo 0.364 0.495 0.544 0.466
GPT-3.5-turbo + RAG 0.613 0.581 0.640 0.607
GPT-4 0.348 0.476 0.521 0.447
GPT-4 + RAG 0.791 0.511 0.661 0.638
Llama-3-Instruct 0.240 0.385 0.357 0.332
Llama-3-Instruct + RAG 0.428 0.454 0.459 0.447
FT Llama-3-Instruct 0.240 0.434 0.344 0.349
FT Llama-3-Instruct + RAG 0.612 0.608 0.655 0.640

Set3 (>100)
GPT-3.5-turbo 0.09 0.158 0.291 0.173
GPT-3.5-turbo + RAG 0.389 0.191 0.311 0.285
GPT-4 0.142 0.202 0.309 0.210
GPT-4 + RAG 0.436 0.270 0.405 0.357
Llama-3-Instruct 0.055 0.108 0.168 0.106
Llama-3-Instruct + RAG 0.265 0.147 0.253 0.212
FT Llama-3-Instruct 0.055 0.177 0.167 0.136
FT Llama-3-Instruct + RAG 0.401 0.291 0.355 0.345

texts), and (2) computational overhead in attention-426

based architectures attempting parallel reasoning427

over entangled entity-attribution pairs (e.g. trans-428

former self-attention weights saturate under dense429

cross-entity dependencies).430

• Low Entity Density: Models generally per-431

formed well in low-density scenarios. The432

simplicity of context allowed for accurate en-433

tity recognition and minimal ambiguity.434

• Medium Entity Density: Performance began 435

to decrise among models in medium-density 436

scenarios by 6% average acc. This variance 437

suggests differences in how models handle 438

increased entity complexity and overlapping 439

contexts. 440

• High Entity Density: High-density questions 441

posed significant challenges, with an average 442
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Figure 3: The Experimental results for eight subtasks of each model.

Table 4: Quality of Large Language Models (LLMs) in
EA-F1.

Models EA− F1

GPT-3.5-turbo 0.25
GPT-3.5-turbo + RAG 0.43
GPT-4 0.36
GPT-4 + RAG 0.71
Llama-3-Instruct 0.21
Llama-3-Instruct + RAG 0.39
FT Llama-3-Instruct 0.21
FT Llama-3-Instruct + RAG 0.59

acc drop to 22.8% across models. The result443

highlighting limitations in current architec-444

tures’ ability to handle complex multi-entity445

questions.446

5 Limitations447

While MEBench provides a comprehensive frame-448

work for evaluating cross-document multi-entity449

reasoning, our work has several limitations that450

warrant further investigation. Although MEBench451

covers eight distinct reasoning types across three452

broad categories, real-world MEQA scenarios may453

involve even more intricate combinations of logi-454

cal, temporal, or causal dependencies. The current455

benchmark does not explicitly model dynamic or456

time-sensitive entity interactions, which could limit457

its applicability to domains like financial forecast-458

ing or event-driven narratives. The benchmark re-459

lies on a curated collection of documents to ensure460

controlled evaluation. While this design choice461

minimizes noise, it may not fully replicate the462

challenges of real-world environments where doc-463

uments vary widely in quality, redundancy, and464

structure. Future iterations could incorporate noisy 465

or incomplete data sources to better simulate practi- 466

cal scenarios. While the Entity-Attributed F1 (EA- 467

F1) metric rigorously assesses entity-level correct- 468

ness and attribution validity, it prioritizes factual 469

precision over semantic coherence. This may un- 470

dervalue partially correct answers that demonstrate 471

valid reasoning chains but contain minor factual 472

inaccuracies. A hybrid evaluation framework com- 473

bining EA-F1 with human judgment could provide 474

a more holistic assessment. 475

6 Conclusion 476

In this study, we have comprehensively addressed 477

the significant challenges that multi-entity ques- 478

tion answering (MEQA) poses to LLMs and RAG 479

systems. The limitations of existing methods 480

in handling cross-document aggregation, espe- 481

cially when dealing with entity-dense questions, 482

have been clearly identified and analyzed. We 483

introduced MEBench, a groundbreaking multi- 484

document, multi-entity benchmark. Our experi- 485

ments on state-of-the-art LLMs such as GPT-4 and 486

Llama-3, along with RAG pipelines, have shed 487

light on the critical limitations of these advanced 488

models. The fact that even these leading models 489

achieve only 59% accuracy on MEBench under- 490

scores the magnitude of the challenges in MEQA. 491

MEBench has effectively highlighted the systemic 492

weaknesses in current LLM frameworks. These 493

weaknesses serve as valuable insights for future 494

research directions. For instance, the need for im- 495

proved algorithms to retrieve and consolidate frag- 496

mented information from heterogeneous sources is 497

evident. Additionally, there is a pressing need to 498

develop more robust entity-aware QA architectures 499

that can better handle the complexities of MEQA. 500
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A Appendix647

A.1 Methodology for composite SPARQL648

Generation via Iterative Semantic649

Refinement650

A.1.1 Initial Query Parsing Using GPT-4651

We employ a transformer-based large language652

model (LLM), specifically GPT-4, to perform pre-653

liminary natural language question decomposition.654

This stage generates a proto-SPARQL query con-655

taining candidate triple patterns with hypothesized656

entity-property relationships. While this initial out-657

put captures broad syntactic structures (e.g., basic658

graph pattern groupings), it frequently exhibits two659

critical inaccuracies:660

Entity Misalignment: Incorrect Wikidata Q-ID661

assignments due to lexical ambiguity (e.g., "Java"662

as programming language vs. Indonesian island)663

Property Mismatch: Invalid P-ID selections aris-664

ing from underspecified predicate semantics (e.g.,665

using P19 [place of birth] instead of P20 [place of666

death])667

A.1.2 Semantic Validation Layer668

To address these limitations, we implement a multi-669

stage correction framework:670

(a) Structured Knowledge Anchoring671

The system interfaces with the Wikipedia API672

through programmatic endpoints that map surface673

forms to canonical entities via:674

def getwikidataid(term):
response = requests.get(
f"https:en.wikipedia.orgwapi.php?

ac-
tion=query&format=json&prop=pageprops&titles=term"

)
return re-

sponse.json()["query"]["pages"].get("pageprops",
).get("wikibaseitem")

(b) Neural-Semantic Disambiguation Module675

GPT-4 serves as our semantic analysis engine,676

performing three key operations:677

a. Contextual disambiguation using entity link-678

ing algorithms enhanced by Wikifier-style mention679

detection680

b. Property type validation against681

Wikidata’s ontology constraints (rdf:type,682

owl:ObjectProperty)683

c. Temporal scope verification for time-sensitive684

queries requiring qualifiers like P585 [point in685

time]686

A.1.3 Iterative Refinement Protocol 687

The system implements closed-loop feedback 688

through successive cycles of: 689

a. Executing candidate SPARQL on the Wiki- 690

data Query Service endpoint; 691

b. Analyzing result cardinality and type consis- 692

tency; 693

c. Applying constraint satisfaction heuristics: 694

FILTER (?population > 1e6 && ?country
IN wd:Q30) # Example numerical/entity con-
straints

Each iteration tightens precision metrics until meet- 695

ing termination criteria defined by either: 696
|V alidResultst|
|TotalResultst| ≥ θprecision (θ = 697

0.98 empirically) 698

or maximum iteration thresholds. 699

A.1.4 Final Query Synthesis 700

Through combining LLM-based semantic parsing 701

with knowledge-grounded verification, we con- 702

verge on an optimized SPARQL template satisfying 703

both syntactic validity and functional correctness 704

requirements for structured knowledge extraction. 705

A.2 Optimization 706

Two aspects of optimization are included in 707

MEBench system to enhance the overall perfor- 708

mance: 709

Model Selection. Model selection is straightfor- 710

ward yet highly effective for optimization Liu et al. 711

(2024). Our system comprises multiple tasks, ne- 712

cessitating the selection of the most suitable model 713

for different tasks. For basic tasks, more affordable 714

and faster LLMs can suffice, while utilization of 715

the most advanced LLMs is essential in more com- 716

plex tasks to ensure optimal performance. Specif- 717

ically, our system employs powerful yet resource- 718

intensive GPT-4 for tasks such as semantic analysis 719

or generation of table schemas and SQL queries. In 720

contrast, for more basic information extraction, we 721

utilize open-source Mistral-7B, thereby achieving 722

a balance between cost efficiency and functional 723

performance. 724

LLM Input/Output Control SplitWise Patel 725

et al. (2023) shows that LLM inference time is gen- 726

erally proportional to the size of input and output 727

tokens. Since GPT models decide the cost based 728

on the input token, we try to minimize the input of 729

large models. Meanwhile, we use the instructive 730

prompt to reduce the size of the outputs generated 731
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Table 5: Example Topics and Their Entities Attributions.

Topics Entities Attributions #-Entities

ACM fellow nationality, field of study, affiliation 1115

Presidents of the US
term lengths, political parties, vice-presidents,
birth states, previous occupations

55

Chemical Elements
atomic number, atomic mass, boiling point,
melting point, electron configuration

166

Summer Olympic Games
host cities, number of participating countries,
total number of events, medal tally, records
broken

35

Nobel Prize in Chemistry
categories, year of award, country of origin,
field of contribution.

194

Cities of the World population, geographic coordinates, altitude,
GDP

7040

Table 6: Template example for questions generated by the LLM (GPT-4).

Types Sub-types Template Examples

Comparison
Intercomparison Which has high [property], [entity A] or [entity

B]?

Superlative Which [entity] has the highest/lowest [property]?

Statistics

Aggregation How many [entities] have [specific property
value]?

Distribution Compliance Does [property] follow a normal distribution?

Correlation Analysis
Is there a linear relationship between [property A]
and [property B]?

Variance Analysis
Are the variances in [property A] and [property
B] significantly different?

Relationship
Descriptive Relationship How is [entity A] related to [entity B]?

Hypothetical Scenarios
What would be the impact if [entity A] collabo-
rates with [entity B]?

by LLM without changing the quality of these out-732

puts. The example of prompt is in Appendix A.2.1.733

A.2.1 Prompt for Output Control734

Review your output to ensure it meets all the
above criteria. Your goal is to produce a clear,
accurate, and well-structured output. Just out-
put the result, no other word or symbol.

A.2.2 Quality Control735

We devise several strategies to ensure the integrity736

and effectiveness of questions.737

Question Templates. The use of templates en-738

sures that every question is crafted with a clear739

structure, making it easier for respondents to under- 740

stand and answer them accurately. For relationship 741

and complex statistic questions we turn the ques- 742

tions in a closed-ended style, as they require a spe- 743

cific response of either "yes" or "no", which make 744

the answer in a standardized format. The examples 745

of Question Templates is in the Appendix 6. 746

Question Refinement. After initial development, 747

each question undergoes a refinement process 748

which we used GPT-3.5-Turbo. This stage is crit- 749

ical for enhancing the clarity, relevance, and neu- 750

trality of the questions. It involves reviewing the 751

questions for bias. This strategy helps in reduc- 752
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ing misunderstandings and improving the overall753

quality of the questions.754

Manual review. We assess the questions for ac-755

curacy, ensuring they are factually correct and rele-756

vant to our purpose. Manual reviews can also pro-757

vide insights into whether the questions are likely758

to effectively elicit the intended information from759

answers, thereby contributing to the reliability and760

validity of the benchmark.761

A.3 Tables762

Table 5 shows examples of topics and their entities’763

attributions. Table 6 shows examples of question764

templates to synthesize questions.765
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