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Abstract

Cross-Document Multi-entity question answer-
ing (MEQA) demands the integration of scat-
tered information across documents to resolve
complex queries involving entities, relation-
ships, and contextual dependencies. Although
large language models (LLMs) and retrieval-
augmented generation (RAG) systems show
promise, their performance on cross-document
MEQA remains underexplored due to the ab-
sence of tailored benchmarks. To address this
gap, we introduce MEBench, a scalable multi-
document, multi-entity benchmark designed to
systematically evaluate LLMs’ capacity to re-
trieve, consolidate, and reason over scattered
and dense information. Our benchmark com-
prises 4,780 questions which are systemati-
cally categorized into three primary categories:
Comparative Reasoning, Statistical Reasoning
and Relational Reasoning, further divided into
eight distinct types, ensuring broad coverage
of real-world multi-entity reasoning scenarios.
Our experiments on state-of-the-art LLMs re-
veal critical limitations: even advanced mod-
els achieve only 59% accuracy on MEBench.
Our benchmark emphasizes the importance of
completeness and factual precision of informa-
tion extraction in MEQA tasks, using Entity-
Attributed F1 (EA-F1) metric for granular eval-
uation of entity-level correctness and attribu-
tion validity. MEBench not only highlights
systemic weaknesses in current LLM frame-
works but also provides a foundation for ad-
vancing robust, entity-aware QA architectures.
The source code and data have been made avail-
able at https://github.com/t12309/SRAG.

1 Introduction

The emergence of large language models (LLMs)
has significantly advanced natural language pro-
cessing capabilities, demonstrating exceptional per-
formance in diverse tasks spanning text genera-
tion to complex logical reasoning Achiam et al.
(2023) Meta Llama3 (2024). Nevertheless, long-

context LLMs exhibit notable limitations in pro-
cessing entity-dense analytical reasoning, par-
ticularly when contextual dependencies are dis-
tributed across multiple documents, and we an-
alytically argue that context window limitations,
over-reliance on parametric knowledge, and poor
cross-document attention as the key bottlenecks.
On the other hand, current implementations of
retrieval-augmented generation (RAG) architec-
tures Wu et al. (2025) Fan et al. (2024) Tang
et al. (2024) frameworks’ effectiveness in address-
ing cross-document multi-entity question answer-
ing (MEQA) remains insufficiently investigated.
Furthermore, the field lacks comprehensive bench-
marking frameworks specifically designed to evalu-
ate the performance of LLMs and RAG systems for
cross-document entity-intensive tasks. As shown
in Figure 1, existing evaluation metrics frequently
inadequately represent the complexities inherent in
real-world MEQA applications Song et al. (2024),
where queries such as “What is the number distribu-
tion of all Turing Award winners by fields of study
by 2023?” necessitate not only high-precision infor-
mation retrieval but also reasoning over fragmented,
entity-specific information across heterogeneous
document sources.

To address this methodological gap, we present
MEbench, a novel benchmarking framework specif-
ically designed to assess the performance of large
language models and RAG systems in cross-
document multi-entity question answering scenar-
ios. The benchmark simulates real-world infor-
mation integration challenges where correct an-
swers require synthesizing entity-centric evidence
distributed across multiple documents, with a sin-
gle instance of document omission or entity misin-
terpretation can propagate errors through the rea-
soning chain. As shown in Table 2, MEBench
features a mean entity density of 409 entities per
query, with systematically varied entity cardinal-
ity across three operational tiers: low (0-10 enti-



ties), medium (10-100 entities), and high complex-
ity (>100 entities). This stratified design enables
granular performance evaluation across different
entity scales and task difficulty levels. The frame-
work comprises 4,780 validated question-answer
pairs systematically categorized into three primary
categories and eight distinct types, MEBench spans
diverse real-world scenarios, from academic field
distributions to geopolitical event analysis. Our
experiments with state-of-the-art models, including
GPT-4 and Llama-3, reveal significant shortcom-
ings: even the most advanced LLMs achieve only
59% accuracy on MEBench. This underscores sys-
temic weaknesses in current frameworks, for exam-
ple, models frequently fail to locate all entity and
their attributes or infer implicit relationships, high-
lighting the need for architectures that prioritize
entity-aware retrieval and contextual consolidation.

Our main contributions are summarized as fol-
lows:

* Development of MEBench. A scalable
benchmark designed to evaluate LLMs and
RAG systems in cross-document aggregation
and reasoning. It includes 4,780 validated
question-answer pairs spanning three cate-
gories and eight types, simulating real-world
scenarios that demand integration of scattered,
entity-specific information.

* Entity-centric Task Categories and Eval-
uation. Utilization of Entity-Attributed F1
(EA-F1), a granular metric for assessing
entity-level correctness and attribution valid-
ity, alongside a stratified entity density design
(low: 0-10, medium: 11-100, high: >100 en-
tities per query). Our framework emphasizes
completeness and factual precision in infor-
mation extraction, addressing gaps in existing
metrics for entity-dense MEQA tasks.

* Scalable Benchmark Construction. A
scalable, automated pipeline: Knowledge
graph extraction from structured Wikipedia
for cross-document relationship discovery;
Relational table generation to preserve entity-
property relationships; Template-based QA
generation ensuring reproducibility and reduc-
ing cost and labor.

2 Related Work

Recent advancements in question answering (QA)
have been driven by breakthroughs in LLMs and
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Figure 1: Existing benchmarks vs. MEBench. Unlike
existing benchmarks which feature centralized evidence
distributions and sparse entity mentions, MEBench
presents entity-dense scene where critical evidences are
dispersed across multiple documents, necessitating that
when seeking an answer, no document or entity can be
ignored.

RAG systems. While these technologies excel in
single or a few document settings, demonstrating
proficiency in tasks like fact extraction, summariza-
tion, and reasoning within a single source, their
performance in cross-document, multi-entity sce-
narios remains underexplored. This section contex-
tualizes our work within three key research areas:
single-document QA, cross-document aggregation,
and entity-centric evaluation.

2.1 Single-Document QA and LLM Progress.

Many QA benchmarks, such as SQuAD Rajpurkar
et al. (2016), Natural Questions Kwiatkowski et al.
(2019), L-eval An et al. (2024) and needle-in-a-
haystack Kamradt (2023), focus on extracting an-
swers from individual document. Modern LLMs
like GPT-4 Achiam et al. (2023), Llama-3 Meta
Llama3 (2024), and PaLM Chowdhery et al. (2023)
have achieved near-human performance on these
tasks, leveraging their ability to parse and reason
within localized contexts. However, these bench-
marks do not address the complexities of integrat-
ing information across multiple documents, a criti-
cal limitation for real-world applications.

2.2 Cross-Document Aggregation Challenges.

Efforts to extend QA to multi-document set-
tings include datasets like HotpotQA Yang et al.
(2018), MuSiQue Trivedi et al. (2021), LooGLE Li
et al. (2024), LM-Infinit Han et al. (2024), oo
Bench Zhang et al. (2024), CLongEval Qiu
et al. (2024), BAMBOO Dong et al. (2024) and
Loong Wang et al. (2024), which emphasize multi-
hop reasoning and cross-source synthesis. While



these benchmarks highlight the need for systems
to connect disparate information, they often priori-
tize breadth over depth in entity-centric reasoning.
For instance, questions in these datasets rarely de-
mand the consolidation of attributes for dozens of
or more entities (e.g., aggregating ACM Fellows’
expertise across fields), a gap that limits their util-
ity in evaluating entity-dense scenarios. Recent
RAG frameworks Fan et al. (2024) aim to enhance
retrieval-augmented QA but struggle with ensuring
completeness and attribution validity when han-
dling multi-entity queries.

2.3 Entity-Centric Evaluation Metrics.

Existing evaluation metrics for QA, such as F1
score and exact match (EM), focus on answer
surface-form correctness but overlook granular
entity-level attribution Rostampour et al. (2010).
Metrics in FEVER Thorne et al. (2018) Attributed
QA Bohnet et al. (2023) and emphasize source
verification, yet they lack the specificity to assess
multi-entity integration. For example, they do not
systematically measure whether all relevant enti-
ties are retrieved, their attributes are correctly ex-
tracted, or their sources are accurately used, which
is a shortcoming that becomes critical in MEQA
tasks.

2.4 The Gap in Multi-Entity QA Benchmarks.

Prior work has yet to establish a benchmark that
systematically evaluates LL.Ms and RAG systems
on entity-dense, cross-document reasoning. Cur-
rent datasets either lack the scale and diversity of
real-world multi-entity questions or fail to provide
fine-grained metrics for assessing entity-level com-
pleteness and attribution Song et al. (2024) Wang
et al. (2024) Bai et al. (2025). MEBench addresses
these limitations by introducing a comprehensive
evaluation framework that challenges models to re-
trieve, consolidate, and reason over scattered entity-
centric data across heterogeneous sources. By in-
corporating the Entity-Attributed F1 (EA-F1) met-
ric, our benchmark advances the field toward more
precise, entity-aware QA systems.

3 MEBench

3.1 Task overview

MEBench is a structured evaluation framework
designed to systematically assess the capabilities
of LLMs and RAG systems in performing cross-
document multi-entity question answering. This

framework targets three core reasoning modalities:
comparative analysis, statistical inference, and re-
lational reasoning, and each decomposed into spe-
cialized subtasks that rigorously test distinct facets
of LLM performance. (Examples of tasks are pro-
vided in Table 1), ensuring broad coverage of real-
world multi-entity reasoning scenarios. Each of
three primary task categories addresses distinct rea-
soning challenges:

Comparative Reasoning Comparative reason-
ing tasks evaluate LL.M’s ability to juxtapose enti-
ties across heterogeneous documents, demanding
both attribute alignment and contextual synthesis.

Statistical Reasoning Statistical tasks Zhu et al.
(2024) assess LLM’s proficiency in quantitative
synthesis, including aggregation, distributional
analysis, correlation analysis, and variance anal-
ysis across multi-document.

Relational Reasoning Relational tasks probe
model’s capacity to model explicit interactions and
counterfactual dependencies among entities.

3.2 Benchmark Construction

MEBench was constructed through a systematic
pipeline:

3.2.1 Data Collection

Concept Topic Identification. In the initial
phase of data collection for MEbench, a meticu-
lous process is employed to determine the concept
topics that are applicable to multi-entity scenar-
ios. These topics are carefully selected based on
their significance, prevalence, and the potential for
generating complex multi-entity questions, and ex-
amples can be seen in Appedix Table 5.

Entity and Property Identification. Once the
concept topics are determined, We input descrip-
tions related to the concept topic into the LLM (we
use GPT-4), which then processes the text to iden-
tify concept entity and property, as illustrated in
Figure 2-al. After the LLM identifies the entity
and Property via iterative semantic refinement, we
map them to entity IDs and Property IDs in the
Wiki graph. This mapping is crucial as it allows
for seamless integration with the vast amount of
structured data available in Wikipedia. The detailed
method is in Appendix A.1. Using the Entity ID
and property ID, we synthesise SPARQL. We then
utilize the API provided by Wikipedia to retrieve
the wiki web pages of all entities related to the



Table 1: Examples of multi-entities queries.

Categories Types Examples
. Intercomparison Which has more ACM fellow, UK or USA?
Comparison
Superlative Which city has the highest population?
Aggregation How many ACM fellow are from MIT?
e . Does the nationality of ACM fellows follow a
Distribution Compliance .
normal distribution?
Statistics Correlation Analvsis Is there a linear relationship between number of
y events and records broken in Olympic Games?
Do the variances in the number of participat-
Variance Analysis ing countries and total events in the Summer
Olympics differ significantly?
Descriptive Relationship Is there a re}atlons.hlp between the yea,r of ACM
. . fellowship induction and the fellows’ areas of
Relationship .
expertise?
Hvpothetical Scenarios If China wins one more gold medal, will it over-
P take the US in the gold medal tally at the 2024
Olympics?
Table 2: Statistics of MEBench benchmark.
Categories MEBench-train MEBench-test MEBench-total
#-Queries 3406 1374 4780
#-Topics 165 76 241
Ave. #-entities /Q 460 391 409
Hops
#-one-hop Q 1406 606 2012
#-multi-hop Q 1322 768 2090
Categories
#-Comparison 1107 438 1545
#-Statistics 1440 585 2025
#-Relationship 859 351 1210
Entity Density
#-low (0-10) 487 196 683
#-medium(11-100) 973 393 1366
#-high (>100) 1946 785 2731

topic. For example, if our concept topic is "ACM
Fellows", we would obtain the Wikipedia pages
of all ACM Fellows, which contain their detailed
information. We use GPT-4 to generate a set of
interesting entity attributes. These attributes are
carefully chosen based on the general interest and
relevance in the domain. For ACM Fellows, as
example, nationality, research field, institution, and
academic contribution maybe the attributes that

people commonly pay attention to.

Structured Information Processing. Once the
document set is collected, we proceed to the struc-
tured information processing stage. The docu-
ments we have gathered from Wikipedia have well-
defined and accurate structural relations. Due to
the structured nature of the documents, we do not
need to rely on the long context ability of large lan-
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Figure 2: The systematic pipeline of Benchmark Construction. It comprising three phases: documents collection,
information extraction and question-answer generation. In the documents collection phase, concept topics relevant
to multi-entity scenarios are selected, followed by GPT-4 processing descriptions to extract entities and properties
mapped to Wikipedia IDs for integration with structured Wiki data. Structured information from Wikipedia
documents is processed using small language models (SLMs) due to the structured nature of the documents,
culminating in table creation with entity attributes as columns. For QA generation, questions are generated following
a "template-driven, entity-attribute coupling" paradigm using GPT-4 with predefined templates, and undergo
syntactic, semantic, and ambiguity checks, while answers are programmatically derived via SQL queries against the
table and standardized into canonical forms. The final dataset ensures traceability (SQL-linked answers), scalability
(template-driven approach), and rigor (execution-based answering reduces hallucination risks).

guage models. Instead, we can use small language
models (SLMs) for information extraction. They
are well-suited for tasks where the information is
already structured and the focus is on extracting
specific details Fan et al. (2025).

Table Generation. The final step in the data col-
lection process is to generate a table, as shown in
Figure 2-b1. We use the the entity attributes as the
column headers of the table. Each row in the table
represents an individual entity. For example, in the
case of ACM Fellows, each row would correspond
to an individual ACM Fellow.

3.2.2 Question and answer Generation

The question and answer generation framework for
MEBench is a structured, multi-phase process that
leverages LLM and tabular data to produce both se-
mantically coherent questions and computationally
verifiable answers.

Question Generation. The foundational input
for the QA generation pipeline is the table gener-
ated in last step. The generation of questions fol-
lows a "template-driven, entity-attribute coupling"
paradigm, implemented through LLM (GPT-4), as
illustrated in Figure 2-c1. Predefined syntactic and
semantic templates govern the grammatical struc-

ture and intent of questions. These templates are
shown in Appendix Table 6. The LLM instanti-
ates templates with entity-attribute pairs, ensuring
syntactic diversity while adhering to logical con-
straints. Generated questions undergo validation
via: Syntactic Checks, ensuring grammatical cor-
rectness; Semantic Grounding, verifying that the
question is answerable using the table’s data; Ambi-
guity Reduction, pruning underspecified questions
(e.g., "Describe the economy" revised to "Describe
the GDP growth rate of Brazil in 2023").

Answer Generation. Answers are derived pro-
grammatically through automated SQL query exe-
cution, ensuring reproducibility and alignment with
the table’s ground-truth data. The synthesized SQL
is executed against the table, yielding direct an-
swers or sub-tables (Intermediate results requiring
post-processing), as illustrated in Figure 2-c3. An-
swers are standardized to ensure consistency: Nu-
meric results are rounded to significant figures; Cat-
egorical answers are converted to canonical forms
(e.g., "USA" to "United States").

3.3 Data Statistics

The benchmark comprises 4,780 methodically
structured questions partitioned into two subsets: a
training set (3,406 questions) for model fine-tuning



or train, and a test set (1,374 questions) for rigor-
ous evaluation. Based on entity count, the data is
divided into three groups: “low” (0-10), “Medium”
(11-100), and “high” (>100), containing 683, 1366,
and 2731 entries, respectively. Table 2 details com-
prehensive statistics of the benchmark. We also
analyze the proportion of questions rejected during
manual review and about 21% of the questions are
failure to meet quality standards.

4 Experiment

4.1 Experiment Setup
4.1.1 Models

For open-source LLMs, we conduct experi-
ments using the representative Meta-Llama-3-
8B-Instruct Meta Llama3 (2024) and apply
QLoRA Dettmers et al. (2023) to fine-tune it with
the training set of MEBench. For proprietary
LLMs, we select the widely recognized GPT mod-
els, including GPT-3.5-turbo Ouyang et al. (2022)
and GPT-4 Achiam et al. (2023).

4.1.2 RAG

We implement a hierarchical retrieval framework
that explicitly incorporates document organiza-
tional structures into the RAG pipeline to explore
whether RAG can enhance the model’s perfor-
mance on MEBench. For the Embedding choice,
we employ the OpenAl Embedding model OpenAl,
and the chunk size is 1024. For each document, we
retrieve the top-5 most related chunks and concate-
nate them in their original order to form the context
input for the model.

4.1.3 Evaluation Metrics

We adopt Accuracy (Acc) as the primary metric
to assess the performance of LLMs on MEBench
tasks. For the subcategories of Variance Analysis,
Correlation Analysis, and Distribution Compliance
within the Statistics tasks, which are shown in Ta-
ble 1, we focus solely on prompting LLMs to iden-
tify relevant columns and applicable methods, eval-
uating the accuracy of their selections instead of the
computational results, as LLMs’ abilities in precise
calculations are not the central focus of this study.
In addition, we evaluate performance of informa-
tion extraction using Entity-Attributed F1 (EA-F1).
This is an F1 score applied to the predicted vs. gold
sets of the (entity, atrribution, value) . All three el-
ements in the tuple must exactly match the tuple in
the ground truth to be marked correct.

4.2 Results and Analysis

Various models exhibit notable variations in perfor-
mance on MEBench. Table 3 presents experimental
results alongside overall accuracy on MEBench,
and Figure 3 shows accuracy on eight further-
divided tasks.

4.2.1 Main result

GPT-4 + RAG achieved superior accuracy (59.3%),
outperforming the second-ranked model (FT
Llama-3-Instruct: 55.6% ) by a statistically signifi-
cant margin. Notably, GPT-4 + RAG excelled in re-
lational (68.7%) and comparative (76.3%) queries,
likely due to its superior contextual understanding.
However, all models exhibited markedly lower ac-
curacy in statistical queries (GPT-4 + RAG: 41.0%),
suggesting inherent challenges in numerical reason-
ing. In our evaluation, we focused on analyzing
the capability of LLMs to extract question-related
data. This assessment aimed to understand how
well these sophisticated models can organize and
present data for the question. The result is shown in
Table 4. These results underscore the critical role
of information extraction architectures in mitigat-
ing hallucinations and grounding outputs in factual
data. Introducing RAG significantly improves over-
all performance, particularly in comparison tasks,
while fine-tuning LLaMA-3-Instruct alone does not
yield substantial gains without RAG. On MEBench,
open-source models like LLaMA-3-Instruct, even
with RAG, can’t match proprietary models like
GPT-4, which achieves a 59.3% accuracy compared
to LLaMA-3-Instruct’s 32.5%.

4.2.2 Fine-grained Performance on Sub-tasks.

Figure 3 shows that vanilla LLMs perform well
in correlation analysis and descriptive relationship
tasks, while RAG significantly improves intercom-
parison and superlative tasks. However, neither
fine-tuning nor RAG overcomes challenges in vari-
ance analysis and aggregation tasks, while GPT-4
+ RAG achieves accuracy of 15.3% and 32.1%.

4.2.3 Entity density Analysis.

As we can see from Table 3, our experiments un-
derscore the impact of entity density on model per-
formance in MEQA tasks. This phenomenon arises
because higher entity densities amplify two critical
challenges inherent to MEQA systems: (1) Seman-
tic ambiguity due to overlapping relational pred-
icates among entities (e.g., distinguishing "Paris
[person]" vs. "Paris [location]" within narrow con-



Table 3: Experimental results for MEBench.

Models Accuracy
Comparison  Statistics Relationship Overall
All sets
GPT-3.5-turbo 0.105 0.198 0.476 0.239
GPT-3.5-turbo + RAG 0.605 0.260 0.476 0.425
GPT-4 0.199 0.289 0.507 0.316
GPT-4 + RAG 0.763 0.410 0.687 0.593
Llama-3-Instruct 0.046 0.118 0.256 0.130
Llama-3-Instruct + RAG 0.447 0.181 0.410 0.325
FT Llama-3-Instruct 0.046 0.253 0.259 0.189
FT Llama-3-Instruct + RAG 0.687 0.448 0.573 0.556
Setl (0-10)
GPT-3.5-turbo 0.435 0.583 0.560 0.530
GPT-3.5-turbo + RAG 0.548 0.654 0.620 0.612
GPT-4 0.451 0.595 0.540 0.535
GPT-4 + RAG 0.870 0.619 0.740 0.729
Llama-3-Instruct 0.322 0.500 0.400 0.418
Llama-3-Instruct + RAG 0.419 0.571 0.480 0.500
FT Llama-3-Instruct 0.322 0.511 0.380 0.418
FT Llama-3-Instruct + RAG 0.580 0.677 0.690 0.676
Set2 (11-100)
GPT-3.5-turbo 0.364 0.495 0.544 0.466
GPT-3.5-turbo + RAG 0.613 0.581 0.640 0.607
GPT-4 0.348 0.476 0.521 0.447
GPT-4 + RAG 0.791 0.511 0.661 0.638
Llama-3-Instruct 0.240 0.385 0.357 0.332
Llama-3-Instruct + RAG 0.428 0.454 0.459 0.447
FT Llama-3-Instruct 0.240 0.434 0.344 0.349
FT Llama-3-Instruct + RAG 0.612 0.608 0.655 0.640
Set3 (>100)

GPT-3.5-turbo 0.09 0.158 0.291 0.173
GPT-3.5-turbo + RAG 0.389 0.191 0.311 0.285
GPT-4 0.142 0.202 0.309 0.210
GPT-4 + RAG 0.436 0.270 0.405 0.357
Llama-3-Instruct 0.055 0.108 0.168 0.106
Llama-3-Instruct + RAG 0.265 0.147 0.253 0.212
FT Llama-3-Instruct 0.055 0.177 0.167 0.136
FT Llama-3-Instruct + RAG 0.401 0.291 0.355 0.345

texts), and (2) computational overhead in attention-
based architectures attempting parallel reasoning
over entangled entity-attribution pairs (e.g. trans-
former self-attention weights saturate under dense

cross-entity dependencies).

* Low Entity Density: Models generally per-
formed well in low-density scenarios. The
simplicity of context allowed for accurate en-
tity recognition and minimal ambiguity.

* Medium Entity Density: Performance began
to decrise among models in medium-density
scenarios by 6% average acc. This variance
suggests differences in how models handle
increased entity complexity and overlapping
contexts.

* High Entity Density: High-density questions
posed significant challenges, with an average
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Figure 3: The Experimental results for eight subtasks of each model.

Table 4: Quality of Large Language Models (LLMs) in
EA-F1.

Models FA-F1
GPT-3.5-turbo 0.25
GPT-3.5-turbo + RAG 0.43
GPT-4 0.36
GPT-4 + RAG 0.71
Llama-3-Instruct 0.21
Llama-3-Instruct + RAG 0.39
FT Llama-3-Instruct 0.21
FT Llama-3-Instruct + RAG 0.59

acc drop to 22.8% across models. The result
highlighting limitations in current architec-
tures’ ability to handle complex multi-entity
questions.

5 Limitations

While MEBench provides a comprehensive frame-
work for evaluating cross-document multi-entity
reasoning, our work has several limitations that
warrant further investigation. Although MEBench
covers eight distinct reasoning types across three
broad categories, real-world MEQA scenarios may
involve even more intricate combinations of logi-
cal, temporal, or causal dependencies. The current
benchmark does not explicitly model dynamic or
time-sensitive entity interactions, which could limit
its applicability to domains like financial forecast-
ing or event-driven narratives. The benchmark re-
lies on a curated collection of documents to ensure
controlled evaluation. While this design choice
minimizes noise, it may not fully replicate the
challenges of real-world environments where doc-
uments vary widely in quality, redundancy, and

structure. Future iterations could incorporate noisy
or incomplete data sources to better simulate practi-
cal scenarios. While the Entity-Attributed F1 (EA-
F1) metric rigorously assesses entity-level correct-
ness and attribution validity, it prioritizes factual
precision over semantic coherence. This may un-
dervalue partially correct answers that demonstrate
valid reasoning chains but contain minor factual
inaccuracies. A hybrid evaluation framework com-
bining EA-F1 with human judgment could provide
a more holistic assessment.

6 Conclusion

In this study, we have comprehensively addressed
the significant challenges that multi-entity ques-
tion answering (MEQA) poses to LLMs and RAG
systems. The limitations of existing methods
in handling cross-document aggregation, espe-
cially when dealing with entity-dense questions,
have been clearly identified and analyzed. We
introduced MEBench, a groundbreaking multi-
document, multi-entity benchmark. Our experi-
ments on state-of-the-art LLMs such as GPT-4 and
Llama-3, along with RAG pipelines, have shed
light on the critical limitations of these advanced
models. The fact that even these leading models
achieve only 59% accuracy on MEBench under-
scores the magnitude of the challenges in MEQA.
MEBench has effectively highlighted the systemic
weaknesses in current LLM frameworks. These
weaknesses serve as valuable insights for future
research directions. For instance, the need for im-
proved algorithms to retrieve and consolidate frag-
mented information from heterogeneous sources is
evident. Additionally, there is a pressing need to
develop more robust entity-aware QA architectures
that can better handle the complexities of MEQA.
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A Appendix

A.1 Methodology for composite SPARQL
Generation via Iterative Semantic
Refinement

A.1.1 Initial Query Parsing Using GPT-4

We employ a transformer-based large language
model (LLM), specifically GPT-4, to perform pre-
liminary natural language question decomposition.
This stage generates a proto-SPARQL query con-
taining candidate triple patterns with hypothesized
entity-property relationships. While this initial out-
put captures broad syntactic structures (e.g., basic
graph pattern groupings), it frequently exhibits two
critical inaccuracies:

Entity Misalignment: Incorrect Wikidata Q-ID
assignments due to lexical ambiguity (e.g., "Java"
as programming language vs. Indonesian island)

Property Mismatch: Invalid P-ID selections aris-
ing from underspecified predicate semantics (e.g.,
using P19 [place of birth] instead of P20 [place of
death])

A.1.2 Semantic Validation Layer

To address these limitations, we implement a multi-
stage correction framework:

(a) Structured Knowledge Anchoring

The system interfaces with the Wikipedia API
through programmatic endpoints that map surface
forms to canonical entities via:

def getwikidataid(term):
response = requests.get(
f"https:en.wikipedia.orgwapi.php?
ac-

)

return
sponse.json()["query"]["pages"].get("pageprops’
).get("wikibaseitem")

Ire-

(b) Neural-Semantic Disambiguation Module

GPT-4 serves as our semantic analysis engine,
performing three key operations:

a. Contextual disambiguation using entity link-
ing algorithms enhanced by Wikifier-style mention
detection

b. Property type validation
Wikidata’s ontology constraints
owl:ObjectProperty)

c. Temporal scope verification for time-sensitive
queries requiring qualifiers like P585 [point in
time]

against
(rdf:type,
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A.1.3 Iterative Refinement Protocol

The system implements closed-loop feedback
through successive cycles of:

a. Executing candidate SPARQL on the Wiki-
data Query Service endpoint;

b. Analyzing result cardinality and type consis-
tency;

c. Applying constraint satisfaction heuristics:

FILTER (?population > le6 && ?country
IN wd:Q30) # Example numerical/entity con-
straints

Each iteration tightens precision metrics until meet-

ing termination criteria defined by either:
|ValidResults|
|Total Resultst| > (0

0.98 empirically)
or maximum iteration thresholds.

Hprecision

A.1.4 Final Query Synthesis

Through combining LLM-based semantic parsing
with knowledge-grounded verification, we con-
verge on an optimized SPARQL template satisfying
both syntactic validity and functional correctness
requirements for structured knowledge extraction.

A.2 Optimization

Two aspects of optimization are included in
MEBench system to enhance the overall perfor-
mance:

Model Selection. Model selection is straightfor-
ward yet highly effective for optimization Liu et al.
(2024). Our system comprises multiple tasks, ne-
cessitating the selection of the most suitable model
for different tasks. For basic tasks, more affordable

tion=query&format=json&prop=pageprops&titles=temd"faster LLMs can suffice, while utilization of

the most advanced LLMs is essential in more com-
plex tasks to ensure optimal performance. Specif-
ically, our system employs powerful yet resource-
intensive GPT-4 for tasks such as semantic analysis
or generation of table schemas and SQL queries. In
contrast, for more basic information extraction, we
utilize open-source Mistral-7B, thereby achieving
a balance between cost efficiency and functional
performance.

LLM Input/Output Control SplitWise Patel
et al. (2023) shows that LLM inference time is gen-
erally proportional to the size of input and output
tokens. Since GPT models decide the cost based
on the input token, we try to minimize the input of
large models. Meanwhile, we use the instructive
prompt to reduce the size of the outputs generated



Table 5: Example Topics and Their Entities Attributions.

Topics Entities Attributions #-Entities

ACM fellow nationality, field of study, affiliation 1115

Presidents of the US te.rm lengths, pol‘ltlcal partles,. vice-presidents, 55
birth states, previous occupations

Chemical Elements atorrpc nur_nber, atomic mass, b(?lllng point, 166
melting point, electron configuration

. host cities, number of participating countries,

Summer Olympic Games total number of events, medal tally, records 35
broken

Nobel Prize in Chemistry categories, year 'of award, country of origin, 194
field of contribution.

Cities of the World population, geographic coordinates, altitude, 7040

GDP

Table 6: Template example for questions generated by the LLM (GPT-4).

Types Sub-types Template Examples
Comparison Intercomparison gl;lCh has high [property], [entity A] or [entity
Superlative Which [entity] has the highest/lowest [property]?
Aggregation How many [entities] have [specific property
value]?
Statistics Distribution Compliance Does [property] follow a normal distribution?
Correlation Analysis Is there a linear relationship between [property A]
and [property B]?
. . Are the variances in [property A] and [property
Variance Analysis B] significantly different?
Descriptive Relationship  How is [entity A] related to [entity B]?
Relationship

Hypothetical Scenarios

What would be the impact if [entity A] collabo-
rates with [entity B]?

by LLM without changing the quality of these out-
puts. The example of prompt is in Appendix A.2.1.

A.2.1 Prompt for Output Control

Review your output to ensure it meets all the
above criteria. Your goal is to produce a clear,
accurate, and well-structured output. Just out-
put the result, no other word or symbol.

A.2.2  Quality Control
We devise several strategies to ensure the integrity

and effectiveness of questions.

Question Templates. The use of templates en-
sures that every question is crafted with a clear
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structure, making it easier for respondents to under-
stand and answer them accurately. For relationship
and complex statistic questions we turn the ques-
tions in a closed-ended style, as they require a spe-
cific response of either "yes" or "no", which make
the answer in a standardized format. The examples
of Question Templates is in the Appendix 6.

Question Refinement. After initial development,
each question undergoes a refinement process
which we used GPT-3.5-Turbo. This stage is crit-
ical for enhancing the clarity, relevance, and neu-
trality of the questions. It involves reviewing the
questions for bias. This strategy helps in reduc-



ing misunderstandings and improving the overall
quality of the questions.

Manual review. We assess the questions for ac-
curacy, ensuring they are factually correct and rele-
vant to our purpose. Manual reviews can also pro-
vide insights into whether the questions are likely
to effectively elicit the intended information from
answers, thereby contributing to the reliability and
validity of the benchmark.

A.3 Tables

Table 5 shows examples of topics and their entities’
attributions. Table 6 shows examples of question
templates to synthesize questions.
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