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Abstract: For 6-DoF grasp detection, simulated data is expandable to train more
powerful model, but it faces the challenge of the large gap between simulation and
real world. Previous works bridge this gap with a sim-to-real way'. However, this
way explicitly or implicitly forces the simulated data to adapt to the noisy real data
when training grasp detectors, where the positional drift and structural distortion
within the camera noise will harm the grasp learning. In this work, we propose a
Real-to-Sim framework for 6-DoF Grasp detection, named R2SGrasp, with the
key insight of bridging this gap in a real-to-sim way?, which directly bypasses
the camera noise in grasp detector training through an inference-time real-to-sim
adaption. To achieve this real-to-sim adaptation, our R2SGrasp designs the Real-
to-Sim Data Repairer (R2SRepairer) to mitigate the camera noise of real depth
maps in data-level, and the Real-to-Sim Feature Enhancer (R2SEnhancer) to en-
hance real features with precise simulated geometric primitives in feature-level.
To endow our framework with the generalization ability, we construct a large-
scale simulated dataset cost-efficiently to train our grasp detector, which includes
64,000 RGB-D images with 14.4 million grasp annotations. Sufficient experi-
ments show that R2SGrasp is powerful and our real-to-sim perspective is effective.
The real-world experiments further show great generalization ability of R2SGrasp.
Project page is available on https://isee-laboratory.github.io/R2SGrasp.
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1 Introduction

Grasping objects in unstructured environment is fundamental for robots designed to accomplish
various complex tasks[1, 2, 3]. Previous works [4, 5, 6, 7, 8, 9, 10] utilize real-world data to achieve
impressive performance. However, collecting large-scale datasets in real world is still challenging,
which limits the improvement of the grasp and generalization abilities. To address this problem,
simulated data provides a feasible alternative, but the grasp performance trained in simulation is
hindered by the large gap between simulation and real world when applying to real world scenarios.

There exist a few methods attempting to bridge this gap, which use domain randomization [6, 11, 12]
or domain adaptation [13, 14, 15, 16, 17] to achieve it. The former adopts various randomized con-
ditions to make the simulated data closer to reality, while the latter narrows the gap by aligning
feature distribution between two domains. However, they both include a sim-to-real way that adapts
the simulated distribution to the real-world one, which explicitly or implicitly introduces the camera
noise in real data when training the grasp detector. This noise appears as positional drift and struc-
tural distortion as shown in Figure 1 (a), disrupting the training process of the grasping detector that
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!“sim-to-real way” refers to making simulated data or features more similar to real-world data or features.

Z“real-to-sim way” involves making real-world data or features more similar to simulated data or features.
Our real-to-sim process bypasses the camera noise in grasp detector training and obtains great performance.
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Figure 1: Illustrations of problems related to the gap between simulation and real world. Figure (a)
shows mixed point clouds, including single-view point clouds of the scene and point clouds sampled
from accurate object meshes. There are positional drift and structural distortion in real-world single-
view point clouds which are caused by camera noise in real data. Figure (b) depicts that the camera
noise disrupts the training of the grasp detector, as the average precision of the grasp detector trained
in point clouds with real-world noise is lower than that trained in noiseless point clouds.

is highly sensitive to variance in 3D space. To demonstrate the negative effect of camera noise, we
compare the upper bound of grasp performance of the grasp detector trained on noiseless data and
on noisy data as depicted in Figure 1 (b). The performance of grasp detector trained in data with
real-world noise is lower than that of trained in noiseless data, which suggests that the camera noise
introduced by the sim-to-real way will disturb the learning of grasping skills.

To this end, we propose a novel Real-to-Sim framework for 6-DoF Grasp detection, named
R2SGrasp, to bridge the gap between simulation and real world in a real-to-sim way. This way
adapts real-world distribution to the simulated one in inference phase to leverage the pre-
cise grasping skills learned from the simulation, which bypasses the camera noise in detector
training and ensures robust performance. Specifically, a grasp detector is trained with noise-
less simulation data to attain accurate grasping capability. During inference, we achieve real-to-sim
adaptation by using a Real-to-Sim Repairer (R2SReparier) to preprocess the depth map so as to
mitigate positional drift and structural deformation, along with a Real-to-Sim Feature Enhancer
(R2SEnhancer) to enhance real-world local features with simulated structural features. Benefiting
from our two novel modules, R2SGrasp implements the real-to-sim way in data and feature levels
to achieve higher performance.

Moreover, benefiting from our real-to-sim perspective, our grasp detector only requires training in
simulated data, which endows our framework with the expandable generalization ability by scaling
up the simulated data cost-effectively. Therefore, we build a large-scale simulated dataset, named
R2Sim, including 256 daily objects, 500 cluttered scenes and 64,000 RGB-D images with total 14.4
million grasp annotations. To improve the efficiency of training on such a large-scale simulated data,
we propose a simplified annotation strategy, resulting in a reduction on training time by 73%.

We conduct extensive experiments on the GraspNet-1Billion dataset [5] to verify the effectiveness
of our R2SGrasp. R2SGrasp achieves superior performance in real world only with simulated data,
surpassing methods of using annotated real-world data. Moreover, we further evaluate R2SGrasp
through many real-world grasping experiments, verifying the great generalization of our framework.

2 Related Work

Sim-to-real transfer in grasp detection. The gap between simulation and reality is a significant
problem in robotics grasping. For those RGB-based grasping methods, most works utilize advanced
image processing techniques, such as adversarial training [13, 14], GAN-based methods [17, 18] or
teacher-stundent models [15] to bridge the gap between simulated and real RGB images or features.
We focus on the transfer of point cloud-based grasping methods from simulation to reality. Fang
et al. [6] adds Gaussian noise to the point cloud for training. Zheng et al. [16] aligns the features
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Figure 2: Overview of R2SGrasp framework. In inference phase, the Real-to-Sim Data Repairer
(R2SRepairer) repairs depth map from RGB-D input, then a feature extractor extracts local fea-
tures from the single-view point cloud which is transformed from the repaired depth map. Then
Real-to-Sim Feature Enhancer (R2SEnhancer) enhances the real features using the stored simulated
structural features and finally predicts the grasp poses. In training phase, we train the R2SRepairer
on twin datasets and train the grasp detector with R2SEnhancer on our R2Sim dataset.

between the real and simulated domain through adversarial training. The above sim-to-real methods
in point clouds enable the grasping model to handle the noise at the data and feature levels, but the
introduction of noise during training will reduce the upper bound of the performance of the grasp
detector. In contrast, our method based on point clouds makes the real data and features closer to
simulation ones.

Grasp datasets in simulation. Simulation datasets [18, 19, 20] are the most commonly used data
for robot learning. Previous works [21, 22, 23, 24] propose the datasets that define grasp poses
within the continuous grasp sample space, which have insufficient annotations, challenging to cover
the entire sample space. Recently, [5] uses discrete annotations to fully cover the entire sample
sample so as to learn the robustness of grasp abilities. Following that, we decouple the grasp pose
parameters and discretize them at fixed intervals within the parameter space. Our annotations are rich
enough to cover the entire discrete parameter space. Due to the demand for large-scale simulation
training, we also propose a simplified annotation method to enhance training efficiency. Compared
to previous simulated datasets, our dataset employs a discrete representation of grasp poses, and
provide more dense grasp annotations that cover the entire sample space, which enables our model
to achieve great generalization ability.

3 R2SGrasp: A Real-to-Sim Framework for 6-DoF Grasp detection

3.1 Task Definition

We first describe the task of 6-DoF grasp detection. Given the single-view RGB-D image I,g,q €
RIXWx4 the goal of grasp detector is to predict a set of accurate grasp poses in cluttered scenes.
The 6-DoF grasp pose can be denoted as G = [R, T, w], where R € SO(3) is the rotation matrix,
T € R3 is the translation and w is the gripper width. We follow [5] to decouple R into approaching
vector v and in-plane rotation 6, T into grasp point p and approaching distance d from grasp points
to grasp origin o, as shown in Figure 2. In this work, we aims to bridge the gap between simulation
and real world in 6-DoF grasp detection, where we will train our model in simulation and test it in
real world data for employment.

3.2 Why should we use real-to-sim adaptation?

Previous works employ the sim-to-real way to bridge the gap between simulation and real world.
However, they explicitly or implicitly introduce the camera noise in real data when training the grasp
detector. The positional drift and structural distortion caused by camera noise disrupt the training



process of the grasp detector, limiting the grasp performance, as depicted in the right hand side of
inference phase in Figure 1 (c).

To solve the above problem, we propose a novel real-to-sim perspective that bridges the gap between
simulation and real world in a real-to-sim way. This way is able to train a robust grasp detector
on noiseless simulated data to avoid the interference of noise in grasping skills learning, thereby
achieving stronger grasping capabilities. Although this grasp detector performs exceptionally well
on noiseless simulated data, its performance degrades on real data due to the presence of noise.
To apply the precise grasping ability learned from simulation to the real world, we consider adapt-
ing the real world data and feature to the simulated ones. Specifically, we introduce the R2SGrasp
framework, including a Real-to-Sim Data Repairer (R2SRepairer) and a Real-to-Sim Feature En-
hancer (R2SEnhancer) to achieve real-to-sim adaptation at data and feature level respectively. The
overview of R2SGrasp is shown in Figure 2. Except the two modules, our framework also consist
of a grasp detector to generate the aggregated features of the grasp points and a MLP to output the
grasp widths and grasp scores for each grasp candidate along the approach direction, following [8].
We adopt the same loss function as [8] to train our grasp detector. More details about our grasp
detector and loss function can be seen in Appendix A.2. How the two modules adapt the real world
data and feature to the simulated ones will be detailed below.
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Figure 3: Illustrations on the impact of camera noise. (a) shows the point cloud and noise map,
where different colors in the noise map represent different noise amplitude ranges, with amplitude
measured in millimeters. (b) shows the performance difference before and after depth map repair
using ground truth, and the green line presents the real-world training performance.

3.3 Real-to-Sim Data Repairer

Impact of camera noise. We find that the gap between simulated and real domain primarily stems
from camera noise in real data which appears as the positional drift and structural deformation in
point clouds. As shown in Figure 3 (a), there is severe noise in depth map captured from the real
world. To explore the impact of this noise, we conduct a verified experiment that simply replacing
the severe noise regions in the real depth map with accurate depth values to repair the structure. As
shown in Figure 3 (b), the average precision increases by 23.61%, even surpassing the baseline [8]
whose model trained on real dataset. The results suggest that if we can mitigate this noise and repair
the structure, the grasp performance can be improved significantly.

Mitigating positional drift and structural deformation. We propose the real-to-sim data repairer
(R2SRepairer) to mitigate positional drift and structural deformation by reducing the noise ampli-
tude using an encoder-decoder architecture. It takes RGB-D images I,.45q € R W >4 as input and
outputs residual map I, € REZ*W _ The repaired depth map I; can be obtained as Eq. (1):

Id(laj) :Id(zvj)—’_-['r‘(zvj)v (1)
To obtain supervision data I);, we use the object models and object poses from GraspNet-1Billion
[5] to efficiently generate the simulated data paired with the real ones in Blenderproc [25]. By

setting the camera position in the simulation environment to match the real camera pose, we can
render simulated depth maps that are identical to the real depth maps from GraspNet-1Billion. I}



is calculated as Eq.(2), where I; and I, are paired simulated and real-world depth maps. The
R2SRepairer is trained with Smooth L1 loss.

3.4 Real-to-Sim Feature Enhancer

To further bridge the gap between the simulation and real world, R2SEnhancer conducts the real-
to-sim adaptation at feature level by using the precise structural features to enhance the real-world
local features based on feature similarity. As shown in Figure 2, memory bank in R2SEnhancer ac-
cumulates diverse geometric structure information through clustering during training with simulated
data. During inference, this simulated structure information is used to enhance the features of real
structures, thereby improving the perception of our grasp detector in real geometric structures.

Building the memory bank. Memory bank M = {k; }]K:1 stores K simulated structure features
k; during training. At first, we initialize M by sampling from the normal distribution. Given the
local features F;° = {f;} 2+, of each batch extracted in simulated data when training, we calculate
the distance between local features and stored features based on cosine similarity, and assign each
local feature to the closest stored feature. We then update the stored features with the average of all
assigned feature clusters using momentum update as Eq.(3):

kj =ak; + (1 —a)f;, (3)

where fj is the average feature of the cluster corresponding to k;, and a € [0, 1] is the momentum
update parameter. After that, we only keep the centers of clutters for the next-batch training.

Real-world feature enhancement. After training with extensive simulated data, the memory bank
stores a diverse set of structural features that represent common geometric structures. We retrieve
similar simulated structural features to enhance the real features through cross-attention mechanism,
where the local features F} = {f;})¥*, extracted from real-world point clouds serve as the queries,
and the simulated structural features stored in the memory bank serve as the keys and values. The
enhanced real features are obtained using Eq.(4).

Ey = p(Fy W) (MW" /\/Dyn) (MW®) + F, @

where p denotes the Softmax function, W9, W* W?v € RE*Pm are learnable encoding matrices
for query, key and value in cross-attention mechanism.

4 R2Sim Dataset

Motivation of the R2Sim Dataset. Thanks to our real-to-sim perspective, our grasp detector only
needs simulated data for training. This endows our framework the expandable generalization abil-
ity by scaling up the simulated data cost-effectively. Towards this end, we construct a large-scale
dataset named R2Sim in Blenderproc [25], including 256 daily household objects selected from
GSO [26] and GraspNet-1Billion [5], 500 cluttered desktop scenes, 64,000 RGB-D images taken
from different views and approximately 14.4 million grasp annotations. Each frame is also anno-
tated with object segmentation map, object poses, camera pose, graspness heatmap [8] and so on.
More information about our R2Sim is available in Appendix A.3.

Scene generation. We provide an automated process for generating scene data with various ran-
domization techniques to enhance the diversity, such as rich background textures, diverse lighting
conditions, cluttered table scenes, and various random camera views. This process automatically
generates RGB-D images, segmentation masks, 6D object poses, and camera poses, providing rich
training data for the grasp detector. More details are available in the Appendix A.3.3.

Grasp pose annotation for efficient training. Given the object meshes, we use a discrete dense
annotation method [5] for object grasp pose labeling, where the grasp points are densely and uni-
formly distributed on the object surface, with each grasp point having 300 approach directions and
48 grasp candidates per direction. Scene grasp pose annotations can be obtained by projecting the
grasp annotations of objects according to their 6-DoF poses. As the data scale expands, the dense



annotations significantly increase training burden, including prolonged data loading time and exces-
sive memory consumption. To improve training efficiency, we simplify the grasp pose annotations
by reducing the number of negative samples. Specifically, we first filter out grasp points that do not
have successful grasp candidates. Then, for the retained grasp points, we select the top 60 approach-
ing vectors from the original predefined 300 vectors based on the proportion of successful grasp
candidates. Benefiting from our simplification, we filter out many invalid grasp annotations, which
improves the training efficiency and is more suitable for large-scale simulation data training. More
details and further experimental validation are illustrated in Appendix A.3.4.

S Experimental Results

5.1 Experimental setup and details

Datasets. We use R2Sim dataset to train the grasp detector and use twin datasets based on GraspNet-
1Billion [5] to train our R2SRepairer. The grasping performance is validated using the test set
from GraspNet-1Billion. GraspNet-1Billion is a real-world dataset comprising 190 scenes, with
100 scenes allocated for training and 90 for testing. The test set is further divided into three subsets:
seen, similar, and novel, where each category contains 30 scenes.

Metrics. We employ AP, and AP as the evaluation metric for grasp performance, the metrics
introduced by [5]. AP, represents the average precision of the top 50 grasp poses in terms of grasp
scores under different friction coefficient p. AP denotes the mean of AP,,.

Implementation Details. The backbone of R2SRepairer is implemented using a UNet [27] archi-
tecture with a ResNet34 [28] encoder, outputting feature vectors with 32 channels. The feature
extractor in our grasp detector adopts the cascaded graspness model in GSNet [8] with cylinder
grouping operation. The cross-attention mechanism consists of four heads, with a model dimension
of 256. The storage capacity of the memory bank K = 120, with the momentum update parameter
a = 0.999. Additionally, R2SRepairer is trained with a learning rate of 0.001, using the AdamW
optimizer and a batch size of 3 for 30 epochs. And the grasp detector is trained with a learning rate
of 0.001, using the Adam optimizer and a batch size of 4 for 30 epochs.

5.2 Experiments on GraspNet-1Biilion

Comparison with sim-to-real methods. We first compare our method with current sim-to-real
approaches as shown in Table 1 (the methods without using labeled real data). Source-only trains the
grasp detector in simulted data without any sim-to-real techniques. ADD-Noise [6] adds Gaussian
noise to the simulated point cloud. Global-DA [29] and Local-DA [29] utilize adversarial domain
adaptation methods to align the distributions of the simulated and real domains at global and local
feature levels respectively. Note that the above methods utilize the same grasp detector [8] as ours for
fair comparison. It is evident that our method significantly surpasses others by 9.19/18.64, 3.65/7.62,
5.07/10.14 AP at least in the seen, similar, and novel categories respectively. Additionally, the
results of previous methods have little improvement, even decline on grasp performance. We think
the reason is that these works explicitly or implicitly introduce the camera noise in real data when
training the grasp detector, which disturbs the learning of grasping skills.

Comparison with methods trained in real world. To further illustrate the advantages of
R2SGrasp, we also compare our method with others [5, 9, 8, 7, 4] trained on real-world datasets, as
shown in Table 1 (the methods using labeled real data). The performance of our method is close to
that of models trained on real data, and it even surpasses current SOTA methods in most metrics.
Specifically, compared to GSNet [8], our method outperforms it by 4.93, 7.08, and 5.73 AP in the
seen, similar, and novel categories on Kinect data. The results demonstrate that our R2SGrasp can
leverage the precise grasping skills learned from the simulation in the real world.

Ablation Study. We conduct ablation study to validate the effectiveness of each component in our
method as shown in Table 2. Line 1 is the control group, which is trained on real-world data. When



Using Tabeled Methods Seen Similar Novel
real data AP APos APo4 AP APos AP AP APos APoa
Graspnet-baseline[5] | 27.56/29.88 33.43/36.19 16.95/19.31 | 26.11/27.84 34.18/33.19 14.23/16.62 | 10.55/11.51 11.25/12.92  3.98/3.56
TransGrasp[9] 39.81/35.97 47.54/41.69 36.42/31.86 | 29.32/29.71 34.80/35.67 25.19/24.19 | 13.83/11.41 17.11/14.42  7.67/5.84

4 GSNet[8] 65.70/61.19  76.25/71.46  61.08/56.04 | 53.75/47.39  65.04/56.78 45.97/40.43 | 23.98/19.01 29.93/23.73  14.05/10.60
HGGD[7] 59.36/60.26 - - 51.20/48.59 - - 22.17/18.43 - -
GRE-Grasp[4] -/65.19 -/15.37 -/59.22 -/54.09 -/64.25 -/47.14 -22.29 -/27.69 -/13.53
Source-only 54.85/46.72  66.65/55.67 44.26/38.92 | 53.28/46.85 64.81/56.41 44.63/39.22 | 21.23/14.60 26.84/18.58  10.68/7.39
x ADD-Noise[6] 55.52/47.48 67.24/56.19 45.57/40.11 | 53.11/45.05 64.32/54.16  45.4038.07 | 21.24/14.49 26.98/18.47  10.51/7.35
Global-DA[29] 47.16/42.28  57.21/50.89  38.22/34.22 | 44.15/40.66 54.44/49.78  35.47/32.52 | 17.66/12.27 22.39/15.57  8.62/6.18
Local-DA[29] 53.21/45.99  63.98/54.58 44.07/38.56 | 50.88/43.77 61.07/52.51 44.43/36.93 | 20.27/13.52 25.55/17.08  10.90/7.15
X Ours 64.71/66.12  76.09/77.59  58.00/59.17 | 56.93/54.47  66.21/63.90 52.78/49.08 | 26.31/24.74 32.70/30.81 15.63/14.12

Table 1: Performance comparison on real-world data captured by Realsense/Kinect.
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Figure 4: Comparison of camera noise before and after R2SRepairer. Different colors in the noise
map represent different noise amplitude ranges, with amplitude measured in millimeters

training solely on R2Sim, there remains a noticeable performance gap compared to the control
group. After integrating R2SRepairer (see Line 3), the grasp performance increases significantly
and surpasses the grasp detector trained in real-world data. This performance increase steps from
mitigating the camera noise, which can be seen in Figure 4. When further adding R2SEnhancer (see
Line 5), we notice an increase in AP across the seen, similar, and novel categories by 3.67, 1.63, and
1.49 respectively. These results indicate that our real-to-sim approach bridges the gap between the
simulation and real world, where the R2SRepairer and R2SEnhancer modules achieve real-to-sim
adaptation at the data and feature levels respectively.

. Seen Similar Novel
RS | R2SRepairer  R2SEnhancer \—ep——p " 4P, , | AP APys APos | AP APos APos
v 61.19 7146 56.04 | 47.39 56.78 40.43 | 19.01 23.73 10.60
v 46.72 55.67 38.92 | 46.85 56.41 39.22 | 14.60 18.58 7.39
v v 62.45 74.67 53.53 | 52.84 63.58 4540 | 23.25 29.02 1250
v v 47777 5592 4145 | 4796 56.02 4242 | 1576 19.95 8.60
v v v 66.12 77.59 59.17 | 5447 6390 49.08 | 24.74 30.81 14.12

Table 2: Ablation study on two components. The table shows the results on data captured by Kinect.
R’ and ’S’ mean the real-world training data and simulated training data respectively.

Advantages of expandable simulated data. To verify 60,0
the advantages of expandable simulated data, we train 5754
R2SGrasp on different number of scenes selected from
R2Sim and test on real-world dataset as shown in Fig-
ure 5. As the number of simulated scenes increases from
100 to 500, the top-1, top-10, and top-50 grasp poses in
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.. . . Scene size
in simulated environment to scale up the simulated data Figure 5: Experiments with different

for training, thereby continuously improving the perfor- number of scenes. Top-V represents the
mance of the grasp detector. N grasp poses with the highest scores.

Memory bank size in R2SEnhancer. Table 3 illustrates the effect of memory bank size adjustment
on grasping performance. As the value of K increases, the grasp performance improves at the



beginning, while reducing after K reaches 120. We believe that a large value of K means more
structural features are stored in memory bank, but too large K leads to information redundancy. We
experimentally find that the optimal value of K is 120.

K all seen similar novel ObjectIDs GSNet [8] (real) ADD-Noise [6] (sim) Ours (sim)
Attempt SR Attempt SR Attempt SR
150 | 47.93 6532 5434 24.12 1,16,19,22,25 31 3 75% 6 100% 6 100%
120 | 48.44 66.12 54.47 2474 8,14,18,30,33,35,36 7 100% 8 87.5% 7 100%
10,15,17,20,24,28,32,38 10 80% 12 66.7% 8 100%
90 | 4822 6579 53.97 2490 3.4.6,11.21,26,37 9 77.78% 8 87.5% 8 87.5%
60 47.08 64.04 53.20 24.00 5,9,13,20,27,29,39 8 87.5% 7 100% 7 100%
2,7,12,16,22,23,25,34 10 80% 10 80% 8 100%
30 | 4578 63.63  50.60 23.11 Total 2 82.69% 44 8431% 33 95%

Table 3: Experiment on memory Table 4: Results of grasping experiment in real world. “real”
bank size adjustment. and “sim” mean that training in real-world data and simulated
data respectively.
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(a) System setup (b) Daily object set (c) Failed grasp of GSNet (d) Successful grasp of R2SGrasp

Figure 6: Description of real-world experiments. (a) shows the experimental setup and environment.
(b) displays the objects used in the experiments. (c) and (d) show the failed grasp of GSNet and the
successful grasp of R2SGrasp on the same object in the same scenario. Zoom in for better view.

5.3 Real Grasping Experiments

To further verify the effectiveness and generalization ability of R2SGrasp, we conduct real-world
experiments on the Franka Emika Panda robotic arm with an Intel RealSense D455 camera and a
two-finger gripper as illustrated in Figure 6. The experiments are performed on six cluttered scenes,
each containing 6-8 randomly placed daily objects. We execute the best grasp pose predicted by
grasp detectors for each attempt until all the objects are taken away. The grasping capability is
measured by the success rate (SR), defined as the proportion of successful grasps to the total number
of grasp attempts. We compare the performance of the grasp detectors [8] trained on GraspNet-
1Billion dataset [5], R2Sim dataset with added noise [6] and R2Sim dataset with our method, as
shown in Table 4. We find that the grasp detector trained on real data has a lower success rate than
grasp detectors trained in simulated data, due to the insufficient amount of real data, which includes
only 40 objects, limiting the generalization ability. Using large-scale simulation data improves the
grasping success rate, and the success rate can further increase with R2SGrasp. This indicates that
our method can effectively leverage grasping skills learned from simulation data in the real world.

6 Conclusion & Limitations

Conclusion. In this work, we introduce the R2SGrasp framework from a real-to-sim perspective to
bridge the gap between simulation and real world in 6-DoF grasp detection. In our framework, we
train a robust grasp detector in simulated data, and adapt real world to simulation at both data and
feature levels to utilize the skill learned from simulation. Moreover, a large-scale simulated dataset
is constructed cost-effectively to enhance the generalization of our methods. By large-scale training
and real-to-sim adaptation, the real world generalization ability actually gains great improvement.

Limitations. Grasping flat objects or complex shaped objects is suboptimal, and it is a significant
challenge in the current 6-DoF grasping community. We think that our real-to-sim idea can help
address this issue by generating data in simulated environments that include these types of objects,
allowing the network to learn how to grasp them. In the future, we also plan to collect these objects
and expand the dataset size to further tackle these challenges.
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A Appendix

A.1 More experiments

Further demonstration of the ad- Nicthod AT Seon Similar Novel
vantages of real-to-sim way. Our ~GSNet [8] w/o R2SRepairer | 42.53 61.19 4739 1901
R2SRepairer can mitigate camera GSNet [8] w R2SRepairer | 43.05 61.39 48.05 19.72
noise which is beneficial for the grasp Ours 48.44 66.12 5447 2474
detector. To further validate our real-  ype 1 Average precision comparison on real-world data
to-sim perspective, we also conduct captured by Kinect.

experiment that adding R2SRepairer

to the grasp detector [8] trained on real-world data. As shown in Table S1, after adding R2SRepairer
(see Line 2), the grasp performance shows a modest improvement, but it still lags significantly be-
hind our method that is trained on simulated data. This demonstrates that a large amount of simulated
data can train a more robust grasp detector, and by utilizing our real-to-sim method, this capability
can be effectively applied to real-world data.

After Repair Before Repair RGB

RGB

After Repair Before Repair

B o-10mm [ 10-20mm [ 20~20mm [ 40-80mm 80~150mm 150mm-~

Figure S1: Comparison of camera noise before and after R2SRepairer. Different colors in the noise
map represent different noise amplitude ranges, with amplitude measured in millimeters

Quantitative analysis of

X Prediction Input Output RMSE(mm) |
R2SRepairer. We use the depth  Depth Anything V2 [30] | RGB Depth value 206
1R Ours RGB Depth value 220
maps from GraspNet 1].311110n .[5] Oure RGBD Depth value 855
test set to test R2SRepairer, which Ours RGBD  Depth residual value 791

consists of 22950 samples. The eval-
uation metric is the root-mean-square
error (RMSE) of the predicted depth map, measured in millimeter. The results showed in Table S2
indicate that if the network only deals with RGB images, the depth value prediction is not accurate,
which reduces the grasp performance. Moreover, predicting the residual values is more effective
than predicting the depth values.

Table S2: Comparison of depth repair Performance.

Qualitative analysis of R2SRepairer. We futher demonstrate the effectiveness of R2SRepairer
by presenting camera noise before and after refinement. As shown in Figure S1, it is evident that
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Before Repair

After Repair

Before Repair

After Repair

Figure S2: Visualization of single-view point cloud before and after repair. Zoom in better view.

the correct noise image significantly reduce noise compared to the initial noise image. To further
demonstrate the performance of R2SRepairer, we compared the single-view point cloud before and
after camera noise repair. As shown in Figure S2, after noise repair, the positional drift and structural
deformation of the point cloud are mitigated, bridging the gap between real and simulated data.

The impact of noise in Residual labels. R2SRepairer is ST AT S —

. . . een Similar Novel
robust to the noise in residual labels. As shown in Table 0 | 4844 6612 5447 2474
S3, we add Gaussian noise with a mean of 0 and differ- 5 | 48.84 6729 5453 24.69
ent variance (std) to the residual labels. The overall AP 10 | 49.67 67.81 5593 2525
value increases after adding Gaussian noise, with a more
significant increase when std=10. We believe that intro-
ducing appropriate noise can enhance the robustness of
model learning.

Table S3: Experiment on noise adjust-
ment in residual labels.

Qualitative analysis of structural features in memory bank. Our Real-to-Sim Feature Enhancer
(R2SEnhancer) uses the precise structural features stored in the memory bank to enhance the real-
world features. To visually demonstrate the semantic information of the stored structural features,
we visualize the structures represented by these features. First, we calculate the cosine distance
between the features of each graspable point and the stored features in the memory bank, assigning
each graspable point to the nearest stored structural feature. Then, we obtain a set of graspable
points for each stored structural feature. Based on cosine similarity, we select three distinct features
from the memory bank and visualize their corresponding sets of graspable points. As depicted in
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Cyan Blue

Yellow

Figure S3: Semantic information of the stored structural features. “Blue”, “Cyan”, “Yellow” repre-
sent the structures corresponding to the three selected structural features.

Seen

Similar

Novel

Figure S4: Top-30 grasp poses predicted by R2SGrasp on the test set of GraspNet-1Billion. The red
gripper indicates successful grasp pose, while the blue gripper indicates failed grasp pose.

Figure S3, there are obvious differences in the structure represented by the three features. The
first feature represents sharp object structures, as shown in the first row of Figure S3, which are
commonly found on toy legs and heads. The second feature represents planar object structures, as
depicted in the second row, primarily seen on square boxes. The third feature represents curved
object structures, as illustrated in the last row, appearing on various curved surfaces, with bottles
being the most prominent.

Qualitative analysis of grasping performance. To demonstrate that our R2SGrasp can adapt to
real data, we use R2SGrasp to predict grasp poses on the GraspNet-1Billion test set and visualize
the results, as shown in Figure S4. In seen and similar scenes, R2SGrasp predicts grasping poses
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with a success rate close to 100%. In novel scenes, there are some failed cases, which occur due to
collisions or grasping at empty locations.

A.2 TImplementation details of grasp detector.

(@ Select points
NE ; : 5 :
g1l g||<] mep g MP IS R23 g
S 8|l — M X [ Enhancer| ">
£l 2z &|pooling || |Enhencer] )
LI < x =
Point clouds . i i =
_‘_:\- Cylinder grouping Local features scores & widths

Figure S5: Grasp detector in details

Architecture design of grasp detector. The grasp detector in details is shown in Figure S5. We
first randomly sample N points from the single-view point clouds generated from depth map, and
then use a point cloud backbone to extract point-wise features with C; dimension. The point cloud
backbone adopt a Unet [27] architecture with a ResNet14 [28] encoder built upon the Minkowski
Engine [31]. Followed by a MLP layer, we predict the object point mask /, and graspness heatmap
I}, to select the graspable points along with their corresponding point-wise features with the shape of
M x (C1+3), where M is the number of graspable points and 3 denotes the cartesian coordinates of
the points. We also select the grasp view of the graspable points from the predefined 300 approaching
vectors based on the grasp view scores s,, which is also predicted by a MLP layer. Then, we perform
cylinder grouping operation along the grasp view for each grasp point to aggregate the features of
G neighboring points, followed by the MLP and max pooling operations to extract local structural
features with C5 dimension. Finally, our Real-to-Sim Feature Enhancer (R2SEnhancer) refines the
local structural features using the stored simulated features and outputs the grasp scores s, and
widths s,, shaped as M x 48, where 48 denotes the grasp candidates of the grasp points. For our
network, we set NV = 20000, M = 1024, C; = 512, C, = 256, G = 16.

Loss Design. The grasp detector is trained with the following loss function:
Lg = Lo(Iov I:) + Ath(Iha I}t) + )\2Lv(5va 3;) + )‘3Ls(sg» SZ) + )\4Lw(3wv S*w)v (5)

where L,, Ly, L, Ls, L,, are used to supervise the learning of object points, graspable points, grasp
views, grasp scores and grasp widths respectively. 17, I}, s7, sg, sy, is the ground truth of object
point mask, graspness heatmap, grasp view scores , grasp scores and grasp widths. L, adopts
binary classification loss, while others use regression loss. Due to the simplification of our grasp
annotations, some grasp poses may lack supervision signals. Therefore, when calculating the loss,

we ignore any predicted grasp poses that lack supervision signals.

A.3 R2Sim dataset details

The overall process of dataset construction is shown in Figure S6. We start by selecting 256 daily
household objects from the Google Scanned Objects dataset [26] and the GraspNet-1Billion train-
ing dataset [5]. Then, we generate scenes in blenderproc [25] and simultaneously label the grasp
poses of the objects. After that, we project object-level grasp annotations into the scenes and de-
tect the grasp annotations that result in collisions. Finally, we adopt our proposed grasp annotation
simplification method to remove ineffective grasp poses. The remaining grasps serve as scene-level
annotations. To sum up, our R2Sim dataset comprises 500 scenes with 76,800 RGB-D images. Each
scene contains approximately 14.4 million grasp annotations and each frame in every scene is also
annotated with object segmentation maps, 6-DoF poses of objects and camera, graspness heatmap
and view graspness. In the graspness heatmap, brighter areas indicate a higher likelihood of suc-
cessful grasps. Similarly, higher values of view graspness also represent a greater probability of
successful grasps. Some examples of RGB, depth map, segmentation map and graspness map are
shown in Figure S7.
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Figure S6: Overview of data generation pipline.

A.3.1 Details of object level grasp annotation.

We use a sampling-evaluation approach to annotate the grasp poses of objects. Grasp poses are
determined by downsampling high-quality mesh models to ensure that the grasp points are evenly
distributed in the voxel space. For each grasp points, 300 approach directions are sampled uniformly
on a spherical space. Grasp candidates of each approach directions are explored on a grid defined
by 4 gripper depths and 12 rotation angles. To sum up, there are 48 grasp candidates along each
approach direction and 14,400 grasp candidates on each grasp point. The gripper width is adjusted
as necessary to prevent empty grasps or collisions. We adopt analytic computation method as [5? ]
to grade the sampled grasp poses. The grasp scores range from 0 to 1, with higher scores indicating
a greater likelihood of successful grasps.

A.3.2 Details of scene level grasp annotation.

Using the object poses, the grasp pose in object coordinate system is projected onto the world coor-
dinate system. We detect collisions for the projected grasp poses in the scene and set the scores of
those that collide to zero. Assuming there are N grasp points projected into the scene, we calculate
the success rate of grasp candidates at each point, resulting in N graspness values. Using the cam-
era’s intrinsic parameters, we convert the depth map into a single-view point cloud. We then use
the K-NN algorithm to match the grasp points in the scene, assigning each point in the point cloud
the corresponding graspness value. This value is then back-projected into the image to create the
graspness heatmap. Similarly, we calculate the success rate of grasp candidates along each approach
direction and using this as the view-graspness. We also make further simplification of grasp pose
annotation to improve training efficiency.

A.3.3 Scene generation.

We automated the construction of cluttered desktop scenes using Blenderproc [25]. We first con-
struct a simple indoor scene with a table placed at the center. Textures for the table, floor, and walls
are chosen randomly from specific material categories provided on AmbientCG. The lighting setup
of the scene is randomized as well, with practical adjustments to intensity and variations in light
color to improve visual clarity and accuracy. Then, we choose a variable number of objects ranging
from 7 to 10 from our object pool and place on the table. To create sufficiently cluttered scenes, we
place the objects 1.5 meters above the table and allow them to fall naturally onto the surface. Finally,
we set 128 camera poses to capture RGB-D images from multi views, where the poses are randomly
sampled on the upper hemisphere, with a radius of 1.1 meters centered on the objects’ region. Based
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Figure S7: Display of RGB, depth map, segmentation mask and graspness heatmap in our simulated
dataset.

on the above setup, we obtain RGB-D images, object segmentation maps, object poses, and camera
poses from different angles efficiently.

A.3.4 Analysis of simplified annotation.

To demonstrate the advantage of sim-

. . . Metrics Simplified Non-Simplified
plified annotation, we compare the sim- Average Precision(%) 35.04 33.63
plified and non-simplified annotations Run Time(epoch/h) 5.64 21.17
across multiple metrics. The average Memory Usage(GB) 7.50 48.41
precision measures the performance of =~ GPU Memory Usage(GB) 4.43 9.71

Storage Usage(GB) 15 72.44

grasp detector trained on 300 scenes
selected from R2Sim dataset. Except Table S4: Compare metircs between simplified and non-
for the average accuracy, all other met- simplified annotations.

rics are evaluated on the entire R2Sim

dataset. As shown in Table S4, following the simplification of annotations, there are a notable in-
crease of 2.26 AP. We believe that this improvement is due to the simplified annotations alleviating
the imbalance between positive and negative samples present in the original annotations, where
positive samples made up less than 2% of the total according to statistics. Moreover, after simpli-
fying the annotations, the program’s runtime, memory usage, and GPU usage decrease by 73.36%,
84.51%, and 54.66%, respectively, and the storage usage for the entire dataset annotation decrease
by 79.29%. This simplified annotation method is crucial for constructing a large-scale dataset, as it
reduces the burden of data storage and neural network training.
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