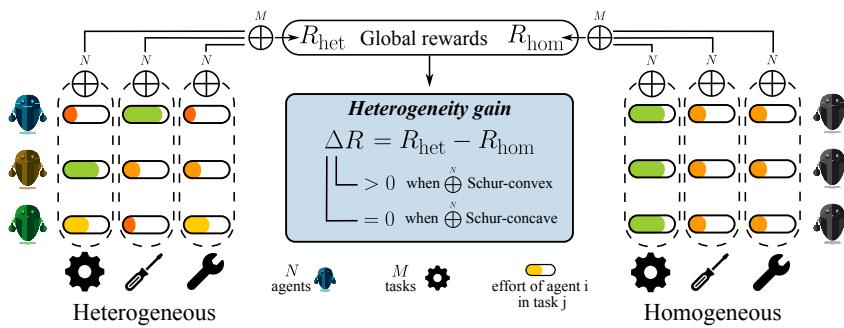


WHEN IS DIVERSITY REWARDED IN COOPERATIVE MULTI-AGENT LEARNING?

005 **Anonymous authors**

006 Paper under double-blind review



020 Figure 1: We study and categorize what reward structures lead to the need for behavioral heterogeneity
021 in multi-agent multi-task environments.

ABSTRACT

025 The success of teams in robotics, nature, and society often depends on the division
026 of labor among diverse specialists; however, a principled explanation for *when* such
027 diversity surpasses a homogeneous team is still missing. Focusing on multi-agent
028 task allocation problems, we study this question from the perspective of reward
029 design: what kinds of objectives are best suited for heterogeneous teams? We first
030 consider an instantaneous, non-spatial setting where the global reward is built by
031 two generalized aggregation operators: an *inner* operator that maps the N agents’
032 effort allocations on individual tasks to a task score, and an *outer* operator that
033 merges the M task scores into the global team reward. We prove that the curvature
034 of these operators determines whether heterogeneity can increase reward, and that
035 for broad reward families this collapses to a simple convexity test. Next, we ask
036 what incentivizes heterogeneity to *emerge* when embodied, time-extended agents
037 must *learn* an effort allocation policy. To study heterogeneity in such settings, we
038 use multi-agent reinforcement learning (MARL) as our computational paradigm,
039 and introduce *Heterogeneity Gain Parameter Search (HetGPS)*, a gradient-based
040 algorithm that optimizes the parameter space of underspecified MARL environ-
041 ments to find scenarios where heterogeneity is advantageous. Across different
042 environments, we show that HetGPS redisCOVERS the reward regimes predicted by
043 our theory to maximize the advantage of heterogeneity, both validating HetGPS
044 and connecting our theoretical insights to reward design in MARL. Together, these
045 results help us understand when behavioral diversity delivers a measurable benefit.

1 INTRODUCTION

047 Collective systems, from robot fleets to insect colonies, tend to adopt one of two structures: a uniform
048 shared blueprint or a set of distinct, specialized roles. In multi-agent learning, this is reflected in the
049 choice between behavioral homogeneity (all agents behave identically) and behavioral heterogeneity
050 (agents specialize) (Bettini et al., 2023; 2025; Rudolph et al., 2021). Such behavioral diversity can be
051 achieved, e.g., via distinct policies (neural heterogeneity) or shared policies conditioning on diverse
052 inputs, such as agent roles (Leibo et al., 2019). Although diversity unlocks role specialization and
053

Supplementary website: <https://sites.google.com/view/hetgps>

054 asymmetric information use, it also introduces extra coordination cost, representation overhead, and
 055 learning complexity (Li et al., 2021). This trade-off leads us to ask: under what conditions will
 056 heterogeneous agents outperform the best homogeneous baseline?

057 A natural setting to study this question in is *multi-agent task allocation*, where N agents allocate
 058 effort across M concurrent tasks. Here, we define *effort* as an *abstract quantity* representing the
 059 agent’s contribution to a given task (e.g., proximity to a goal, or quantity of a task-specific resource the
 060 agent gathered), computed in an environment-specific manner. The focus of our work is *behavioral*,
 061 *outcome-based* heterogeneity, defined through these efforts: a homogeneous team is one where all
 062 agents have the same effort allocations (e.g., every agent allocates 0.75 of its effort to task A and 0.25
 063 to task B), whereas a heterogeneous team allows agents to achieve specialized allocations. We relate
 064 this abstract effort to environmental rewards in many diverse environments, including cooperative
 065 navigation, tag, football (Sec. 5), Colonel Blotto games, and level-based foraging (App. E) (Roberson,
 066 2006; Noel, 2022; Papoudakis et al., 2021; Terry et al., 2021). We ask: what effort-based reward
 067 functions require heterogeneous behaviors to be maximized?

068 **Theoretical Insights.** We first study a pure, non-spatial and instantaneous variant of multi-agent
 069 task allocation: each agent commits its effort allocation once, and the team is rewarded immediately
 070 (Sec. 2). We start from the observation that team reward in many effort-allocation problems can
 071 be expressed as $R(A) = U(T_1(a_1), \dots, T_M(a_M))$, where $A = (r_{ij})$ is the $N \times M$ matrix of
 072 agent effort allocations, and a_i is the effort allocation vector of agent i . The inner, task-level
 073 operator T_i assigns a score corresponding to the N agents’ efforts on the i th task and the outer
 074 operator U combines the resulting M task scores into a scalar global reward. Choosing T and U to
 075 be the sum operator \sum recovers the $\sum_j \sum_i r_{ij}$ reward common in RL, whereas alternatives such as
 076 MAX, MIN, power means, or soft-max encode very different effort-reward relationships. Assuming
 077 such a reward structure, we compare the optimal heterogeneous reward, R_{het} , with the best reward
 078 attainable under a homogeneous allocation, R_{hom} , and define their difference as the *heterogeneity gain*
 079 $\Delta R = R_{\text{het}} - R_{\text{hom}}$ (Fig. 1). Our main insight is that ΔR is determined by the *curvature* of T and
 080 U : specifically, whether they are *Schur-convex* or *Schur-concave*. These criteria immediately enable
 081 us to characterize the heterogeneity gain of broad families of reward functions (Table 3); for instance,
 082 the soft-max operator switches from Schur-concave to Schur-convex as its temperature increases. We
 083 also find exact expressions for ΔR in several important cases. These results help explain, for example,
 084 why a reward structure that involves a min operator (usually used to enforce that only one agent
 085 should pursue a goal) will require behavioral diversity from the agents (Bettini et al., 2024). We relate
 086 our findings to multi-agent reinforcement learning (MARL), where environments may be embodied
 087 and time-extended, by setting $R(A_t)$ as the stepwise reward over an allocation sequence $(A_t)_{t=1, \dots, T}$.

088 **Algorithmic Search.** To study heterogeneity in MARL settings not covered by our theoretical
 089 analysis, we develop *Heterogeneity Gain Parameter Search* (HetGPS), a gradient-based algorithm that
 090 optimizes parameters θ of underspecified, differentiable MARL environments via backpropagation
 091 to find configurations that maximize or minimize the empirical ΔR (we assume differentiability
 092 for training efficiency, but consider non-differentiable environments in App. P). While HetGPS
 093 can in principle optimize any differentiable environment feature to influence ΔR , we use it here to
 094 explore reward structures exclusively, as a means of verifying and extending our theoretical insights.
 095 Maximizing the heterogeneity gain allows us to discover reward functions where behavioral diversity
 096 is essential. Minimizing the gain leads us to settings where homogeneous policies are sufficient.

097 **Experiments.** We validate our theoretical insights, and HetGPS, in simulation, by evaluating in both
 098 single-shot and long-horizon reinforcement learning environments whose reward structure instantiates
 099 the kinds of aggregation operators studied. First, in a continuous and a discrete matrix game, we test
 100 reward structures based on all nine possible combinations of {min, mean, max}, and find that the
 101 heterogeneity gains that result from the agents’ learned policies match our theoretical predictions:
 102 concave outer operators and convex inner operators benefit heterogeneous teams. Next, we test
 103 the same operators in embodied, partially observable environments: Multi-goal-capture, tag, and
 104 football. We find that our theory also transfers to such long-horizon MARL settings, and show that
 105 reward structures that maximize heterogeneity are meaningful and practically useful. Finally, we find
 106 that the empirical heterogeneity gain disappears as the richness of agents’ observations is increased,
 107 recovering the finding that rich observations allow agents with identical policy networks to be behav-
 108 iorally heterogeneous (Bettini et al., 2023; Leibo et al., 2019).

107

108 We then turn to HetGPS. Across two parameterizable families of **operators** (Softmax and Power-Sum),
 109 we show that, despite running on embodied environments, HetGPS rediscovers the reward regimes
 110 predicted by our curvature theory to maximize the heterogeneity gain, validating both HetGPS and
 111 the connection between our theoretical insights and MARL reward design (Sec. 5).
 112

113 **1.1 RELATED WORKS**

114 **Behavioral Diversity in MARL.** Behavioral heterogeneity, where capability-identical agents learn
 115 distinct policies, can markedly improve exploration, robustness, and reward (Bettini et al., 2023). Yet
 116 heterogeneity reduces parameter sharing and thus sample-efficiency, so a core practical question is
 117 *when* its benefits outweigh that cost. Existing MARL methods typically adopt one of two poles: en-
 118 dowing each agent with its own network, or enforcing parameter sharing so all agents follow a single
 119 policy (Gupta et al., 2017a; Rashid et al., 2020; Foerster et al., 2018; Kortvelesy & Prorok, 2022;
 120 Sukhbaatar et al., 2016). A large body of work explores the efficiency–diversity trade-off (Christianos
 121 et al., 2021; Fu et al., 2022) by interpolating between these extremes: e.g., injecting agent IDs into
 122 the observation (Foerster et al., 2016; Gupta et al., 2017a), masking different subsets of shared
 123 weights (Li et al., 2024b), sharing only selected layers (Li et al., 2021), pruning a shared network into
 124 agent-specific sub-graphs (Kim & Sung, 2023), or producing per-agent parameters with a hypernet-
 125 work (Tessera et al., 2024). Further, several methods for promoting behavioral diversity in MARL
 126 have been proposed, such as: conditioning agents’ policies on a latent representation (Wang et al.,
 127 2020b), decomposing and clustering action spaces (Wang et al., 2021b), dynamically grouping agents
 128 to share parameters (Yang et al., 2022), applying structural constraints to the agents’ policies (Bettini
 129 et al., 2024), or by intrinsic rewards that maximize diversity (Li et al., 2021; Jaques et al., 2019;
 130 Wang et al., 2019; Jiang & Lu, 2021; Mahajan et al., 2019; Liu et al., 2023; 2024; Li et al., 2024a).
 131 While these studies demonstrate *how* to obtain diversity, they presume tasks where heterogeneity is
 132 advantageous. Our work addresses the orthogonal question of *when* diversity is beneficial, giving a
 133 principled characterization of which reward structures create that incentive in the first place.

134 **Task Allocation.** Classic resource–allocation settings, in which a team must divide finite effort
 135 among simultaneous objectives, are a central proving ground for cooperative MARL. In robotics,
 136 potential-field and market-based learning are the dominant tools for coverage, exploration, and
 137 load-balancing tasks (Gupta et al., 2017b; Lowe et al., 2017). Game-theoretic analysis and, recently,
 138 MARL play the same role in discrete counterparts such as Colonel-Blotto contests, where players
 139 decide how to spread forces over several “battlefields” (Roberson, 2006; Noel, 2022). Embodied
 140 benchmarks like level-based foraging are heavily studied in MARL, and expose the tension between
 141 uniform and specialized effort allocations (Papoudakis et al., 2021). The survey of (Zhang et al.,
 142 2019) highlights how cooperative performance is governed by the shape of the shared reward and
 143 the equilibria it induces. Our contribution sharpens this perspective: we prove that the *curvature* of
 144 nested aggregation operators characterizes when heterogeneous allocations dominate homogeneous
 145 ones, and introduce algorithmic tools for further exploring settings where diversity is needed.

146 **Environment Co-design.** Co-design is a paradigm where agent policies *and* their mission or envi-
 147 ronment are simultaneously optimized (Gao et al., 2024; Amir et al., 2025). Our HetGPS algorithm
 148 is related to PAIRED (Dennis et al., 2020), a method which automatically designs environments
 149 in a curriculum such that an *antagonist* agent succeeds while the *protagonist* agent fails. This
 150 makes it so that resulting environments are challenging enough without being unsolvable. Similarly,
 151 HetGPS designs environments that are advantageous to heterogeneous teams, while disadvantaging
 152 homogeneous teams. The key differences are: (1) the environment designer uses direct regret gradi-
 153 ent backpropagation via a differentiable simulator instead of RL; this enables higher efficiency by
 154 directly leveraging all the environment gradient data available during collection while preventing
 155 RL-related issues identified in subsequent works (Jiang et al., 2021; Parker-Holder et al., 2021) such
 156 as exploration inefficiency and the need for a reward signal; and (2), the protagonist and antagonist
 157 are independent multi-agent teams instead of single agents.

158 **Impact of Reward Structure and Credit Assignment.** The design of the reward function is
 159 critical to the performance of cooperative MARL systems. Even when encoding the same high-level
 160 objective, subtle differences in the reward structure can lead to vastly different learning outcomes. For
 161 instance, Wang et al. (2021a) demonstrated in the challenging real-world domain of active voltage
 162 control that the shape of the reward function (specifically, the voltage barrier function used to encode
 163 constraints) significantly impacts the success of various MARL algorithms. This highlights the need

162 for a principled understanding of how reward structures incentivize agent behaviors. Furthermore, the
 163 way global rewards are structured and distributed among agents, i.e., the credit assignment problem,
 164 is closely related to the emergence of specialized behaviors. Approaches leveraging cooperative
 165 game theory, such as the Shapley Q-value Wang et al. (2020a), provide methods for decomposing
 166 global rewards into local rewards that reflect individual contributions, thereby promoting efficient and
 167 often heterogeneous strategies. While these works focus on efficient decomposition of the reward
 168 value, our work is complementary, analyzing how the mathematical curvature of the global reward
 169 aggregation function determines whether behavioral heterogeneity is fundamentally advantageous.

171 2 PROBLEM SETTING

173 Consider a set of N agents and M tasks. Each agent $i \in \{1, \dots, N\}$ allocates *effort* among the
 174 tasks according to the budget constraints: $r_{i1}, r_{i2}, \dots, r_{iM} \geq 0$ with $\sum_{j=1}^M r_{ij} \leq 1$, where r_{ij} is
 175 *defined* as the effort agent i puts into task j . Here, “effort” r_{ij} is a scalar input to the reward function
 176 representing the agent’s contribution to the task, such as resource allocation (App. E) or realized
 177 goal proximity (Sec. 5). We can consider both continuous allocations (r_{ij} can be any real number)
 178 and discrete allocations (r_{ij} restricted to some finite set of options), with most results in this work
 179 focusing on the continuous case. We collect all agents’ allocations into an $N \times M$ matrix: $A = [r_{ij}]^1$.

180 For each task j let the j -th column of the effort matrix be $a_j = [r_{1j}, \dots, r_{Nj}]^\top$. A *task-level*
 181 *aggregator* $T_j : \mathbb{R}^N \rightarrow \mathbb{R}$ maps these efforts to a *task score*, and an *outer aggregator* $U : \mathbb{R}^M \rightarrow \mathbb{R}$
 182 combines the M scores into the team reward, $R(A) = U(T_1(a_1), \dots, T_M(a_M))$. Both T_j and U
 183 are *generalised aggregators*: symmetric and coordinate-wise non-decreasing, mirroring the familiar
 184 properties of \sum . When every task shares the same inner aggregator we simply drop the subscript
 185 and write T . In Figure 1, to highlight fact that R is aggregating rewards, we write $R(A) =$
 186 $\bigoplus_{j=1}^M \bigoplus_{i=1}^N r_{ij}$, where (in abuse of notation) the outer symbol \bigoplus denotes U and the inner symbol
 187 \bigoplus denotes T_j .

189 **Homogeneous vs. Heterogeneous Strategies.** A *homogeneous strategy* is one where all agents have
 190 the same allocation (i.e., devote the same amount of effort to a given task j): $r_{ij} = c_j \forall i, j$. In this case,
 191 the allocation matrix A consists of identical rows. We define $R_{\text{hom}} = \max_{(c_1, \dots, c_M) \in \Delta_{\leq}^{M-1}} R(A)$
 192 where $\Delta_{\leq}^{M-1} = \{(c_1, \dots, c_M) \mid c_j \geq 0, \sum_j c_j \leq 1\}$ is the closed unit simplex. A *heterogeneous*
 193 *strategy* allows each agent i to choose any $(r_{i1}, \dots, r_{iM}) \in \Delta_{\leq}^{M-1}$ independently. Then $R_{\text{het}} =$
 194 $\max_{A \in (\Delta_{\leq}^{M-1})^N} R(A)$. We define the *heterogeneity gain* as: $\Delta R = R_{\text{het}} - R_{\text{hom}}$. This quantity
 195 measures how much greater the overall reward can be when agents are allowed to specialize differently
 196 across tasks, compared to when they must behave identically. Characterizing when $\Delta R > 0$ is our
 197 main focus in this work.

199 **MARL extension.** In MARL, the effort value r_{ij} represents the contribution of agent i to task j as
 200 computed by the environment based on agent i ’s actions. The aggregate reward $R(A)$ can represent:
 201 (i) the payoff of a one-shot effort-allocation game, (ii) the return or sparse terminal reward of an
 202 episode, or (iii) the stepwise reward, giving the discounted return $\sum_{t=0}^T \gamma^t R(A_t)$ for a sequence
 203 $(A_t)_{t=1, \dots, T}$ of allocations². $\Delta R > 0$ implies that the best heterogeneous policies outperform the
 204 best homogeneous ones. In practice, this is *evidence of* an advantage to heterogeneity and not a
 205 formal guarantee, as learning agents may not always converge to optimal policies.

207 **Examples.** App. I contains examples of generalized aggregators. Our framework is flexible, and can
 208 be applied to many settings, including ones not ordinarily thought of as “task allocation”: in Sec. 5,
 209 we apply it to one-shot allocation games, multi-agent navigation, tag, and football. Furthermore, in
 210 App. E, we analyze the heterogeneity gain of two well-known environments from the literature: Team
 211 Colonel Blotto games (Noel, 2022) and level-based foraging (Papoudakis et al., 2021).

214 ¹All results in this work can be extended to the case where $r_{i1}, r_{i2}, \dots, r_{iM} \geq B_{\min}$ and $\sum_{j=1}^M r_{ij} \leq$
 215 B_{\max} for some arbitrary $B_{\min}, B_{\max} \in \mathbb{R}$.

216 ²To extend this further, our theoretical results hold even if the reward function varies over time, $R_t(A_t)$.

216 **3 ANALYSIS**

218 Focusing on continuous allocations, we ask what properties of aggregators guarantee $\Delta R > 0$. We
 219 draw on the concept of Schur-convexity. Schur-convex functions can be understood as generalizing
 220 symmetric, convex aggregators: every convex and symmetric function is Schur-convex, but a Schur-
 221 convex function is not necessarily convex (Roberts & Varberg, 1974; Peajcariac & Tong, 1992).
 222 Proofs for all results are available in App. G.

223 Since both the outer aggregator U and the task-level aggregators T_j are non-decreasing, an optimal
 224 effort allocation will always have each agents' efforts summing to 1. Hence, from here on, we **assume**
 225 without loss of generality that $\sum_{j=1}^M r_{ij} = 1$. We call such allocations **admissible**.

227 **Definition 3.1** (Majorization). *Let $x = (x_1, \dots, x_N)$ and $y = (y_1, \dots, y_N)$ be two vectors in \mathbb{R}^N
 228 such that $\sum_{i=1}^N x_{(i)} = \sum_{i=1}^N y_{(i)}$. Let $x_{(1)} \geq x_{(2)} \geq \dots \geq x_{(N)}$ and $y_{(1)} \geq y_{(2)} \geq \dots \geq y_{(N)}$ be
 229 the components of x and y sorted in descending order. We say that x majorizes y (written $x \succ y$) if
 230 $\sum_{i=1}^k x_{(i)} \geq \sum_{i=1}^k y_{(i)}$ for $k = 1, 2, \dots, N-1, N$.*

231 **Definition 3.2** (Schur-Convex Function). *A symmetric function $f : \mathbb{R}^N \rightarrow \mathbb{R}$ is Schur-convex if for
 232 any two vectors $x, y \in \mathbb{R}^N$ with $x \succ y$, we have $f(x) \geq f(y)$. If the inequality is strict whenever x
 233 and y are not permutations of each other, then f is said to be strictly Schur-convex. Similarly, f is
 234 Schur-concave if $f(x) \leq f(y)$ whenever $x \succ y$.*

235 Intuitively, $x \succ y$ means one can obtain y from x by repeatedly moving mass from larger to smaller
 236 coordinates, thereby making the vector more uniform. Schur-convexity is then a statement on a
 237 function's *curvature*: f is *Schur-convex* if it increases with inequality, or is *Schur-concave* if it
 238 increases with uniformity. We show here a connection between Schur-convexity (concavity) and ΔR .

239 Call an allocation matrix A *trivial* if there exists a task j^* such that every agent allocates its entire
 240 budget to that task, i.e. $r_{ij^*} = B_{\max}$ and $r_{ij} = 0 \forall i, \forall j \neq j^*$; otherwise A is *non-trivial*. Then:

242 **Theorem 3.1** (Positive Heterogeneity Gain via Schur-convex Inner Aggregators). *Let $N, M \geq 2$,
 243 and assume that (i) each task-level aggregator T_j is strictly Schur-convex and (ii) the outer aggregator
 244 U is coordinate-wise strictly increasing. Then either all admissible optimal homogeneous allocations
 245 are trivial, or $\Delta R > 0$.*

246 If the task-level aggregator is instead Schur-concave, we can show there is no heterogeneity gain:

248 **Theorem 3.2** (No Heterogeneity Gain via Schur-concave Inner Aggregators). *Let $N, M \geq 2$. If each
 249 task-level aggregator T_j is Schur-concave then $\Delta R = 0$.*

250 We see that Schur-convexity of the inner aggregator produces $\Delta R > 0$, whereas Schur-concavity
 251 implies $\Delta R = 0$. Analyzing the outer aggregator U is trickier, because it acts on task-score vectors
 252 $(T_1(a_1), \dots, T_M(a_M))$ whose sum $\sum_{i=1}^M T_i(a_i)$ may vary, so majorization is not directly applicable.
 253 However, we can extend our analysis to U if our inner aggregators are *normalized* to keep the
 254 sum constant: $\sum_{i=1}^M T_i(a_i) = C$ for any admissible allocation. Assuming this, we can invoke
 255 majorization again, and the relationship between convexity and ΔR reverses: if the outer aggregator
 256 U is Schur-convex, the heterogeneity gain vanishes. Let us prove this.

257 **Theorem 3.3** (No Heterogeneity Gain for Schur-Convex U with Constant-Sum Task Scores). *Let
 258 $N, M \geq 2$. Suppose that for any admissible allocation A , (i) every task score is non-negative, and
 259 obeys $T_i(0, \dots, 0) = 0$, and (ii) the sum of task score is always $\sum_{j=1}^M T_j(a_j) = C$. If U is strictly
 260 Schur-convex function, then $\Delta R = 0$.*

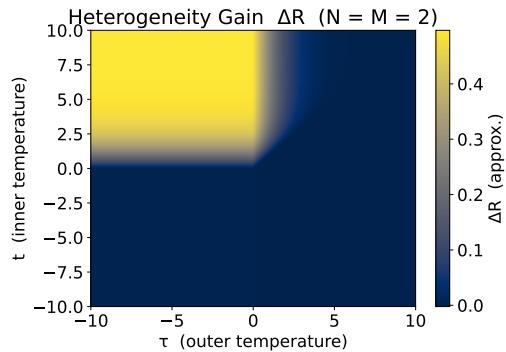
262 It is crucial to note that this constant-sum assumption is specific to Thm. 3.3 and is not required for
 263 our other results, which apply broadly.

264 **Sum-Form Aggregators.** In App. F, we show that the above results reduce to a simple convexity
 265 test for *sum-form aggregators*: a broad class of aggregators that describes most reward structures we
 266 consider in this work. This makes testing whether $\Delta R > 0$ a simple computation in many cases.

268 **Parameterizable Families of Aggregators.** A core topic of this work is *reward design*: how can
 269 we craft team objectives that either advantage or disadvantage behavioral diversity? To do this,
 it is helpful to first identify an appropriate search space. Our theoretical analysis enables us to

270
271
272 Discrete and continuous heterogeneity gains
273 $\begin{array}{|c|ccc|} \hline & T = \min & T = \text{mean} & T = \max \\ \hline & & \text{Outer } U = \min & \\ \hline \Delta R_F & 0 & 0 & (M-1)/M \\ \Delta R_D & 0 & \lfloor N/M \rfloor /N & 1_{\{N \geq M\}} \\ \hline & & \text{Outer } U = \text{mean} & \\ \hline \Delta R_F & 0 & 0 & (M-1)/M \\ \Delta R_D & 0 & 0 & (\min\{M, N\} - 1)/M \\ \hline & & \text{Outer } U = \max & \\ \hline \Delta R_F & 0 & 0 & 0 \\ \Delta R_D & 0 & 0 & 0 \\ \hline \end{array}$

274
275
276
277
278
279
280
281



282 Figure 2: **Left:** Discrete (ΔR_D) and continuous-allocation (ΔR_F) heterogeneity gains for all
283 $U, T \in \{\min, \text{mean}, \max\}$. The indicator $1_{\{N \geq M\}}$ equals 1 if $N \geq M$ and 0 otherwise. **Right:** We
284 plot the parametrized heterogeneity gains $\Delta R(t, \tau; N)$ when U and T are soft-max aggregators.
285

286 narrow down this search space, and focus on aggregators whose *curvature* can be parametrized.
287 Many *family of aggregator functions* $\{f_t(\cdot)\}_{t \in \mathbb{R}}$ can be parametrized by a scalar t which controls
288 whether the aggregation is *Schur-convex* or *Schur-concave*, and how strongly it penalizes (or favors)
289 inequalities among the components. For example, the *softmax aggregator* $\sum_{i=1}^N \frac{\exp(t \cdot r_{ij})}{\sum_{\ell=1}^N \exp(t \cdot r_{\ell j})}$ is
290 parametrized by its temperature, t , transitioning from being strictly Schur-concave when $t < 0$ to
291 strictly Schur-convex when $t > 0$. We can define a space of reward functions by selecting both the
292 task scores and outer aggregator to be softmax functions: let $T_j(A) = \sum_{i=1}^N \frac{\exp(t \cdot r_{ij})}{\sum_{\ell=1}^N \exp(t \cdot r_{\ell j})} r_{ij}$,
293 and let $U(T_1(a_1), \dots, T_M(a_m)) = \sum_{j=1}^M \frac{\exp(\tau \cdot T_j(A))}{\sum_{\ell=1}^M \exp(\tau \cdot T_\ell(A))} T_j(A)$, where $t, \tau \in \mathbb{R}$ parametrize the
294 inner and outer aggregators, respectively. ΔR is then dependent on t and τ . Fig. 2 plots ΔR when
295 $N = M = 2$. As a case study, we derive lower bounds on ΔR when $N = M$ in Thm. 3.4.

300 **Theorem 3.4** (Softmax heterogeneity gain for $N = M$). *Assume $N = M \geq 2$, and let $\sigma(t, N) :=$*
301 $\frac{e^t}{e^t + N - 1}$. *The heterogeneity gain for softmax aggregators (i) equals $\Delta R(t, \tau; N) = 0$ when $t \leq$*
302 0 ; (ii) *is bounded below by $\sigma(t, N) - \frac{1}{N}$ when $t > 0, \tau \leq 0$; and (iii) is bounded below by*
303 $\max\{\sigma(t, N) - \sigma(\tau, N), 0\}$ *when $t > 0, \tau \geq 0$.*

306 Tab. 3 contains more examples of aggregation operators parameterized by t . These families provide
307 a search space for potential reward functions, allowing us to sweep smoothly from $\Delta R = 0$ to
308 $\Delta R > 0$ reward regimes. As $t \rightarrow \pm\infty$, most such aggregators converge to either min or max, and
309 often reduce to the arithmetic mean for certain parameter choices, motivating us to ask what the
310 heterogeneity gain is when the outer and inner aggregator belong to the set $\{\min, \text{mean}, \max\}$. These
311 aggregators are of special interest, since “min” can be seen as a “maximally” Schur-concave function,
312 “max” can be seen as a “maximally” Schur-convex function, and “mean” is both Schur-convex and
313 Schur-concave. Hence, it is worth asking what the heterogeneity gain is when the outer and inner
314 aggregator belong to the set $\{\min, \text{mean}, \max\}$. We derive these gains in two cases: continuous
315 allocations where $r_{ij} \in [0, 1]$, and discrete effort allocations where $r_{ij} \in \{0, 1\}$. The results are
316 summarized in Fig. 2, lefthand side (formal derivation available in App. G).

318 4 HETEROGENEITY GAIN PARAMETER SEARCH (HETGPS) 319

320 In complex scenarios where theory might be less applicable, we study heterogeneity through algo-
321 rithmic search. We consider the setting of a Parametrized Dec-POMDP (PDec-POMDP, defined in
322 App. O). A PDec-POMDP represents a Dec-POMDP (Oliehoek et al., 2016), where the observations,
323 transitions, or reward are conditioned on parameters θ . Hence, the return obtained by the agents,
 $G^\theta(\pi)$, can be differentiated with respect to θ : $\nabla_\theta G^\theta(\pi) = \frac{\partial}{\partial_\theta} G^\theta(\pi)$. In particular, computing this

324 gradient in a differentiable simulator allows us to back-propagate through time and optimize θ via
 325 gradient ascent³.
 326

327 Algorithm 1 Heterogeneity Gain Parameter Search (HetGPS)

329 **input** Environment parameters θ , environment learning rate α , heterogeneous agent policy π_{het} ,
 330 homogeneous agent policy π_{hom}
 331 1: **for** i in iterations **do**
 332 2: $\text{Batch}_{\text{het}}^\theta = \text{Rollout}(\theta, \pi_{\text{het}})$ {rollout het policies in environment θ }
 333 3: $\text{Batch}_{\text{hom}}^\theta = \text{Rollout}(\theta, \pi_{\text{hom}})$ {rollout hom policies in environment θ }
 334 4: $\text{HetGain}^\theta = \text{ComputeGain}(\text{Batch}_{\text{het}}^\theta, \text{Batch}_{\text{hom}}^\theta)$
 335 5: **if** $\text{train_env}(i)$ **then**
 336 6: $\theta \leftarrow \theta + \alpha \nabla_\theta \text{HetGain}^\theta$ {train environment via backpropagation}
 337 7: **if** $\text{train_agents}(i)$ **then**
 338 8: $\pi_{\text{het}} \leftarrow \text{MarlTrain}(\pi_{\text{het}}, \text{Batch}_{\text{het}}^\theta)$ {train het policies via MARL}
 339 9: $\pi_{\text{hom}} \leftarrow \text{MarlTrain}(\pi_{\text{hom}}, \text{Batch}_{\text{hom}}^\theta)$ {train hom policies via MARL}
 340 **output** final environment configuration θ , policies $\pi_{\text{het}}, \pi_{\text{hom}}$

341
 342 **Heterogeneity Gain Parameter Search (HetGPS).** We now consider the problem of learning the
 343 environment parameters θ to maximize the *empirical* heterogeneity gain. The empirical heterogeneity
 344 gain is defined as the difference in performance between heterogeneous and homogeneous teams in
 345 a given PDec-POMDP parametrization. We compare *neurally heterogeneous* agents (independent
 346 parameters) with *neurally homogeneous* agents (shared parameters). We denote their policies as π_{het}
 347 and π_{hom} . Then, we can simply write the gain as: $\text{HetGain}^\theta(\pi_{\text{het}}, \pi_{\text{hom}}) = G^\theta(\pi_{\text{het}}) - G^\theta(\pi_{\text{hom}})$,
 348 representing the return of heterogeneous agents minus that of homogeneous agents on environment
 349 parametrization θ . HetGPS, shown in Alg. 1, learns θ by performing gradient ascent to maximize
 350 the gain: $\theta \leftarrow \theta + \alpha \nabla_\theta \text{HetGain}^\theta(\pi_{\text{het}}, \pi_{\text{hom}})$. The environment and the agents are trained in an
 351 iterative, bilevel optimization process. We discuss this process, and *alternatives when the simulator*
 352 *is non-differentiable*, in App. P. At every training iteration, HetGPS collects roll-out batches in the
 353 current environment θ for both heterogeneous and homogeneous teams, computing the heterogeneity
 354 gain on the collected data. Then, it updates θ to maximize the heterogeneity gain. Finally, to train the
 355 agents, it uses MARL, with any on-policy algorithm (e.g., MAPPO (Yu et al., 2022)). The functions
 356 `train_env` and `train_agents` determine when to train each of the components in HetGPS. We
 357 consider two possible training regimes: (1) *alternated*: where HetGPS performs cycles of x agent
 358 training iterations followed by y environment training iterations and (2) *concurrent*: where agents
 359 train at every iteration and the environment is updated every x iterations. Note that by performing
 360 descent instead of ascent, HetGPS can also be used to *minimize* the heterogeneity gain.

361 **5 EXPERIMENTS**

362 To empirically ground our theoretical analysis, we conduct a three-stage experimental study in
 363 cooperative MARL. We first analyze a one-step, observation-free matrix game in which each agent
 364 allocates effort r_{ij} over M tasks, and consider reward structures defined by aggregator pairs $U, T \in$
 365 $\{\min, \text{mean}, \max\}$. We find that the agents' learned policies recover the exact heterogeneity gains
 366 derived in the theory (Fig. 2). Next, we transfer the same reward structures into embodied, time-
 367 extended environments: Multi-goal-capture, 2v2 tag, and football. We show that our curvature theory
 368 continues to be informative in these settings. We discuss the learning dynamics that result, and perform
 369 further experiments highlighting the difference between *neural* and *behavioral* heterogeneity (Bettini
 370 et al., 2023), important for understanding our insights. Finally, to study HetGPS, we parametrize the
 371 reward structure of Multi-goal-capture using either parametrized Softmax or Power-Sum aggregators
 372 (App. I), and run HetGPS to learn parameterizations that maximize the heterogeneity gain. HetGPS
 373 learns the theoretically optimal aggregator instantiations, validating its effectiveness at discovering

374
 375 ³Although the same approach can train policies (Xu et al., 2022; Song et al., 2024), HetGPS instead optimizes
 376 environment parameters and policies separately, using standard zeroth-order policy-gradient methods, to avoid
 377 being trapped in local minima. The overhead of implementing HetGPS in this way is modest: it increased
 378 training time by roughly 25% in our Sec. 5 experiments compared to training on a fixed environment.

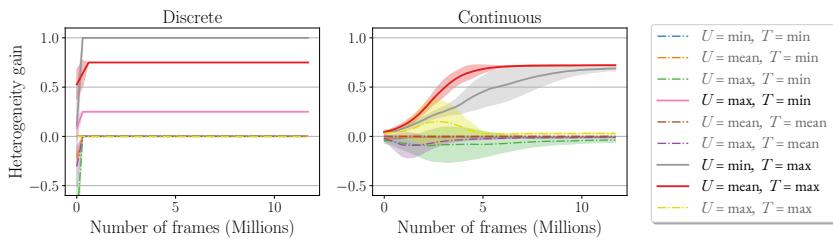
378
379
380
381
382
383
384
385

Figure 3: Heterogeneity gain for the discrete and continuous matrix games with $N = M = 4$ over training iterations. We report mean and standard deviation after 12M frames over 9 random seeds. The final results match the theoretical predictions in the Table of Fig. 2. Solid lines indicate reward structures predicted by theory to have $\Delta R > 0$ in either the discrete or continuous setting; dashed lines indicate predicted no gain in both settings. [Final gain values are reported in Tab. 7 and Tab. 8.](#)

heterogeneous missions. Implementation details and visualizations are available in App. C and App. K.

(i) Task Allocation. We consider a one-step observationless matrix game where N agents need to choose between M tasks. Their actions are effort allocations r_{ij} with $r_{ij} \geq 0, \sum_j r_{ij} = 1$, composing matrix A . With aggregators taken from the set $U, T \in \{\min, \text{mean}, \max\}$, our goal is to empirically confirm the heterogeneity gains derived in the theory *in a learning context*. Each time the game is played, all agents obtain the global reward $R(A)$ computed through the double aggregator. We consider two setups: (1) *Continuous* ($r_{ij} \in \mathbb{R}_{0 \leq x \leq 1}$): agents can distribute their efforts across tasks, (2) *Discrete* ($r_{ij} \in \{0, 1\}$): agents choose only one task. We train with $N = M = 4$ for 12 million steps. Fig. 6 shows the evolution of the heterogeneity gains. The final results match *exactly* the theoretical predictions of Fig. 2 and our curvature theory: *concave* outer and *convex* inner aggregators favor heterogeneity. Additional details and results, e.g., for $N, M \in \{2, 8, 11\}$, are in App. J.

(ii-1) Multi-goal-capture. Next, we investigate a time-extended, embodied scenario called Multi-goal-capture, based on multi-goal navigation missions (Terry et al., 2021). In Multi-goal-capture, agents need to navigate to goals, and efforts r_{ij}^t are continuous scalars computed based on their proximity to these goals. We provide details in App. K. Our goal is to show that the results obtained in the matrix game still hold in this embodied, long-horizon setting. We again consider aggregators $U, T \in \{\min, \text{mean}, \max\}$. After 30M training frames (Fig. 4a) the empirical heterogeneity gains differ, numerically, from those of the static matrix-game because agents now realize their allocations r_{ij} through time-extended motion. *Nonetheless, our curvature theory reliably predicts when there is a heterogeneity gain* (Fig. 2): it is positive *only* for the concave-convex pairs $U = \min, T = \max$ and $U = \text{mean}, T = \max$. We further explain these results (including the interesting presence of “negative” heterogeneity gains) in App. K. Note that the aggregator pairs in this experiment are not contrived: they encode practically meaningful global objectives. For example, $U = \max, T = \max$ implies “at least one agent should go to at least one goal”; $U = \max, T = \min$ implies “all agents should go to the same goal”, and so on. $U = \min, T = \max$, a concave-convex setting shown by our theory to favor heterogeneity, implies “each agent should go to a different goal and all goals should be covered” which is a natural goal for this scenario. This is because $T = \max$ encodes a task that needs just one agent to be completed (e.g., find an object), while $U = \min$ encodes that all tasks should be attended (i.e., agents need to diversify their choices).

Observability-Heterogeneity Trade-Off: To understand our theoretical results, it is important to solidify the difference between *neural heterogeneity* (agents having different neural networks) and *behavioral heterogeneity* (agents acting differently). Our insights concern behavioral heterogeneity, which need not be neurally induced. We show this in App. N, showing that: as the observability of neurally homogeneous agents increases (allowing them to sense each other), these agents can become behaviorally heterogeneous, and thus optimize the heterogeneity gain. This result is visualized [here](#).

(ii-2) 2v2 tag. In our tag experiment, two learning chasers pursue two heuristic escapees in a randomized obstacle field. We define the effort r_{ij}^t to be 1 if chasing agent i manages to capture escaping agent j by time t , and 0 otherwise. Whereas Multi-goal-capture had continuous effort allocations, here they are *discrete*. The global reward is again computed with aggregators $U, T \in \{\min, \text{mean}, \max\}$, and is awarded at every time step. This is a *sparse* reward signal only awarded upon mission success. For example, $U = \min, T = \max$ pays out only if both escapees are each

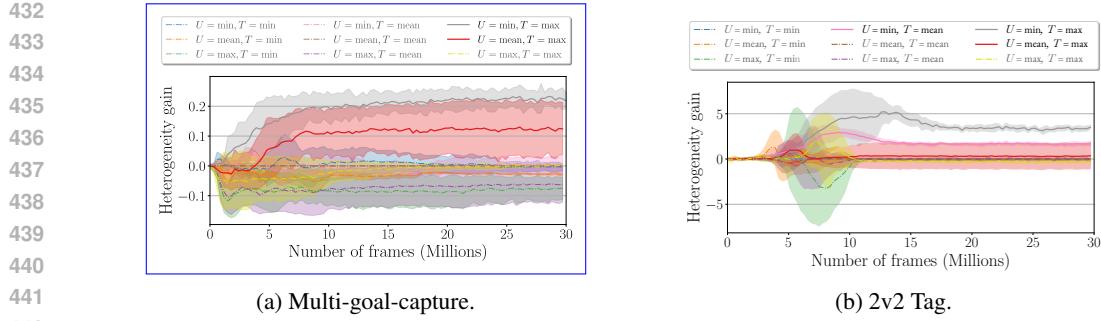


Figure 4: Heterogeneity gain for Multi-goal-capture and 2v2 Tag throughout training. We report mean and standard deviation for 30 million training frames over 9 random seeds. [Final gain values are reported in Tab. 11 and Tab. 12.](#)

caught by a chaser, encouraging heterogeneity. Training outcomes are summarized in Fig. 4b. We again see that our theoretical results in Fig. 2 (discrete efforts) predict *exactly* which aggregators will exhibit $\Delta R > 0$. More details, [visuals](#), and [experiments with greater number of agents](#) are available in App. L and [here](#).

(ii-3) Football. We evaluate our theory in a complex continuous control football game to explore what happens when our reward structure $R(A)$ is only part of a global cooperative reward. To this end, we design a drill in the VMAS Football environment (Bettini et al., 2022), where one agent is tasked to score, while the other has to block the incoming opponent. App. M shows that, also in this case, our theory is highly predictive, with [visuals available here](#).

(iii) Heterogeneous Reward Design. We apply HetGPS to Multi-goal-capture, and ask whether it finds the same aggregator parameterizations predicted by our theory to maximize the heterogeneity gain. We turn the environment into a PDec-POMDP by parameterizing the reward as $R^\theta(A^t) = \bigoplus_{j=1}^M \theta_j \bigoplus_{i=1}^N \theta_i r_{ij}^t$, with parametrized inner and outer aggregators $U^\theta = \bigoplus^\theta, T^\theta = \bigoplus^\theta$. Our goal is to learn the parameters $\theta = (\tau_1, \tau_2)$, parametrizing T and U respectively, that maximize the heterogeneity gain. We consider two parametrized aggregators from Tab. 3: Softmax and Power-Sum. *Softmax*: we parameterize both U^θ and T^θ using Softmax. We initialize $\tau_1 = \tau_2 = 0$, so U and T are initially *mean*, and run HetGPS (in App. Q we show that HetGPS is robust to adversarial initializations). In Fig. 5a, we show that, to maximize the heterogeneity gain, HetGPS learns to maximize τ_1 , making T Schur-convex, while minimizing τ_2 , making U Schur-concave. Hence, it rediscovered the theoretically optimal reward function. The large variance in final parameters occurs because the Softmax aggregator saturates for large magnitudes (e.g., $|\tau| > 5$); HetGPS *correctly* identifies this, leading seeds to converge to arbitrary large values within it. *Power-Sum*: we parametrize both aggregators with Power-Sum. We initialize both functions to $\tau_1 = \tau_2 = 1$, representing *sum*, and run HetGPS. We constrain $\tau_{1,2} \in [0.3, 6]$ to stabilize learning. In Fig. 5b, we show that HetGPS learns to maximize τ_1 , making T Schur-convex, while minimizing τ_2 , making U Schur-concave; again rediscovering the optimal parametrization our theory predicts. These results simultaneously validate HetGPS and our curvature theory, since each arrives at the same reward structure independently.

6 DISCUSSION

This work introduces tools for both *diagnosing* and *designing* reward functions that incentivize heterogeneity in cooperative MARL. In task allocation settings, our theory shows that the advantage of behavioral diversity is a predictable consequence of reward *curvature*: if the inner aggregator is Schur-convex, amplifying inequality, and the outer aggregator is Schur-concave, amplifying uniformity, heterogeneous policies are strictly superior; reversing the curvature removes the benefit. Complementing this analysis, and covering settings where our theory doesn't apply, the proposed HetGPS algorithm automatically steers underspecified environments to either side of the diversity boundary, letting us encourage or suppress heterogeneity and providing a sandbox for studying its advantages. Together, these results help turn the choice of heterogeneity from an ad-hoc heuristic into a controllable design dimension, and help reconcile past mixed results on parameter sharing.

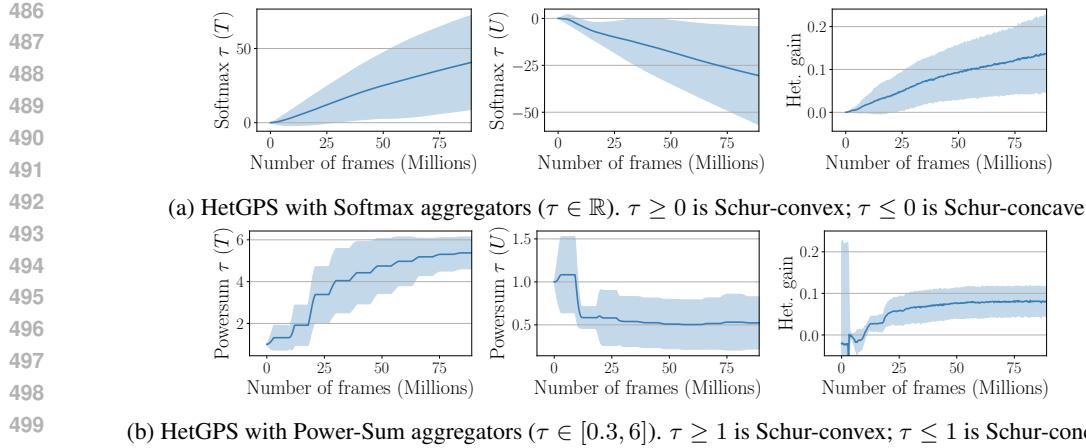


Figure 5: HetGPS results in Multi-goal-capture. The two leftmost columns report the evolution of aggregator parameters through training, while the rightmost column shows the obtained heterogeneity gain. This result empirically demonstrates that HetGPS rediscovers the reward structure predicted by our theory to maximize the gain, *making the inner aggregator convex, and the outer aggregator concave*. We report mean and standard deviation for 90M training frames over 13 random seeds.

A key remaining open question concerns how the environment’s *transition dynamics* interact with reward curvature to shape heterogeneity gains. We expand on this open question, other directions for future work, and our scope/limitations, in App. R.

REPRODUCIBILITY STATEMENT

Our supplementary material contains the source code we used to produce all results in this work, including the code used to train the agents, our implementation of HetGPS, and the code used to produce all plots in the paper (see Appendix C). The `readme` contains detailed instructions on how to use this code. All mathematical claims made in this work are fully proven in the Appendix, and our assumptions are described in detail in Section 2 (“Problem Setting”). Appendices Q and P address potential questions readers may have regarding the stability of the bilevel optimization process used in HetGPS and similar environment design algorithms in the literature. Finally, Appendix R addresses the assumptions and scope of our work, and outlines some remaining open questions.

REFERENCES

Michael Amir, Guang Yang, Zhan Gao, Keisuke Okumura, Heedo Woo, and Amanda Prorok. Recode: Reinforcement learning-based dynamic constraint design for multi-agent coordination, 2025. arXiv preprint 2507.19151. <https://arxiv.org/abs/2507.19151>.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. Vmas: A vectorized multi-agent simulator for collective robot learning. *Proceedings of the 16th International Symposium on Distributed Autonomous Robotic Systems*, 2022. URL https://link.springer.com/chapter/10.1007/978-3-031-51497-5_4.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. Heterogeneous multi-robot reinforcement learning. *Proceedings of the 22nd International Conference on Autonomous Agents and Multi-agent Systems*, pp. 1485–1494, 2023. URL <https://dl.acm.org/doi/10.5555/3545946.3598801>.

Matteo Bettini, Ryan Kortvelesy, and Amanda Prorok. Controlling behavioral diversity in multi-agent reinforcement learning. *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=qQjUgItPq4>.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. System neural diversity: Measuring behavioral heterogeneity in multi-agent learning. *Journal of Machine Learning Research*, 26(163):1–27, 2025. URL <http://jmlr.org/papers/v26/24-1477.html>.

540 Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
 541 Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for
 542 pytorch. In *The Twelfth International Conference on Learning Representations*, 2023.

543

544 Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scaling
 545 multi-agent reinforcement learning with selective parameter sharing. *International Conference on
 546 Machine Learning*, pp. 1989–1998, 2021.

547 Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
 548 and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
 549 design. *Advances in neural information processing systems*, 33:13049–13061, 2020.

550

551 Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
 552 to communicate with deep multi-agent reinforcement learning. *Advances in neural information
 553 processing systems*, 29, 2016.

554

555 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
 556 Counterfactual multi-agent policy gradients. *Proceedings of the AAAI conference on artificial
 557 intelligence*, 32, 2018.

558

559 Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting Some Common Practices in
 560 Cooperative Multi-Agent Reinforcement Learning. *International Conference on Machine Learning*,
 pp. 6863–6877, 2022.

561

562 Zhan Gao, Guang Yang, and Amanda Prorok. Co-optimization of environment and policies for
 563 decentralized multi-agent navigation. *arXiv preprint arXiv:2403.14583*, 2024.

564

565 Michael R Garey, David S Johnson, et al. A guide to the theory of np-completeness. *Computers and
 566 intractability*, pp. 37–79, 1990.

567

568 Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
 569 deep reinforcement learning. In *Autonomous Agents and Multiagent Systems: AAMAS 2017
 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16*, pp. 66–83.
 Springer, 2017a.

570

571 Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent control using
 572 deep reinforcement learning. In *Proceedings of the International Conference on Autonomous
 573 Agents and Multiagent Systems (AAMAS)*, 2017b.

574

575 Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
 576 Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
 577 reinforcement learning. *International Conference on Machine Learning*, pp. 3040–3049, 2019.

578

579 Jiechuan Jiang and Zongqing Lu. The emergence of individuality. *Proceedings of the 38th International
 Conference on Machine Learning*, 139:4992–5001, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/jiang21g.html>.

580

581 Minqi Jiang, Michael D Dennis, Jack Parker-Holder, Jakob Nicolaus Foerster, Edward Grefen-
 582 stette, and Tim Rocktäschel. Replay-guided adversarial environment design. In A. Beygelzimer,
 583 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing
 584 Systems*, 2021. URL <https://openreview.net/forum?id=5UZ-AcwFDKJ>.

585

586 Woojun Kim and Youngchul Sung. Parameter sharing with network pruning for scalable multi-agent
 587 deep reinforcement learning. *Proceedings of the 2023 International Conference on Autonomous
 588 Agents and Multiagent Systems*, pp. 1942–1950, 2023.

589

590 Ryan Kortvelesy and Amanda Prorok. Qgnn: Value function factorisation with graph neural networks.
 591 *arXiv preprint arXiv:2205.13005*, 2022.

592

593 Joel Z Leibo, Julien Perolat, Edward Hughes, Steven Wheelwright, Adam H Marblestone, Edgar
 594 Duéñez-Guzmán, Peter Sunehag, Iain Dunning, and Thore Graepel. Malthusian reinforcement
 595 learning. In *Proceedings of the 18th International Conference on Autonomous Agents and MultiA-
 596 gent Systems*, pp. 1099–1107, 2019.

594 Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie
 595 Zhang. Celebrating diversity in shared multi-agent reinforcement learning. *Advances in Neural Information Processing Systems*, 34:3991–4002, 2021. URL
 596 https://proceedings.neurips.cc/paper_files/paper/2021/file/20aee3a5f4643755a79ee5f6a73050ac-Paper.pdf.
 597

598 Tianxu Li, Kun Zhu, Juan Li, and Yang Zhang. Learning distinguishable trajectory representation
 600 with contrastive loss. *Advances in Neural Information Processing Systems*, 37:64454–64478,
 601 2024a.

602

603 Xinran Li, Ling Pan, and Jun Zhang. Kaleidoscope: Learnable masks for heterogeneous multi-
 604 agent reinforcement learning. *Advances in Neural Information Processing Systems*, 37:22081–
 605 22106, 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/274d0146144643ee2459a602123c60ff-Paper-Conference.pdf.
 606

607

608 Shunyu Liu, Yihe Zhou, Jie Song, Tongya Zheng, Kaixuan Chen, Tongtian Zhu, Zunlei Feng, and
 609 Mingli Song. Contrastive identity-aware learning for multi-agent value decomposition. *Proceedings
 610 of the AAAI Conference on Artificial Intelligence*, 37(10):11595–11603, 2023.

611

612 Shunyu Liu, Jie Song, Yihe Zhou, Na Yu, Kaixuan Chen, Zunlei Feng, and Mingli Song. Interaction
 613 pattern disentangling for multi-agent reinforcement learning. *IEEE Transactions on Pattern
 614 Analysis and Machine Intelligence*, 2024.

615

616 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
 617 critic for mixed cooperative–competitive environments. In *Advances in Neural Information
 618 Processing Systems (NeurIPS)*, 2017.

619

620 Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-
 621 agent variational exploration. *Advances in Neural Information Processing Systems*, 32,
 622 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/f816dc0acf7498e10496222e9db10-Paper.pdf.
 623

624

625 Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
 626 continuous side information. In *Algorithmic learning theory*, pp. 597–618. PMLR, 2018.

627

628 Joseph Christian G Noel. Reinforcement learning agents in colonel blotto. *arXiv preprint
 629 arXiv:2204.02785*, 2022.

630

631 Frans A Oliehoek, Christopher Amato, et al. *A concise introduction to decentralized POMDPs*,
 632 volume 1. Springer, 2016.

633

634 Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
 635 multi-agent deep reinforcement learning algorithms in cooperative tasks. In *Proceedings of the
 636 Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)*, 2021.

637

638 Jack Parker-Holder, Minqi Jiang, Michael D Dennis, Mikayel Samvelyan, Jakob Nicolaus Foerster,
 639 Edward Grefenstette, and Tim Rocktäschel. That escalated quickly: Compounding complexity
 640 by editing levels at the frontier of agent capabilities. In *Deep RL Workshop NeurIPS 2021*, 2021.
 641 URL <https://openreview.net/forum?id=3qGIInPFqR0p>.
 642

643

644 Josip E Peajcariaac and Yung Liang Tong. *Convex functions, partial orderings, and statistical
 645 applications*. Academic Press, 1992.

646

647 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
 648 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 649 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020. URL <http://jmlr.org/papers/v21/20-081.html>.
 650

651 Brian Roberson. The colonel blotto game. *Economic Theory*, 29(1):1–24, 2006.

652

653 A Wayne Roberts and Dale E Varberg. *Convex Functions: Convex Functions*, volume 57. Academic
 654 Press, 1974.

648 Max Rudolph, Sonia Chernova, and Harish Ravichandar. Desperate times call for desperate measures:
 649 towards risk-adaptive task allocation. *2021 IEEE/RSJ International Conference on Intelligent*
 650 *Robots and Systems (IROS)*, pp. 2592–2597, 2021.

651 Marwaan Simaan and Jose B Cruz. On the stackelberg strategy in nonzero-sum games. *Journal of*
 652 *Optimization Theory and Applications*, 11(5):533–555, 1973.

654 Yunlong Song, Sang bae Kim, and Davide Scaramuzza. Learning quadruped locomotion using
 655 differentiable simulation. In *8th Annual Conference on Robot Learning*, 2024. URL <https://openreview.net/forum?id=XopATjibyz>.

657 Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
 658 through neuroevolution. *Nature Machine Intelligence*, 1(1):24–35, 2019.

660 Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. Learning multiagent communica-
 661 tion with backpropagation. *Advances in Neural Information Processing Systems*, 29,
 662 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf.

664 J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
 665 Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
 666 for multi-agent reinforcement learning. *Advances in Neural Information Processing Systems*, 34:
 667 15032–15043, 2021.

668 Kale-ab Abebe Tessera, Arrasy Rahman, and Stefano V Albrecht. Hypermarl: Adaptive hypernet-
 669 works for multi-agent rl. *arXiv preprint arXiv:2412.04233*, 2024.

671 Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. Shapley q-value: A local reward
 672 approach to solve global reward games. In *Proceedings of the AAAI conference on artificial*
 673 *intelligence*, volume 34, pp. 7285–7292, 2020a.

674 Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C Green. Multi-agent reinforcement
 675 learning for active voltage control on power distribution networks. *Advances in neural information*
 676 *processing systems*, 34:3271–3284, 2021a.

677 T Wang, T Gupta, B Peng, A Mahajan, S Whiteson, and C Zhang. Rode: learning roles to decompose
 678 multi- agent tasks. *Proceedings of the International Conference on Learning Representations*,
 679 2021b.

681 Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-Based Multi-Agent Explo-
 682 ration. *International Conference on Learning Representations*, 2019.

683 Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. ROMA: Multi-agent reinforcement
 684 learning with emergent roles. *Proceedings of the 37th International Conference on Machine*
 685 *Learning*, 119:9876–9886, 13–18 Jul 2020b. URL <https://proceedings.mlr.press/v119/wang20f.html>.

687 Jie Xu, Miles Macklin, Viktor Makoviychuk, Yashraj Narang, Animesh Garg, Fabio Ramos, and Woj-
 688 ciech Matusik. Accelerated policy learning with parallel differentiable simulation. In *International*
 689 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=ZSKRQMvttc>.

692 Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.
 693 URL <https://github.com/facebookresearch/hydra>.

694 Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li. Ldsa:
 695 Learning dynamic subtask assignment in cooperative multi-agent reinforcement learning. *Advances*
 696 *in neural information processing systems*, 35:1698–1710, 2022.

697 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 698 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in Neural Information*
 699 *Processing Systems*, 35:24611–24624, 2022.

701 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 overview of theories and algorithms. *arXiv preprint arXiv:1911.10635*, 2019.

702 **A COMPUTATIONAL RESOURCES USED**
703

704 For the realization of this work, we have employed computational resources that have gone towards:
 705 experiment design, prototyping, and running final experiment results. Simulation and training are
 706 both run on GPUs, no CPU compute has been used. Results have been stored on the WANDB cloud
 707 service. We estimate:

708

- 709 • 300 compute hours on an NVIDIA GeForce RTX 2080 Ti GPU.
- 710 • 500 compute hours on an NVIDIA L40S GPU.

712 Simply reprocing our results using the available code will take considerably less compute hours
 713 (around a day).

715 **B CODE AND DATA AVAILABILITY**
716

717 We attach the code in the supplementary materials. The code contains instructions on how to
 718 reproduce the experiments in the paper and dedicated YAML files containing the hyperparameters for
 719 each experiment presented. The YAML files are structured according to the HYDRA (Yadan, 2019)
 720 framework which allows smooth reproduction as well as systematic and standardized configuration.
 721 We further attach all scripts to reproduce the plots in the paper from the experiment results.

723 **C IMPLEMENTATION DETAILS**
724

725 For all experiments, we use the MAPPO MARL algorithm (Yu et al., 2022). Environments are
 726 implemented in the multi-agent environment simulator VMAS (Bettini et al., 2022), and trained using
 727 TorchRL (Bou et al., 2023). Both the actor and critic are two-layer MLPs with 256 neurons per layer
 728 and Tanh activation. Further details, such as hyperparameter choices, are available in the attached
 729 code and YAML configuration files.

730 Experiments were run on a single Nvidia L40 GPU. In the HetGPS experiments (Sec. 4), a standard
 731 MARL training iteration (60,000 frames) takes approx. 15s; including the environment backpropagation
 732 increases this to approximately 20s.

734 **D USE OF LLMs**
735

736 We used LLMs (ChatGPT 4o and Gemini 2.5 Pro) to improve some parts of the writing, e.g., make
 737 wording suggestions. We verified and take responsibility for all LLM-related outputs in this work.

739 **E COLONEL BLOTO & LEVEL-BASED FORAGING**
740

741 We describe how two well-known settings from the literature fit into our theoretical framework, and
 742 check what our theoretical results say about their heterogeneity gain.

743 **E.1 TEAM COLONEL BLOTO (FIXED ADVERSARY)**
744

745 The *Colonel Blotto game* is a well-known allocation game studied in both game theory and MARL
 746 (Roberson, 2006; Noel, 2022). It is used to model election strategies and other resource-based
 747 competitions. In the team variant with fixed adversary, N friendly colonels (agents) each distribute
 748 a (fixed and equal) budget of troops $r_{ij} \geq 0$, $\sum_{j=1}^M r_{ij} = 1$ across M battlefields $j \in \{1, \dots, M\}$
 749 (our tasks). A fixed adversary selects a *stochastic* opposing allocation strategy, i.e. a distribution π_{adv}
 750 over vectors $a = (a_1, \dots, a_M)$ which is fixed throughout training and evaluation. Let $s_j = \sum_{i=1}^N r_{ij}$
 751 denote the team force committed to battlefield j . Our agents win against the adversary if the troops
 752 they allocate to a given field surpass the troops allocated by the adversary. The expected value secured
 753 on battlefield j is therefore

754

$$T_j(a_j) = v_j \mathbb{E}_{a \sim \pi_{\text{adv}}} [1[s_j > a_j]] = v_j \Pr_{a \sim \pi_{\text{adv}}} [s_j > a_j],$$

756 where $1[x > y]$ denotes the indicator function. This is a **thresholded-sum** that remains symmetric
 757 and coordinate-wise non-decreasing in every agent’s contribution r_{ij} . Aggregating across battlefields
 758 with a value-weighted sum yields the team reward
 759

$$760 \quad R(A) = \sum_{j=1}^M T_j(a_j) = \underbrace{\sum_{j=1}^M}_{U} T_j \left(\underbrace{\sum_{i=1}^N r_{ij}}_{\oplus} \right),$$

765 so the game fits the double-aggregation structure $R(A) = \bigoplus_j \bigoplus_i r_{ij}$ assumed in our analysis.
 766

767 **Heterogeneity Gain:** This is a continuous allocation game, and the inner aggregator T_j is an indicator
 768 function over the sum of troop allocations to battlefield j . This function is Schur-concave (and
 769 Schur-convex at the same time!). Hence, by Thm. 3.2, heterogeneous colonel teams, where each
 770 colonel has a distinct troop allocation strategy, have no advantage over homogeneous teams, where all
 771 colonels employ the same allocation strategy: $\Delta R = 0$. This makes sense, as it makes no difference
 772 whether two different colonels allocate $x/2$ troops to a battlefield, or one colonel allocates x troops
 773 to the battlefield.

774 Our analysis also tells us what happens when we change T_j : this provides insights for generalizations
 775 of the Colonel Blotto game. For example, maybe the troops of different colonels don’t cooperate as
 776 well with each other, such that two colonels allocating $x/2$ troops to a battlefield results in a lower
 777 T_j -value than a single colonel allocating x troops. In this case, T_j becomes strictly Schur-convex, and
 778 Thm. 3.1 tells us that $\Delta R > 0$ as long as the optimal allocation is non-trivial. Hence, heterogeneous
 779 teams are advantaged.

780 E.2 LEVEL-BASED FORAGING

781 The well-known *level-based foraging* (LBF) benchmark, based on the knapsack problem (Garey
 782 et al., 1990), is a deceptively challenging, embodied MARL environment, where N agents are placed
 783 on a grid with M food items, and are tasked with collecting them. Each item j has an integer level
 784 L_j that must be met or exceeded by the combined skills of the agents standing on that cell before it
 785 can be collected (Papoudakis et al., 2021). Let agent i ’s skill be e_i . At a given step the binary variable
 786

$$787 \quad r_{ij} \in \{0, e_i\}, \quad \text{with } \sum_{j=1}^M r_{ij} \leq e_i,$$

788 denotes whether i contributes its skill to item j . In our setting, we assume all agents are equally skilled,
 789 so $e_i = 1 \forall i$. Collecting these variables thus yields an allocation matrix $A = [r_{ij}] \in \{0, e_i\}^{N \times M}$,
 790 which again matches our framework.

791 **Inner aggregator.** A food item is harvested if the summed skill on its cell reaches the threshold, so
 792

$$793 \quad T_j(a_j) = L_j 1[\sum_{i=1}^N r_{ij} \geq L_j], \quad a_j = (r_{1j}, \dots, r_{Nj})^\top.$$

794 This **threshold-sum** is symmetric and monotone, depending only on the sum of its arguments and
 795 therefore simultaneously Schur-convex and Schur-concave.

802 **Outer aggregator.** The stepwise team reward is the sum of harvested item values,
 803

$$804 \quad R(A) = \sum_{j=1}^M T_j \left(\sum_{i=1}^N r_{ij} \right) = \underbrace{\sum_{j=1}^M}_{U} T_j \left(\underbrace{\sum_{i=1}^N r_{ij}}_{\oplus} \right) = \bigoplus_{j=1}^M \bigoplus_{i=1}^N r_{ij},$$

805 so LBF also conforms to the double-aggregation form $R(A) = \bigoplus_j \bigoplus_i r_{ij}$.

810 **MARL Environment Reward.** In the level-foraging environment, items that are picked up either
 811 disappear; replace themselves with different items; or replace themselves with the same item (possibly
 812 at a different cell). In all of these cases we can represent the cumulative reward as $\sum_{t=0}^T \gamma^t R_t(A_t)$
 813 for some sequence $(R_t)_{t=1,\dots,T}$ of rewards adhering to the above reward structure.
 814

815 **Heterogeneity Gain:** We analyze the heterogeneity gap of a specific stepwise reward R .

816 Because this is an embodied environment where each agent can either stand on an item ($r_{ij} = 1$) or
 817 not ($r_{ij} = 0$), effort allocations are *discrete*. Our continuous curvature test therefore does not apply
 818 directly, but the discrete analysis in Fig. 2 (left panel) does.

819 The table in Fig. 2 tells us something about the case where all items have level $L_j = 1$. In this case,
 820 since we assumed $e_i = 1$ for all agents, the inner aggregator reduces to
 821

$$822 \quad T_j(a_j) = \mathbb{1}\left[\sum_{i=1}^N r_{ij} \geq 1\right] = \max_i r_{ij},$$

823 while the outer aggregator is an unnormalized sum, which becomes the *mean* when divided by M .
 824 Hence $R(A) = \sum_j \max_i r_{ij}$, which, up to the constant $1/M$, is exactly the case $U = \text{mean}$, $T =$
 825 max of Fig. 2. That table shows
 826

$$827 \quad \frac{1}{M} \Delta R = \frac{\min\{M, N\} - 1}{M},$$

828 so the heterogeneity gap is *strictly positive* whenever the team could in principle cover more than
 829 one item ($\min\{M, N\} > 1$). Intuitively, a homogeneous team can only collect one item per step
 830 (all agents flock to the same cell), whereas heterogeneous agents may spread out and capture up to
 831 $\min\{M, N\}$ items simultaneously.
 832

833 This analysis can be extended to the case where all items have the same level $L > 1$ and $L \mid N$ by
 834 grouping agents into $\tilde{N} := N/L$ agent teams, each bundle contributing exactly L units of skill. This
 835 yields
 836

$$837 \quad \frac{1}{ML} \Delta R = \frac{\min\{M, \tilde{N}\} - 1}{M}.$$

838 (We omit the formal analysis, which is not difficult). Thus, if the team can form at least two such
 839 bundles ($\tilde{N} > 1$), heterogeneity is again advantageous. If it cannot, then $\Delta R = 0$, and there is no
 840 advantage to heterogeneity.
 841

842 When the levels $\{L_j\}$ differ, an exact closed form is harder, but in general we expect $\Delta R > 0$
 843 whenever there is some combination of items that the heterogeneous team can collect, which in total
 844 is worth more than the largest single item that can be collected if all N agents stand on its cell.

845 In LBF, therefore, our theory suggests that behavioral diversity is often advantageous. Note that
 846 (unlike the Colonel Blotto game) since LBF is an embodied, time-extended MARL environment, this
 847 analysis does not *formally guarantee* an advantage to RL-based heterogeneous agent teams: rather,
 848 it identifies that there are effort allocation strategies that will give these teams an advantage over
 849 homogeneous teams. The agents must still *learn* and be able to execute these strategies to gain this
 850 advantage (e.g., they must learn how to move to attain the desired allocations).
 851

852 F SUM-FORM AGGREGATORS

853 Many useful reward functions are *sum-form aggregators*:

854 **Definition F.1** (Sum-Form Aggregator). A task-level aggregator $f : \mathbb{R}^N \rightarrow \mathbb{R}$ for task j is a **sum-form aggregator** if it can be written as: $f(x_j) = \sum_{i=1}^N g_i(x_j)$, where $g_i : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. We say f is (strictly) convex or concave if g is (strictly) convex or concave, respectively.

855 Tab. 3 contains examples. When our aggregators have this form, Schur-convexity (concavity) is
 856 determined by whether g is convex (concave)—a simple computational test. This is because of the
 857 following known connection between sum-form aggregators and Schur-convexity/concavity:

858 **Lemma F.1** (Schur Properties of Sum-Form Aggregators (Peajcariaac & Tong, 1992)). Given sum-
 859 form task-level aggregator $f(x) = \sum_{i=1}^N g_i(x_i)$, the following holds: **(i)** if g is (strictly) convex, then
 860 f is (strictly) Schur-convex; and **(ii)** if g is (strictly) concave, then f is (strictly) Schur-concave.

This lemma simplifies checking the conditions of our heterogeneity gain results. For example, the following corollary can be used to establish $\Delta R > 0$ for many of the aggregators in Tab. 3:

Corollary F.1 (Convex-Concave Positive Heterogeneity Gain). *Let $N, M \geq 2$. Let $g : [0, 1] \rightarrow \mathbb{R}_{\geq 0}$ be a non-negative strictly convex function satisfying $g(0) = 0$, and let $h : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be a strictly concave, increasing function satisfying $h(0) = 0$. If each task-level aggregator is a strictly convex sum-form aggregator $T_j(a_j) = \sum_{i=1}^N g(r_{ij})$, and the outer aggregator is a strictly concave sum-form aggregator $U(y) = \sum_{j=1}^M h(y_j)$, then $\Delta R > 0$.*

Proof of Corollary F.1. We will apply Theorem 3.1 by verifying its conditions:

First, by Lemma F.1, since g is strictly convex, the (identical) task-level aggregators $T_j(x) = \sum_{i=1}^N g(x_i)$ are strictly Schur-convex, satisfying condition (i) of Theorem 3.1.

Second, the outer aggregator $U(y_1, \dots, y_M)$ is strictly increasing at every coordinate by definition, satisfying condition (ii).

Hence, the conditions of Thm. 3.1 apply. To establish $\Delta R > 0$, it remains to verify that the optimal allocation is non-trivial: it distributes effort across at least two tasks. In any admissible *homogeneous* solution, each of the N agents chooses the same effort-distribution (c_1, \dots, c_M) on tasks, with $\sum_j c_j = 1$. Then task j 's reward is $T_j = N g(c_j)$, so $R(A) = \sum_{j=1}^M h(N g(c_j))$. The trivial, *all-agent single-task allocation* uses $(c_j = 1, c_{k \neq j} = 0)$. Its reward is therefore $R_{\text{corner}} = h(N g(1)) + \sum_{k \neq j} h(N g(0)) = h(N g(1))$ since $g(0) = 0$ and $h(0) = 0$.

Strict concavity of h implies that $h(N g(1)) < N \cdot h(g(1))$. Hence, agents can attain a better reward by allocating effort 1 to N different tasks rather than a single task. This shows that the best solution *must* use at least two nonzero c_j , completing the proof. \square

G FORMAL ANALYSIS

G.1 PROOF OF THM. 3.1

Proof of Thm. 3.1. Let A_{hom} be an optimal homogeneous allocation (i.e., $R(A_{\text{hom}}) = R_{\text{hom}}$), whose i th row is the vector

$$c = (c_1, \dots, c_M) \quad \text{with} \quad \sum_{j=1}^M c_j = 1.$$

Then each column j of A_{hom} is the uniform vector $u_j = (c_j, c_j, \dots, c_j)^\top \in \mathbb{R}^N$. Hence the task-level reward is $T_j(u_j)$, and the overall reward is

$$R(A_{\text{hom}}) = U(T_1(u_1), \dots, T_M(u_M)).$$

Because $\sum_j c_j = 1$, there is at least one task j with $c_j > 0$. We construct a heterogeneous allocation A_{het} such that each column x_j in A_{het} has the same sum as the corresponding column in A_{hom} .

The total effort allocated to a task j can be expressed as $\lfloor N c_j \rfloor + f_j$, where $0 \leq f_j < 1$. First, we assign $\lfloor N c_j \rfloor$ agents to allocate effort 1 to task j , for every task j . These agents are all distinct. This leaves us with $\sum_j f_j = N - \sum_j \lfloor N c_j \rfloor$ agents that have not allocated any effort yet. Let i be the first of those agents. We have agent i allocate f_1 effort to task 1, f_2 effort to task 2, and so on, until we arrive at a task k such that $f_1 + \dots + f_k = 1 + s$, for some $s > 0$. We have i allocate $f_k - s$ to this task k . Then, we move to agent $i + 1$, and allocate the remaining fractional efforts in the same manner (and in particular, allocating s effort to task k), until agent $i + 1$ overflows. Then we move to agent $i + 2$, and so on. This ensures that we have allocated N effort in total across the agents, and that every agent's effort allocation sums exactly to 1, so is feasible.

Let x_j be the j th column of A_{het} . We note the following fact: any non-uniform vector whose sum is $N c_j$ majorizes the uniform vector u_j . Hence, $T_j(x_j) \geq T_j(u_j)$, with equality only if $x_j = u_j$. This means that if $A_{\text{het}} \neq A_{\text{hom}}$, then

918
919
920

$$R(A_{\text{het}}) = U(T_1(x_1), \dots, T_M(x_M)) > U(T_1(u_1), \dots, T_M(u_M)) = R(A_{\text{hom}}).$$

921 We note that $A_{\text{hom}} = A_{\text{het}}$ only if A_{hom} is a trivial allocation, as A_{het} contains at least one agent
922 allocating effort 1 to some task, and A_{hom} 's agents only allocate fractional efforts, if it is non-trivial.
923 Otherwise, since $R(A_{\text{hom}}) = R_{\text{hom}}$, the above inequality implies $\Delta R = R_{\text{het}} - R_{\text{hom}} > 0$. This
924 completes the proof. \square

925
926

G.2 PROOF OF THM. 3.2

927 *Proof of Thm. 3.2.* Let A be an arbitrary feasible allocation, and let A_{hom} be a *homogeneous* allocation
928 with the same column sums. Concretely, for each column j , define

$$930 \quad s_j = \sum_{i=1}^N r_{ij} \quad \text{and} \quad u_j = \left(\frac{s_j}{N}, \frac{s_j}{N}, \dots, \frac{s_j}{N} \right)^\top,$$

933 so u_j is the *uniform* distribution of total mass s_j across N agents. Then construct

$$934 \quad A_{\text{hom}} = \begin{pmatrix} \frac{s_1}{N} & \dots & \frac{s_M}{N} \\ \vdots & \ddots & \vdots \\ \frac{s_1}{N} & \dots & \frac{s_M}{N} \end{pmatrix},$$

938 which is clearly *homogeneous* (each row is the same), and respects each column sum s_j . Since
939 $\sum_j s_j = N$, each row sums to 1, hence the allocation is feasible. By Schur-concavity of T_j , for each
940 column j we have

$$941 \quad a_j \succ u_j \implies T_j(a_j) \leq T_j(u_j),$$

943 unless a_j is u_j . In other words, *any* deviation from the uniform vector with the same sum $\sum_{i=1}^N a_{ji} =$
944 s_j will not increase $T_j(a_j)$ under Schur-concavity. Hence for each column j of A , $T_j(a_j) \leq T_j(u_j)$.
945 Since U is non-decreasing in each coordinate,

$$946 \quad R(A) = U(T_1(a_1), \dots, T_M(a_M)) \leq U(T_1(u_1), \dots, T_M(u_M)) = R(A_{\text{hom}}).$$

947 This implies $\Delta R = 0$. \square

949
950

G.3 PROOF OF THM. 3.3

951 *Proof of Thm. 3.3.* By hypothesis, the components of the task score vector

$$953 \quad \mathbf{T}(\mathbf{A}) = (T_1(a_1), T_2(a_2), \dots, T_M(a_M))$$

955 always sum to C . By strict Schur-convexity, the maximum value of U over such vectors is attained
956 precisely at an extreme point of the C -simplex, i.e. at some permutation of $(C, 0, \dots, 0)$. Hence, we
957 seek to find an allocation of efforts, A_{corner} , that causes $\mathbf{T}(\mathbf{A})$ to equal this vector.

958 Let each agent i invest *all* of its effort into task 1. This is the trivial allocation. Then the first column
959 of A_{corner} is $(1, 1, \dots, 1)^\top$, and all other columns a_j are zero. Since task scores sum to C , we get
960 $T_1(a_1) = C$, $T_j(a_j) = 0$ for $j \neq 1$. By assumption (2), we infer that the vector of task-level
961 scores is indeed $(C, 0, \dots, 0)$.

962 Notice that *each row of A_{corner} is the same* $(1, 0, \dots, 0)$, making A_{corner} a *homogeneous* allocation.
963 Hence, we attained the maximum possible reward $R(\mathbf{A})$ through a homogeneous allocation, implying
964 $\Delta R = 0$. \square

965
966
967

G.4 PROOF OF THM. 3.4

968 Before proving the statement, let's write the expressions for homogeneous and heterogeneous optima.
969 For each task j , we defined

$$970 \quad T_j(A) = \sum_{i=1}^N \frac{\exp(t \cdot r_{ij})}{\sum_{\ell=1}^N \exp(t \cdot r_{\ell j})} r_{ij},$$

972 while defining the outer aggregator to be
 973

$$974 \quad 975 \quad 976 \quad U(T_1(a_1), \dots, T_M(a_m)) = \sum_{j=1}^M \frac{\exp(\tau \cdot T_j(A))}{\sum_{\ell=1}^M \exp(\tau \cdot T_\ell(A))} T_j(A),$$

977 where $t, \tau \in \mathbb{R}$ are temperature parameters. In the **homogeneous setting**, where all agents share the
 978 same allocation $c = (c_1, \dots, c_M)$, we therefore have $T_j(A) = \sum_{i=1}^N \frac{\exp(t c_j)}{\sum_{\ell=1}^N \exp(t c_\ell)} c_j = c_j$. Thus,
 980

$$981 \quad 982 \quad 983 \quad R_{\text{hom}} = \max_{c \in \Delta^{M-1}} \sum_{j=1}^M \frac{\exp(\tau c_j)}{\sum_{\ell=1}^M \exp(\tau c_\ell)} c_j$$

984 where Δ^{M-1} is the simplex of all admissible allocations.
 985

986 In the general **heterogeneous setting**, each row (r_{i1}, \dots, r_{iM}) can be different. Then
 987

$$988 \quad 989 \quad 990 \quad 991 \quad T_j(A) = \sum_{i=1}^N \frac{\exp(t r_{ij})}{\sum_{\ell=1}^N \exp(t r_{\ell j})} r_{ij},$$

992 and we choose $A \in (\Delta^{M-1})^N$ to maximize
 993

$$994 \quad 995 \quad 996 \quad R_{\text{het}} = \max_A \sum_{j=1}^M \frac{\exp(\tau T_j(A))}{\sum_{k=1}^M \exp(\tau T_k(A))} T_j(A).$$

997 Keeping these expressions in mind, we proceed with the proof of Thm. 3.4.
 998

999 Reminder: assuming $N = M \geq 2$, we want to prove $\Delta R(t, \tau; N) = 0$ when $t \leq 0$, and
 1000

$$1001 \quad 1002 \quad 1003 \quad 1004 \quad \boxed{\Delta R(t, \tau; N) \geq \begin{cases} \sigma(t, N) - \frac{1}{N}, & t > 0, \tau \leq 0, \\ \max\{\sigma(t, N) - \sigma(\tau, N), 0\}, & t > 0, \tau \geq 0. \end{cases}}$$

1005 otherwise, where $\sigma(t, N) := \frac{e^t}{e^t + N - 1}$.
 1006

1007
 1008 *Proof of Thm. 3.4.* When $t \leq 0$, T_j is Schur-concave, so $\Delta R = 0$ by Thm. 3.2. We assume $t > 0$ for the rest of the proof.
 1009

1010 *Homogeneous optimum.* If every row of A equals the same allocation $c \in \Delta^{N-1}$, then $T_j(A) = c_j$.
 1011 U is Schur-concave for $\tau \leq 0$, and Schur-convex for $\tau \geq 0$, hence it is maximized by the uniform
 1012 distribution in the former case, and by a 1-hot vector in the latter case, yielding:
 1013

$$1014 \quad 1015 \quad 1016 \quad 1017 \quad R_{\text{hom}} = \max_{c \in \Delta^{N-1}} U(c) = \begin{cases} \frac{1}{N}, & \tau \leq 0, \\ \sigma(\tau, N), & \tau > 0. \end{cases} \quad (\text{H})$$

1018 *Lower bound on R_{het} .* The *trivial* allocation, where every agent works on the same task, produces
 1019 $R_{\text{trivial}} = \sigma(\tau, N)$. The *spread* allocation, where agent i works exclusively on task i , makes each
 1020 column “one-hot”; this gives $T_j = \sigma(t, N)$ for all j , and plugging this into U , we get $R_{\text{spread}} =$
 1021 $\sigma(t, N)$. Consequently
 1022

$$1023 \quad 1024 \quad 1025 \quad R_{\text{het}} \geq \max\{\sigma(t, N), \sigma(\tau, N)\}. \quad (\text{L})$$

Combining (H) and (L) gives the desired lower bound. \square

1026 Table 1: All nine extreme cases of inner/outer aggregators belonging to the set $\{\min, \text{mean}, \max\}$.
1027 In each cell, we show the best possible outcome for Heterogeneous vs. Homogeneous allocations and
1028 the resulting ΔR .

	$T = \min$	$T = \text{mean}$	$T = \max$
$U = \min$	<p>Inner: $T_j = \min_i r_{ij}$.</p> <p>Best R_{het}, R_{hom}: All must have $r_{ij} \geq x$ to push $\min_i r_{ij} = x$, so $x \leq 1/M$. $\Rightarrow T_j = 1/M$.</p> <p>Outer: $\min_j T_j = 1/M \Rightarrow R = 1/M$. Gap: 0.</p>	<p>Inner: $T_j = \frac{1}{N} \sum_i r_{ij}$ (avg over i).</p> <p>Maximize $\min_j T_j$: Both R_{het}, R_{hom} must make T_j all equal (for best min), so $T_j = 1/M$.</p> <p>Outer: $\min_j T_j = 1/M \Rightarrow R = 1/M$. Gap: 0.</p>	<p>Inner: $T_j = \max_i r_{ij}$.</p> <p>Outer: picks $\min_j T_j$.</p> <p>$R_{het}: \min_j T_j = 1 \Rightarrow R = 1$. $R_{hom}: \min_j T_j = 1/M \Rightarrow R = 1/M$.</p> <p>Gap: $1 - \frac{1}{M} = \frac{M-1}{M}$.</p>
$U = \text{mean}$	<p>Inner: $T_j = \min_i r_{ij} = 1/M$.</p> <p>Outer: simple avg $\frac{1}{M} \sum_j T_j$. Since $\sum_j T_j = M \cdot (1/M) = 1 \Rightarrow R = 1/M$. Both R_{het}, R_{hom} same $\Rightarrow \Delta R = 0$. Gap: 0.</p>	<p>Inner: $T_j = \frac{1}{N} \sum_i r_{ij}$. Then $\sum_j T_j = 1$.</p> <p>Outer: avg = $\frac{1}{M} \sum_j T_j$. Hence $R = \frac{1}{M} \cdot 1 = \frac{1}{M}$. Same for R_{het}, R_{hom}. Gap: 0.</p>	<p>Inner: $T_j = \max_i r_{ij}$.</p> <p>Outer: avg = $\frac{1}{M} \sum_j T_j$.</p> <p>$R_{het}: \text{sum} = M \Rightarrow R = 1$. $R_{hom}: \text{sum} = 1 \Rightarrow R = 1/M$.</p> <p>Gap: $1 - \frac{1}{M} = \frac{M-1}{M}$.</p>
$U = \max$	<p>Inner: $T_j = \min_i r_{ij}$ can be made 1 for one task.</p> <p>Outer: picks $\max_j T_j = 1 \Rightarrow R = 1$. Same for R_{het}, R_{hom}. Gap: 0.</p>	<p>Inner: $T_j = \text{avg over } i$.</p> <p>Outer: picks $\max_j T_j$.</p> <p>Both R_{het}, R_{hom} can put all effort into one task to get $T_j = 1$, so $R = 1$. Gap: 0.</p>	<p>Inner: $T_j = \max_i r_{ij}$.</p> <p>Outer: picks $\max_j T_j$.</p> <p>Both R_{het}, R_{hom} can achieve $\max_j = 1 \Rightarrow R = 1$. Gap: 0.</p>

Table 2: A “9 extreme cases” table for *discrete, one-task-per-agent* allocations.

	min	mean	max
min	<p>Inner:</p> $T_j \rightarrow \begin{cases} 1, & \text{if all agents pick } j, \\ 0, & \text{otherwise.} \end{cases}$ <p>Outer: $\min_j T_j$. To get $R > 0$, must have $T_j > 0$ for every j (i.e. all agents pick all tasks, impossible). Hence $R_{het} = R_{hom} = 0$ typically, $\Delta R = 0$.</p>	<p>Inner: $T_j = \frac{ \mathcal{I}_j }{N}$</p> <p>Outer: $\min_j T_j$. $R_{het} = \lfloor N/M \rfloor / N$. $R_{hom} = 0$. $\Delta R = \lfloor N/M \rfloor / N$.</p>	<p>Inner:</p> $T_j \rightarrow \begin{cases} 1, & \text{if at least 1 agent picks } j, \\ 0, & \text{if no agent picks } j. \end{cases}$ <p>Outer: $\min_j T_j$.</p> <ul style="list-style-type: none"> - <i>Heterogeneous</i> can choose s distinct tasks. If want $\min_j = 1$, must pick all M tasks. That requires $N \geq M$. Then $R = 1$. - <i>Homogeneous</i> covers only 1 task $\Rightarrow \min_j = 0$ for $M > 1 \Rightarrow R = 0$. <p>$\Delta R = 1$ if $N \geq M$, else 0.</p>
mean	<p>Inner: $T_j = 1$ only if all pick j, else 0.</p> <p>Summation $\sum_j T_j$ is number of tasks chosen by <i>all</i> agents. Usually 0 or 1.</p> <p>Outer: Average across j. $R = \frac{1}{M} \sum_j T_j$. $\Rightarrow R = 1/M$, $\Delta R = 0$.</p>	<p>Inner: $T_j = \frac{ \mathcal{I}_j }{N}$.</p> <p>Outer: Average across tasks: $R = \frac{1}{M} \sum_{j=1}^M \frac{ \mathcal{I}_j }{N} = \frac{1}{M}$. No matter how agents are distributed, $\sum_{j=1}^M \mathcal{I}_j = N$. Hence $R_{het} = R_{hom} = \frac{1}{M}$, $\Delta R = 0$.</p>	<p>Inner: $T_j = 1$ if chosen by at least 1 agent, else 0.</p> <p>Outer: Average across j: $\frac{1}{M} \sum_j T_j$. This is $\frac{1}{M} \cdot (\# \text{ of tasks chosen})$.</p> <ul style="list-style-type: none"> - <i>Heterogeneous</i> can pick up to $\min(M, N)$ tasks, so $R = \frac{\min(M, N)}{M}$. - <i>Homogeneous</i> covers exactly 1 task $\Rightarrow R = 1/M$. <p>$\Delta R = \frac{\min(M, N) - 1}{M}$.</p>
max	<p>Inner: $T_j = 1$ only if all pick j, else 0.</p> <p>Outer: $\max_j T_j$. $\Delta R = 0$.</p>	<p>Inner: $T_j = \mathcal{I}_j /N$.</p> <p>Outer: ($\tau \rightarrow +\infty$): $\max_j T_j$. We can place <i>all</i> agents on one task, get $T_j = 1$. Then $R = 1$. Same for homogeneous or heterogeneous. $\Delta R = 0$.</p>	<p>Inner: $T_j = 1$ if at least 1 picks j, else 0.</p> <p>Outer: $\max_j T_j = 1$ if any agent picks j. Even a single task yields $R = 1$. So $R_{hom} = R_{het} = 1$, $\Delta R = 0$.</p>

H DERIVING THE $\{\min, \text{mean}, \max\}$ HETEROGENEITY GAINS IN THE FIG. 2 TABLE

We derive these heterogeneity gain case-by-case. Tab. 1 summarizes the derivation for continuous allocations ($r_{ij} \in [0, 1]$), and Tab. 2 does the same for discrete effort allocations ($r_{ij} \in \{0, 1\}$).

1080 **I PARAMETRIZED FAMILIES OF AGGREGATORS**
10811082 The Table in this section illustrates several families of *generalized aggregators* that the analysis in
1083 this paper applies to. The scalar t parametrizes each family of aggregators, continuously shifting the
1084 aggregators from Schur-concave to Schur-convex.1085 Table 3: Illustrative families of parametric (and one nonparametric) aggregators $f_t(x)$. Changing the
1086 real parameter t can switch between Schur-convex and Schur-concave behaviors (on nonnegative
1087 inputs), or control how strongly the aggregator favors “peaked” vs. “uniform” distributions. As
1088 $t \rightarrow \pm\infty$ or $t \rightarrow 0$, many reduce to well-known extremes such as max, min, or the arithmetic mean.
1089

Name	Definition	Schur Property & Limits
Power-Sum	$f_t(x) = \sum_{i=1}^N (x_i)^t, \quad x_i \geq 0, \quad t > 0$	<ul style="list-style-type: none"> Strictly <i>Schur-convex</i> for $t > 1$. Strictly <i>Schur-concave</i> for $0 < t < 1$. At $t = 1$, it is linear (both Schur-convex and Schur-concave). Undefined at $t \leq 0$ if any $x_i = 0$, though one can extend with limits.
Power-Mean	$M_t(x) = \left(\frac{1}{N} \sum_{i=1}^N (x_i)^t \right)^{1/t}, \quad x_i \geq 0, \quad t \neq 0$	<ul style="list-style-type: none"> Strictly <i>Schur-convex</i> for $t > 1$. Strictly <i>Schur-concave</i> for $0 < t < 1$. Reduces to arithmetic mean at $t = 1$. As $t \rightarrow \infty$, converges to $\max_i x_i$; as $t \rightarrow -\infty$, converges to $\min_i x_i$.
Log-Sum-Exp (LSE)	$\text{LSE}_t(x) = \frac{1}{t} \ln \left(\sum_{i=1}^N e^{t x_i} \right), \quad t \neq 0$	<ul style="list-style-type: none"> Strictly <i>Schur-convex</i> for $t > 0$. Strictly <i>Schur-concave</i> for $t < 0$. As $t \rightarrow \infty$, approaches $\max_i x_i$; as $t \rightarrow -\infty$, approaches $\min_i x_i$.
Softmax Aggregator	$\text{Softmax}_t(x) = \sum_{i=1}^N \frac{e^{t x_i}}{\sum_{j=1}^N e^{t x_j}} x_i, \quad t \in \mathbb{R}$	<ul style="list-style-type: none"> Strictly <i>Schur-convex</i> for $t > 0$. Strictly <i>Schur-concave</i> for $t < 0$. As $t \rightarrow \infty$, converges to $\max_i x_i$; as $t \rightarrow -\infty$, converges to $\min_i x_i$. At $t = 0$, each weight is $\frac{1}{N}$, so $\text{Softmax}_0(x) = \frac{1}{N} \sum_i x_i$.

1122 **J ADDITIONAL RESULTS IN THE MULTI-AGENT MULTI-TASK MATRIX GAME**
11231124 We report further details and results on the heterogeneity gains obtained in the multi-agent multi-task
1125 matrix game.1126 **J.1 GAME FORMULATION**1127 In Tab. 4 we provide an example of the pay-off matrix in this game for $N = M = 3$.1130 **J.2 $N = M = 2$** 1131 We train with $N = 2, M = 2$ for 100 training iterations (each consisting of 60,000 frames). We
1132 report the results for the **continuous** case in Tab. 5 and for the **discrete** case in Tab. 6. The evolution
1133 of the heterogeneity gains over training is shown in Fig. 6.

1134 Table 4: Example of a Multi-Agent Multi-Task matrix game for $N = M = 3$. Agents choose their
 1135 actions $A = (r_{ij})$ and receive the global reward $R(A) = \bigoplus_{j=1}^M \bigoplus_{i=1}^N r_{ij}$.
 1136

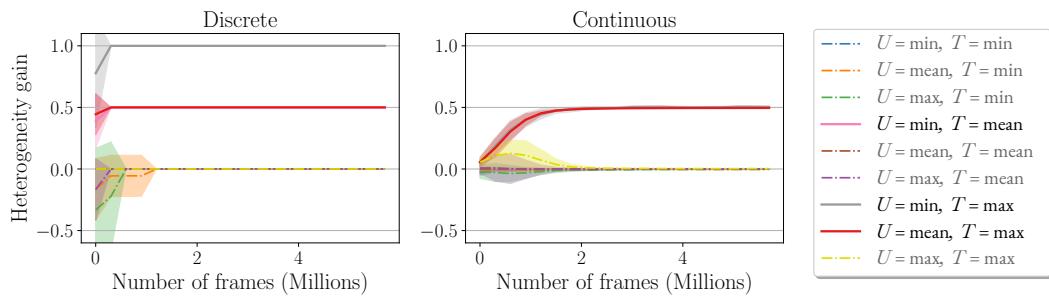
		Tasks		
		1	2	3
Agents	1	r_{11}	r_{12}	r_{13}
	2	r_{21}	r_{22}	r_{23}
	3	r_{31}	r_{32}	r_{33}

1144 Table 5: Heterogeneity gain $\Delta R \in \mathbb{R}_{0 \leq x \leq 1}$ of the **continuous** matrix game with $N = M = 2$. The
 1145 results match the theoretical analysis in the Table of Fig. 2. We report mean and standard deviation
 1146 after 6 million training frames over 9 different random seeds.
 1147

		T		
		Min	Mean	Max
U	Min	-0.002 ± 0.002	0.000 ± 0.003	0.504 ± 0.007
	Mean	-0.002 ± 0.002	0.000 ± 0.000	0.496 ± 0.001
	Max	-0.003 ± 0.002	-0.001 ± 0.001	0.003 ± 0.001

1154 Table 6: Heterogeneity gain $\Delta R \in \mathbb{R}_{0 \leq x \leq 1}$ of the **discrete** matrix game with $N = M = 2$. The
 1155 results match the theoretical analysis in Fig. 2. We report mean and standard deviation after 6 million
 1156 training frames over 9 different random seeds.
 1157

		T		
		Min	Mean	Max
U	Min	0.0 ± 0.0	0.5 ± 0.0	1 ± 0.0
	Mean	0.0 ± 0.0	0.0 ± 0.0	0.5 ± 0.0
	Max	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0



1175 Figure 6: Heterogeneity gain for the discrete and continuous matrix games with $N = M = 2$ over
 1176 training iterations. We report mean and standard deviation after 6 million training frames over 9
 1177 different random seeds. The final results match the theoretical predictions in Fig. 2.
 1178

1179 J.3 $N = M = 4$

1180 In the case $N = M = 4$, the evolution of the heterogeneity gains during training is shown in Fig. 3.
 1181 We further report the final obtained gains for the **continuous** case in Tab. 7 and for the **discrete** case
 1182 in Tab. 8.
 1183

1184 J.4 $N = M = 8$ AND $N = 12, M = 2$

1185 To test scalability, we further report results for the discrete matrix game with $N = M = 8$ in Tab. 9,
 1186 $N = 11, M = 2$ in Tab. 10. In the case of $N = 11, M = 2$, results match the predictions of Table 2
 1187 (discrete rewards) precisely.

1188 Table 7: Heterogeneity gain $\Delta R \in \mathbb{R}_{0 \leq x \leq 1}$ of the **continuous** matrix game with $N = M = 4$.
 1189 The results match the theoretical analysis in Fig. 2. We report mean and standard deviation after 12
 1190 million training frames over 9 different random seeds.

		T		
		Min	Mean	Max
U	Min	-0.003 ± 0.002	0.000 ± 0.001	0.690 ± 0.026
	Mean	-0.002 ± 0.000	0.000 ± 0.000	0.722 ± 0.002
	Max	-0.037 ± 0.023	-0.009 ± 0.005	0.029 ± 0.006

1198 Table 8: Heterogeneity gain $\Delta R \in \mathbb{R}_{0 \leq x \leq 1}$ of the **discrete** matrix game with $N = M = 4$. The
 1199 results match the theoretical analysis in the Table of Fig. 2. We report mean and standard deviation
 1200 after 12 million training frames over 9 different random seeds.

		T		
		Min	Mean	Max
U	Min	0.0 ± 0.0	0.25 ± 0.0	1.0 ± 0.0
	Mean	0.0 ± 0.0	0.0 ± 0.0	0.75 ± 0.0
	Max	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0

1208 For $N = M = 8$, we match the predictions precisely except for two cells which have negative
 1209 empirical ΔR . As discussed in Sec. 5, due to the larger agent scale and action dimensionality (8
 1210 agents and 8 tasks), for some reward structures the empirical heterogeneity gain is negative, since
 1211 the neurally heterogeneous agents we train require more time to discover the optimal policy, hence
 1212 lag behind their homogeneous counterparts under a fixed training budget. Increasing the number of
 1213 training steps steers the negative ΔR values to 0. This nuance aside, what is important is that the
 1214 results still follow our theory exactly in terms of which reward structures yield a *positive* heterogeneity
 1215 gain. For such reward structures, our theory also precisely predicts the numerical value of ΔR (Fig. 2)

1217 Table 9: Heterogeneity gain $\Delta R \in \mathbb{R}_{0 \leq x \leq 1}$ of the **discrete** matrix game with $N = M = 8$. We
 1218 report mean and standard deviation after 12 million training frames over 8 different random seeds.

		T		
		Min	Mean	Max
U	Min	0.0 ± 0.0	0.125 ± 0.0	1.0 ± 0.0
	Mean	-0.094 ± 0.068	0.0 ± 0.0	0.875 ± 0.0
	Max	-0.75 ± 0.5	0.0 ± 0.0	0.0 ± 0.0

1227 Table 10: Heterogeneity gain $\Delta R \in \mathbb{R}_{0 \leq x \leq 1}$ of the **discrete** matrix game with $N = 11, M = 2$. We
 1228 report mean and standard deviation after 12 million training frames over 8 different random seeds.
 1229 The results match the predictions of Table 2 (discrete rewards) precisely.

		T		
		Min	Mean	Max
U	Min	0.0 ± 0.0	$0.454545 \approx 5/11 \pm 0.0$	1.0 ± 0.0
	Mean	-0.094 ± 0.0	0.0 ± 0.0	0.5 ± 0.0
	Max	-0.75 ± 0.5	0.0 ± 0.0	0.0 ± 0.0

K MULTI-GOAL-CAPTURE

1238 In Multi-goal-capture, agents need to navigate to goals. Each agent observes the relative position to
 1239 the goals, and agent actions are continuous 2D forces that determine their direction of motion. The
 1240 entries r_{ij}^t of matrix A^t at time t represent the local reward of agent i towards goal j , computed as

1242 $r_{ij}^t = \left(1 - d_{ij}^t / \sum_{j=1}^M d_{ij}^t\right) / (M - 1)$, where d_{ij}^t is the distance between agent i and goal j . This
 1243 makes it so that $\sum_{j=1}^M r_{ij}^t = 1$ and $r_{ij}^t \geq 0$. At each step, the agents receive the global reward $R(A^t)$,
 1244 with aggregators $U, T \in \{\min, \text{mean}, \max\}$.
 1245

1246 Our results, shown in Fig. 4a and Tab. 11, show that our curvature theory reliably predicts when there
 1247 is a heterogeneity gain (Fig. 2): it is positive *only* for the concave-convex pairs $U = \min, T = \max$
 1248 and $U = \text{mean}, T = \max$. The heterogeneity gain is smaller in the latter case because learning
 1249 dynamics matter: with $U = \min, T = \max$ the best homogeneous policy is unique (every agent
 1250 must steer to the midpoint between the two goals) so homogeneous learners seldom find it, leaving
 1251 room for heterogeneous policies to excel (see App. K). By contrast, $U = \text{mean}, T = \max$ admits
 1252 a continuum of good homogeneous policies, which homogeneous teams execute more easily. For
 1253 $U = \max, T = \min$ and $U = \max, T = \text{mean}$, the theoretical ΔR is 0, yet the empirical
 1254 heterogeneity gap is negative (Fig. 4a). This occurs because the reward peaks only when all agents
 1255 coordinate on the same goal. Neurally heterogeneous teams learn this uniform behavior slower than
 1256 homogeneous teams, so they underperform within the fixed training budget. Additional training
 1257 would close this gap to $\Delta R = 0$.
 1258

1259 Table 11: Heterogeneity gain at the end of training for the Multi-goal-capture experiments in Fig. 4a.
 1260 We report mean and standard deviation after 30 million training frames over 9 different random seeds.
 1261

		T		
		Min	Mean	Max
U	Min	0.0 ± 0.02	0.01 ± 0.02	0.21 ± 0.03
	Mean	-0.03 ± 0.01	0.0 ± 0.0	0.12 ± 0.09
	Max	-0.08 ± 0.06	-0.07 ± 0.08	0.0 ± 0.0

1262 In Fig. 7 we juxtapose two representative $N = M = 2$ roll-outs of the MULTI-GOAL-
 1263 CAPTURE environment for *homogeneous* teams (top row) and *heterogeneous* teams (bottom row)
 1264 when $U = \min, T = \max$. Consistent with the discussion in Sec. 5, homogeneous agents steer to
 1265 the geometric midpoint between the two goals, producing almost overlapping paths—this is suboptimal,
 1266 as they cannot cover both goals. On the other hand, heterogeneous agents exaggerate their differences,
 1267 taking sharply diverging trajectories and ensuring one goal each.
 1268

1269 L 2v2 TAG EXPERIMENTS

1270 The goal of our tag experiment is to showcase that our theoretical results, which predict the value of
 1271 ΔR based on the curvature of the aggregators, hold for discrete, sparse rewards. Specifically, our
 1272 results for discrete efforts in Fig. 2 predict that only $(U, T) = (\min, \max), (\min, \text{mean}), (\text{mean}, \max)$
 1273 will have positive heterogeneity gain, with (\min, \max) maximizing the gain. We show in Fig. 4b
 1274 and Tab. 12 that this holds in 2v2 tag, despite the fact that this is a challenging, embodied, long-
 1275 horizon, whereas our formal results are for instantaneous allocation games⁴. Note that this is a highly
 1276 interpretable result: a (\min, \max) means that agents are only awarded when *both* escapers are caught,
 1277 incentivizing heterogeneous strategies where chaser agents split their behaviour so that the chasing
 1278 efforts r_{ij}^t are equally distributed between both escapers. Fig. 8 visualizes the trajectories learned by
 1279 agents trained under this (\min, \max) reward structure, showing distinct emergent pursuit strategies
 1280 emerging depending on whether the agents are neurally heterogeneous or neurally homogeneous.
 1281

1282 To test the robustness of our predictions to greater number of agents, we also ran an experiment
 1283 with 11 agents: 8 chasers and 3 escapers. We trained the agents over 500 episodes of length 1000
 1284 each (this episode length is more than twice as long as our other experiments, indicating that our
 1285 predictions are stable over longer horizons). Note that we still collect the same amount of total frames
 1286 (30M) as we reduce the number of environments sampled in parallel.
 1287

1288 ⁴The gain for (mean, \max) is small compared to the other two aggregator combinations, but still positive
 1289 at $\Delta R \approx 0.37$. This is also significantly higher than aggregator combinations for which we predict ΔR is not
 1290 positive, the largest of which attained $\Delta R < 0.01$.
 1291

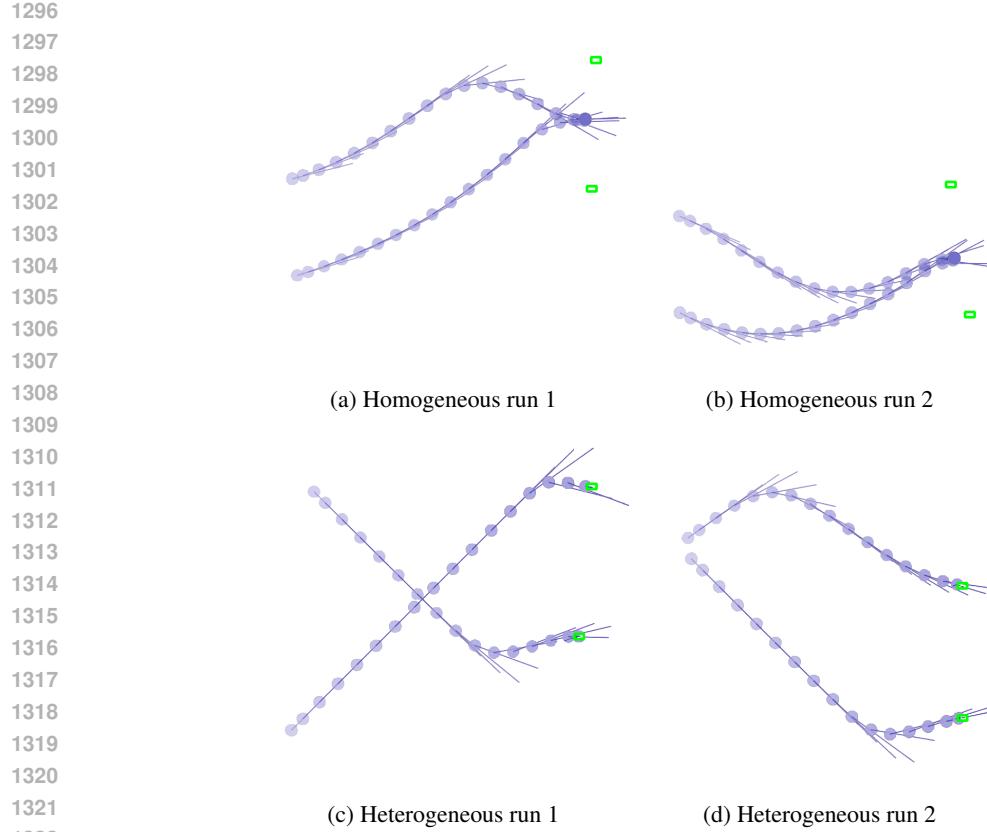


Figure 7: **Behaviour under the concave-convex aggregator** $U = \min$, $T = \max$. Each dot is an agent position; line segments indicate instantaneous velocity; green squares mark goal locations. Homogeneous policies collapse to a single “mid-point” route, while heterogeneous policies split and follow distinct paths to cover both goals. Note how the heterogeneous agents *exaggerate* the difference in their trajectories, rather than head directly to the goal: this is an outcome of the reward structure, which encourages maximal diversity.

Due to the high computational cost associated with these experiments, we selected 2 aggregator combinations for which Table 2 predicts a positive ΔR : $(U, T) = (\min, \text{mean})$ and $(U, T) = (\min, \max)$, and three “control” combinations for which we expect $\Delta R \leq 0$. The results, shown in Figure 9 (discrete rewards), illustrate that our predictions still hold in this case. The final ΔR values are $(U = \min, T = \text{mean}) = 1.243 \pm 0.615$, $(U = \min, T = \max) = 0.112 \pm 0.084$, $(U = \text{mean}, T = \text{mean}) = -0.196 \pm 0.053$, $(U = \text{mean}, T = \max) = -0.990 \pm 1.025$, and $(U = \max, T = \max) = -3.709 \pm 2.491$.

It is important to note that, while our theoretical predictions regarding when $\Delta R > 0$ hold for any number of agents N , they specifically tell us what happens when agents allocate their efforts optimally. The empirical heterogeneity gain ΔR crucially depends on the quality of the strategy agents learn in practice. As the number of agents or complexity of the task grows, we may eventually witness a divergence between the empirical heterogeneity gain and the theoretical predictions, for this reason. This does not indicate a problem with our theoretical predictions. Rather, it is a limitation of learning-based methods; using better methods will lead to empirical results that more closely mirror our predictions.

M FOOTBALL EXPERIMENTS

In some environments, the reward structure might not entirely follow the double-generalized-aggregator structure we study in this work, but at least some part of the reward function might obey this structure. In our study of the VMAS football scenario (Bettini et al., 2022), we ask what happens when this is the case.

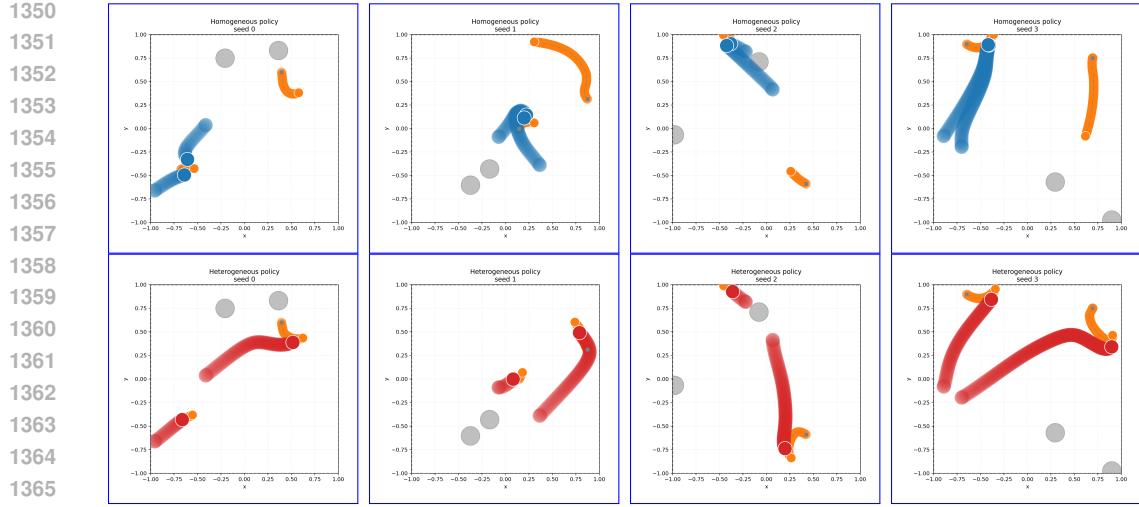


Figure 8: Comparison of homogeneous (top row) and heterogeneous (bottom row) 2v2 tag policies for chaser agents, trained with the reward structure $U = \min, T = \max$ across different initializations. Every column shows the trajectory of the homogeneous (top) and heterogeneous (bottom) policies. (Note that trajectories here are smoothed; agents don't go over obstacles in actual execution). The heterogeneous policies prioritize capturing both agents, whereas the homogeneous policies focus on just one. In the $U = \min, T = \max$ setting, this gives heterogeneous agents greater reward, hence $\Delta R > 0$. Please find more visualizations on [our website](#).

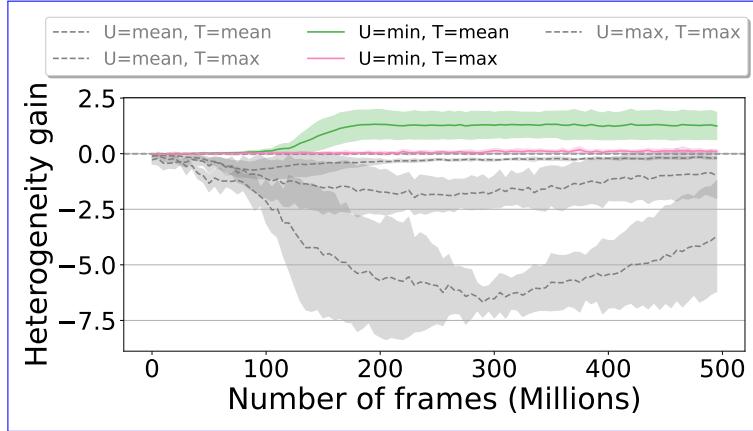


Figure 9: Heterogeneity gain for 8v3 Tag throughout training. We report mean and standard deviation for 30 million training frames over 8 random seeds. Positive aggregator combinations are colored and follow the predictions of Table 2 for discrete rewards. Final gain values are reported in the text of Appendix L.

Football is a complex, embodied, long-horizon scenario that requires the agents to learn low-level dribbling skills as well as high-level strategy purely from a shared cooperative reward. The VMAS

Table 12: Heterogeneity gain at the end of training for the Tag experiments in Fig. 4b. We report mean and standard deviation after 30 million training frames over 9 different random seeds.

		T		
		Min	Mean	Max
U	Min	0.0 ± 0.0	1.68 ± 0.24	3.47 ± 0.23
	Mean	-0.03 ± 0.04	-0.02 ± 0.06	0.36 ± 1.44
	Max	-0.02 ± 0.09	-0.11 ± 0.18	-0.30 ± 0.15

1404
1405 Table 13: Football heterogeneity gains across different reward formulations. Results obtained after
1406 500 training iterations of 240k frames each (6 seeds). Opponent speed annealed from 0% to 100%.

Reward	ΔR	Theory $\Delta R > 0$?	Reward meaning
$U = \min, T = \max$	1.76 ± 0.72	Yes	One agent should attend the ball, the other the opponent; reward capped by the less-covered task.
$U = \text{mean}, T = \max$	1.18 ± 0.11	Yes	Similar to (min, max), but reward is dictated by average task performance.
$U = \text{mean}, T = \text{mean}$	0.01 ± 0.07	No	Agents should attend both the opponent and the ball.
$U = \min, T = \min$	-0.08 ± 0.73	No	At least one agent should attend at least the opponent or the ball.

1418
1419 scenario uses reward shaping to enable agents to learn such behaviors. We *add* a reward structure
1420 $U(T(r_{11}^t, r_{21}^t), T(r_{12}^t, r_{22}^t))$ on top of this and ask how this affects heterogeneity.

1421 In our experimental scenario, two learning agents spawn at midfield. A ball is located between them
1422 and the goal to the right; a heuristic defender spawns to their left and chases the ball. Agents receive
1423 a global reward that increases when the ball moves toward the goal and the defender stays away from
1424 it. Additionally, we reuse the reward structure from our Multi-Goal-Capture to define rewards for
1425 two tasks: tackling the ball, and tackling the opponent.

1426 The effort at time t is:

$$r_{ij}^t = (1 - \frac{d_{ij}^t}{\sum_j d_{ij}^t})/d_{ij}^t,$$

1427 where d_{ij} is distance of agent i to ball or opponent). The global reward given to all agents is then
1428 computed as:

$$R^t = U(T(r_{11}^t, r_{21}^t), T(r_{12}^t, r_{22}^t)) + \beta[(d_{ball,goal}^{t-1} - d_{ball,goal}^t) - (d_{opp,ball}^{t-1} - d_{opp,ball}^t)],$$

1429 where β weighs the global football reward.

1430 Since this reward structure does not follow our theory entirely, we ask whether, when U, T are,
1431 respectively, strictly Schur-concave and strictly Schur-convex, we should expect $\Delta R > 0$ as in our
1432 other scenarios. We test this for $U = \min, T = \max$ and $U = \text{mean}, T = \max$. To control for
1433 the possibility that football is heterogeneous “by default”, we also test the aggregator combinations
1434 $U = \text{mean}, T = \text{mean}$ and $U = \min, T = \min$ as controls.

1435 We report heterogeneity gains after training homogeneous and heterogeneous policies in Tab. 13. This
1436 shows that our curvature test predicts the heterogeneity gain of different reward structures, despite
1437 only being a component in the overall reward structure. This insight is important, as it indicates our
1438 theoretical insights (the curvature test) may extend beyond environments that strictly follow our task
1439 allocation setting.

1440 The resulting policies are reported in Fig. 10 with videos [here](#).

N OBSERVABILITY-HETEROGENEITY TRADE-OFF

1441 In this Appendix, we crystallize the relationship between environment observability and empirical
1442 heterogeneity gains. It is well known that neurally homogeneous agents (i.e., sharing the same
1443 parameters) can achieve behavioral heterogeneity by conditioning their actions on diverse input
1444 contexts (behavioral typing). This can be achieved by naively appending the agent index to its
1445 observation (Gupta et al., 2017a) or by providing relevant observations that allows the agents to infer
1446 their role (Bettini et al., 2023). Behavioral typing is impossible in matrix games, as these games
1447 are observationless. However, it is possible in more complex games, such as our Multi-goal-capture
1448 scenario. We augment agents in the positive gain scenario ($U = \min, T = \max$) with a range
1449 sensor, providing proximity readings for other agents within a radius. In Fig. 11, we show that the
1450 heterogeneity gain decreases as the agent visibility increases (higher sensing radius). This is because,

Figure 10: **Left:** Results of training a heterogeneous policy on VMAS Football where agents are trained with $U = \min, T = \max$ aggregators. Our learning agents are drawn in blue; the heuristic opponent in red; and the ball in black. The learning agents split their efforts, tackling both the ball and the opponent. **Right:** Results of training a homogeneous policy. Agents are unable to split their efforts, so either they both tackle the ball, or both tackle the opponent. This results in lower reward, hence $\Delta R > 0$. These policies are visualized on [our website](#).

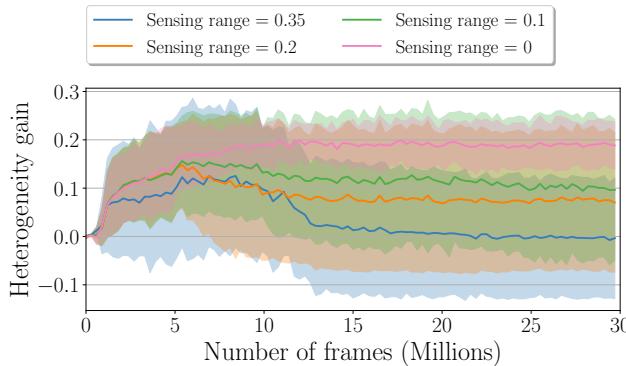


Figure 11: Gain w.r.t. observability when $U = \min, T = \max$.

Figure 12: Heterogeneity gain for Multi-goal-capture throughout training when the agents' observation range is gradually increased from 0 to 0.35 over 4 random seeds (4 random seeds suffice as this phenomenon is established in the literature (Bettini et al., 2023), and we only wish to show its emergence in the context of our work.)

with a higher range, homogeneous agents can sense each other and coordinate to pursue different goals. This result highlights the tight interdependence between the heterogeneity gain and agents' observations.

O PARAMETRIZED DEC-POMDP

A Parametrized Decentralized Partially Observable Markov Decision Process (PDec-POMDP) is defined as a tuple

$$\left\langle \mathcal{N}, \mathcal{S}, \{\mathcal{O}_i\}_{i \in \mathcal{N}}, \{\sigma_i^\theta\}_{i \in \mathcal{N}}, \{\mathcal{A}_i\}_{i \in \mathcal{N}}, \mathcal{R}^\theta, \mathcal{T}^\theta, \gamma, s_0^\theta \right\rangle_\theta,$$

where $\mathcal{N} = \{1, \dots, n\}$ denotes the set of agents, \mathcal{S} is the state space, and, $\{\mathcal{O}_i\}_{i \in \mathcal{N}}$ and $\{\mathcal{A}_i\}_{i \in \mathcal{N}}$ are the observation and action spaces, with $\mathcal{O}_i \subseteq \mathcal{S}$, $\forall i \in \mathcal{N}$. Further, $\{\sigma_i^\theta\}_{i \in \mathcal{N}}$ and \mathcal{R}^θ are the agent observation and reward functions, such that $\sigma_i^\theta : \mathcal{S} \mapsto \mathcal{O}_i$, and, $\mathcal{R}^\theta : \mathcal{S} \times \{\mathcal{A}_i\}_{i \in \mathcal{N}} \mapsto \mathbb{R}$. \mathcal{T}^θ is the stochastic state transition model, defined as $\mathcal{T}^\theta : \mathcal{S} \times \{\mathcal{A}_i\}_{i \in \mathcal{N}} \mapsto \Delta \mathcal{S}$, which outputs the probability $\mathcal{T}^\theta(s^t, \{a_i^t\}_{i \in \mathcal{N}}, s^{t+1})$ of transitioning to state $s^{t+1} \in \mathcal{S}$ given the current state $s^t \in \mathcal{S}$ and actions $\{a_i^t\}_{i \in \mathcal{N}}$, with $a_i^t \in \mathcal{A}_i$. γ is the discount factor. Finally, $s_0^\theta \in \mathcal{S}$ is a the initial environment state.

1512 A PDec-POMDP represents a set of traditional Dec-POMDPs (Oliehoek et al., 2016), where the
 1513 observation function, the transition function, the reward function, and the initial state are conditioned
 1514 on parameters θ . This formalism is similar to the concepts of Underspecified POMDP (Dennis et al.,
 1515 2020) and contextual MDP (Modi et al., 2018).

1516 Agents are equipped with (possibly stochastic) policies $\pi_i(a_i|o_i)$, which compute an action given a
 1517 local observation. Their objective is to maximize the discounted return:
 1518

$$1519 G^\theta(\pi) = \mathbb{E}_\pi \left[\sum_{t=0}^T \gamma^t \mathcal{R}^\theta(s^t, a^t) \middle| s^{t+1} \sim \mathcal{T}^\theta(s^t, a^t), a_i^t \sim \pi_i(o_i^t), o_i^t = \sigma_i^\theta(s_t) \right],$$

1522 where π, a are the vectors of all agents' policies and actions. $G^\theta(\pi)$ represents the expected sum of
 1523 discounted rewards starting in state s_0^θ and following policy π in a PDec-POMDP parametrized by θ .
 1524

P STABILITY OF BILEVEL OPTIMIZATION IN HETGPS

1525 The Heterogeneity Gain Parameter Search (HetGPS) algorithm employs a bilevel optimization
 1526 framework to simultaneously optimize environment parameters and agent policies. This appendix
 1527 discusses the structure of this optimization problem, its convergence properties, practical stability,
 1528 and alternatives for non-differentiable environments.
 1529

P.1 HETGPS AS A STACKELBERG GAME

1530 HetGPS can be formalized as a Stackelberg game, a hierarchical optimization problem involving a
 1531 leader and followers (Simaan & Cruz, 1973). In our setting:
 1532

- 1533 1. The **Leader** is the environment designer (the outer loop of HetGPS), which aims to maximize
 the heterogeneity gain $HetGain^\theta$ by adjusting the environment parameters θ .
 1534
2. The **Followers** are the homogeneous and heterogeneous multi-agent teams (the inner loop),
 which aim to maximize their respective returns $G^\theta(\pi)$ by optimizing their policies π_{het} and
 π_{hom} within the environment defined by θ .
 1535

1536 The leader's objective function (the heterogeneity gain) depends on the optimized policies of the
 1537 followers, which, in turn, depend on the parameters θ set by the leader. Formally, the objective is:
 1538

$$1539 \max_{\theta} [G^\theta(\pi_{het}^*(\theta)) - G^\theta(\pi_{hom}^*(\theta))] \quad (1)$$

1540 where $\pi^*(\theta)$ represents the optimized policies for a given environment configuration θ .
 1541

P.2 CONVERGENCE AND STABILITY

1542 Generally speaking, multi-agent reinforcement learning is a concurrent optimization process that faces
 1543 non-stationarity as agents constantly adapt to one another's evolving policies (Zhang et al., 2019).
 1544 HetGPS extends this challenge as agents must also adapt to a changing environment. Consequently,
 1545 formal convergence guarantees to a **global** optimum remain an open question with regards to HetGPS
 1546 in particular, but also MARL algorithms in general. However, recent theoretical work in environment
 1547 co-design has established conditions under which convergence of bilevel optimization processes
 1548 similar to HetGPS to **local** optima can be guaranteed, such as requiring sufficient smoothness of the
 1549 environment dynamics and policy updates (Gao et al., 2024).
 1550

1551 Despite the theoretical complexities inherent in multi-agent learning and bilevel optimization, as
 1552 shown in Sec. 5 and App. Q, HetGPS demonstrates strong empirical stability even under adversarial
 1553 initializations. This stability is expected, as it mirrors the practical success observed in related co-
 1554 design and automated curriculum learning literature (Dennis et al., 2020; Gao et al., 2024). However,
 1555 we emphasize that empirical stability is not a guarantee of convergence. Although we did not identify
 1556 such cases ourselves, it is possible that in some scenarios, HetGPS will oscillate rather than converge.
 1557

P.3 ADVANTAGE OF DIFFERENTIABLE SIMULATION

1558 In our experiments, HetGPS increased training time by roughly 25% compared to training agents in
 1559 an environment with a fixed reward structure. Hence, it is highly efficient and does not impose much
 1560

overhead. A key strength contributing to the efficiency of HetGPS is its use of differentiable simulation (e.g., VMAS (Bettini et al., 2022)). By leveraging backpropagation through the entire rollout, HetGPS computes the exact gradient $\nabla_{\theta} HetGain^{\theta}$. This approach is more sample-efficient than alternative methods that treat the environment design as a separate RL problem (e.g., PAIRED (Dennis et al., 2020) or Designer-RL (Gao et al., 2024; Amir et al., 2025)). Such methods rely on high-variance policy gradient estimates for the outer loop and often struggle with exploration inefficiency (Parker-Holder et al., 2021; Jiang et al., 2021; Xu et al., 2022). By utilizing exact gradients, HetGPS mitigates these issues.

P.4 HANDLING NON-DIFFERENTIABLE ENVIRONMENTS

A requirement for the implementation of HetGPS presented in Alg. 1 is access to a differentiable simulator. When the environment involves non-smooth physics or black-box components, direct backpropagation is infeasible.

In such cases, the environment optimization step (Line 6 of Alg. 1) can be replaced with the gradient-free methods mentioned above, such as PAIRED (Dennis et al., 2020), the bilevel method from (Gao et al., 2024), or evolutionary strategies (Stanley et al., 2019). While these methods have empirically been shown to be stable and robust in other co-design settings, and may enable the extension of HetGPS to non-differentiable settings, they typically require more samples and may exhibit more noise compared to the direct backpropagation approach utilized in this work.

Q HETGPS UNDER ADVERSARIAL INITIAL CONDITIONS

To evaluate the robustness of HetGPS to initialization, we repeated the Softmax experiment in Multi-Goal-Capture (Fig. 5a) with adverse initialization. We initialized the outer aggregator U with $\tau = 5$ (making it convex) and the inner aggregator T with $\tau = -5$ (making it concave), which is the opposite of the concave-convex configuration predicted by theory to maximize heterogeneity gain.

As shown in Table 14, HetGPS successfully overcomes the adverse initialization and converges towards the theoretically optimal parameters (large positive τ for T, large negative τ for U).

Table 14: Convergence of HetGPS parameters (τ) in the Softmax Multi-Goal-Capture experiment starting from adverse initialization ($\tau_T = -5, \tau_U = 5$). Mean and standard deviation reported over 3 seeds.

Frames (M)	0	50	75	100
τ of T (Inner Agg.)	-5.0 ± 0.0	13.32 ± 2.15	18.88 ± 3.96	22.95 ± 5.71
τ of U (Outer Agg.)	5.0 ± 0.0	-10.26 ± 1.70	-14.59 ± 2.24	-17.16 ± 2.43

R LIMITATIONS AND OPEN QUESTIONS

We list a number of limitations, open questions, and possible extensions.

R.1 THEORETICAL SCOPE

- **Beyond task-allocation RL domains.** The benchmark domains we study and the additional settings covered in App. E all fit into our abstract task-allocation framework: we can interpret agents’ state, such as goal proximity in Multi-goal-capture, or whether they captured an escaping agent in tag, abstractly as “efforts” r_{ij} and represent the reward in terms of such efforts. This is what enables us to make predictions about these environments. Although our framework is quite general, and accommodates environments that one might not traditionally view as “task allocation” (such as football and tag), several notable multi-agent RL domains, e.g., multi-robot manipulation, might not be representable within this framework. Our heterogeneity analysis does not directly apply to these settings, and extending our results to them is important for getting a complete picture of the benefits of heterogeneity.

1620

R.2 ALGORITHMIC ASSUMPTIONS

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

R.3 OPEN QUESTIONS

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

i. **What is the connection between the transition function and heterogeneity?** Our analysis is reward-centric: the curvature criterion reasons only about the team reward. In a Dec-POMDP, however, heterogeneity can be beneficial purely because agents are constrained by *state transitions*. When do state transition dynamics benefit heterogeneity?

ii. **Learning dynamics vs. reward structure.** The theory predicts whether a given reward structure *enables* an advantage to heterogeneous teams, not whether a particular learning algorithm will learn in response to it. This is connected to the difference between *neural* and *behavioral* heterogeneity that we emphasize throughout the paper. Our experiments suggest, empirically, that neurally heterogeneous agents will, in practice, learn to exploit heterogeneous reward structures (i.e., be behaviorally heterogeneous); but can a formal link be established between our reward structure insights and what reward the learning dynamics converge to in practice?

Tackling these challenges would sharpen our understanding of *when* and *how* diversity should be engineered in cooperative multi-agent learning.

R.4 SCOPE OF THE CURVATURE ANALYSIS

The theoretical framework presented in Section 2 provides a precise characterization of the heterogeneity gain based on the curvature of reward aggregators. We provide an extended discussion of when we expect our theoretical predictions can, and cannot, be applied for deciding whether to use heterogeneous or homogeneous agent policies.

Symmetry and Monotonicity. Our analysis hinges on the definition of generalized aggregators as symmetric and coordinate-wise non-decreasing. These assumptions are appropriate for studying emergent behavioral specialization among capability-identical agents. Symmetry ensures that agents (and tasks) are interchangeable *ex-ante*, isolating how the reward structure drives specialization. If symmetry is violated (e.g., due to inherently heterogeneous agent capabilities), heterogeneity is often trivially necessary. Monotonicity ensures a rational cooperative setting where increased effort does not decrease the reward.

Effort Constraints. We define the feasible effort space over the closed unit simplex (where efforts sum ≤ 1). However, because both the inner aggregators T_j and the outer aggregator U are non-decreasing, any optimal allocation—whether homogeneous or heterogeneous—will necessarily saturate the budget constraint (efforts sum = 1). Therefore, our analysis focuses on this efficient frontier without loss of generality.

Constant-Sum Task Score Constraints. It is crucial to clarify that the assumption of constant-sum task scores ($\sum_j T_j(a_j) = C$) is specific only to Theorem 3.3, enabling the use of majorization to analyze the outer aggregator U . Theorems 3.1 and 3.2, and our sum-form aggregator analysis (App. F), do not rely on this.

When this assumption is violated, the analysis of ΔR involves a trade-off between the distribution of scores (influenced by curvature) and their total magnitude. Despite this complexity, our empirical findings (Section 5) suggest that the curvature analysis remains a robust heuristic for predicting the heterogeneity gain even when the task scores are variable-sum.

1674 **Reward functions that partially follow the theory.** Our football experiments show that even
1675 when only part of the reward function adheres to our curvature theory (e.g., it is a sum $R(A) =$
1676 $R_1(A) + R_2(A)$ where R_1 is concave-convex and R_2 is a function with unclear curvature), our
1677 theoretical results may still predict the heterogeneity gain. We make no formal claims about the
1678 robustness of our predictions in such scenarios, but it is valuable to keep in mind that even if the
1679 entire reward function does not perfectly follow the theory, it may still be worthwhile to see what the
1680 concave-convex curvature test says about the part of it that does.

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727