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WHEN IS DIVERSITY REWARDED IN COOPERATIVE
MULTI-AGENT LEARNING?
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Figure 1: We study and categorize what reward structures lead to the need for behavioral heterogeneity
in multi-agent multi-task environments.

ABSTRACT

The success of teams in robotics, nature, and society often depends on the division
of labor among diverse specialists; however, a principled explanation for when such
diversity surpasses a homogeneous team is still missing. Focusing on multi-agent
task allocation problems, we study this question from the perspective of reward
design: what kinds of objectives are best suited for heterogeneous teams? We first
consider an instantaneous, non-spatial setting where the global reward is built by
two generalized aggregation operators: an inner operator that maps the N agents’
effort allocations on individual tasks to a task score, and an outer operator that
merges the M task scores into the global team reward. We prove that the curvature
of these operators determines whether heterogeneity can increase reward, and that
for broad reward families this collapses to a simple convexity test. Next, we ask
what incentivizes heterogeneity to emerge when embodied, time-extended agents
must learn an effort allocation policy. To study heterogeneity in such settings, we
use multi-agent reinforcement learning (MARL) as our computational paradigm,
and introduce Heterogeneity Gain Parameter Search (HetGPS), a gradient-based
algorithm that optimizes the parameter space of underspecified MARL environ-
ments to find scenarios where heterogeneity is advantageous. Across different
environments, we show that HetGPS rediscovers the reward regimes predicted by
our theory to maximize the advantage of heterogeneity, both validating HetGPS
and connecting our theoretical insights to reward design in MARL. Together, these
results help us understand when behavioral diversity delivers a measurable benefit.

1 INTRODUCTION

Collective systems, from robot fleets to insect colonies, tend to adopt one of two structures: a uniform
shared blueprint or a set of distinct, specialized roles. In multi-agent learning, this is reflected in the
choice between behavioral homogeneity (all agents behave identically) and behavioral heterogeneity
(agents specialize) (Bettini et al., 2023; 2025; Rudolph et al., 2021). Such behavioral diversity can be
achieved, e.g., via distinct policies (neural heterogeneity) or shared policies conditioning on diverse
inputs, such as agent roles (Leibo et al., 2019). Although diversity unlocks role specialization and

Supplementary website: https://sites.google.com/view/hetgps
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asymmetric information use, it also introduces extra coordination cost, representation overhead, and
learning complexity (Li et al., 2021). This trade-off leads us to ask: under what conditions will
heterogeneous agents outperform the best homogeneous baseline?

A natural setting to study this question in is multi-agent task allocation, where N agents allocate
effort across M concurrent tasks. Here, we define effort as an abstract quantity representing the
agent’s contribution to a given task (e.g., proximity to a goal, or quantity of a task-specific resource the
agent gathered), computed in an environment-specific manner. The focus of our work is behavioral,
outcome-based heterogeneity, defined through these efforts: a homogeneous team is one where all
agents have the same effort allocations (e.g., every agent allocates 0.75 of its effort to task A and 0.25
to task B), whereas a heterogeneous team allows agents to achieve specialized allocations. We relate
this abstract effort to environmental rewards in many diverse environments, including cooperative
navigation, tag, football (Sec. 5), Colonel Blotto games, and level-based foraging (App. E) (Roberson,
2006; Noel, 2022; Papoudakis et al., 2021; Terry et al., 2021). We ask: what effort-based reward
functions require heterogeneous behaviors to be maximized?

Theoretical Insights. We first study a pure, non-spatial and instantaneous variant of multi-agent
task allocation: each agent commits its effort allocation once, and the team is rewarded immediately
(Sec. 2). We start from the observation that team reward in many effort–allocation problems can
be expressed as R(A) = U

(
T1(a1), . . . , TM (aM )

)
, where A = (rij) is the N × M matrix of

agent effort allocations, and ai is the effort allocation vector of agent i. The inner, task-level
operator Ti assigns a score corresponding to the N agents’ efforts on the ith task and the outer
operator U combines the resulting M task scores into a scalar global reward. Choosing T and U to
be the sum operator

∑
recovers the

∑
j

∑
i rij reward common in RL, whereas alternatives such as

MAX, MIN, power means, or soft-max encode very different effort–reward relationships. Assuming
such a reward structure, we compare the optimal heterogeneous reward, Rhet, with the best reward
attainable under a homogeneous allocation, Rhom, and define their difference as the heterogeneity gain
∆R = Rhet −Rhom (Fig. 1). Our main insight is that ∆R is determined by the curvature of T and
U : specifically, whether they are Schur-convex or Schur-concave. These criteria immediately enable
us to characterize the heterogeneity gain of broad families of reward functions (Table 3); for instance,
the soft-max operator switches from Schur-concave to Schur-convex as its temperature increases. We
also find exact expressions for ∆R in several important cases. These results help explain, for example,
why a reward structure that involves a min operator (usually used to enforce that only one agent
should pursue a goal) will require behavioral diversity from the agents (Bettini et al., 2024). We relate
our findings to multi-agent reinforcement learning (MARL), where environments may be embodied
and time-extended, by setting R(At) as the stepwise reward over an allocation sequence (At)t=1,...,T .

Algorithmic Search. To study heterogeneity in MARL settings not covered by our theoretical
analysis, we develop Heterogeneity Gain Parameter Search (HetGPS), a gradient-based algorithm that
optimizes parameters θ of underspecified, differentiable MARL environments via backpropagation
to find configurations that maximize or minimize the empirical ∆R (we assume differentiability
for training efficiency, but consider non-differentiable environments in App. P). While HetGPS
can in principle optimize any differentiable environment feature to influence ∆R, we use it here to
explore reward structures exclusively, as a means of verifying and extending our theoretical insights.
Maximizing the heterogeneity gain allows us to discover reward functions where behavioral diversity
is essential. Minimizing the gain leads us to settings where homogeneous policies are sufficient.

Experiments. We validate our theoretical insights, and HetGPS, in simulation, by evaluating in both
single-shot and long-horizon reinforcement learning environments whose reward structure instantiates
the kinds of aggregation operators studied. First, in a continuous and a discrete matrix game, we test
reward structures based on all nine possible combinations of {min,mean,max}, and find that the
heterogeneity gains that result from the agents’ learned policies match our theoretical predictions:
concave outer operators and convex inner operators benefit heterogeneous teams. Next, we test
the same operators in embodied, partially observable environments: Multi-goal-capture, tag, and
football. We find that our theory also transfers to such long-horizon MARL settings, and show that
reward structures that maximize heterogeneity are meaningful and practically useful. Finally, we find
that the empirical heterogeneity gain disappears as the richness of agents’ observations is increased,
recovering the finding that rich observations allow agents with identical policy networks to be behav-
iorally heterogeneous (Bettini et al., 2023; Leibo et al., 2019).
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We then turn to HetGPS. Across two parameterizable families of operators (Softmax and Power-Sum),
we show that, despite running on embodied environments, HetGPS rediscovers the reward regimes
predicted by our curvature theory to maximize the heterogeneity gain, validating both HetGPS and
the connection between our theoretical insights and MARL reward design (Sec. 5).

1.1 RELATED WORKS

Behavioral Diversity in MARL. Behavioral heterogeneity, where capability-identical agents learn
distinct policies, can markedly improve exploration, robustness, and reward (Bettini et al., 2023). Yet
heterogeneity reduces parameter sharing and thus sample-efficiency, so a core practical question is
when its benefits outweigh that cost. Existing MARL methods typically adopt one of two poles: en-
dowing each agent with its own network, or enforcing parameter sharing so all agents follow a single
policy (Gupta et al., 2017a; Rashid et al., 2020; Foerster et al., 2018; Kortvelesy & Prorok, 2022;
Sukhbaatar et al., 2016). A large body of work explores the efficiency–diversity trade-off (Christianos
et al., 2021; Fu et al., 2022) by interpolating between these extremes: e.g., injecting agent IDs into
the observation (Foerster et al., 2016; Gupta et al., 2017a), masking different subsets of shared
weights (Li et al., 2024b), sharing only selected layers (Li et al., 2021), pruning a shared network into
agent-specific sub-graphs (Kim & Sung, 2023), or producing per-agent parameters with a hypernet-
work (Tessera et al., 2024). Further, several methods for promoting behavioral diversity in MARL
have been proposed, such as: conditioning agents’ policies on a latent representation (Wang et al.,
2020b), decomposing and clustering action spaces (Wang et al., 2021b), dynamically grouping agents
to share parameters (Yang et al., 2022), applying structural constraints to the agents’ policies (Bettini
et al., 2024), or by intrinsic rewards that maximize diversity (Li et al., 2021; Jaques et al., 2019;
Wang et al., 2019; Jiang & Lu, 2021; Mahajan et al., 2019; Liu et al., 2023; 2024; Li et al., 2024a).
While these studies demonstrate how to obtain diversity, they presume tasks where heterogeneity is
advantageous. Our work addresses the orthogonal question of when diversity is beneficial, giving a
principled characterization of which reward structures create that incentive in the first place.

Task Allocation. Classic resource–allocation settings, in which a team must divide finite effort
among simultaneous objectives, are a central proving ground for cooperative MARL. In robotics,
potential-field and market-based learning are the dominant tools for coverage, exploration, and
load-balancing tasks (Gupta et al., 2017b; Lowe et al., 2017). Game-theoretic analysis and, recently,
MARL, play the same role in discrete counterparts such as Colonel-Blotto contests, where players
decide how to spread forces over several “battlefields” (Roberson, 2006; Noel, 2022). Embodied
benchmarks like level-based foraging are heavily studied in MARL, and expose the tension between
uniform and specialized effort allocations (Papoudakis et al., 2021). The survey of (Zhang et al.,
2019) highlights how cooperative performance is governed by the shape of the shared reward and
the equilibria it induces. Our contribution sharpens this perspective: we prove that the curvature of
nested aggregation operators characterizes when heterogeneous allocations dominate homogeneous
ones, and introduce algorithmic tools for further exploring settings where diversity is needed.

Environment Co-design. Co-design is a paradigm where agent policies and their mission or envi-
ronment are simultaneously optimized (Gao et al., 2024; Amir et al., 2025). Our HetGPS algorithm
is related to PAIRED (Dennis et al., 2020), a method which automatically designs environments
in a curriculum such that an antagonist agent succeeds while the protagonist agent fails. This
makes it so that resulting environments are challenging enough without being unsolvable. Similarly,
HetGPS designs environments that are advantageous to heterogeneous teams, while disadvantaging
homogeneous teams. The key differences are: (1) the environment designer uses direct regret gradi-
ent backpropagation via a differentiable simulator instead of RL; this enables higher efficiency by
directly leveraging all the environment gradient data available during collection while preventing
RL-related issues identified in subsequent works (Jiang et al., 2021; Parker-Holder et al., 2021) such
as exploration inefficiency and the need for a reward signal; and (2), the protagonist and antagonist
are independent multi-agent teams instead of single agents.

Impact of Reward Structure and Credit Assignment. The design of the reward function is
critical to the performance of cooperative MARL systems. Even when encoding the same high-level
objective, subtle differences in the reward structure can lead to vastly different learning outcomes. For
instance, Wang et al. (2021a) demonstrated in the challenging real-world domain of active voltage
control that the shape of the reward function (specifically, the voltage barrier function used to encode
constraints) significantly impacts the success of various MARL algorithms. This highlights the need
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for a principled understanding of how reward structures incentivize agent behaviors. Furthermore, the
way global rewards are structured and distributed among agents, i.e., the credit assignment problem,
is closely related to the emergence of specialized behaviors. Approaches leveraging cooperative
game theory, such as the Shapley Q-value Wang et al. (2020a), provide methods for decomposing
global rewards into local rewards that reflect individual contributions, thereby promoting efficient and
often heterogeneous strategies. While these works focus on efficient decomposition of the reward
value, our work is complementary, analyzing how the mathematical curvature of the global reward
aggregation function determines whether behavioral heterogeneity is fundamentally advantageous.

2 PROBLEM SETTING

Consider a set of N agents and M tasks. Each agent i ∈ {1, . . . , N} allocates effort among the
tasks according to the budget constraints: ri1, ri2, . . . , riM ≥ 0 with

∑M
j=1 rij ≤ 1, where rij is

defined as the effort agent i puts into task j. Here, “effort” rij is a scalar input to the reward function
representing the agent’s contribution to the task, such as resource allocation (App. E) or realized
goal proximity (Sec. 5). We can consider both continuous allocations (rij can be any real number)
and discrete allocations (rij restricted to some finite set of options), with most results in this work
focusing on the continuous case. We collect all agents’ allocations into an N ×M matrix: A = [rij ]

1.

For each task j let the j-th column of the effort matrix be aj = [r1j , . . . , rNj ]
⊤. A task-level

aggregator Tj : RN→R maps these efforts to a task score, and an outer aggregator U : RM→R
combines the M scores into the team reward, R(A) = U

(
T1(a1), . . . , TM (aM )

)
. Both Tj and U

are generalised aggregators: symmetric and coordinate-wise non-decreasing, mirroring the familiar
properties of

∑
. When every task shares the same inner aggregator we simply drop the subscript

and write T . In Figure 1, to highlight fact that R is aggregating rewards, we write R(A) =⊕M
j=1

⊕N
i=1 rij , where (in abuse of notation) the outer symbol

⊕
denotes U and the inner symbol⊕

denotes Tj .

Homogeneous vs. Heterogeneous Strategies. A homogeneous strategy is one where all agents have
the same allocation (i.e., devote the same amount of effort to a given task j): rij = cj∀ i, j. In this case,

the allocation matrix A consists of identical rows. We define Rhom = max(c1,...,cM )∈∆M−1
≤

R
(
A
)

where ∆M−1
≤ = {(c1, . . . , cM ) | cj ≥ 0,

∑
j cj ≤ 1} is the closed unit simplex. A heterogeneous

strategy allows each agent i to choose any (ri1, . . . , riM ) ∈ ∆M−1
≤ independently. Then Rhet =

maxA∈(∆M−1
≤ )N R

(
A
)
. We define the heterogeneity gain as: ∆R = Rhet −Rhom. This quantity

measures how much greater the overall reward can be when agents are allowed to specialize differently
across tasks, compared to when they must behave identically. Characterizing when ∆R > 0 is our
main focus in this work.

MARL extension. In MARL, the effort value rij represents the contribution of agent i to task j as
computed by the environment based on agent i’s actions. The aggregate reward R(A) can represent:
(i) the payoff of a one-shot effort-allocation game, (ii) the return or sparse terminal reward of an
episode, or (iii) the stepwise reward, giving the discounted return

∑T
t=0 γ

t R
(
At

)
for a sequence(

At

)
t=1,...T

of allocations2. ∆R > 0 implies that the best heterogeneous policies outperform the
best homogeneous ones. In practice, this is evidence of an advantage to heterogeneity and not a
formal guarantee, as learning agents may not always converge to optimal policies.

Examples. App. I contains examples of generalized aggregators. Our framework is flexible, and can
be applied to many settings, including ones not ordinarily thought of as “task allocation”: in Sec. 5,
we apply it to one-shot allocation games, multi-agent navigation, tag, and football. Furthermore, in
App. E, we analyze the heterogeneity gain of two well-known environments from the literature: Team
Colonel Blotto games (Noel, 2022) and level-based foraging (Papoudakis et al., 2021).

1All results in this work can be extended to the case where ri1, ri2, . . . , riM ≥ Bmin and
∑M

j=1 rij ≤
Bmax for some arbitrary Bmin, Bmax ∈ R.

2To extend this further, our theoretical results hold even if the reward function varies over time, Rt(At).
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3 ANALYSIS

Focusing on continuous allocations, we ask what properties of aggregators guarantee ∆R > 0. We
draw on the concept of Schur-convexity. Schur-convex functions can be understood as generalizing
symmetric, convex aggregators: every convex and symmetric function is Schur-convex, but a Schur-
convex function is not necessarily convex (Roberts & Varberg, 1974; Peajcariaac & Tong, 1992).
Proofs for all results are available in App. G.

Since both the outer aggregator U and the task-level aggregators Tj are non-decreasing, an optimal
effort allocation will always have each agents’ efforts summing to 1. Hence, from here on, we assume
without loss of generality that

∑M
j=1 rij = 1. We call such allocations admissible.

Definition 3.1 (Majorization). Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be two vectors in RN

such that
∑N

i=1 x(i) =
∑N

i=1 y(i). Let x(1) ≥ x(2) ≥ · · · ≥ x(N) and y(1) ≥ y(2) ≥ · · · ≥ y(N) be
the components of x and y sorted in descending order. We say that x majorizes y (written x ≻ y) if∑k

i=1 x(i) ≥
∑k

i=1 y(i) for k = 1, 2, . . . , N − 1, N.

Definition 3.2 (Schur-Convex Function). A symmetric function f : RN → R is Schur-convex if for
any two vectors x, y ∈ RN with x ≻ y, we have f(x) ≥ f(y). If the inequality is strict whenever x
and y are not permutations of each other, then f is said to be strictly Schur-convex. Similarly, f is
Schur-concave if f(x) ≤ f(y) whenever x ≻ y.

Intuitively, x ≻ y means one can obtain y from x by repeatedly moving mass from larger to smaller
coordinates, thereby making the vector more uniform. Schur-convexity is then a statement on a
function’s curvature: f is Schur-convex if it increases with inequality, or is Schur-concave if it
increases with uniformity. We show here a connection between Schur-convexity (concavity) and ∆R.

Call an allocation matrix A trivial if there exists a task j⋆ such that every agent allocates its entire
budget to that task, i.e. rij⋆ = Bmax and rij = 0 ∀i, ∀j ̸= j⋆; otherwise A is non-trivial. Then:
Theorem 3.1 (Positive Heterogeneity Gain via Schur-convex Inner Aggregators). Let N,M ≥ 2,
and assume that (i) each task-level aggregator Tj is strictly Schur-convex and (ii) the outer aggregator
U is coordinate-wise strictly increasing. Then either all admissible optimal homogeneous allocations
are trivial, or ∆R > 0.

If the task-level aggregator is instead Schur-concave, we can show there is no heterogeneity gain:
Theorem 3.2 (No Heterogeneity Gain via Schur-concave Inner Aggregators). Let N,M ≥ 2. If each
task-level aggregator Tj is Schur-concave then ∆R = 0.

We see that Schur-convexity of the inner aggregator produces ∆R > 0, whereas Schur-concavity
implies ∆R = 0. Analyzing the outer aggregator U is trickier, because it acts on task-score vectors(
T1(a1), . . . , TM (aM )

)
whose sum

∑M
i=1 Ti(ai) may vary, so majorization is not directly applicable.

However, we can extend our analysis to U if our inner aggregators are normalized to keep the
sum constant:

∑M
i=1 Ti(ai) = C for any admissible allocation. Assuming this, we can invoke

majorization again, and the relationship between convexity and ∆R reverses: if the outer aggregator
U is Schur-convex, the heterogeneity gain vanishes. Let us prove this.
Theorem 3.3 (No Heterogeneity Gain for Schur-Convex U with Constant-Sum Task Scores). Let
N,M ≥ 2. Suppose that for any admissible allocation A, (i) every task score is non-negative, and
obeys Ti(0, . . . , 0) = 0, and (ii) the sum of task score is always

∑M
j=1 Tj

(
aj
)

= C. If U is strictly
Schur-convex function, then ∆R = 0.

It is crucial to note that this constant-sum assumption is specific to Thm. 3.3 and is not required for
our other results, which apply broadly.

Sum-Form Aggregators. In App. F, we show that the above results reduce to a simple convexity
test for sum-form aggregators: a broad class of aggregators that describes most reward structures we
consider in this work. This makes testing whether ∆R > 0 a simple computation in many cases.

Parameterizable Families of Aggregators. A core topic of this work is reward design: how can
we craft team objectives that either advantage or disadvantage behavioral diversity? To do this,
it is helpful to first identify an appropriate search space. Our theoretical analysis enables us to
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Discrete and continuous heterogeneity gains
T = min T = mean T = max

Outer U = min

∆RF 0 0 (M − 1)/M

∆RD 0 ⌊N/M⌋/N 1{N≥M}
Outer U = mean

∆RF 0 0 (M − 1)/M
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Figure 2: Left: Discrete (∆RD) and continuous-allocation (∆RF) heterogeneity gains for all
U, T ∈{min,mean,max}. The indicator 1{N≥M} equals 1 if N ≥M and 0 otherwise. Right: We
plot the parametrized heterogeneity gains ∆R(t, τ ;N) when U and T are soft-max aggregators.

narrow down this search space, and focus on aggregators whose curvature can be parametrized.
Many family of aggregator functions { ft(·)}t∈R can be parametrized by a scalar t which controls
whether the aggregation is Schur-convex or Schur-concave, and how strongly it penalizes (or favors)

inequalities among the components. For example, the softmax aggregator
∑N

i=1

exp
(
t·rij

)
∑N

ℓ=1 exp
(
t·rℓj

) is

parametrized by its temperature, t, transitioning from being strictly Schur-concave when t < 0 to
strictly Schur-convex when t > 0. We can define a space of reward functions by selecting both the

task scores and outer aggregator to be softmax functions: let Tj(A) =
∑N

i=1

exp
(
t·rij

)
∑N

ℓ=1 exp
(
t·rℓj

) rij ,

and let U
(
T1(a1), . . . TM (am)) =

∑M
j=1

exp
(
τ ·Tj(A)

)
∑M

ℓ=1 exp
(
τ ·Tℓ(A)

) Tj(A), where t, τ ∈ R parametrize the

inner and outer aggregators, respectively. ∆R is then dependent on t and τ . Fig. 2 plots ∆R when
N = M = 2. As a case study, we derive lower bounds on ∆R when N = M in Thm. 3.4.

Theorem 3.4 (Softmax heterogeneity gain for N = M ). Assume N = M ≥ 2, and let σ(t,N) :=
et

et+N−1 . The heterogeneity gain for softmax aggregators (i) equals ∆R(t, τ ;N) = 0 when t ≤
0; (ii) is bounded below by σ(t,N) − 1

N
when t > 0, τ ≤ 0; and (iii) is bounded below by

max
{
σ(t,N)− σ(τ,N), 0

}
when t > 0, τ ≥ 0.

Tab. 3 contains more examples of aggregation operators parameterized by t. These families provide
a search space for potential reward functions, allowing us to sweep smoothly from ∆R = 0 to
∆R > 0 reward regimes. As t→ ±∞, most such aggregators converge to either min or max, and
often reduce to the arithmetic mean for certain parameter choices, motivating us to ask what the
heterogeneity gain is when the outer and inner aggregator belong to the set {min,mean,max}. These
aggregators are of special interest, since “min” can be seen as a “maximally” Schur-concave function,
“max” can be seen as a “maximally” Schur-convex function, and “mean” is both Schur-convex and
Schur-concave. Hence, it is worth asking what the heterogeneity gain is when the outer and inner
aggregator belong to the set {min,mean,max}. We derive these gains in two cases: continuous
allocations where rij ∈ [0, 1], and discrete effort allocations where rij ∈ {0, 1}. The results are
summarized in Fig. 2, lefthand side (formal derivation available in App. G).

4 HETEROGENEITY GAIN PARAMETER SEARCH (HETGPS)

In complex scenarios where theory might be less applicable, we study heterogeneity through algo-
rithmic search. We consider the setting of a Parametrized Dec-POMDP (PDec-POMDP, defined in
App. O). A PDec-POMDP represents a Dec-POMDP (Oliehoek et al., 2016), where the observations,
transitions, or reward are conditioned on parameters θ. Hence, the return obtained by the agents,
Gθ(π), can be differentiated with respect to θ: ∇θG

θ(π) = ∂
∂θ
Gθ(π). In particular, computing this
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gradient in a differentiable simulator allows us to back-propagate through time and optimize θ via
gradient ascent3.

Algorithm 1 Heterogeneity Gain Parameter Search (HetGPS)

input Environment parameters θ, environment learning rate α, heterogeneous agent policy πhet,
homogeneous agent policy πhom

1: for i in iterations do
2: Batchθ

het= Rollout(θ,πhet) {rollout het policies in environment θ}
3: Batchθ

hom= Rollout(θ,πhom) {rollout hom policies in environment θ}
4: HetGainθ = ComputeGain(Batchθhet,Batchθ

hom)
5: if train_env (i) then
6: θ ← θ + α∇θHetGainθ {train environment via backpropagation}
7: if train_agents(i) then
8: πhet ←MarlTrain(πhet,Batchθhet) {train het policies via MARL}
9: πhom ←MarlTrain(πhom,Batchθhom) {train hom policies via MARL}

output final environment configuration θ, policies πhet, πhom

Heterogeneity Gain Parameter Search (HetGPS). We now consider the problem of learning the
environment parameters θ to maximize the empirical heterogeneity gain. The empirical heterogeneity
gain is defined as the difference in performance between heterogeneous and homogeneous teams in
a given PDec-POMDP parametrization. We compare neurally heterogeneous agents (independent
parameters) with neurally homogeneous agents (shared parameters). We denote their policies as πhet

and πhom. Then, we can simply write the gain as: HetGainθ(πhet, πhom) = Gθ(πhet)−Gθ(πhom),
representing the return of heterogeneous agents minus that of homogeneous agents on environment
parametrization θ. HetGPS, shown in Alg. 1, learns θ by performing gradient ascent to maximize
the gain: θ ← θ + α∇θHetGainθ(πhet, πhom). The environment and the agents are trained in an
iterative, bilevel optimization process. We discuss this process, and alternatives when the simulator
is non-differentiable, in App. P. At every training iteration, HetGPS collects roll-out batches in the
current environment θ for both heterogeneous and homogeneous teams, computing the heterogeneity
gain on the collected data. Then, it updates θ to maximize the heterogeneity gain. Finally, to train the
agents, it uses MARL, with any on-policy algorithm (e.g., MAPPO (Yu et al., 2022)). The functions
train_env and train_agents determine when to train each of the components in HetGPS. We
consider two possible training regimes: (1) alternated: where HetGPS performs cycles of x agent
training iterations followed by y environment training iterations and (2) concurrent: where agents
train at every iteration and the environment is updated every x iterations. Note that by performing
descent instead of ascent, HetGPS can also be used to minimize the heterogeneity gain.

5 EXPERIMENTS

To empirically ground our theoretical analysis, we conduct a three-stage experimental study in
cooperative MARL. We first analyze a one-step, observation-free matrix game in which each agent
allocates effort rij over M tasks, and consider reward structures defined by aggregator pairs U, T ∈
{min,mean,max}. We find that the agents’ learned policies recover the exact heterogeneity gains
derived in the theory (Fig. 2). Next, we transfer the same reward structures into embodied, time-
extended environments: Multi-goal-capture, 2v2 tag, and football. We show that our curvature theory
continues to be informative in these settings. We discuss the learning dynamics that result, and perform
further experiments highlighting the difference between neural and behavioral heterogeneity (Bettini
et al., 2023), important for understanding our insights. Finally, to study HetGPS, we parametrize the
reward structure of Multi-goal-capture using either parametrized Softmax or Power-Sum aggregators
(App. I), and run HetGPS to learn parameterizations that maximize the heterogeneity gain. HetGPS
learns the theoretically optimal aggregator instantiations, validating its effectiveness at discovering

3Although the same approach can train policies (Xu et al., 2022; Song et al., 2024), HetGPS instead optimizes
environment parameters and policies separately, using standard zeroth-order policy-gradient methods, to avoid
being trapped in local minima. The overhead of implementing HetGPS in this way is modest: it increased
training time by roughly 25% in our Sec. 5 experiments compared to training on a fixed environment.
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Figure 3: Heterogeneity gain for the discrete and continuous matrix games with N = M = 4 over
training iterations. We report mean and standard deviation after 12M frames over 9 random seeds.
The final results match the theoretical predictions in the Table of Fig. 2. Solid lines indicate reward
structures predicted by theory to have ∆R > 0 in either the discrete or continuous setting; dashed
lines indicate predicted no gain in both settings. Final gain values are reported in Tab. 7 and Tab. 8.

heterogeneous missions. Implementation details and visualizations are available in App. C and
App. K.

(i) Task Allocation. We consider a one-step observationless matrix game where N agents need to
choose between M tasks. Their actions are effort allocations rij with rij ≥ 0,

∑
j rij = 1, composing

matrix A. With aggregators taken from the set U, T ∈ {min,mean,max}, our goal is to empirically
confirm the heterogeneity gains derived in the theory in a learning context. Each time the game
is played, all agents obtain the global reward R(A) computed through the double aggregator. We
consider two setups: (1) Continuous (rij ∈ R0⩽x⩽1): agents can distribute their efforts across tasks,
(2) Discrete (rij ∈ {0, 1}): agents choose only one task. We train with N = M = 4 for 12 million
steps. Fig. 6 shows the evolution of the heterogeneity gains. The final results match exactly the
theoretical predictions of Fig. 2 and our curvature theory: concave outer and convex inner aggregators
favor heterogeneity. Additional details and results, e.g., for N,M ∈ {2, 8, 11}, are in App. J.

(ii-1) Multi-goal-capture. Next, we investigate a time-extended, embodied scenario called Multi-
goal-capture, based on multi-goal navigation missions (Terry et al., 2021). In Multi-goal-capture,
agents need to navigate to goals, and efforts rtij are continuous scalars computed based on their
proximity to these goals. We provide details in App. K. Our goal is to show that the results obtained
in the matrix game still hold in this embodied, long-horizong setting. We again consider aggregators
U, T ∈ {min,mean,max}. After 30M training frames (Fig. 4a) the empirical heterogeneity gains
differ, numerically, from those of the static matrix-game because agents now realize their allocations
rij through time-extended motion. Nonetheless, our curvature theory reliably predicts when there is
a heterogeneity gain (Fig. 2): it is positive only for the concave–convex pairs U = min, T = max
and U = mean, T = max. We further explain these results (including the interesting presence of
“negative” heterogeneity gains) in App. K. Note that the aggregator pairs in this experiment are not
contrived: they encode practically meaningful global objectives. For example, U = max, T = max
implies “at least one agent should go to at least one goal”; U = max, T = min implies “all agents
should go to the same goal”, and so on. U = min, T = max, a concave-convex setting shown by our
theory to favor heterogeneity, implies “each agent should go to a different goal and all goals should
be covered” which is a natural goal for this scenario. This is because T = max encodes a task that
needs just one agent to be completed (e.g., find an object), while U = min encodes that all tasks
should be attended (i.e., agents need to diversify their choices).

Observability-Heterogeneity Trade-Off: To understand our theoretical results, it is important to
solidify the difference between neural heterogeneity (agents having different neural networks) and
behavioral heterogeneity (agents acting differently). Our insights concern behavioral heterogeneity,
which need not be neurally induced. We show this in App. N, showing that: as the observability of
neurally homogeneous agents increases (allowing them to sense each other), these agents can become
behaviorally heterogeneous, and thus optimize the heterogeneity gain. This result is visualized here.

(ii-2) 2v2 tag. In our tag experiment, two learning chasers pursue two heuristic escapees in a
randomized obstacle field. We define the effort rtij to be 1 if chasing agent i manages to capture
escaping agent j by time t, and 0 otherwise. Whereas Multi-goal-capture had continuous effort
allocations, here they are discrete. The global reward is again computed with aggregators U, T ∈
{min,mean,max}, and is awarded at every time step. This is a sparse reward signal only awarded
upon mission success. For example, U = min, T = max pays out only if both escapees are each
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(a) Multi-goal-capture.
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(b) 2v2 Tag.

Figure 4: Heterogeneity gain for Multi-goal-capture and 2v2 Tag throughout training. We report
mean and standard deviation for 30 million training frames over 9 random seeds. Final gain values
are reported in Tab. 11 and Tab. 12.

caught by a chaser, encouraging heterogeneity. Training outcomes are summarized in Fig. 4b. We
again see that our theoretical results in Fig. 2 (discrete efforts) predict exactly which aggregators will
exhibit ∆R > 0. More details, visuals, and experiments with greater number of agents are available
in App. L and here.

(ii-3) Football. We evaluate our theory in a complex continuous control football game to explore
what happens when our reward structure R(A) is only part of a global cooperative reward. To this
end, we design a drill in the VMAS Football environment (Bettini et al., 2022), where one agent is
tasked to score, while the other has to block the incoming opponent. App. M shows that, also in this
case, our theory is highly predictive, with visuals available here.

(iii) Heterogeneous Reward Design. We apply HetGPS to Multi-goal-capture, and ask whether it
finds the same aggregator parameterizations predicted by our theory to maximize the heterogeneity
gain. We turn the environment into a PDec-POMDP by parameterizing the reward as Rθ(At) =⊕M

j=1
θ
⊕N

i=1
θrtij , with parametrized inner and outer aggregators Uθ =

⊕θ
, T θ =

⊕θ. Our goal
is to learn the parameters θ = (τ1, τ2), parametrizing T and U respectively, that maximize the
heterogeneity gain. We consider two parametrized aggregators from Tab. 3: Softmax and Power-Sum.
Softmax: we parameterize both Uθ and T θ using Softmax. We initialize τ1 = τ2 = 0, so U and
T are initially mean, and run HetGPS (in App. Q we show that HetGPS is robust to adversarial
initializations). In Fig. 5a, we show that, to maximize the heterogeneity gain, HetGPS learns to
maximize τ1, making T Schur-convex, while minimizing τ2, making U Schur-concave. Hence,
it rediscovers the theoretically optimal reward function. The large variance in final parameters
occurs because the Softmax aggregator saturates for large magnitudes (e.g., |τ | > 5); HetGPS
correctly identifies this, leading seeds to converge to arbitrary large values within it. Power-Sum:
we parametrize both aggregators with Power-Sum. We initialize both functions to τ1 = τ2 = 1,
representing sum, and run HetGPS. We constrain τ1,2 ∈ [0.3, 6] to stabilize learning. In Fig. 5b, we
show that HetGPS learns to maximize τ1, making T Schur-convex, while minimizing τ2, making U
Schur-concave; again rediscovering the optimal parametrization our theory predicts. These results
simultaneously validate HetGPS and our curvature theory, since each arrives at the same reward
structure independently.

6 DISCUSSION

This work introduces tools for both diagnosing and designing reward functions that incentivize
heterogeneity in cooperative MARL. In task allocation settings, our theory shows that the advantage
of behavioral diversity is a predictable consequence of reward curvature: if the inner aggregator
is Schur-convex, amplifying inequality, and the outer aggregator is Schur-concave, amplifying
uniformity, heterogeneous policies are strictly superior; reversing the curvature removes the benefit.
Complementing this analysis, and covering settings where our theory doesn’t apply, the proposed
HetGPS algorithm automatically steers underspecified environments to either side of the diversity
boundary, letting us encourage or suppress heterogeneity and providing a sandbox for studying its
advantages. Together, these results help turn the choice of heterogeneity from an ad-hoc heuristic
into a controllable design dimension, and help reconcile past mixed results on parameter sharing.
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(a) HetGPS with Softmax aggregators (τ ∈ R). τ ≥ 0 is Schur-convex; τ ≤ 0 is Schur-concave.
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(b) HetGPS with Power-Sum aggregators (τ ∈ [0.3, 6]). τ ≥ 1 is Schur-convex; τ ≤ 1 is Schur-concave.

Figure 5: HetGPS results in Multi-goal-capture. The two leftmost columns report the evolution of
aggregator parameters through training, while the rightmost column shows the obtained heterogeneity
gain. This result empirically demonstrates that HetGPS rediscovers the reward structure predicted
by our theory to maximize the gain, making the inner aggregator convex, and the outer aggregator
concave. We report mean and standard deviation for 90M training frames over 13 random seeds.

A key remaining open question concerns how the environment’s transition dynamics interact with
reward curvature to shape heterogeneity gains. We expand on this open question, other directions for
future work, and our scope/limitations, in App. R.

REPRODUCIBILITY STATEMENT

Our supplementary material contains the source code we used to produce all results in this work,
including the code used to train the agents, our implementation of HetGPS, and the code used to
produce all plots in the paper (see Appendix C). The readme contains detailed instructions on how
to use this code. All mathematical claims made in this work are fully proven in the Appendix, and our
assumptions are described in detail in Section 2 (“Problem Setting”). Appendices Q and P address
potential questions readers may have regarding the stability of the bilevel optimization process used
in HetGPS and similar environment design algorithms in the literature. Finally, Appendix R addresses
the assumptions and scope of our work, and outlines some remaining open questions.
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A COMPUTATIONAL RESOURCES USED

For the realization of this work, we have employed computational resources that have gone towards:
experiment design, prototyping, and running final experiment results. Simulation and training are
both run on GPUs, no CPU compute has been used. Results have been stored on the WANDB cloud
service. We estimate:

• 300 compute hours on an NVIDIA GeForce RTX 2080 Ti GPU.

• 500 compute hours on an NVIDIA L40S GPU.

Simply reproucing our results using the available code will take considerably less compute hours
(around a day).

B CODE AND DATA AVAILABILITY

We attach the code in the supplementary materials. The code contains instructions on how to
reproduce the experiments in the paper and dedicated YAML files containing the hyperparameters for
each experiment presented. The YAML files are structured according to the HYDRA (Yadan, 2019)
framework which allows smooth reproduction as well as systematic and standardized configuration.
We further attach all scripts to reproduce the plots in the paper from the experiment results.

C IMPLEMENTATION DETAILS

For all experiments, we use the MAPPO MARL algorithm (Yu et al., 2022). Environments are
implemented in the multi-agent environment simulator VMAS (Bettini et al., 2022), and trained using
TorchRL (Bou et al., 2023). Both the actor and critic are two-layer MLPs with 256 neurons per layer
and Tanh activation. Further details, such as hyperparameter choices, are available in the attached
code and YAML configuration files.

Experiments were run on a single Nvidia L40 GPU. In the HetGPS experiments (Sec. 4), a standard
MARL training iteration (60,000 frames) takes approx. 15s; including the environment backpropaga-
tion increases this to approximately 20s.

D USE OF LLMS

We used LLMs (ChatGPT 4o and Gemini 2.5 Pro) to improve some parts of the writing, e.g., make
wording suggestions. We verified and take responsibility for all LLM-related outputs in this work.

E COLONEL BLOTTO & LEVEL-BASED FORAGING

We describe how two well-known settings from the literature fit into our theoretical framework, and
check what our theoretical results say about their heterogeneity gain.

E.1 TEAM COLONEL BLOTTO (FIXED ADVERSARY)

The Colonel Blotto game is a well-known allocation game studied in both game theory and MARL
(Roberson, 2006; Noel, 2022). It is used to model election strategies and other resource-based
competitions. In the team variant with fixed adversary, N friendly colonels (agents) each distribute
a (fixed and equal) budget of troops rij ≥ 0,

∑M
j=1 rij = 1 across M battlefields j ∈ {1, . . . ,M}

(our tasks). A fixed adversary selects a stochastic opposing allocation strategy, i.e. a distribution πadv

over vectors a = (a1, . . . , aM ) which is fixed throughout training and evaluation. Let sj =
∑N

i=1 rij
denote the team force committed to battlefield j. Our agents win against the adversary if the troops
they allocate to a given field surpass the troops allocated by the adversary. The expected value secured
on battlefield j is therefore

Tj(aj) = vj Ea∼πadv

[
1[ sj > aj ]

]
= vj Pr

a∼πadv

[
sj > aj

]
,
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where 1[x > y] denotes the indicator function. This is a thresholded-sum that remains symmetric
and coordinate-wise non-decreasing in every agent’s contribution rij . Aggregating across battlefields
with a value-weighted sum yields the team reward

R(A) =

M∑
j=1

Tj(aj) =

M∑
j=1︸︷︷︸
U

Tj

( N∑
i=1︸︷︷︸⊕

rij

)
,

so the game fits the double-aggregation structure R(A) =
⊕

j

⊕
i rij assumed in our analysis.

Heterogeneity Gain: This is a continuous allocation game, and the inner aggregator Tj is an indicator
function over the sum of troop allocations to battlefield j. This function is Schur-concave (and
Schur-convex at the same time!). Hence, by Thm. 3.2, heterogeneous colonel teams, where each
colonel has a distinct troop allocation strategy, have no advantage over homogeneous teams, where all
colonels employ the same allocation strategy: ∆R = 0. This makes sense, as it makes no difference
whether two different colonels allocate x/2 troops to a battlefield, or one colonel allocates x troops
to the battlefield.

Our analysis also tells us what happens when we change Tj : this provides insights for generalizations
of the Colonel Blotto game. For example, maybe the troops of different colonels don’t cooperate as
well with each other, such that two colonels allocating x/2 troops to a battlefield results in a lower
Tj-value than a single colonel allocating x troops. In this case, Tj becomes strictly Schur-convex, and
Thm. 3.1 tells us that ∆R > 0 as long as the optimal allocation is non-trivial. Hence, heterogeneous
teams are advantaged.

E.2 LEVEL-BASED FORAGING

The well-known level-based foraging (LBF) benchmark, based on the knapsack problem (Garey
et al., 1990), is a deceptively challenging, embodied MARL environment, where N agents are placed
on a grid with M food items, and are tasked with collecting them. Each item j has an integer level
Lj that must be met or exceeded by the combined skills of the agents standing on that cell before it
can be collected (Papoudakis et al., 2021). Let agent i’s skill be ei. At a given step the binary variable

rij ∈ {0, ei}, with
M∑
j=1

rij ≤ ei,

denotes whether i contributes its skill to item j. In our setting, we assume all agents are equally skilled,
so ei = 1 ∀i. Collecting these variables thus yields an allocation matrix A = [rij ] ∈ {0, ei}N×M ,
which again matches our framework.

Inner aggregator. A food item is harvested if the summed skill on its cell reaches the threshold, so

Tj(aj) = Lj 1
[∑N

i=1 rij ≥ Lj

]
, aj = (r1j , . . . , rNj)

⊤.

This threshold–sum is symmetric and monotone, depending only on the sum of its arguments and
therefore simultaneously Schur-convex and Schur-concave.

Outer aggregator. The stepwise team reward is the sum of harvested item values,

R(A) =

M∑
j=1

Tj

( N∑
i=1

rij

)
=

M∑
j=1︸︷︷︸
U

Tj

( N∑
i=1︸︷︷︸⊕

rij
)

=

M⊕
j=1

N⊕
i=1

rij ,

so LBF also conforms to the double-aggregation form R(A) =
⊕

j

⊕
i rij .
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MARL Environment Reward. In the level-foraging environment, items that are picked up either
disappear; replace themselves with different items; or replace themselves with the same item (possibly
at a different cell). In all of these cases we can represent the cumulative reward as

∑T
t=0 γ

t Rt

(
At

)
for some sequence (Rt)t=1,...T of rewards adhering to the above reward structure.

Heterogeneity Gain: We analyze the heterogeneity gap of a specific stepwise reward R.

Because this is an embodied environment where each agent can either stand on an item (rij = 1) or
not (rij = 0), effort allocations are discrete. Our continuous curvature test therefore does not apply
directly, but the discrete analysis in Fig. 2 (left panel) does.

The table in Fig. 2 tells us something about the case where all items have level Lj = 1. In this case,
since we assumed ei = 1 for all agents, the inner aggregator reduces to

Tj(aj) = 1
[∑N

i=1 rij ≥ 1
]
= maxi rij ,

while the outer aggregator is an unnormalized sum, which becomes the mean when divided by M .
Hence R(A) =

∑
j maxi rij , which, up to the constant 1/M , is exactly the case U = mean, T =

max of Fig. 2. That table shows

1

M
∆R =

min{M,N} − 1

M
,

so the heterogeneity gap is strictly positive whenever the team could in principle cover more than
one item (min{M,N} > 1). Intuitively, a homogeneous team can only collect one item per step
(all agents flock to the same cell), whereas heterogeneous agents may spread out and capture up to
min{M,N} items simultaneously.

This analysis can be extended to the case where all items have the same level L > 1 and L | N by
grouping agents into Ñ := N/L agent teams, each bundle contributing exactly L units of skill. This
yields

1

ML
∆R =

min{M, Ñ} − 1

M
.

(We omit the formal analysis, which is not difficult). Thus, if the team can form at least two such
bundles (Ñ > 1), heterogeneity is again advantageous. If it cannot, then ∆R = 0, and there is no
advantage to heterogeneity.

When the levels {Lj} differ, an exact closed form is harder, but in general we expect ∆R > 0
whenever there is some combination of items that the heterogeneous team can collect, which in total
is worth more than the largest single item that can be collected if all N agents stand on its cell.

In LBF, therefore, our theory suggests that behavioral diversity is often advantageous. Note that
(unlike the Colonel Blotto game) since LBF is an embodied, time-extended MARL environment, this
analysis does not formally guarantee an advantage to RL-based heterogeneous agent teams: rather,
it identifies that there are effort allocation strategies that will give these teams an advantage over
homogeneous teams. The agents must still learn and be able to execute these strategies to gain this
advantage (e.g., they must learn how to move to attain the desired allocations).

F SUM-FORM AGGREGATORS

Many useful reward functions are sum-form aggregators:
Definition F.1 (Sum-Form Aggregator). A task-level aggregator f : RN → R for task j is a sum-
form aggregator if it can be written as: f(xj) =

∑N
i=1 g(xj), where gj : R→ R is differentiable.

We say f is (strictly) convex or concave if g is (strictly) convex or concave, respectively.

Tab. 3 contains examples. When our aggregators have this form, Schur-convexity (concavity) is
determined by whether g is convex (concave)–a simple computational test. This is because of the
following known connection between sum-form aggregators and Schur-convexity/concavity:
Lemma F.1 (Schur Properties of Sum-Form Aggregators (Peajcariaac & Tong, 1992)). Given sum-
form task-level aggregator f(x) =

∑N
i=1 g(xi), the following holds: (i) if g is (strictly) convex, then

f is (strictly) Schur-convex; and (ii) if g is (strictly) concave, then f is (strictly) Schur-concave.
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This lemma simplifies checking the conditions of our heterogeneity gain results. For example, the
following corollary can be used to establish ∆R > 0 for many of the aggregators in Tab. 3:

Corollary F.1 (Convex-Concave Positive Heterogeneity Gain). Let N,M ≥ 2. Let g : [0, 1]→ R≥0

be a non-negative strictly convex function satisfying g(0) = 0, and let h : R≥0 → R be a strictly
concave, increasing function satisfying h(0) = 0. If each task-level aggregator is a strictly convex
sum-form aggregator Tj(aj) =

∑N
i=1 g

(
rij

)
, and the outer aggregator is a strictly concave

sum-form aggregator U(y) =
∑M

j=1 h(yj), then ∆R > 0.

Proof of Corollary F.1. We will apply Theorem 3.1 by verifying its conditions:

First, by Lemma F.1, since g is strictly convex, the (identical) task-level aggregators Tj(x) =∑N
i=1 g(xi) are strictly Schur-convex, satisfying condition (i) of Theorem 3.1.

Second, the outer aggregator U(y1, . . . , yM ) is strictly increasing at every coordinate by definition,
satisfying condition (ii).

Hence, the conditions of Thm. 3.1 apply. To establish ∆R > 0, it remains to verify that the
optimal allocation is non-trivial: it distributes effort across at least two tasks. In any admissible
homogeneous solution, each of the N agents chooses the same effort-distribution (c1, . . . , cM ) on
tasks, with

∑
j cj = 1. Then task j’s reward is Tj = N g(cj), so R(A) =

∑M
j=1 h

(
N g(cj)

)
.

The trivial, all-agent single-task allocation uses (cj = 1, ck ̸=j = 0). Its reward is therefore
Rcorner = h

(
N g(1)

)
+
∑

k ̸=j h
(
N g(0)

)
= h

(
N g(1)

)
since g(0) = 0 and h(0) = 0.

Strict concavity of h implies that h
(
N g(1)

)
< N · h(g(1)). Hence, agents can attain a better reward

by allocating effort 1 to N different tasks rather than a single task. This shows that the best solution
must use at least two nonzero cj , completing the proof.

G FORMAL ANALYSIS

G.1 PROOF OF THM. 3.1

Proof of Thm. 3.1. Let Ahom be an optimal homogeneous allocation (i.e., R(Ahom) = Rhom),
whose ith row is the vector

c = (c1, . . . , cM ) with
M∑
j=1

cj = 1.

Then each column j of Ahom is the uniform vector uj = (cj , cj , . . . , cj)
⊤ ∈ RN . Hence the

task-level reward is Tj(uj), and the overall reward is

R
(
Ahom

)
= U

(
T1(u1), . . . , TM (uM )

)
.

Because
∑

j cj = 1, there is at least one task j with cj > 0. We construct a heterogeneous allocation
Ahet such that each column xj in Ahet has the same sum as the corresponding column in Ahom.

The total effort allocated to a task j can be expressed as ⌊Ncj⌋+ fk, where 0 ≤ fj < 1. First, we
assign ⌊Ncj⌋ agents to allocate effort 1 to task j, for every task j. These agents are all distinct. This
leaves us with

∑
j fj = N − ∑

j⌊Ncj⌋ agents that have not allocated any effort yet. Let i be the
first of those agents. We have agent i allocate f1 effort to task 1, f2 effort to task 2, and so on, until
we arrive at a task k such that f1 + . . .+ fk = 1 + s, for some s > 0. We have i allocate fk − s to
this task k. Then, we move to agent i+ 1, and allocate the remaining fractional efforts in the same
manner (and in particular, allocating s effort to task k), until agent i+ 1 overflows. Then we move to
agent i+ 2, and so on. This ensures that we have allocated N effort in total across the agents, and
that every agent’s effort allocation sums exactly to 1, so is feasible.

Let xj be the jth column of Ahet. We note the following fact: any non-uniform vector whose sum is
Ncj majorizes the uniform vector uj . Hence, Tj(xj) ≥ Tj(uj), with equality only if xj = uj . This
means that if Ahet ̸= Ahom, then
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R
(
Ahet

)
= U

(
T1(x1), . . . , TM (xM )

)
> U

(
T1(u1), . . . , TM (uM )

)
= R

(
Ahom

)
.

We note that Ahom = Ahet only if Ahom is a trivial allocation, as Ahet contains at least one agent
allocating effort 1 to some task, and Ahom’s agents only allocate fractional efforts, if it is non-trivial.
Otherwise, since R(Ahom) = Rhom, the above inequality implies ∆R = Rhet − Rhom > 0. This
completes the proof.

G.2 PROOF OF THM. 3.2

Proof of Thm. 3.2. Let A be an arbitrary feasible allocation, and let Ahom be a homogeneous alloca-
tion with the same column sums. Concretely, for each column j, define

sj =

N∑
i=1

rij and uj =
( sj
N ,

sj
N , . . . ,

sj
N

)⊤
,

so uj is the uniform distribution of total mass sj across N agents. Then construct

Ahom =


s1
N · · · sM

N
...

. . .
...

s1
N · · · sM

N

 ,

which is clearly homogeneous (each row is the same), and respects each column sum sj . Since∑
j sj = N , each row sums to 1, hence the allocation is feasible. By Schur-concavity of Tj , for each

column j we have
aj ≻ uj =⇒ Tj(aj) ≤ Tj(uj),

unless aj is uj . In other words, any deviation from the uniform vector with the same sum
∑N

i=1 aji =
sj will not increase Tj(aj) under Schur-concavity. Hence for each column j of A, Tj(aj) ≤ Tj(uj),.
Since U is non-decreasing in each coordinate,

R
(
A
)

= U
(
T1(a1), . . . , TM (aM )

)
≤ U

(
T1(u1), . . . , TM (uM )

)
= R

(
Ahom

)
.

This implies ∆R = 0.

G.3 PROOF OF THM. 3.3

Proof of Thm. 3.3. By hypothesis, the components of the task score vector

T(A) =
(
T1(a1), T2(a2), . . . , TM (aM )

)
always sum to C. By strict Schur-convexity, the maximum value of U over such vectors is attained
precisely at an extreme point of the C-simplex, i.e. at some permutation of (C, 0, . . . , 0). Hence, we
seek to find an allocation of efforts, Acorner, that causes T(A) to equal this vector.

Let each agent i invest all of its effort into task 1. This is the trivial allocation. Then the first column
of Acorner is (1, 1, . . . , 1)⊤, and all other columns aj are zero. Since task scores sum to C, we get
T1

(
a1
)
= C, Tj

(
aj
)
= 0 for j ̸= 1. By assumption (2), we infer that the vector of task-level

scores is indeed (C, 0, . . . , 0).

Notice that each row of Acorner is the same (1, 0, . . . , 0), making Acorner a homogeneous allocation.
Hence, we attained the maximum possible reward R(A) through a homogeneous allocation, implying
∆R = 0.

G.4 PROOF OF THM. 3.4

Before proving the statement, let’s write the expressions for homogeneous and heterogeneous optima.
For each task j, we defined

Tj(A) =

N∑
i=1

exp
(
t · rij

)∑N
ℓ=1 exp

(
t · rℓj

) rij ,
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while defining the outer aggregator to be

U
(
T1(a1), . . . TM (am)) =

M∑
j=1

exp
(
τ · Tj(A)

)∑M
ℓ=1 exp

(
τ · Tℓ(A)

) Tj(A),

where t, τ ∈ R are temperature parameters. In the homogeneous setting, where all agents share the

same allocation c = (c1, . . . , cM ), we therefore have Tj(A) =
∑N

i=1

exp
(
t cj

)
∑N

ℓ=1 exp
(
t cj

) cj = cj . Thus,

Rhom = max
c∈∆M−1

M∑
j=1

exp
(
τ cj

)∑M
ℓ=1 exp

(
τ cℓ

) cj

where ∆M−1 is the simplex of all admissible allocations.

In the general heterogeneous setting, each row (ri1, . . . , riM ) can be different. Then

Tj(A) =

N∑
i=1

exp
(
t rij

)∑N
ℓ=1 exp

(
t rℓj

) rij ,

and we choose A ∈ (∆M−1)N to maximize

Rhet = max
A

M∑
j=1

exp
(
τ Tj(A)

)∑M
k=1 exp

(
τ Tk(A)

) Tj(A).

Keeping these expressions in mind, we proceed with the proof of Thm. 3.4.

Reminder: assuming N = M ≥ 2, we want to prove ∆R(t, τ ;N) = 0 when t ≤ 0, and

∆R(t, τ ;N) ≥


σ(t,N)− 1

N
, t > 0, τ ≤ 0,

max
{
σ(t,N)− σ(τ,N), 0

}
, t > 0, τ ≥ 0.

otherwise, where σ(t,N) := et

et+N−1 .

Proof of Thm. 3.4. When t ≤ 0, Tj is Schur–concave, so ∆R = 0 by Thm. 3.2. We assume t > 0
for the rest of the proof.

Homogeneous optimum. If every row of A equals the same allocation c ∈ ∆N−1, then Tj(A) = cj .
U is Schur–concave for τ ≤ 0, and Schur–convex for τ ≥ 0, hence it is maximized by the uniform
distribution in the former case, and by a 1-hot vector in the latter case, yielding:

Rhom = max
c∈∆N−1

U(c) =


1

N
, τ ≤ 0,

σ(τ,N), τ > 0.
(H)

Lower bound on Rhet. The trivial allocation, where every agent works on the same task, produces
Rtrivial = σ(τ,N). The spread allocation, where agent i works exclusively on task i, makes each
column “one-hot”; this gives Tj = σ(t,N) for all j, and plugging this into U , we get Rspread =
σ(t,N). Consequently

Rhet ≥ max{σ(t,N), σ(τ,N)}. (L)

Combining (H) and (L) gives the desired lower bound.
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Table 1: All nine extreme cases of inner/outer aggregators belonging to the set {min,mean,max}.
In each cell, we show the best possible outcome for Heterogeneous vs. Homogeneous allocations and
the resulting ∆R.

T = min T = mean T = max

U = min Inner: Tj = mini rij .
Best Rhet, Rhom: All must have
rij ≥ x to push mini rij = x, so
x ≤ 1/M.
=⇒ Tj = 1/M.

Outer: minj Tj = 1/M =⇒
R = 1/M.
Gap: 0.

Inner: Tj = 1
N

∑
i rij (avg over i).

Maximize minj Tj : Both Rhet,
Rhom must make Tj all equal (for
best min), so Tj = 1/M.
Outer: minj Tj = 1/M =⇒
R = 1/M.
Gap: 0.

Inner: Tj = maxi rij .
Outer: picks minj Tj .
Rhet: minj Tj = 1 =⇒ R = 1.
Rhom: minj Tj = 1/M =⇒
R = 1/M.

Gap: 1 − 1
M = M−1

M .

U = mean Inner: Tj = mini rij = 1/M.
Outer: simple avg 1

M

∑
j Tj .

Since
∑

j Tj = M · (1/M) =

1 =⇒ R = 1/M.
Both Rhet, Rhom same =⇒
∆R = 0.
Gap: 0.

Inner: Tj = 1
N

∑
i rij .

Then
∑

j Tj = 1.

Outer: avg= 1
M

∑
j Tj .

Hence R = 1
M · 1 = 1

M .
Same for Rhet, Rhom.
Gap: 0.

Inner: Tj = maxi rij .
Outer: avg= 1

M

∑
j Tj .

Rhet: sum = M =⇒ R = 1.
Rhom: sum = 1 =⇒ R = 1/M.

Gap: 1 − 1
M = M−1

M .

U = max Inner: Tj = mini rij can be made
1 for one task.
Outer: picks maxj Tj = 1 =⇒
R = 1
Same for Rhet, Rhom.
Gap: 0.

Inner: Tj = avg over i.
Outer: picks maxj Tj .
Both Rhet, Rhom can put all effort
into one task to get Tj = 1, so R =
1.
Gap: 0.

Inner: Tj = maxi rij .
Outer: picks maxj Tj .
Both Rhet, Rhom can achieve
maxj = 1 =⇒ R = 1.
Gap: 0.

Table 2: A “9 extreme cases” table for discrete, one-task-per-agent allocations.

min mean max

min Inner:

Tj →
{
1, if all agents pick j,

0, otherwise.

Outer: minj Tj . To get R > 0, must
have Tj > 0 for every j (i.e. all agents
pick all tasks, impossible).
Hence Rhet = Rhom = 0 typically,
∆R = 0.

Inner: Tj =
|Ij |
N

Outer: minj Tj .
Rhet = ⌊N/M⌋/N . Rhom = 0.
∆R = ⌊N/M⌋/N .

Inner:

Tj →
{
1, if at least 1 agent picks j,
0, if no agent picks j.

Outer: minj Tj .
- Heterogeneous can choose s distinct
tasks. If want minj = 1, must pick
all M tasks. That requires N ≥ M .
Then R = 1. - Homogeneous covers
only 1 task =⇒ minj = 0 for
M > 1 =⇒ R = 0.
∆R = 1 if N ≥ M , else 0.

mean Inner: Tj = 1 only if all pick j, else 0.
Summation

∑
j Tj is number of tasks

chosen by all agents. Usually 0 or 1.
Outer: Average across j. R =
1
M

∑
j Tj .

=⇒ R = 1/M, ∆R = 0.

Inner: Tj =
|Ij |
N .

Outer: Average across tasks: R =
1
M

∑M
j=1

|Ij |
N = 1

M . No matter how

agents are distributed,
∑M

j=1 |Ij | = N .
Hence Rhet = Rhom = 1

M , ∆R =
0.

Inner: Tj = 1 if chosen by at least 1
agent, else 0.
Outer: Average across j: 1

M

∑
j Tj .

This is 1
M ·

(
# of tasks chosen

)
.

- Heterogeneous can pick up to
min(M,N) tasks, so R =
min(M,N)

M . - Homogeneous covers
exactly 1 task =⇒ R = 1/M.

∆R =
min(M,N)−1

M .

max Inner: Tj = 1 only if all pick j, else 0.
Outer: maxj Tj .
∆R = 0.

Inner: Tj = |Ij |/N.
Outer (τ → +∞): maxj Tj . We can
place all agents on one task, get Tj = 1.
Then R = 1. Same for homogeneous or
heterogeneous. ∆R = 0.

Inner: Tj = 1 if at least 1 picks j, else
0.
Outer: maxj Tj = 1 if any agent picks
j. Even a single task yields R = 1. So
Rhom = Rhet = 1, ∆R = 0.

H DERIVING THE {min,mean,max} HETEROGENEITY GAINS IN THE FIG. 2
TABLE

We derive these heterogeneity gain case-by-case. Tab. 1 summarizes the derivation for continuous
allocations (rij ∈ [0, 1]), and Tab. 2 does the same for discrete effort allocations (rij ∈ {0, 1}).
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I PARAMETRIZED FAMILIES OF AGGREGATORS

The Table in this section illustrates several families of generalized aggregators that the analysis in
this paper applies to. The scalar t parametrizes each family of aggregators, continuously shifting the
aggregators from Schur-concave to Schur-convex.

Table 3: Illustrative families of parametric (and one nonparametric) aggregators ft(x). Changing the
real parameter t can switch between Schur-convex and Schur-concave behaviors (on nonnegative
inputs), or control how strongly the aggregator favors “peaked” vs. “uniform” distributions. As
t→ ±∞ or t→ 0, many reduce to well-known extremes such as max, min, or the arithmetic mean.

Name Definition Schur Property & Limits
Power-Sum

ft(x) =
N∑
i=1

(
xi

)t
, xi ≥ 0, t > 0

• Strictly Schur-convex for t > 1.
• Strictly Schur-concave for 0 <
t < 1.

• At t = 1, it is linear (both Schur-
convex and Schur-concave).

• Undefined at t ≤ 0 if any xi = 0,
though one can extend with limits.

Power-Mean

Mt(x) =

(
1

N

N∑
i=1

(xi)
t

)1/t
, xi ≥ 0, t ̸= 0

• Strictly Schur-convex for t > 1.
• Strictly Schur-concave for 0 <
t < 1.

• Reduces to arithmetic mean at t =
1.

• As t→∞, converges to maxi xi;
as t → −∞, converges to
mini xi.

Log-Sum-Exp (LSE)

LSEt(x) =
1

t
ln
( N∑
i=1

e t xi

)
, t ̸= 0

• Strictly Schur-convex for t > 0.
• Strictly Schur-concave for t < 0.
• As t → ∞, approaches maxi xi;

as t→ −∞, approaches mini xi.

Softmax Aggregator

Softmaxt(x) =

N∑
i=1

e t xi∑N
j=1 e

t xj

xi, t ∈ R
• Strictly Schur-convex for t > 0.
• Strictly Schur-concave for t < 0.
• As t→∞, converges to maxi xi;

as t → −∞, converges to
mini xi.

• At t = 0, each weight is 1
N , so

Softmax0(x) =
1
N

∑
i xi.

J ADDITIONAL RESULTS IN THE MULTI-AGENT MULTI-TASK MATRIX GAME

We report further details and results on the heterogeneity gains obtained in the multi-agent multi-task
matrix game.

J.1 GAME FORMULATION

In Tab. 4 we provide an example of the pay-off matrix in this game for N = M = 3.

J.2 N = M = 2

We train with N = 2,M = 2 for 100 training iterations (each consisting of 60,000 frames). We
report the results for the continuous case in Tab. 5 and for the discrete case in Tab. 6. The evolution
of the heterogeneity gains over training is shown in Fig. 6.
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Table 4: Example of a Multi-Agent Multi-Task matrix game for N = M = 3. Agents choose their
actions A = (rij) and receive the global reward R(A) =

⊕M
j=1

⊕N
i=1 rij .

Tasks
1 2 3

A
ge

nt
s 1 r11 r12 r13

2 r21 r22 r23
3 r31 r32 r33

Table 5: Heterogeneity gain ∆R ∈ R0⩽x⩽1 of the continuous matrix game with N = M = 2. The
results match the theoretical analysis in the Table of Fig. 2. We report mean and standard deviation
after 6 million training frames over 9 different random seeds.

T
Min Mean Max

U
Min −0.002± 0.002 0.000± 0.003 0.504± 0.007
Mean −0.002± 0.002 0.000± 0.000 0.496± 0.001
Max −0.003± 0.002 −0.001± 0.001 0.003± 0.001

Table 6: Heterogeneity gain ∆R ∈ R0⩽x⩽1 of the discrete matrix game with N = M = 2. The
results match the theoretical analysis in Fig. 2. We report mean and standard deviation after 6 million
training frames over 9 different random seeds.

T
Min Mean Max

U
Min 0.0± 0.0 0.5± 0.0 1± 0.0
Mean 0.0± 0.0 0.0± 0.0 0.5± 0.0
Max 0.0± 0.0 0.0± 0.0 0.0± 0.0

0 2 4
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Discrete

0 2 4

Number of frames (Millions)

−0.5

0.0

0.5

1.0

Continuous
U = min, T = min
U = mean, T = min
U = max, T = min
U = min, T = mean
U = mean, T = mean
U = max, T = mean
U = min, T = max
U = mean, T = max
U = max, T = max

Figure 6: Heterogeneity gain for the discrete and continuous matrix games with N = M = 2 over
training iterations. We report mean and standard deviation after 6 million training frames over 9
different random seeds. The final results match the theoretical predictions in Fig. 2.

J.3 N = M = 4

In the case N = M = 4, the evolution of the heterogeneity gains during training is shown in Fig. 3.
We further report the final obtained gains for the continuous case in Tab. 7 and for the discrete case
in Tab. 8.

J.4 N = M = 8 AND N = 12,M = 2

To test scalability, we further report results for the discrete matrix game with N = M = 8 in Tab. 9,
N = 11,M = 2 in Tab. 10. In the case of N = 11,M = 2, results match the predictions of Table 2
(discrete rewards) precisely.
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Table 7: Heterogeneity gain ∆R ∈ R0⩽x⩽1 of the continuous matrix game with N = M = 4.
The results match the theoretical analysis in Fig. 2. We report mean and standard deviation after 12
million training frames over 9 different random seeds.

T
Min Mean Max

U
Min −0.003± 0.002 0.000± 0.001 0.690± 0.026
Mean −0.002± 0.000 0.000± 0.000 0.722± 0.002
Max −0.037± 0.023 −0.009± 0.005 0.029± 0.006

Table 8: Heterogeneity gain ∆R ∈ R0⩽x⩽1 of the discrete matrix game with N = M = 4. The
results match the theoretical analysis in the Table of Fig. 2. We report mean and standard deviation
after 12 million training frames over 9 different random seeds.

T
Min Mean Max

U
Min 0.0± 0.0 0.25± 0.0 1.0± 0.0
Mean 0.0± 0.0 0.0± 0.0 0.75± 0.0
Max 0.0± 0.0 0.0± 0.0 0.0± 0.0

For N = M = 8, we match the predictions precisely except for two cells which have negative
empirical ∆R. As discussed in Sec. 5, due to the larger agent scale and action dimensionality (8
agents and 8 tasks), for some reward structures the empirical heterogeneity gain is negative, since
the neurally heterogeneous agents we train require more time to discover the optimal policy, hence
lag behind their homogeneous counterparts under a fixed training budget. Increasing the number of
training steps steers the negative ∆R values to 0. This nuance aside, what is important is that the
results still follow our theory exactly in terms of which reward structures yield a positive heterogeneity
gain. For such reward structures, our theory also precisely predicts the numerical value of ∆R (Fig. 2)
.

Table 9: Heterogeneity gain ∆R ∈ R0⩽x⩽1 of the discrete matrix game with N = M = 8. We
report mean and standard deviation after 12 million training frames over 8 different random seeds.

T
Min Mean Max

U
Min 0.0± 0.0 0.125± 0.0 1.0± 0.0
Mean −0.094± 0.068 0.0± 0.0 0.875± 0.0
Max −0.75± 0.5 0.0± 0.0 0.0± 0.0

Table 10: Heterogeneity gain∆R ∈ R0⩽x⩽1 of the discrete matrix game with N = 11,M = 2. We
report mean and standard deviation after 12 million training frames over 8 different random seeds.
The results match the predictions of Table 2 (discrete rewards) precisely.

T
Min Mean Max

U
Min 0.0± 0.0 0.454545 ≈ 5/11± 0.0 1.0± 0.0
Mean −0.094± 0.0 0.0± 0.0 0.5± 0.0
Max −0.75± 0.5 0.0± 0.0 0.0± 0.0

K MULTI-GOAL-CAPTURE

In Multi-goal-capture, agents need to navigate to goals. Each agent observes the relative position to
the goals, and agent actions are continuous 2D forces that determine their direction of motion. The
entries rtij of matrix At at time t represent the local reward of agent i towards goal j, computed as
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rtij =
(
1− dtij/

∑M
j=1 d

t
ij

)
/(M − 1), where dtij is the distance between agent i and goal j. This

makes it so that
∑M

j=1 r
t
ij = 1 and rtij ⩾ 0. At each step, the agents receive the global reward R(At),

with aggregators U, T ∈ {min,mean,max}.
Our results, shown in Fig. 4a and Tab. 11, show that our curvature theory reliably predicts when there
is a heterogeneity gain (Fig. 2): it is positive only for the concave–convex pairs U = min, T = max
and U = mean, T = max. The heterogeneity gain is smaller in the latter case because learning
dynamics matter: with U = min, T = max the best homogeneous policy is unique (every agent
must steer to the midpoint between the two goals) so homogeneous learners seldom find it, leaving
room for heterogeneous policies to excel (see App. K). By contrast, U = mean, T = max admits
a continuum of good homogeneous policies, which homogeneous teams execute more easily. For
U = max, T = min and U = max, T = mean, the theoretical ∆R is 0, yet the empirical
heterogeneity gap is negative (Fig. 4a). This occurs because the reward peaks only when all agents
coordinate on the same goal. Neurally heterogeneous teams learn this uniform behavior slower than
homogeneous teams, so they underperform within the fixed training budget. Additional training
would close this gap to ∆R = 0.

Table 11: Heterogeneity gain at the end of training for the Multi-goal-capture experiments in Fig. 4a.
We report mean and standard deviation after 30 million training frames over 9 different random seeds.

T
Min Mean Max

U
Min 0.0± 0.02 0.01± 0.02 0.21± 0.03
Mean −0.03± 0.01 0.0± 0.0 0.12± 0.09
Max −0.08± 0.06 −0.07± 0.08 0.0± 0.0

In Fig. 7 we juxtapose two representative N = M = 2 roll-outs of the MULTI-GOAL-
CAPTURE environment for homogeneous teams (top row) and heterogeneous teams (bottom row)
when U = min, T = max. Consistent with the discussion in Sec. 5, homogeneous agents steer to
the geometric midpoint between the two goals, producing almost overlapping paths–this is suboptimal,
as they cannot cover both goals. On the other hand, heterogeneous agents exaggerate their differences,
taking sharply diverging trajectories and ensuring one goal each.

L 2V2 TAG EXPERIMENTS

The goal of our tag experiment is to showcase that our theoretical results, which predict the value of
∆R based on the curvature of the aggregators, hold for discrete, sparse rewards. Specifically, our
results for discrete efforts in Fig. 2 predict that only (U, T ) = (min,max), (min,mean), (mean,max)
will have positive heterogeneity gain, with (min,max) maximizing the gain. We show in Fig. 4b
and Tab. 12 that this holds in 2v2 tag, despite the fact that this is a challenging, embodied, long-
horizon, whereas our formal results are for instantaneous allocation games4. Note that this is a highly
interpretable result: a (min,max) means that agents are only awarded when both escapers are caught,
incentivizing heterogeneous strategies where chaser agents split their behaviour so that the chasing
efforts rtij are equally distributed between both escapers. Fig. 8 visualizes the trajectories learned by
agents trained under this (min,max) reward structure, showing distinct emergent pursuit strategies
emerging depending on whether the agents are neurally heterogeneous or neurally homogeneous.

To test the robustness of our predictions to greater number of agents, we also ran an experiment
with 11 agents: 8 chasers and 3 escapers. We trained the agents over 500 episodes of length 1000
each (this episode length is more than twice as long as our other experiments, indicating that our
predictions are stable over longer horizons). Note that we still collect the same amount of total frames
(30M) as we reduce the number of environments sampled in parallel.

4The gain for (mean,max) is small compared to the other two aggregator combinations, but still positive
at ∆R ≈ 0.37. This is also significantly higher than aggregator combinations for which we predict ∆R is not
positive, the largest of which attained ∆R < 0.01.
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(a) Homogeneous run 1 (b) Homogeneous run 2

(c) Heterogeneous run 1 (d) Heterogeneous run 2

Figure 7: Behaviour under the concave–convex aggregator U = min, T = max. Each dot is
an agent position; line segments indicate instantaneous velocity; green squares mark goal locations.
Homogeneous policies collapse to a single “mid-point” route, while heterogeneous policies split
and follow distinct paths to cover both goals. Note how the heterogeneous agents exaggerate the
difference in their trajectories, rather than head directly to the goal: this is an outcome of the reward
structure, which encourages maximal diversity.

Due to the high computational cost associated with these experiments, we selected 2 aggregator
combinations for which Table 2 predicts a positive ∆R: (U, T ) = (min,mean) and (U, T ) =
(min,max), and three “control” combinations for which we expect ∆R ≤ 0. The results, shown
in Figure 9 (discrete rewards), illustrate that our predictions still hold in this case. The final ∆R
values are (U = min, T = mean) = 1.243 ± 0.615, (U = min, T = max) = 0.112 ± 0.084,
(U = mean, T = mean) = −0.196 ± 0.053, (U = mean, T = max) = −0.990 ± 1.025, and
(U = max, T = max) = −3.709± 2.491.

It is important to note that, while our theoretical predictions regarding when ∆R > 0 hold for
any number of agents N , they specifically tell us what happens when agents allocate their efforts
optimally. The empirical heterogeneity gain ∆R crucially depends on the quality of the strategy
agents learn in practice. As the number of agents or complexity of the task grows, we may eventually
witness a divergence between the empirical heterogeneity gain and the theoretical predictions, for this
reason. This does not indicate a problem with our theoretical predictions. Rather, it is a limitation of
learning-based methods; using better methods will lead to empirical results that more closely mirror
our predictions.

M FOOTBALL EXPERIMENTS

In some environments, the reward structure might not entirely follow the double-generalized-
aggregator structure we study in this work, but at least some part of the reward function might
obey this structure. In our study of the VMAS football scenario (Bettini et al., 2022), we ask what
happens when this is the case.
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Figure 8: Comparison of homogeneous (top row) and heterogeneous (bottom row) 2v2 tag policies for
chaser agents, trained with the reward structure U = min, T = max across different initializations.
Every column shows the trajectory of the homogeneous (top) and heterogeneous (bottom) policies.
(Note that trajectories here are smoothened; agents don’t go over obstacles in actual execution). The
heterogeneous policies prioritize capturing both agents, whereas the homogeneous policies focus on
just one. In the U = min, T = max setting, this gives heterogeneous agents greater reward, hence
∆R > 0. Please find more visualizations on our website.
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Figure 9: Heterogeneity gain for 8v3 Tag throughout training. We report mean and standard deviation
for 30 million training frames over 8 random seeds. Positive aggregator combinations are colored
and follow the predictions of Table 2 for discrete rewards. Final gain values are reported in the text of
Appendix L.

Football is a complex, embodied, long-horizon scenario that requires the agents to learn low-level
dribbling skills as well as high-level strategy purely from a shared cooperative reward. The VMAS

Table 12: Heterogeneity gain at the end of training for the Tag experiments in Fig. 4b. We report
mean and standard deviation after 30 million training frames over 9 different random seeds.

T
Min Mean Max

U
Min 0.0± 0.0 1.68± 0.24 3.47± 0.23
Mean −0.03± 0.04 −0.02± 0.06 0.36± 1.44
Max −0.02± 0.09 −0.11± 0.18 −0.30± 0.15
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Table 13: Football heterogeneity gains across different reward formulations. Results obtained after
500 training iterations of 240k frames each (6 seeds). Opponent speed annealed from 0% to 100%.

Reward ∆R Theory ∆R > 0? Reward meaning

U = min, T = max 1.76± 0.72 Yes One agent should attend the ball,
the other the opponent; reward
capped by the less-covered task.

U = mean, T = max 1.18± 0.11 Yes Similar to (min,max), but reward
is dictated by average task perfor-
mance.

U = mean, T = mean 0.01± 0.07 No Agents should attend both the op-
ponent and the ball.

U = min, T = min −0.08± 0.73 No At least one agent should attend at
least the opponent or the ball.

scenario uses reward shaping to enable agents to learn such behaviors. We add a reward structure
U(T (rt11, r

t
21), T (r

t
12, r

t
22)) on top of this and ask how this affects heterogeneity.

In our experimental scenario, two learning agents spawn at midfield. A ball is located between them
and the goal to the right; a heuristic defender spawns to their left and chases the ball. Agents receive
a global reward that increases when the ball moves toward the goal and the defender stays away from
it. Additionally, we reuse the reward structure from our Multi-Goal-Capture to define rewards for
two tasks: tackling the ball, and tackling the opponent.

The effort at time t is:

rtij = (1−
dtij∑
j d

t
ij

)/dtij ,

where dij is distance of agent i to ball or opponent). The global reward given to all agents is then
computed as:

Rt = U(T (rt11, r
t
21), T (r

t
12, r

t
22)) + β[(dt−1

ball,goal − dtball,goal)− (dt−1
opp,ball − dtopp,ball)],

where β weighs the global football reward.

Since this reward structure does not follow our theory entirely, we ask whether, when U, T are,
respectively, strictly Schur-concave and strictly Schur-convex, we should expect ∆R > 0 as in our
other scenarios. We test this for U = min, T = max and U = mean, T = max. To control for
the possibility that football is heterogeneous “by default”, we also test the aggregator combinations
U = mean, T = mean and U = min, T = min as controls.

We report heterogeneity gains after training homogeneous and heterogeneous policies in Tab. 13. This
shows that our curvature test predicts the heterogeneity gain of different reward structures, despite
only being a component in the overall reward structure. This insight is important, as it indicates our
theoretical insights (the curvature test) may extend beyond environments that strictly follow our task
allocation setting.

The resulting policies are reported in Fig. 10 with videos here.

N OBSERVABILITY-HETEROGENEITY TRADE-OFF

In this Appendix, we crystallize the relationship between environment observability and empirical
heterogeneity gains. It is well known that neurally homogeneous agents (i.e., sharing the same
parameters) can achieve behavioral heterogeneity by conditioning their actions on diverse input
contexts (behavioral typing). This can be achieved by naively appending the agent index to its
observation (Gupta et al., 2017a) or by providing relevant observations that allows the agents to infer
their role (Bettini et al., 2023). Behavioral typing is impossible in matrix games, as these games
are observationless. However, it is possible in more complex games, such as our Multi-goal-capture
scenario. We augment agents in the positive gain scenario (U = min, T = max) with a range
sensor, providing proximity readings for other agents within a radius. In Fig. 11, we show that the
heterogeneity gain decreases as the agent visibility increases (higher sensing radius). This is because,
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Figure 10: Left: Results of training a heterogeneous policy on VMAS Football where agents are
trained with U = min, T = max aggregators. Our learning agents are drawn in blue; the heuristic
opponent in red; and the ball in black. The learning agents split their efforts, tackling both the ball
and the opponent. Right: Results of training a homogeneous policy. Agents are unable to split their
efforts, so either they both tackle the ball, or both tackle the opponent. This results in lower reward,
hence ∆R > 0. These policies are visualized on our website.
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Figure 11: Gain w.r.t. observability when U = min, T = max.
Figure 12: Heterogeneity gain for Multi-goal-capture throughout training when the agents’ obser-
vation range is gradually increased from 0 to 0.35 over 4 random seeds (4 random seeds suffice as
this phenomenon is established in the literature (Bettini et al., 2023), and we only wish to show its
emergence in the context of our work.)

with a higher range, homogeneous agents can sense each other and coordinate to pursue different
goals. This result highlights the tight interdependence between the heterogeneity gain and agents’
observations.

O PARAMETRIZED DEC-POMDP

A Parametrized Decentralized Partially Observable Markov Decision Process (PDec-POMDP) is
defined as a tuple 〈

N ,S, {Oi}i∈N ,
{
σθ
i

}
i∈N , {Ai}i∈N ,Rθ, T θ, γ, sθ0

〉
θ
,

where N = {1, . . . , n} denotes the set of agents, S is the state space, and, {Oi}i∈N and {Ai}i∈N
are the observation and action spaces, withOi ⊆ S, ∀i ∈ N . Further,

{
σθ
i

}
i∈N andRθ are the agent

observation and reward functions, such that σθ
i : S 7→ Oi, and,Rθ : S × {Ai}i∈N 7→ R. T θ is the

stochastic state transition model, defined as T θ : S ×{Ai}i∈N 7→ ∆S , which outputs the probability
T θ(st, {ati}i∈N , st+1) of transitioning to state st+1 ∈ S given the current state st ∈ S and actions
{ati}i∈N , with ati ∈ Ai. γ is the discount factor. Finally, sθ0 ∈ S is a the initial environment state.

28

https://sites.google.com/view/hetgps#h.2y559rx4xjjx


1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A PDec-POMDP represents a set of traditional Dec-POMDPs (Oliehoek et al., 2016), where the
observation function, the transition function, the reward function, and the initial state are conditioned
on parameters θ. This formalism is similar to the concepts of Underspecified POMDP (Dennis et al.,
2020) and contextual MDP (Modi et al., 2018).

Agents are equipped with (possibly stochastic) policies πi(ai|oi), which compute an action given a
local observation. Their objective is to maximize the discounted return:

Gθ(π) = Eπ

[
T∑

t=0

γtRθ
(
st, at

)∣∣∣∣∣st+1 ∼ T θ(st, at), ati ∼ πi(o
t
i), o

t
i = σθ

i (st)

]
,

where π, a are the vectors of all agents’ policies and actions. Gθ(π) represents the expected sum of
discounted rewards starting in state sθ0 and following policy π in a PDec-POMDP parametrized by θ.

P STABILITY OF BILEVEL OPTIMIZATION IN HETGPS

The Heterogeneity Gain Parameter Search (HetGPS) algorithm employs a bilevel optimization
framework to simultaneously optimize environment parameters and agent policies. This appendix
discusses the structure of this optimization problem, its convergence properties, practical stability,
and alternatives for non-differentiable environments.

P.1 HETGPS AS A STACKELBERG GAME

HetGPS can be formalized as a Stackelberg game, a hierarchical optimization problem involving a
leader and followers (Simaan & Cruz, 1973). In our setting:

1. The Leader is the environment designer (the outer loop of HetGPS), which aims to maximize
the heterogeneity gain HetGainθ by adjusting the environment parameters θ.

2. The Followers are the homogeneous and heterogeneous multi-agent teams (the inner loop),
which aim to maximize their respective returns Gθ(π) by optimizing their policies πhet and
πhom within the environment defined by θ.

The leader’s objective function (the heterogeneity gain) depends on the optimized policies of the
followers, which, in turn, depend on the parameters θ set by the leader. Formally, the objective is:

max
θ

[
Gθ(π∗

het(θ))−Gθ(π∗
hom(θ))

]
(1)

where π∗(θ) represents the optimized policies for a given environment configuration θ.

P.2 CONVERGENCE AND STABILITY

Generally speaking, multi-agent reinforcement learning is a concurrent optimization process that faces
non-stationarity as agents constantly adapt to one another’s evolving policies (Zhang et al., 2019).
HetGPS extends this challenge as agents must also adapt to a changing environment. Consequently,
formal convergence guarantees to a global optimum remain an open question with regards to HetGPS
in particular, but also MARL algorithms in general. However, recent theoretical work in environment
co-design has established conditions under which convergence of bilevel optimization processes
similar to HetGPS to local optima can be guaranteed, such as requiring sufficient smoothness of the
environment dynamics and policy updates (Gao et al., 2024).

Despite the theoretical complexities inherent in multi-agent learning and bilevel optimization, as
shown in Sec. 5 and App. Q, HetGPS demonstrates strong empirical stability even under adversarial
initializations. This stability is expected, as it mirrors the practical success observed in related co-
design and automated curriculum learning literature (Dennis et al., 2020; Gao et al., 2024). However,
we emphasize that empirical stability is not a guarantee of convergence. Although we did not identify
such cases ourselves, it is possible that in some scenarios, HetGPS will oscillate rather than converge.

P.3 ADVANTAGE OF DIFFERENTIABLE SIMULATION

In our experiments, HetGPS increased training time by roughly 25% compared to training agents in
an environment with a fixed reward structure. Hence, it is highly efficient and does not impose much
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overhead. A key strength contributing to the efficiency of HetGPS is its use of differentiable simulation
(e.g., VMAS (Bettini et al., 2022)). By leveraging backpropagation through the entire rollout, HetGPS
computes the exact gradient ∇θHetGainθ. This approach is more sample-efficient than alternative
methods that treat the environment design as a separate RL problem (e.g., PAIRED (Dennis et al.,
2020) or Designer-RL (Gao et al., 2024; Amir et al., 2025)). Such methods rely on high-variance
policy gradient estimates for the outer loop and often struggle with exploration inefficiency (Parker-
Holder et al., 2021; Jiang et al., 2021; Xu et al., 2022). By utilizing exact gradients, HetGPS mitigates
these issues.

P.4 HANDLING NON-DIFFERENTIABLE ENVIRONMENTS

A requirement for the implementation of HetGPS presented in Alg. 1 is access to a differentiable
simulator. When the environment involves non-smooth physics or black-box components, direct
backpropagation is infeasible.

In such cases, the environment optimization step (Line 6 of Alg. 1) can be replaced with the gradient-
free methods mentioned above, such as PAIRED (Dennis et al., 2020), the bilevel method from (Gao
et al., 2024), or evolutionary strategies (Stanley et al., 2019). While these methods have empirically
been shown to be stable and robust in other co-design settings, and may enable the extension of
HetGPS to non-differentiable settings, they typically require more samples and may exhibit more
noise compared to the direct backpropagation approach utilized in this work.

Q HETGPS UNDER ADVERSARIAL INITIAL CONDITIONS

To evaluate the robustness of HetGPS to initialization, we repeated the Softmax experiment in
Multi-Goal-Capture (Fig. 5a) with adverse initialization. We initialized the outer aggregator U with
τ = 5 (making it convex) and the inner aggregator T with τ = −5 (making it concave), which is the
opposite of the concave-convex configuration predicted by theory to maximize heterogeneity gain.

As shown in Table 14, HetGPS successfully overcomes the adverse initialization and converges
towards the theoretically optimal parameters (large positive τ for T, large negative τ for U).

Table 14: Convergence of HetGPS parameters (τ ) in the Softmax Multi-Goal-Capture experiment
starting from adverse initialization (τT = −5, τU = 5). Mean and standard deviation reported over 3
seeds.

Frames (M) 0 50 75 100
τ of T (Inner Agg.) −5.0± 0.0 13.32± 2.15 18.88± 3.96 22.95± 5.71
τ of U (Outer Agg.) 5.0± 0.0 −10.26± 1.70 −14.59± 2.24 −17.16± 2.43

R LIMITATIONS AND OPEN QUESTIONS

We list a number of limitations, open questions, and possible extensions.

R.1 THEORETICAL SCOPE

• Beyond task-allocation RL domains. The benchmark domains we study and the additional
settings covered in App. E all fit into our abstract task-allocation framework: we can interpret
agents’ state, such as goal proximity in Multi-goal-capture, or whether they captured an escaping
agent in tag, abstractly as “efforts” rij and represent the reward in terms of such efforts. This
is what enables us to make predictions about these environments. Although our framework is
quite general, and accommodates environments that one might not traditionally view as “task
allocation” (such as football and tag), several notable multi-agent RL domains, e.g., multi-robot
manipulation, might not be representable within this framework. Our heterogeneity analysis does
not directly apply to these settings, and extending our results to them is important for getting a
complete picture of the benefits of heterogeneity.
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R.2 ALGORITHMIC ASSUMPTIONS

• Differentiable simulation. HetGPS requires ∇θG
θ(π), hence a simulator that is end-to-end

differentiable and tractable to back-propagate through. We assume differentiability mainly
for considerations of training efficiency. However, many realistic environments still rely on
non-smooth physics or black-box generators, requiring us to modify HetGPS for these settings.
We note that there are good, established methods for learning environment parameters in non-
differentiable settings (at the cost of efficiency/increased noise). We discuss these in detail in
App. P. However, we did not test such variants of HetGPS, and leave these extensions to future
work.

R.3 OPEN QUESTIONS

i. What is the connection between the transition function and heterogeneity? Our analysis is
reward-centric: the curvature criterion reasons only about the team reward. In a Dec-POMDP,
however, heterogeneity can be beneficial purely because agents are constrained by state transi-
tions. When do state transition dynamics benefit heterogeneity?

ii. Learning dynamics vs. reward structure. The theory predicts whether a given reward structure
enables an advantage to heterogeneous teams, not whether a particular learning algorithm will
learn in response to it. This is connected to the difference between neural and behavioral
heterogeneity that we emphasize throughout the paper. Our experiments suggest, empirically,
that neurally heterogeneous agents will, in practice, learn to exploit heterogeneous reward
structures (i.e., be behaviorally heterogeneous); but can a formal link be established between
our reward structure insights and what reward the learning dynamics converge to in practice?

Tackling these challenges would sharpen our understanding of when and how diversity should be
engineered in cooperative multi-agent learning.

R.4 SCOPE OF THE CURVATURE ANALYSIS

The theoretical framework presented in Section 2 provides a precise characterization of the hetero-
geneity gain based on the curvature of reward aggregators. We provide an extended discussion of
when we expect our theoretical predictions can, and cannot, be applied for deciding whether to use
heterogeneous or homogeneous agent policies.

Symmetry and Monotonicity. Our analysis hinges on the definition of generalized aggregators
as symmetric and coordinate-wise non-decreasing. These assumptions are appropriate for studying
emergent behavioral specialization among capability-identical agents. Symmetry ensures that agents
(and tasks) are interchangeable ex-ante, isolating how the reward structure drives specialization. If
symmetry is violated (e.g., due to inherently heterogeneous agent capabilities), heterogeneity is often
trivially necessary. Monotonicity ensures a rational cooperative setting where increased effort does
not decrease the reward.

Effort Constraints. We define the feasible effort space over the closed unit simplex (where efforts
sum ≤ 1). However, because both the inner aggregators Tj and the outer aggregator U are non-
decreasing, any optimal allocation—whether homogeneous or heterogeneous—will necessarily
saturate the budget constraint (efforts sum = 1). Therefore, our analysis focuses on this efficient
frontier without loss of generality.

Constant-Sum Task Score Constraints. It is crucial to clarify that the assumption of constant-sum
task scores (

∑
j Tj(aj) = C) is specific only to Theorem 3.3, enabling the use of majorization

to analyze the outer aggregator U . Theorems 3.1 and 3.2, and our sum-form aggregator analysis
(App. F), do not rely on this.

When this assumption is violated, the analysis of ∆R involves a trade-off between the distribution of
scores (influenced by curvature) and their total magnitude. Despite this complexity, our empirical
findings (Section 5) suggest that the curvature analysis remains a robust heuristic for predicting the
heterogeneity gain even when the task scores are variable-sum.
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Reward functions that partially follow the theory. Our football experiments show that even
when only part of the reward function adheres to our curvature theory (e.g., it is a sum R(A) =
R1(A) + R2(A) where R1 is concave-convex and R2 is a function with unclear curvature), our
theoretical results may still predict the heterogeneity gain. We make no formal claims about the
robustness of our predictions in such scenarios, but it is valuable to keep in mind that even if the
entire reward function does not perfectly follow the theory, it may still be worthwhile to see what the
concave-convex curvature test says about the part of it that does.

32


	Introduction
	Related Works

	Problem Setting
	Analysis
	Heterogeneity Gain Parameter Search (HetGPS)
	Experiments
	Discussion
	Computational Resources Used
	Code and Data Availability
	Implementation Details
	Use of LLMs
	Colonel Blotto & Level-Based Foraging
	Team Colonel Blotto (fixed adversary)
	Level-Based Foraging

	Sum-Form Aggregators
	Formal Analysis
	Proof of Thm. 3.1
	Proof of Thm. 3.2
	Proof of Thm. 3.3
	Proof of Thm. 3.4

	Deriving the {, mean, } heterogeneity gains in the Fig. 2 table
	Parametrized Families of Aggregators
	Additional Results in the Multi-Agent Multi-Task Matrix Game
	Game formulation
	N=M=2
	N=M=4
	N=M=8 blue and N=12, M=2

	Multi-goal-capture
	2v2 Tag Experiments
	Football Experiments
	Observability-Heterogeneity Trade-Off
	Parametrized Dec-POMDP
	Stability of Bilevel Optimization in HetGPS
	HetGPS as a Stackelberg Game
	Convergence and Stability
	Advantage of Differentiable Simulation
	Handling Non-Differentiable Environments

	HetGPS Under Adversarial Initial Conditions
	Limitations and Open Questions
	Theoretical scope
	Algorithmic assumptions
	Open questions
	blue Scope of the Curvature Analysis


