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Abstract

Identification of a linear time-invariant dynamical system from partial observa-
tions is a fundamental problem in control theory. Particularly challenging are sys-
tems exhibiting long-term memory. A natural question is how learn such systems
with non-asymptotic statistical rates depending on the inherent dimensionality (or-
der) d of the system, rather than on the possibly much larger memory length. We
propose an algorithm that given a single trajectory of length 7" with gaussian ob-

servation noise, learns the system with a near-optimal rate of O ( % in Ho er-

ror, with only logarithmic, rather than polynomial dependence on memory length.
We also give bounds under process noise and improved bounds for learning a
realization of the system. Our algorithm is based on multi-scale low-rank approx-
imation: SVD applied to Hankel matrices of geometrically increasing sizes. Our
analysis relies on careful application of concentration bounds on the Fourier do-
main — we give sharper concentration bounds for sample covariance of correlated
inputs and for H ., norm estimation, which may be of independent interest.

1 Introduction

We consider the problem of prediction and identification of an unknown partially-observed linear
time-invariant (LTI) dynamical system with stochastic noise,

x(t) = Az(t — 1) + Bu(t — 1) +£(t) (1)
y(t) = Cx(t) + Du(t) +n(t), 2)

with a single trajectory of length 7', given access only to input and output data. Here, u(t) € R% are
inputs, z(¢) € RY are the hidden states, y(¢) € R% are observations (or outputs), £(¢) ~ N(0,%,)
and 7)(t) ~ N(0,%,) are iid gaussian noise, and A € R™*?4 B € R4 O € RL>4 D € R
are matrices. Partial observability refers to the fact that we do not observe the state x(t), but rather
a noisy linear observation y(¢).

As a simple and tractable family of dynamical systems, LTI systems are a central object of study for
control theory and time series analysis. The problem of prediction and filtering for a known system
dates back to [Kal60]. However, in many machine learning applications, the system is unknown and
must be learned from input and output data. Identification of an unknown system is often a necessary
first step for robust control [DMM™ 19,[BMR18]|. In a long line of recent work, the interplay between
machine learning and control theory has borne fruit in an improved understanding of the statistical
and online learning guarantees for prediction, identification, and control for unknown systems. In
machine learning, LTI systems also serve as a simple model problem for learning from correlated
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data in stateful environments, and can give insight into understanding the successes of reinforcement
learning [Rec19,[TR19] and recurrent neural networks [HMR18§]].

Partial observability poses a significant challenge to system identification: In the fully observed
setting, given access to x(t), there is no obstacle to learning the matrices directly through linear
regression. However, in the partially observed setting, the most natural form of the optimization
problem is non-convex.

Systems exhibiting long-term memory are particularly challenging to learn. Restricting to marginally
stable systems, this occurs when the spectral radius of A, p(A), is close to 1, and it implies that the
output at a particular time cannot be accurately estimated without taking into account inputs over
many previous time-steps—on the order of O (ﬁ) times steps. Such systems often arise in
practice. A particular class of such systems are those exhibiting multiscale behavior, with different
state variables that change on vastly different timescales [CR10|]. For example, the body’s pH level is
affected both by long-term changes on a timescale of days or weeks, as well as breathing rate which
changes over a timescale of seconds. For such systems, it makes sense to discretize at the scale of the
fastest changing variable, which leads to a long memory for the slowest-changing variable. With few
exceptions, existing guarantees for learning partially observed LTI systems degrade as the memory
length increases. However, counting the number of parameters in the model (T)—(2) suggests that the
right measure of statistical complexity is the intrinsic dimensionality of the system, not the memory
length. This leads to the following natural question.

Question: How can we learn partially observed LTI systems with (non-asymptotic) statistical rates
that depend on the intrinsic dimensionality of the system, rather than the memory length?

Despite the simplicity of the question, little in the way of theoretical results are known. We focus
on the particular problem of learning the impulse response (IR) function of the system—which fully
determines its input-output behavior—in #s norm. This is a natural norm for prediction problems
as it measures the expected prediction error under random input. Known guarantees for learning the
IR depend on the memory length. One particularly undesirable consequence is that for a continuous
system with time discretization A going to 0, the memory scales as 1/A (while the system order
stays constant), leading to suboptimal estimation by an arbitrarily large factor.

Our key contribution is an algorithm and analysis that gives statistical rates that are optimal up to
logarithmic factors. Unlike previous works, our rates depend on the system order d—the natural
dimensionality of the problem—and only logarithmically on the memory length of the system. Our
algorithm is based on taking a low-rank approximation (SVD) of the Hankel matrix, which is a
widely used technique in system identification. We consider a multiscale version of this algorithm,
where we repeat this process for a geometric sequence of sizes of the Hankel matrix. This is essential
for obtaining a stronger theoretical guarantee. In the setting of zero process noise, we prove that our

algorithm achieves near-optimal o ( M) rates in Hq error for the learned system.

Our analysis relies on careful application of concentration bounds on the Fourier domain to give
sharper concentration bounds for sample covariance and H ., norm estimation, which may be of
independent interest. While we consider our algorithm in a simple setting, we hope that this is a
first step to understanding and improving more complex subspace identification algorithms. Indeed,
SVD and related spectral methods are a standard step used in subspace identification algorithms
such as N4SID; our analysis suggests that SVD has an important “de-noising effect”.

We also give improved bounds for system identification, that is, learning the matrices A, B, C, D
using the Ho-Kalman algorithm [HK66], with 5 ( M) rates.

1.1 Notation

Norms. We use ||| to denote the 2-norm of a vector. For a matrix A, let ||A|| = [[A],
denote its operator norm, p(A) denote its spectral radius (maximum absolute value of eigen-
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value), and ||A|| denote its Frobenius norm. For a matrix-valued function M(t) € C%*dz,
IM|lg =2, [[M(t) ||,2: Let 0,-(A) denote the rth singular value of A.

Fourier transform. Given a matrix-valued function F' : Z — C™*", define the (discrete-time)
Fourier transform as the function F : R/Z — C™*™ given by F( )= F(t)e 2wt

Matrices. Given a sequence (F(t))*P~! where each F'(t) € C™*", define Hankel,x;(F) as the
am x bn block matrix such that the (4, j)th block is [Hankelyx,(F)];; = F (i +j — 1). Given a
sequence (F(t))¢=, where each F(t) € C™*", define the Toeplitz matrix as the block matrix such
that the (4, j)th block is [Toep, ., (F)]i; = F(i — j)1;>;. For a matrix A, let AT, A” A" denote
its transpose, Hermitian (conjugate transpose), and pseudoinverse, respectively. For a Vector-valued
function v : {a,...,b} — R, let vy, € RUe=bI+Dn denote the the vertical concatenation of

v(a),...,v(b).

Control theory. For a matrix A € C9*?, define its resolvent as ®4(z) = (2 — A)~!. Fora
linear dynamical system D given by (I)—2), let ®p = ®,_,, denote the transfer function from
u to y (response to input). Then ®p = @,y = CPuB + D = C(z] — A)'B+ D. Let
T := {z € C: |z| = 1} be the unit circle in the complex plane. For a matrix-valued function F :
T — C% >4 define the H5 and H ., norms by

1
[®@ll5, = \/2/ 18 (=) |17 d= 1]y = sup || ®(z)]].
™ JT z€T

For a function F' : Ny — C%*42_ define its Z-transform to be Z[F](z) = > 02 F(n)z~". Con-
sidered as a function T — C, we can take its Ho and H,, norms. Overloading notation, we will let
[ Flly, = [[ZF 4, for p = 2,00. The H; and Hoo norms can be interpreted as the Frobenius and
operator norms of the linear operator from input to output, i.e., they measure the average power of
the output signal under random or worst-case input, respectively. For background on control theory,
see e.g., [ZDGT96].

Constants. In proofs, C' may represent different constants from line to line.

2 Main results

We consider the problem of prediction and identification for an unknown linear dynamical sys-
tem (I)—(Z). Our main goal is to obtain error guarantees in Ho norm, which determines prediction
error under random input [OO19, Lemma 3.3].

Problem 2.1. Consider the partially-observed LTI system D (I)-@2) with gaussian inputs u(t) ~
N(0,14,) for 0 <t < T. Suppose that the system is stable, that is, p(A) < 1, and that we observe
a single trajectory of length T started with ©(0) = 0, that is, we observe u(t) ~ N(0,I4,) and y(t)
for0 <t <T.

The goal is to learn a LTI system D with the aim of minimizing H<I>5 —®p HH2. Equivalently, letting
D t=0
F*(t) = ’
®) {OAHB, t>1
denote the impulse response function (also called the Markov parameters) of the system, the goal is
to learn an impulse response F' minimizing HF* — FHH = HF* - FHF

Note that learning F'* is sufficient to fully understand the input-output behavior of the system, but
we may also ask to recover the system parameters A, B, C, D up to similarity transformation (see

Theorem [2.3)).

Previous results [OO19, [SRD19|] roughly depend polynomially on the “memory” ﬁm), which
blows up as the spectral norm of A approaches 1. In the setting of zero process noise, our goal is
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to obtain rates that are O <
Figure|T|for a comparison.

%\/%”’dy)), with only poly-logarithmic dependence on ﬁ(ﬁi)' See

We assume that p(A) < 1 because if D is not stable, it is in general impossible to learn D with
finite Ho error, as a system with infinite response can have arbitrarily small response on any finite
time interval. However, it may still be possible to learn the response up to time L < T in this
case [SBR19]. The marginally stable case (p(A) = 1) is an important case we leave to future work.

Method Rollout type Min # samples IR error
Least squares (IR) Multi L o\ &
[TBPR17]

Least squares (IR) [OO19] Single L o'\/g
Nuclear norm minimization ~ Multi min{d?, L} o \/g
[ISOF20] Multi d o/ 4
rank-d SVD (Theorem Single L o %

Figure 1: Here, L is the memory length for the system, which is O (ﬁ) for well-conditioned
systems. Rollout type refers to whether we have access to a single trajectory or multiple trajectories.
Min # samples refers to the minimum number of samples (up to log factors) before the bounds are
operational. IR error refers to the error in the impulse response in Frobenius/?{5 norm. Logarithmic
factors are omitted.

In our Algorithm (I} we first use linear regression to obtain a noisy estimate F' of the impulse re-
sponse. Next, following standard system identification procedures, we form the Hankel matrix
Hankely, x ;, (F') with the entries of F on its diagonals. Because the true Hankel matrix

CB CAB ... CA''B

2

Hankely  , (F*) = CAB CA°B
CAL-1B ... (CA2L-1p

has rank d, we take a low-rank SVD R, of the Hankel matrix to “de-noise” the impulse response.
We can then read off the estimated impulse response by averaging over the corresponding diagonal
of Ry. For technical reasons, we need to repeat this process for a geometric sequence of sizes
of the Hankel matrix: L x L, L/2 x L/2, L/4 x L/4, and so forth. This is because the low-
rank approximation objective for a £ x ¢ Hankel matrix encourages the diagonals that are ©(¢) to
be close—as those are the diagonals with the most entries—and hence estimates F*(¢) well when
t = ©(¢). In other words, low-rank estimation for Hankely¢(F’) is only sensitive to the portion of
the signal that is at timescale /. Repeating this process ensures that we cover all scales.

Our main theorem is the following.

Theorem 2.2. There is a constant C1 such that following holds. In the setting of Problem |2
suppose that F* is the impulse response function, T is such that T > CLd,, log ( ) Etrunc ‘=

15" ar,0) ., VA + |G Lpr ol [, and Moy = (0,04, .CAF 1T €

REFDEXdy Ter(0 <5< Lando = \/sz” + |54 || Llog (L) ||M¢_>y|| Then with probabil-
ity at least 1 — 0, Algortthmllearns an impulse response function F such that

d(d, + dy + log (£)) log L
F:O<U\/ ( y tdy + Og(é)) og +5trunc\/g+HF*1(L,oo)HF>'

HF—F*

T

In the absence of process noise (when X, = O), when L and T’ are chosen large enough, the first
term dominates, and ignoring log factors, the dependence is O (\/ %). We expect this to be

4
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Algorithm 1 Learning impulse response through multi-scale low-rank Hankel SVD

1: Input: Length L (power of 2), time 7.

2: Part 1: Linear regression to recover noisy impulse response

3: Letu(t) ~ N(0,1,,) for 0 <t < T, and observe the outputs y(t) € R%, 0 <t < T
4: Solve the least squares problem

T-1

min D) = Fru@)]?.

F:Supp(F)C[0,2L—1] 0

to obtain the noisy impulse response F : [0,2L — 1] N Z — R *du,
5: Part 2: Low-rank Hankel SVD to de-noise impulse response
6: Let F(0) = F(0).
7. for k = 0 to log, L do
8 Letl=2"
9: Let Ry be the rank-d SVD of Hankelyy¢(F') (i.e., argmin, . gy<q [|[ R — Hankelox o (F)]]).
10 For % <t <Y, let F(t) be the d,, x d,, matrix given by F(t) = %ZiJrj:t(Rg)ij, where
(-)i; denotes the (i, j)th block of the matrix.

11: end for ~
12: Output: Estimate of impulse response F'.

the optimal sample complexity up to logarithmic factors. However, in the presence of process noise,
there is an undesirable factor of v/L | Mz ||, which (for well-conditioned matrices) is expected to

be O (?I(A)) or O(L). We leave it an open problem to improve the guarantees in this setting.

Remark 1. The L-factor dependence on the process noise is unavoidable with the current algorithm:
when the process noise has covariance ¥, = I and decays after L steps, it can cause perturbations of
size O(ﬁ) compared to the noiseless system. Even in the case d = 1, when the impulse response
function is ae~**/ for a known k, the noise will cause the estimate of a to be off by O(v/L), and
hence the Ho norm of the impulse response to be off by O(L). Our algorithm only regresses on
previous inputs, but in the presence of process noise, a better approach is to regress on both the
previous inputs u(t) and outputs y(t) and then take a (weighted) SVD, as in N4SID [Qin06].

Remark 2. A burn-in time of (L) is information-theoretically required to get poly(d) rates. At-
tempting to extrapolate an impulse response function from time o(L) to time L can magnify errors
by exp(d), because the finite impulse response of a system of order d can approximate a polynomial
of degree d — 1 on [0, L].

We also show the following improved rates for learning the system matrices, by combining H .
bounds for the learned impulse response with stability results for the Ho-Kalman algorithm [OO19].
Because the input-output behavior is unchanged under a similarity transformation (A, B,C) «
(W=LYAW,W~1B, CW), we can only learn the parameters up to similarity transformation.

Theorem 2.3. Keep the assumptions and notation of Theorem suppose D is observable and
controllable, and let

+ Etrunc-

, \/L (dy + dy +log (L))

E =0 T

Let H™ = Hankely, (1) (F™). Suppose that &' = O(owin(H™)). Then with probability at least
1— 0, the Ho-Kalman algorithm (Algorithm 1 in [[O019] with Ty = L, Ty = L — 1) returns 121\, B,C
such that there exists a unitary matrix W satisfying

was e~ ow].

il o (s o (i )

B- W—lﬁHF} —0(d- €
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As L can be chosen to make ey, negligible, this gives o (\/ w) rates, however,
with factors depending on the minimum eigenvalue of H. This is an improvement over the
5(\/& \ W) rates in [OO19].

We prove Theorem [2.2)in Section[d]and Theorem 2.3]in Appendix

3 Related work

We survey two classes of methods for learning partially observable LDS’s, subspace identification
and improper learning. With the exception of [RIR20], all guarantees have sample complexity
depending on the memory length L, which we wish to avoid.

3.1 Subspace identification

The basic idea of subspace identification [Lju98| |Qin06, [VODMI12] is to learn a certain structured
matrix (such as a Hankel matrix), take a best rank-k approximation (using SVD or another linear di-
mensionality reduction method), and learn the system matrices A, B, C, D up to similarity transfor-
mation. Usage of spectral methods circumvents the fact that the most natural optimization problem
for A, B, C, D is non-convex. However, classical guarantees for these methods are asymptotic.

Recently, various authors have given non-asymptotic guarantees for system identification algo-
rithms. [OO19]] analyzed the Ho-Kalman algorithm [HK66] in this setting. [SRD19] consider the
setting where system order is unknown and give an end-to-end result for prediction, while [TMP20]
consider the problem of online filtering, that is, recovering x(t)’s up to some linear transformation.

An alternate, empirically successful approach is that of nuclear norm minimization or regulariza-
tion [FPST13]. [SOEF20] (building on [CQXY 16])) give explicit rates of convergence, and show that
the algorithm has a lower minimum sample complexity and is easier to tune.

Our algorithm is based on the classical approach of taking a low-rank approximation of the Hankel
matrix, but we repeat this process with Hankel matrices of sizes Lx L, L/2x L/2, L/4x L /4, and so
forth; this is key modification that allows us to obtain better statistical rates. Our analysis builds on
the analyses given in [OO19,ISOF20]. As essential part of the analysis is analyzing linear regression
for correlated inputs, where we extend the work of [DMR19] to MIMO systems, as explained below.

3.1.1 Linear regression with correlated inputs

An important step in obtaining non-asymptotic rates for system identification is analyzing linear
regression for correlated inputs. The most challenging step is to lower-bound the sample covariance
matrix of inputs to the linear regression. A lower bound, rather than a matrix concentration result, is
sufficient [Men14, [SMT™ 18, [IMT19]|; however, a concentration result is obtainable in our setting.

[TBPR17] give non-asymptotic bounds for learning the finite impulse response for a SISO system
in ¢°° Fourier norm; however, they require L rollouts of size O(L) and hence Q(L?) timesteps.
Addressing the more challenging single-rollout setting, [OO19] obtain bounds for a single rollout
of (L) timesteps, by using concentration bounds for random circulant matrices [KMR14] to de-
rive concentration inequalities for the covariance matrix. These concentration inequalities for the
covariance matrix were improved (by logarithmic factors) by [DMR19]. Although [DMR19] give
an analysis in the SISO case, as we show in Theorem@, the results can be extended to the MIMO
case with an e-net argument.

3.2 Improper learning using autoregressive methods

Instead of solving the statistical problem of identifying parameters, another line of work develops
algorithms for regret minimization in online learning. The goal is simply to do well in predicting
future observations, with small loss (regret) compared to the best predictor in hindsight; the learned
predictor is allowed to be improper, that is, take a different functional form. In the stochastic case,
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this allows prediction almost as well as if the actual system parameters were known; however, the
framework also allows for adversarial noise.

One popular strategy for improperly learning the system is to learn a linear autoregressive filter over
previous inputs and observations, or ARMA model. Naturally, because we are optimizing over a
larger hypothesis class, the statistical rates depend on L rather than the system order d.

[GLS™20, Theorem 4.7] consider the problem of online prediction for a fully or partially observed
LDS, and give a regret bound that depends polynomially on the memory length L. Their approach
works even for marginally stable systems, that is, systems with p(A) < 1. See also [AHMS13|
HSZ17, HLS™ 18, [KMTMT109, [TP20, RIR20] for previous work using autoregressive methods.

Of particular interest to us is [RJR20], which gives rates independent of spectral radius. Building
on [HSZ17]], they observe that it suffices to regress on previous inputs and outputs projected to a
lower-dimensional space. Their algorithm works in the setting of process noise and competes with
the Kalman filter, but only when A — K C has real eigenvalues, where K is the Kalman gain.

4 Proof of main theorem

In this section, we prove Theorem The proof hinges on the following lemma, which shows
that if we observe a low-rank matrix plus noise, then taking a low-rank SVD can have a de-noising
effect, producing a matrix that is closer to the true matrix.

Lemma 4.1 (De-noising effect of SVD). There exists a constant C such that the following holds.
Suppose that A € C™*™ is a rank-r matrix, A=A+ E, and A is the rank-r SVD of A. Then

HAT - AHF <CVr|E|. 3)

Compare this with the original error HE - AHF = ||E||g, which can only be bounded by

v/min{m,n} |E|. When applied to the d-SVD of the Hankel matrix, this gives a factor of v/d
rather than /L for the error.

Proof. We have

|4 - 4, < var][d- - a] @

<V (4 - 4]+ ][4 4] ®

<2v2r | E| (6)

where (@) follows from A, — A having rank at most 2r, (B) follows from the triangle inequality,
and (6] follows from Weyl’s Theorem: HAT - AHz < orp1(A) < o1 (A) + | E| = ||E|. O

To prove Theorem we will need to obtain bounds for F' : {0,1,...,2L — 1} — R% X9 Jearned
from linear regression in H, norm. The following is our main technical result.

Lemma 4.2. There are C1,Co such that the following hold. Suppose y = F* x u + G* *
& + n where u(t) ~ N(0,13,), &(t) ~ N(0,%;), n(t) ~ N(0,%,) for 0 < t < T,
and Supp(F™*), Supp(G*) C [0,00). Let F' = argminpe(q  ry_ypdyxdu ) — (F «
uw)(t))? Mg- = (G*(0),...,G*(L))T € READID and g e = HF*H[LHW)HHOO Vd, +

|G U100l ||E%]| - For0 <9< 5. 7> C1Ldylog (M), -1 <a< L -1,

[(F' = F*) L at1,a21]] 5

<\/|2 | L/ (d +d, +log \/||2 | I/ Ld, 10g<

with probability at least 1 — 4.

< Cqy

dy
*) M-

) + 5truncj|



242 In the case 3, = O, this roughly says that the error in the learned impulse response, F' — F™*, over
243 any interval of length L', has all Fourier coefficients bounded in spectral norm by 9] (\/ M)
244 — what we expect if the error from linear regression is uniformly distributed over all frequencies.

245 A complete proof is in Appendix [A} we give a brief sketch. First, because the errors are Gaussian,
246 the error from linear regression, F' — F'™*, follows a Gaussian distribution. To bound its covariance,
247 we lower-bound the smallest singular value of the sample covariance of the inputs (Lemma [A.T]
248 Appendix [A.T). Here, the difficulty is that the inputs are correlated — the input at time ¢ is ...
249 Fortunately, the translation structure means it is close to a submatrix of an infinite block Toeplitz
250 matrix, which becomes block diagonal in the Fourier domain. This “decoupling” allows us to show
251 concentration. Compared to the SISO setting in [DMR19], we require an extra e-net argument. Once

252 we have a bound on the covariance, we can bound any H(m)(w)u by matrix concentration
253 (Appendix [A.2); to bound the H, norm it suffices to bound this over a grid of w’s (Lemmal[A.4).

254 Bounding the error in H, norm of the impulse response allows us to bound the error in operator
255 norm of the Hankel matrix, as the following lemma shows.

256 Lemmad.3. Forany I : Z — C™*", we have ||[Hankelyx,(F)[| < [ Fly,_-

257 Proof. Note that when v : Z — C", Supp(v) C [0,b — 1], we have (F * 0)ppyra—1 =
258 Hankel, «,(F)vp—1.0. Hence for any v set to O outside of [0,b — 1], using Parseval’s Theorem
259 and the fact that the Fourier transform of a convolution is the product of the Fourier transforms, we
260 have

| Hamkelyo (F)vs-voll, < |1 5 vl = | F5 < sup]HF @)||, 191l = 1., ol
welo,1

261 This shows that |[Hankelqxp(F)[| < [[F]l5, - O

262 Theorem[2.2]will follow from the following bound after an application of the triangle inequality.

263 Lemma 4.4. There are Cy,Cy such that the following holds for the setting of Problem
264 Suppose L is a power of 2, and T > C1Ld, log(Ld“). Let HF*]]'[LJFI;OO)HH Vd, +

o G Lol SV and Masy = (0.C.CA....,CAF )T € ROV Then with

266 probability at least 1 — 6, the output F given by Algorlthmlsatlsﬁes

~ Yyl d (dy + du +log (£)) log L Yo || Ldd, log (L£de
H(F_F )l[LL]HFSC?(\/” yll ( Y Og(&)) 0og n (12| Og( 5 )|MG*||+E“HHC\/&)

T T
267 Proof. We are in the situation of Lemmawith G*(t) = CA'1;>,. Let Hy = Hankelyy o (F)
268 and H; = Hankelyyo(F™*). Suppose £ < L is even. Note that
He = Hankelyyx o (F*) + Hankelyw o (F' — F™)
HE
260 where 7 = Hankel,y¢(F™*) is a rank-d matrix, with error term is bounded by

[Hankelgy o (F — F*)|| < ||(F trunc)l[l,QZ—l]H'Hm by Lemma[4.3)|

1 L

T(wzyng(dﬁdyﬂog(é))
Ld,

+\/ 155 L, tog (£

270 with probability at least 1 — J. Let R, be the rank-d SVD of #,. Then by Lemma.1}
1Re = H; [l = O (Vd |Hankelyw o (F — F7)|) . 8)

<C

) M-

+ Etrunc] by Lemma[4.2] 7



ot
272 minimizes the sum of squared errors)

271 Now letting F(t) =13 j=t(Ie)i; when £ < t < ¢ we have (using the fact that the mean

¢
1R —Hi 1> Y S (R — FE(1)I17

—£ i+j=
t=5+11+j=t

> 3 (cfFo-rof) = (G+) 3 (Fo-rol)
t=£+1 i

-2
273 Note that we only get a lower bound with a factor of ¢ if we restrict to ¢ that is ©(¢), i.e., restrict to

274 diagonals that have many entries. This is the reason we will have to repeat this process for multiple
275 sizes. Hence
1

|F = Fpg, < 773 IR~ il

276 Together with (8) and (7) this gives with probability > 1 — 4 that

-~ * ||ZUHd(d§U +du+10g (%)) \/|29¢||Ldu IOg(LCf;du) Strunc\/a
[ ], < perion(6) Il () g ¢ e

277 Replacing § by IOgLL, using a union bound over powers of 2, and summing gives
2

F Zylld (dy + du +log (5)) log L .|| Ldd, log (£4+) log L
H(F_F*)JI[LL]HF_O<\/H yH ( y+ T+ Og(é)) - +\/| H 07%( : ) > |MG*|+5trunc\/g).

278 O
279 Proof of Theorem %l We have the bound in Lemma [4] and also the same bound
)

280 for H(F — F*)(0 after applying Lemma to (F — F*)§. Finally, note that

281 H(Ff F* )1 (1,0 HF = || F*1(L,00) HF and use the triangle inequality. O

252 5 Experiments

283 We compared three algorithms for learning the impulse response function: least-squares, and low-
284 rank Hankel SVD with and without the multi-scale repetition. We include details of the experimental
285 setup in Appendix D] Note that to reduce the number of scales, we consider use a slight modification
286 of our Algorithm [I] which triples the size at each iteration instead.

287 The plots show the error ”F*]l[L L~ F| ,» Where F is the estimated impulse response on [1, L],
288 averaged over 10 randomly generated LDS’s, as a function of the time 7" elapsed. We consider
289 systems of order d = 1, 3, 5, 10, and memory lengths L = 27, 81.

290 Using SVD significantly reduces the error, supporting our theory which shows that SVD has a “de-
291 noising” effect. Additionally, multiscale SVD has better performance than naive SVD when d is
292 moderate, L is large, and data is limited, but the performance is similar in a data-rich setting.

d=1, L=27 d=5, L=81

06 — least squares —— least squares

05 multiscale SVD multiscale SVD

500 1000 1500 2000 600 900 1200 1500 1800
time time
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397 sensitivity to process noise (Remark 1 after Theorem[2.2} elaborated in Appendix [E),
398 the restriction to Gaussian noise, and the assumption p(A4) < 1.

399 (c) Did you discuss any potential negative societal impacts of your work? [N/A] The
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404 (a) Did you state the full set of assumptions of all theoretical results? [Yes]
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406 3. If you ran experiments...

407 (a) Did you include the code, data, and instructions needed to reproduce the main experi-
408 mental results (either in the supplemental material or as a URL)? [Yes] Code is in the
409 supplement. Executing either the Julia file or notebook directly produces the graphs.
410 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
411 were chosen)? [Yes] Appendix D]

412 (c) Did you report error bars (e.g., with respect to the random seed after running exper-
413 iments multiple times)? Graphs are averages over 10 runs; visual inspection of
414 raw data shows that the variability is small.
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