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Abstract

Identification of a linear time-invariant dynamical system from partial observa-1

tions is a fundamental problem in control theory. Particularly challenging are sys-2

tems exhibiting long-term memory. A natural question is how learn such systems3

with non-asymptotic statistical rates depending on the inherent dimensionality (or-4

der) 𝑑 of the system, rather than on the possibly much larger memory length. We5

propose an algorithm that given a single trajectory of length 𝑇 with gaussian ob-6

servation noise, learns the system with a near-optimal rate of ‹𝑂 (︁» 𝑑
𝑇

)︁
in ℋ2 er-7

ror, with only logarithmic, rather than polynomial dependence on memory length.8

We also give bounds under process noise and improved bounds for learning a9

realization of the system. Our algorithm is based on multi-scale low-rank approx-10

imation: SVD applied to Hankel matrices of geometrically increasing sizes. Our11

analysis relies on careful application of concentration bounds on the Fourier do-12

main – we give sharper concentration bounds for sample covariance of correlated13

inputs and forℋ∞ norm estimation, which may be of independent interest.14

1 Introduction15

We consider the problem of prediction and identification of an unknown partially-observed linear16

time-invariant (LTI) dynamical system with stochastic noise,17

𝑥(𝑡) = 𝐴𝑥(𝑡− 1) + 𝐵𝑢(𝑡− 1) + 𝜉(𝑡) (1)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝜂(𝑡), (2)

with a single trajectory of length 𝑇 , given access only to input and output data. Here, 𝑢(𝑡) ∈ R𝑑𝑢 are18

inputs, 𝑥(𝑡) ∈ R𝑑 are the hidden states, 𝑦(𝑡) ∈ R𝑑𝑦 are observations (or outputs), 𝜉(𝑡) ∼ 𝑁(0,Σ𝑥)19

and 𝜂(𝑡) ∼ 𝑁(0,Σ𝑦) are iid gaussian noise, and 𝐴 ∈ R𝑑×𝑑, 𝐵 ∈ R𝑑×𝑑𝑢 , 𝐶 ∈ R𝑑𝑦×𝑑, 𝐷 ∈ R𝑑𝑦×𝑑𝑢20

are matrices. Partial observability refers to the fact that we do not observe the state 𝑥(𝑡), but rather21

a noisy linear observation 𝑦(𝑡).22

As a simple and tractable family of dynamical systems, LTI systems are a central object of study for23

control theory and time series analysis. The problem of prediction and filtering for a known system24

dates back to [Kal60]. However, in many machine learning applications, the system is unknown and25

must be learned from input and output data. Identification of an unknown system is often a necessary26

first step for robust control [DMM+19, BMR18]. In a long line of recent work, the interplay between27

machine learning and control theory has borne fruit in an improved understanding of the statistical28

and online learning guarantees for prediction, identification, and control for unknown systems. In29

machine learning, LTI systems also serve as a simple model problem for learning from correlated30
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data in stateful environments, and can give insight into understanding the successes of reinforcement31

learning [Rec19, TR19] and recurrent neural networks [HMR18].32

Partial observability poses a significant challenge to system identification: In the fully observed33

setting, given access to 𝑥(𝑡), there is no obstacle to learning the matrices directly through linear34

regression. However, in the partially observed setting, the most natural form of the optimization35

problem is non-convex.36

Systems exhibiting long-term memory are particularly challenging to learn. Restricting to marginally37

stable systems, this occurs when the spectral radius of 𝐴, 𝜌(𝐴), is close to 1, and it implies that the38

output at a particular time cannot be accurately estimated without taking into account inputs over39

many previous time-steps—on the order of 𝑂
Ä

1
1−𝜌(𝐴)

ä
times steps. Such systems often arise in40

practice. A particular class of such systems are those exhibiting multiscale behavior, with different41

state variables that change on vastly different timescales [CR10]. For example, the body’s pH level is42

affected both by long-term changes on a timescale of days or weeks, as well as breathing rate which43

changes over a timescale of seconds. For such systems, it makes sense to discretize at the scale of the44

fastest changing variable, which leads to a long memory for the slowest-changing variable. With few45

exceptions, existing guarantees for learning partially observed LTI systems degrade as the memory46

length increases. However, counting the number of parameters in the model (1)–(2) suggests that the47

right measure of statistical complexity is the intrinsic dimensionality of the system, not the memory48

length. This leads to the following natural question.49

Question: How can we learn partially observed LTI systems with (non-asymptotic) statistical rates50

that depend on the intrinsic dimensionality of the system, rather than the memory length?51

Despite the simplicity of the question, little in the way of theoretical results are known. We focus52

on the particular problem of learning the impulse response (IR) function of the system—which fully53

determines its input-output behavior—in ℋ2 norm. This is a natural norm for prediction problems54

as it measures the expected prediction error under random input. Known guarantees for learning the55

IR depend on the memory length. One particularly undesirable consequence is that for a continuous56

system with time discretization ∆ going to 0, the memory scales as 1/∆ (while the system order57

stays constant), leading to suboptimal estimation by an arbitrarily large factor.58

Our key contribution is an algorithm and analysis that gives statistical rates that are optimal up to59

logarithmic factors. Unlike previous works, our rates depend on the system order 𝑑—the natural60

dimensionality of the problem—and only logarithmically on the memory length of the system. Our61

algorithm is based on taking a low-rank approximation (SVD) of the Hankel matrix, which is a62

widely used technique in system identification. We consider a multiscale version of this algorithm,63

where we repeat this process for a geometric sequence of sizes of the Hankel matrix. This is essential64

for obtaining a stronger theoretical guarantee. In the setting of zero process noise, we prove that our65

algorithm achieves near-optimal ‹𝑂 (︁»𝑑(𝑑𝑢+𝑑𝑦)
𝑇

)︁
rates inℋ2 error for the learned system.66

Our analysis relies on careful application of concentration bounds on the Fourier domain to give67

sharper concentration bounds for sample covariance and ℋ∞ norm estimation, which may be of68

independent interest. While we consider our algorithm in a simple setting, we hope that this is a69

first step to understanding and improving more complex subspace identification algorithms. Indeed,70

SVD and related spectral methods are a standard step used in subspace identification algorithms71

such as N4SID; our analysis suggests that SVD has an important “de-noising effect”.72

We also give improved bounds for system identification, that is, learning the matrices 𝐴,𝐵,𝐶,𝐷73

using the Ho-Kalman algorithm [HK66], with ‹𝑂 (︁»𝐿𝑑(𝑑𝑢+𝑑𝑦)
𝑇

)︁
rates.74

1.1 Notation75

Norms. We use ‖·‖ to denote the 2-norm of a vector. For a matrix 𝐴, let ‖𝐴‖ = ‖𝐴‖276

denote its operator norm, 𝜌(𝐴) denote its spectral radius (maximum absolute value of eigen-77
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value), and ‖𝐴‖F denote its Frobenius norm. For a matrix-valued function 𝑀(𝑡) ∈ C𝑑1×𝑑2 ,78

‖𝑀‖F :=
»∑︀

𝑡 ‖𝑀(𝑡)‖2F. Let 𝜎𝑟(𝐴) denote the 𝑟th singular value of 𝐴.79

Fourier transform. Given a matrix-valued function 𝐹 : Z → C𝑚×𝑛, define the (discrete-time)80

Fourier transform as the function “𝐹 : R/Z→ C𝑚×𝑛 given by “𝐹 (𝜔) =
∑︀∞
𝑡=−∞ 𝐹 (𝑡)𝑒−2𝜋𝑖𝜔𝑡.81

Matrices. Given a sequence (𝐹 (𝑡))𝑎+𝑏−1
𝑡=1 where each 𝐹 (𝑡) ∈ C𝑚×𝑛, define Hankel𝑎×𝑏(𝐹 ) as the82

𝑎𝑚 × 𝑏𝑛 block matrix such that the (𝑖, 𝑗)th block is [Hankel𝑎×𝑏(𝐹 )]𝑖𝑗 = 𝐹 (𝑖 + 𝑗 − 1). Given a83

sequence (𝐹 (𝑡))𝑎−1
𝑡=0 where each 𝐹 (𝑡) ∈ C𝑚×𝑛, define the Toeplitz matrix as the block matrix such84

that the (𝑖, 𝑗)th block is [Toep𝑎×𝑏(𝐹 )]𝑖𝑗 = 𝐹 (𝑖 − 𝑗)1𝑖≥𝑗 . For a matrix 𝐴, let 𝐴⊤, 𝐴𝐻 , 𝐴† denote85

its transpose, Hermitian (conjugate transpose), and pseudoinverse, respectively. For a vector-valued86

function 𝑣 : {𝑎, . . . , 𝑏} → R𝑛, let 𝑣𝑎:𝑏 ∈ R(|𝑎−𝑏|+1)𝑛 denote the the vertical concatenation of87

𝑣(𝑎), . . . , 𝑣(𝑏).88

Control theory. For a matrix 𝐴 ∈ C𝑑×𝑑, define its resolvent as Φ𝐴(𝑧) = (𝑧𝐼 − 𝐴)−1. For a89

linear dynamical system 𝒟 given by (1)–(2), let Φ𝒟 = Φ𝑢→𝑦 denote the transfer function from90

𝑢 to 𝑦 (response to input). Then Φ𝒟 = Φ𝑢→𝑦 = 𝐶Φ𝐴𝐵 + 𝐷 = 𝐶(𝑧𝐼 − 𝐴)−1𝐵 + 𝐷. Let91

T := {𝑧 ∈ C : |𝑧| = 1} be the unit circle in the complex plane. For a matrix-valued function 𝐹 :92

T→ C𝑑1×𝑑2 , define theℋ2 andℋ∞ norms by93

‖Φ‖ℋ2
=

 
1

2𝜋

∫︁
T
‖Φ(𝑧)‖2𝐹 𝑑𝑧 ‖Φ‖ℋ∞

= sup
𝑧∈T
‖Φ(𝑧)‖ .

For a function 𝐹 : N0 → C𝑑1×𝑑2 , define its Z-transform to be 𝒵[𝐹 ](𝑧) =
∑︀∞
𝑛=0 𝐹 (𝑛)𝑧−𝑛. Con-94

sidered as a function T→ C, we can take its ℋ2 and ℋ∞ norms. Overloading notation, we will let95

‖𝐹‖ℋ𝑝
:= ‖𝒵𝐹‖ℋ𝑝

for 𝑝 = 2,∞. Theℋ2 andℋ∞ norms can be interpreted as the Frobenius and96

operator norms of the linear operator from input to output, i.e., they measure the average power of97

the output signal under random or worst-case input, respectively. For background on control theory,98

see e.g., [ZDG+96].99

Constants. In proofs, 𝐶 may represent different constants from line to line.100

2 Main results101

We consider the problem of prediction and identification for an unknown linear dynamical sys-102

tem (1)–(2). Our main goal is to obtain error guarantees in ℋ2 norm, which determines prediction103

error under random input [OO19, Lemma 3.3].104

Problem 2.1. Consider the partially-observed LTI system 𝒟 (1)–(2) with gaussian inputs 𝑢(𝑡) ∼105

𝑁(0, 𝐼𝑑𝑢) for 0 ≤ 𝑡 < 𝑇 . Suppose that the system is stable, that is, 𝜌(𝐴) < 1, and that we observe106

a single trajectory of length 𝑇 started with 𝑥(0) = 0, that is, we observe 𝑢(𝑡) ∼ 𝑁(0, 𝐼𝑑𝑢) and 𝑦(𝑡)107

for 0 ≤ 𝑡 < 𝑇 .108

The goal is to learn a LTI system ‹𝒟 with the aim of minimizing
⃦⃦

Φ‹𝒟 − Φ𝒟
⃦⃦
ℋ2

. Equivalently, letting109

𝐹 *(𝑡) =

®
𝐷, 𝑡 = 0

𝐶𝐴𝑡−1𝐵, 𝑡 ≥ 1

denote the impulse response function (also called the Markov parameters) of the system, the goal is110

to learn an impulse response ‹𝐹 minimizing
⃦⃦⃦
𝐹 * − ‹𝐹 ⃦⃦⃦

ℋ2

=
⃦⃦⃦
𝐹 * − ‹𝐹 ⃦⃦⃦

F
.111

Note that learning 𝐹 * is sufficient to fully understand the input-output behavior of the system, but112

we may also ask to recover the system parameters 𝐴,𝐵,𝐶,𝐷 up to similarity transformation (see113

Theorem 2.3).114

Previous results [OO19, SRD19] roughly depend polynomially on the “memory” 1
1−𝜌(𝐴) , which115

blows up as the spectral norm of 𝐴 approaches 1. In the setting of zero process noise, our goal is116
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to obtain rates that are ‹𝑂 Äpoly(𝑑,𝑑𝑢,𝑑𝑦)√
𝑇

ä
, with only poly-logarithmic dependence on 1

1−𝜌(𝐴) . See117

Figure 1 for a comparison.118

We assume that 𝜌(𝐴) < 1 because if 𝒟 is not stable, it is in general impossible to learn ‹𝒟 with119

finite ℋ2 error, as a system with infinite response can have arbitrarily small response on any finite120

time interval. However, it may still be possible to learn the response up to time 𝐿 ≪ 𝑇 in this121

case [SBR19]. The marginally stable case (𝜌(𝐴) = 1) is an important case we leave to future work.122

Method Rollout type Min # samples IR error

Least squares (IR)
[TBPR17]

Multi 𝐿 𝜎
»

𝐿
𝑇

Least squares (IR) [OO19] Single 𝐿 𝜎
»

𝐿
𝑇

Nuclear norm minimization Multi min{𝑑2, 𝐿} 𝜎
»

𝐿
𝑇

[SOF20] Multi 𝑑 𝜎
»

𝑑𝐿
𝑇

rank-𝑑 SVD (Theorem 2.2) Single 𝐿 𝜎
»

𝑑
𝑇

Figure 1: Here, 𝐿 is the memory length for the system, which is ‹𝑂 Ä 1
1−𝜌(𝐴)

ä
for well-conditioned

systems. Rollout type refers to whether we have access to a single trajectory or multiple trajectories.
Min # samples refers to the minimum number of samples (up to log factors) before the bounds are
operational. IR error refers to the error in the impulse response in Frobenius/ℋ2 norm. Logarithmic
factors are omitted.

In our Algorithm 1, we first use linear regression to obtain a noisy estimate 𝐹 of the impulse re-123

sponse. Next, following standard system identification procedures, we form the Hankel matrix124

Hankel𝐿×𝐿(𝐹 ) with the entries of 𝐹 on its diagonals. Because the true Hankel matrix125

Hankel𝐿×𝐿(𝐹 *) =

à
𝐶𝐵 𝐶𝐴𝐵 · · · 𝐶𝐴𝐿−1𝐵

𝐶𝐴𝐵 𝐶𝐴2𝐵
...

...
. . .

...
𝐶𝐴𝐿−1𝐵 · · · · · · 𝐶𝐴2𝐿−1𝐵

í
has rank 𝑑, we take a low-rank SVD 𝑅𝐿 of the Hankel matrix to “de-noise” the impulse response.126

We can then read off the estimated impulse response by averaging over the corresponding diagonal127

of 𝑅𝐿. For technical reasons, we need to repeat this process for a geometric sequence of sizes128

of the Hankel matrix: 𝐿 × 𝐿, 𝐿/2 × 𝐿/2, 𝐿/4 × 𝐿/4, and so forth. This is because the low-129

rank approximation objective for a ℓ × ℓ Hankel matrix encourages the diagonals that are Θ(ℓ) to130

be close—as those are the diagonals with the most entries—and hence estimates 𝐹 *(𝑡) well when131

𝑡 = Θ(ℓ). In other words, low-rank estimation for Hankelℓ×ℓ(𝐹 ) is only sensitive to the portion of132

the signal that is at timescale ℓ. Repeating this process ensures that we cover all scales.133

Our main theorem is the following.134

Theorem 2.2. There is a constant 𝐶1 such that following holds. In the setting of Problem 2.1,135

suppose that 𝐹 * is the impulse response function, 𝑇 is such that 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
, 𝜀trunc :=136 ⃦⃦

𝐹 *
1[2𝐿,∞)

⃦⃦
ℋ∞

√
𝑑𝑢 +

⃦⃦
𝐺*

1[2𝐿,∞)

⃦⃦
ℋ∞

⃦⃦⃦
Σ

1/2
𝑥

⃦⃦⃦
F
, and 𝑀𝑥→𝑦 = (𝑂,𝐶,𝐶𝐴, . . . , 𝐶𝐴𝐿−1)⊤ ∈137

R(𝐿+1)𝑑×𝑑𝑦 . Let 0 < 𝛿 ≤ 1
2 and 𝜎 =

»
‖Σ𝑦‖+ ‖Σ𝑥‖𝐿 log

(︀
𝐿𝑑𝑢
𝛿

)︀
‖𝑀𝑥→𝑦‖2. Then with probabil-138

ity at least 1− 𝛿, Algorithm 1 learns an impulse response function ‹𝐹 such that139 ⃦⃦⃦‹𝐹 − 𝐹 *
⃦⃦⃦
F

= 𝑂

(︃
𝜎

 
𝑑
(︀
𝑑𝑦 + 𝑑𝑢 + log

(︀
𝐿
𝛿

)︀)︀
log𝐿

𝑇
+ 𝜀trunc

√
𝑑 +

⃦⃦
𝐹 *

1(𝐿,∞)

⃦⃦
F

)︃
.

In the absence of process noise (when Σ𝑥 = 𝑂), when 𝐿 and 𝑇 are chosen large enough, the first140

term dominates, and ignoring log factors, the dependence is 𝑂
(︁»

𝑑(𝑑𝑦+𝑑𝑢)
𝑇

)︁
. We expect this to be141
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Algorithm 1 Learning impulse response through multi-scale low-rank Hankel SVD
1: Input: Length 𝐿 (power of 2), time 𝑇 .
2: Part 1: Linear regression to recover noisy impulse response
3: Let 𝑢(𝑡) ∼ 𝑁(0, 𝐼𝑑𝑢) for 0 ≤ 𝑡 < 𝑇 , and observe the outputs 𝑦(𝑡) ∈ R𝑑𝑦 , 0 ≤ 𝑡 < 𝑇 .
4: Solve the least squares problem

min
𝐹 :Supp(𝐹 )⊆[0,2𝐿−1]

𝑇−1∑︁
𝑡=0

‖𝑦(𝑡)− 𝐹 * 𝑢(𝑡)‖2 .

to obtain the noisy impulse response 𝐹 : [0, 2𝐿− 1] ∩ Z→ R𝑑𝑦×𝑑𝑢 .
5: Part 2: Low-rank Hankel SVD to de-noise impulse response
6: Let ‹𝐹 (0) = 𝐹 (0).
7: for 𝑘 = 0 to log2 𝐿 do
8: Let ℓ = 2𝑘.
9: Let 𝑅ℓ be the rank-𝑑 SVD of Hankelℓ×ℓ(𝐹 ) (i.e., argminrank(𝑅)≤𝑑 ‖𝑅−Hankelℓ×ℓ(𝐹 )‖).

10: For ℓ
2 < 𝑡 ≤ ℓ, let ‹𝐹 (𝑡) be the 𝑑𝑦 × 𝑑𝑢 matrix given by ‹𝐹 (𝑡) = 1

𝑡

∑︀
𝑖+𝑗=𝑡(𝑅ℓ)𝑖𝑗 , where

(·)𝑖𝑗 denotes the (𝑖, 𝑗)th block of the matrix.
11: end for
12: Output: Estimate of impulse response ‹𝐹 .

the optimal sample complexity up to logarithmic factors. However, in the presence of process noise,142

there is an undesirable factor of
√
𝐿 ‖𝑀𝑥→𝑦‖, which (for well-conditioned matrices) is expected to143

be 𝑂
Ä

1
1−𝜌(𝐴)

ä
or 𝑂(𝐿). We leave it an open problem to improve the guarantees in this setting.144

Remark 1. The 𝐿-factor dependence on the process noise is unavoidable with the current algorithm:145

when the process noise has covariance Σ𝑦 = 𝐼 and decays after 𝐿 steps, it can cause perturbations of146

size 𝑂(
√
𝐿) compared to the noiseless system. Even in the case 𝑑 = 1, when the impulse response147

function is 𝑎𝑒−𝑘𝑡/𝐿 for a known 𝑘, the noise will cause the estimate of 𝑎 to be off by 𝑂(
√
𝐿), and148

hence the ℋ2 norm of the impulse response to be off by 𝑂(𝐿). Our algorithm only regresses on149

previous inputs, but in the presence of process noise, a better approach is to regress on both the150

previous inputs 𝑢(𝑡) and outputs 𝑦(𝑡) and then take a (weighted) SVD, as in N4SID [Qin06].151

Remark 2. A burn-in time of Ω(𝐿) is information-theoretically required to get poly(𝑑) rates. At-152

tempting to extrapolate an impulse response function from time 𝑜(𝐿) to time 𝐿 can magnify errors153

by exp(𝑑), because the finite impulse response of a system of order 𝑑 can approximate a polynomial154

of degree 𝑑− 1 on [0, 𝐿].155

We also show the following improved rates for learning the system matrices, by combining ℋ∞156

bounds for the learned impulse response with stability results for the Ho-Kalman algorithm [OO19].157

Because the input-output behavior is unchanged under a similarity transformation (𝐴,𝐵,𝐶) ← [158

(𝑊−1𝐴𝑊,𝑊−1𝐵,𝐶𝑊 ), we can only learn the parameters up to similarity transformation.159

Theorem 2.3. Keep the assumptions and notation of Theorem 2.2, suppose 𝒟 is observable and160

controllable, and let161

𝜀′ = 𝜎

 
𝐿
(︀
𝑑𝑦 + 𝑑𝑢 + log

(︀
𝐿
𝛿

)︀)︀
𝑇

+ 𝜀trunc.

Let 𝐻− = Hankel𝐿×(𝐿−1)(𝐹
*). Suppose that 𝜀′ = 𝑂(𝜎min(𝐻−)). Then with probability at least162

1−𝛿, the Ho-Kalman algorithm (Algorithm 1 in [OO19] with 𝑇1 = 𝐿, 𝑇2 = 𝐿−1) returns ̂︀𝐴, “𝐵, “𝐶163

such that there exists a unitary matrix 𝑊 satisfying164

max
{︁⃦⃦⃦

𝐶 − “𝐶𝑊
⃦⃦⃦
F
,
⃦⃦⃦
𝐵 −𝑊−1“𝐵⃦⃦⃦

F

}︁
= 𝑂(

√
𝑑 · 𝜀′)⃦⃦⃦

𝐴−𝑊−1 ̂︀𝐴𝑊 ⃦⃦⃦
F

= 𝑂

Ç
1

𝜎min(𝐻−)
·
√
𝑑 · 𝜀′ ·

Ç
‖Φ𝒟‖ℋ∞

𝜎min(𝐻−)
+ 1

åå
.
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As 𝐿 can be chosen to make 𝜀trunc negligible, this gives ‹𝑂 (︁»𝐿𝑑(𝑑𝑢+𝑑𝑦)
𝑇

)︁
rates, however,165

with factors depending on the minimum eigenvalue of 𝐻 . This is an improvement over the166 ‹𝑂 (︁√𝑑 4
»

𝐿(𝑑𝑢+𝑑𝑦)
𝑇

)︁
rates in [OO19].167

We prove Theorem 2.2 in Section 4 and Theorem 2.3 in Appendix B.168

3 Related work169

We survey two classes of methods for learning partially observable LDS’s, subspace identification170

and improper learning. With the exception of [RJR20], all guarantees have sample complexity171

depending on the memory length 𝐿, which we wish to avoid.172

3.1 Subspace identification173

The basic idea of subspace identification [Lju98, Qin06, VODM12] is to learn a certain structured174

matrix (such as a Hankel matrix), take a best rank-𝑘 approximation (using SVD or another linear di-175

mensionality reduction method), and learn the system matrices 𝐴,𝐵,𝐶,𝐷 up to similarity transfor-176

mation. Usage of spectral methods circumvents the fact that the most natural optimization problem177

for 𝐴,𝐵,𝐶,𝐷 is non-convex. However, classical guarantees for these methods are asymptotic.178

Recently, various authors have given non-asymptotic guarantees for system identification algo-179

rithms. [OO19] analyzed the Ho-Kalman algorithm [HK66] in this setting. [SRD19] consider the180

setting where system order is unknown and give an end-to-end result for prediction, while [TMP20]181

consider the problem of online filtering, that is, recovering 𝑥(𝑡)’s up to some linear transformation.182

An alternate, empirically successful approach is that of nuclear norm minimization or regulariza-183

tion [FPST13]. [SOF20] (building on [CQXY16]) give explicit rates of convergence, and show that184

the algorithm has a lower minimum sample complexity and is easier to tune.185

Our algorithm is based on the classical approach of taking a low-rank approximation of the Hankel186

matrix, but we repeat this process with Hankel matrices of sizes 𝐿×𝐿, 𝐿/2×𝐿/2, 𝐿/4×𝐿/4, and so187

forth; this is key modification that allows us to obtain better statistical rates. Our analysis builds on188

the analyses given in [OO19, SOF20]. As essential part of the analysis is analyzing linear regression189

for correlated inputs, where we extend the work of [DMR19] to MIMO systems, as explained below.190

3.1.1 Linear regression with correlated inputs191

An important step in obtaining non-asymptotic rates for system identification is analyzing linear192

regression for correlated inputs. The most challenging step is to lower-bound the sample covariance193

matrix of inputs to the linear regression. A lower bound, rather than a matrix concentration result, is194

sufficient [Men14, SMT+18, MT19]; however, a concentration result is obtainable in our setting.195

[TBPR17] give non-asymptotic bounds for learning the finite impulse response for a SISO system196

in ℓ∞ Fourier norm; however, they require 𝐿 rollouts of size 𝑂(𝐿) and hence Ω(𝐿2) timesteps.197

Addressing the more challenging single-rollout setting, [OO19] obtain bounds for a single rollout198

of ̃︀Ω(𝐿) timesteps, by using concentration bounds for random circulant matrices [KMR14] to de-199

rive concentration inequalities for the covariance matrix. These concentration inequalities for the200

covariance matrix were improved (by logarithmic factors) by [DMR19]. Although [DMR19] give201

an analysis in the SISO case, as we show in Theorem A.2, the results can be extended to the MIMO202

case with an 𝜀-net argument.203

3.2 Improper learning using autoregressive methods204

Instead of solving the statistical problem of identifying parameters, another line of work develops205

algorithms for regret minimization in online learning. The goal is simply to do well in predicting206

future observations, with small loss (regret) compared to the best predictor in hindsight; the learned207

predictor is allowed to be improper, that is, take a different functional form. In the stochastic case,208

6



this allows prediction almost as well as if the actual system parameters were known; however, the209

framework also allows for adversarial noise.210

One popular strategy for improperly learning the system is to learn a linear autoregressive filter over211

previous inputs and observations, or ARMA model. Naturally, because we are optimizing over a212

larger hypothesis class, the statistical rates depend on 𝐿 rather than the system order 𝑑.213

[GLS+20, Theorem 4.7] consider the problem of online prediction for a fully or partially observed214

LDS, and give a regret bound that depends polynomially on the memory length 𝐿. Their approach215

works even for marginally stable systems, that is, systems with 𝜌(𝐴) ≤ 1. See also [AHMS13,216

HSZ17, HLS+18, KMTM19, TP20, RJR20] for previous work using autoregressive methods.217

Of particular interest to us is [RJR20], which gives rates independent of spectral radius. Building218

on [HSZ17], they observe that it suffices to regress on previous inputs and outputs projected to a219

lower-dimensional space. Their algorithm works in the setting of process noise and competes with220

the Kalman filter, but only when 𝐴−𝐾𝐶 has real eigenvalues, where 𝐾 is the Kalman gain.221

4 Proof of main theorem222

In this section, we prove Theorem 2.2. The proof hinges on the following lemma, which shows223

that if we observe a low-rank matrix plus noise, then taking a low-rank SVD can have a de-noising224

effect, producing a matrix that is closer to the true matrix.225

Lemma 4.1 (De-noising effect of SVD). There exists a constant 𝐶 such that the following holds.226

Suppose that 𝐴 ∈ C𝑚×𝑛 is a rank-𝑟 matrix, ̂︀𝐴 = 𝐴 + 𝐸, and ̂︀𝐴𝑟 is the rank-𝑟 SVD of ̂︀𝐴. Then227 ⃦⃦⃦ ̂︀𝐴𝑟 −𝐴
⃦⃦⃦
F
≤ 𝐶
√
𝑟 ‖𝐸‖ . (3)

Compare this with the original error
⃦⃦⃦ ̂︀𝐴−𝐴

⃦⃦⃦
F

= ‖𝐸‖F, which can only be bounded by228 √︀
min{𝑚,𝑛} ‖𝐸‖. When applied to the 𝑑-SVD of the Hankel matrix, this gives a factor of

√
𝑑229

rather than
√
𝐿 for the error.230

Proof. We have231 ⃦⃦⃦
𝐴𝑟 −𝐴

⃦⃦⃦
F
≤
√

2𝑟
⃦⃦⃦
𝐴𝑟 −𝐴

⃦⃦⃦
2

(4)

≤
√

2𝑟
(︁⃦⃦⃦

𝐴𝑟 −𝐴
⃦⃦⃦
2

+
⃦⃦⃦
𝐴−𝐴

⃦⃦⃦
2

)︁
(5)

≤ 2
√

2𝑟 ‖𝐸‖ (6)

where (4) follows from 𝐴𝑟 − 𝐴 having rank at most 2𝑟, (5) follows from the triangle inequality,232

and (6) follows from Weyl’s Theorem:
⃦⃦⃦
𝐴𝑟 −𝐴

⃦⃦⃦
2
≤ 𝜎𝑟+1(𝐴) ≤ 𝜎𝑟+1(𝐴) + ‖𝐸‖ = ‖𝐸‖.233

To prove Theorem 2.2, we will need to obtain bounds for 𝐹 : {0, 1, . . . , 2𝐿−1} → R𝑑𝑦×𝑑𝑢 learned234

from linear regression inℋ∞ norm. The following is our main technical result.235

Lemma 4.2. There are 𝐶1, 𝐶2 such that the following hold. Suppose 𝑦 = 𝐹 * * 𝑢 + 𝐺* *236

𝜉 + 𝜂 where 𝑢(𝑡) ∼ 𝑁(0, 𝐼𝑑𝑢), 𝜉(𝑡) ∼ 𝑁(0,Σ𝑥), 𝜂(𝑡) ∼ 𝑁(0,Σ𝑦) for 0 ≤ 𝑡 < 𝑇 ,237

and Supp(𝐹 *),Supp(𝐺*) ⊆ [0,∞). Let 𝐹 = argmin𝐹∈{0,...,𝐿}→R𝑑𝑦×𝑑𝑢

∑︀𝑇−1
𝑡=0 |𝑦(𝑡) − (𝐹 *238

𝑢)(𝑡)|2, 𝑀𝐺* = (𝐺*(0), . . . , 𝐺*(𝐿))⊤ ∈ R(𝐿+1)𝑑×𝑑𝑦 , and 𝜀trunc =
⃦⃦
𝐹 *

1[𝐿+1,∞)

⃦⃦
ℋ∞

√
𝑑𝑢 +239 ⃦⃦

𝐺*
1[𝐿+1,∞)

⃦⃦
ℋ∞

⃦⃦⃦
Σ

1/2
𝑥

⃦⃦⃦
F
. For 0 < 𝛿 ≤ 1

2 , 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
, −1 ≤ 𝑎 < 𝐿− 𝐿′,240 ⃦⃦

(𝐹 − 𝐹 *)1[𝑎+1,𝑎+𝐿′]

⃦⃦
ℋ∞

≤ 𝐶2

ñ…
1

𝑇

Ç 
‖Σ𝑦‖𝐿′

Å
𝑑𝑢 + 𝑑𝑦 + log

Å
𝐿′

𝛿

ãã
+

 
‖Σ𝑥‖𝐿′𝐿𝑑𝑢 log

Å
𝐿𝑑𝑢
𝛿

ã
‖𝑀𝐺*‖

å
+ 𝜀trunc

ô
with probability at least 1− 𝛿.241
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In the case Σ𝑥 = 𝑂, this roughly says that the error in the learned impulse response, 𝐹 − 𝐹 *, over242

any interval of length 𝐿′, has all Fourier coefficients bounded in spectral norm by ‹𝑂 (︁»𝐿′(𝑑𝑢+𝑑𝑦)
𝑇

)︁
243

– what we expect if the error from linear regression is uniformly distributed over all frequencies.244

A complete proof is in Appendix A; we give a brief sketch. First, because the errors are Gaussian,245

the error from linear regression, 𝐹 − 𝐹 *, follows a Gaussian distribution. To bound its covariance,246

we lower-bound the smallest singular value of the sample covariance of the inputs (Lemma A.1,247

Appendix A.1). Here, the difficulty is that the inputs are correlated – the input at time 𝑡 is 𝑢𝑡:𝑡−𝐿.248

Fortunately, the translation structure means it is close to a submatrix of an infinite block Toeplitz249

matrix, which becomes block diagonal in the Fourier domain. This “decoupling” allows us to show250

concentration. Compared to the SISO setting in [DMR19], we require an extra 𝜀-net argument. Once251

we have a bound on the covariance, we can bound any
⃦⃦⃦

(◊�𝐹 − 𝐹 *)(𝜔)
⃦⃦⃦

by matrix concentration252

(Appendix A.2); to bound theℋ∞ norm it suffices to bound this over a grid of 𝜔’s (Lemma A.4).253

Bounding the error in ℋ∞ norm of the impulse response allows us to bound the error in operator254

norm of the Hankel matrix, as the following lemma shows.255

Lemma 4.3. For any 𝐹 : Z→ C𝑚×𝑛, we have ‖Hankel𝑎×𝑏(𝐹 )‖ ≤ ‖𝐹‖ℋ∞
.256

Proof. Note that when 𝑣 : Z → C𝑛, Supp(𝑣) ⊆ [0, 𝑏 − 1], we have (𝐹 * 𝑣)𝑏:𝑏+𝑎−1 =257

Hankel𝑎×𝑏(𝐹 )𝑣𝑏−1:0. Hence for any 𝑣 set to 0 outside of [0, 𝑏 − 1], using Parseval’s Theorem258

and the fact that the Fourier transform of a convolution is the product of the Fourier transforms, we259

have260

‖Hankel𝑎×𝑏(𝐹 )𝑣𝑏−1:0‖2 ≤ ‖𝐹 * 𝑣‖2 =
⃦⃦⃦“𝐹̂︀𝑣⃦⃦⃦

2
≤ sup
𝜔∈[0,1]

⃦⃦⃦“𝐹 (𝜔)
⃦⃦⃦
2
‖̂︀𝑣‖2 = ‖𝐹‖ℋ∞

‖𝑣‖2

This shows that ‖Hankel𝑎×𝑏(𝐹 )‖ ≤ ‖𝐹‖ℋ∞
.261

Theorem 2.2 will follow from the following bound after an application of the triangle inequality.262

Lemma 4.4. There are 𝐶1, 𝐶2 such that the following holds for the setting of Problem 2.1.263

Suppose 𝐿 is a power of 2, and 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
. Let

⃦⃦
𝐹 *

1[𝐿+1,∞)

⃦⃦
ℋ∞

√
𝑑𝑢 +264 ⃦⃦

𝐺*
1[𝐿+1,∞)

⃦⃦
ℋ∞

⃦⃦⃦
Σ

1/2
𝑥

⃦⃦⃦
F

and 𝑀𝑥→𝑦 = (𝑂,𝐶,𝐶𝐴, . . . , 𝐶𝐴𝐿−1)⊤ ∈ R(𝐿+1)𝑑×𝑑𝑦 . Then with265

probability at least 1− 𝛿, the output ‹𝐹 given by Algorithm 1 satisfies266 ⃦⃦⃦
(‹𝐹 − 𝐹 *)1[1,𝐿]

⃦⃦⃦
F
≤ 𝐶2

(︃ 
‖Σ𝑦‖ 𝑑

(︀
𝑑𝑦 + 𝑑𝑢 + log

(︀
𝐿
𝛿

)︀)︀
log𝐿

𝑇
+

 
‖Σ𝑥‖𝐿𝑑𝑑𝑢 log

(︀
𝐿𝑑𝑢
𝛿

)︀
𝑇

‖𝑀𝐺*‖+ 𝜀trunc
√
𝑑

)︃

Proof. We are in the situation of Lemma 4.2 with 𝐺*(𝑡) = 𝐶𝐴𝑡−1
1𝑡≥1. Let ℋℓ = Hankelℓ×ℓ(𝐹 )267

andℋ*
ℓ = Hankelℓ×ℓ(𝐹

*). Suppose ℓ ≤ 𝐿 is even. Note that268

ℋℓ = Hankelℓ×ℓ(𝐹
*)⏟  ⏞  

ℋ*
ℓ

+ Hankelℓ×ℓ(𝐹 − 𝐹 *)

whereℋ*
ℓ = Hankelℓ×ℓ(𝐹

*) is a rank-𝑑 matrix, with error term is bounded by269

‖Hankelℓ×ℓ(𝐹 − 𝐹 *)‖ ≤
⃦⃦
(𝐹 − 𝐹 *

trunc)1[1,2ℓ−1]

⃦⃦
ℋ∞

by Lemma 4.3

< 𝐶

[︃…
1

𝑇

(︃ 
‖Σ𝑦‖ ℓ

Å
𝑑𝑢 + 𝑑𝑦 + log

Å
𝐿′

𝛿

ãã
+

 
‖Σ𝑥‖ ℓ𝐿𝑑𝑢 log

Å
𝐿𝑑𝑢
𝛿

ã
‖𝑀𝐺*‖+ 𝜀trunc

]︃
by Lemma 4.2 (7)

with probability at least 1− 𝛿. Let 𝑅ℓ be the rank-𝑑 SVD ofℋℓ. Then by Lemma 4.1,270

‖𝑅ℓ −ℋ*
ℓ‖F = 𝑂

Ä√
𝑑 ‖Hankelℓ×ℓ(𝐹 − 𝐹 *)‖

ä
. (8)
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Now letting ‹𝐹 (𝑡) = 1
𝑡

∑︀
𝑖+𝑗=𝑡(𝑅ℓ)𝑖𝑗 when ℓ

2 < 𝑡 ≤ ℓ we have (using the fact that the mean271

minimizes the sum of squared errors)272

‖𝑅ℓ −ℋ*
ℓ‖

2
F ≥

ℓ∑︁
𝑡= ℓ

2+1

∑︁
𝑖+𝑗=𝑡

‖(𝑅ℓ)𝑖𝑗 − 𝐹 *(𝑡)‖2F

≥
ℓ∑︁

𝑡= ℓ
2+1

Å
𝑡 ·
⃦⃦⃦‹𝐹 (𝑡)− 𝐹 *(𝑡)

⃦⃦⃦2
F

ã
≥
Å
ℓ

2
+ 1

ã ℓ∑︁
𝑡= ℓ

2+1

Å⃦⃦⃦‹𝐹 (𝑡)− 𝐹 *(𝑡)
⃦⃦⃦2
F

ã
.

Note that we only get a lower bound with a factor of ℓ if we restrict to 𝑡 that is Θ(ℓ), i.e., restrict to273

diagonals that have many entries. This is the reason we will have to repeat this process for multiple274

sizes. Hence275 ⃦⃦⃦
(‹𝐹 − 𝐹 *)1[ ℓ2+1,ℓ]

⃦⃦⃦2
F
≤ 1

ℓ/2
‖𝑅ℓ −ℋ*

ℓ‖
2
F .

Together with (8) and (7) this gives with probability ≥ 1− 𝛿 that276

⃦⃦⃦
(‹𝐹 − 𝐹 *)1[ ℓ

2
+1,ℓ]

⃦⃦⃦
F
≤ 𝐶

(︃ 
‖Σ𝑦‖ 𝑑

(︀
𝑑𝑦 + 𝑑𝑢 + log

(︀
𝐿
𝛿

)︀)︀
𝑇

+

 
‖Σ𝑥‖𝐿𝑑𝑢 log

(︀
𝐿𝑑𝑑𝑢

𝛿

)︀
𝑇

‖𝑀𝐺*‖+ 𝜀trunc
√
𝑑√

ℓ

)︃

Replacing 𝛿 by 𝛿
log2 𝐿

, using a union bound over powers of 2, and summing gives277

⃦⃦⃦
(‹𝐹 − 𝐹 *)1[1,𝐿]

⃦⃦⃦
F
= 𝑂

(︃ 
‖Σ𝑦‖ 𝑑

(︀
𝑑𝑦 + 𝑑𝑢 + log

(︀
𝐿
𝛿

)︀)︀
log𝐿

𝑇
+

 
‖Σ𝑥‖𝐿𝑑𝑑𝑢 log

(︀
𝐿𝑑𝑢
𝛿

)︀
log𝐿

𝑇
‖𝑀𝐺*‖+ 𝜀trunc

√
𝑑

)︃
.

278

Proof of Theorem 2.2. We have the bound in Lemma 4.4, and also the same bound279

for
⃦⃦⃦
(‹𝐹 − 𝐹 *)(0)

⃦⃦⃦
F

after applying Lemma 4.2 to (𝐹 − 𝐹 *)𝛿0. Finally, note that280 ⃦⃦⃦
(‹𝐹 − 𝐹 *)1(𝐿,∞)

⃦⃦⃦
F

=
⃦⃦
𝐹 *

1(𝐿,∞)

⃦⃦
F

and use the triangle inequality.281

5 Experiments282

We compared three algorithms for learning the impulse response function: least-squares, and low-283

rank Hankel SVD with and without the multi-scale repetition. We include details of the experimental284

setup in Appendix D. Note that to reduce the number of scales, we consider use a slight modification285

of our Algorithm 1 which triples the size at each iteration instead.286

The plots show the error
⃦⃦
𝐹 *

1[1,𝐿] − 𝐹
⃦⃦
2
, where 𝐹 is the estimated impulse response on [1, 𝐿],287

averaged over 10 randomly generated LDS’s, as a function of the time 𝑇 elapsed. We consider288

systems of order 𝑑 = 1, 3, 5, 10, and memory lengths 𝐿 = 27, 81.289

Using SVD significantly reduces the error, supporting our theory which shows that SVD has a “de-290

noising” effect. Additionally, multiscale SVD has better performance than naive SVD when 𝑑 is291

moderate, 𝐿 is large, and data is limited, but the performance is similar in a data-rich setting.292
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