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Abstract

Quality diversity (QD) is a growing branch of stochastic optimization research
that studies the problem of generating an archive of solutions that maximize a
given objective function but are also diverse with respect to a set of specified
measure functions. However, even when these functions are differentiable, QD
algorithms treat them as “black boxes”, ignoring gradient information. We present
the differentiable quality diversity (DQD) problem, a special case of QD, where
both the objective and measure functions are first order differentiable. We then
present MAP-Elites via a Gradient Arborescence (MEGA), a DQD algorithm that
leverages gradient information to efficiently explore the joint range of the objective
and measure functions. Results in two QD benchmark domains and in searching
the latent space of a StyleGAN show that MEGA significantly outperforms state-of-
the-art QD algorithms, highlighting DQD’s promise for efficient quality diversity
optimization when gradient information is available. Source code is available at
https://github.com/icaros-usc/dqd.

1 Introduction

We introduce the problem of differentiable quality diversity (DQD) and propose the MAP-Elites via
a Gradient Arborescence (MEGA) algorithm as the first DQD algorithm.

Unlike single-objective optimization, quality diversity (QD) is the problem of finding a range of
high quality solutions that are diverse with respect to prespecified metrics. For example, consider
the problem of generating realistic images that match as closely as possible a target text prompt
“Elon Musk”, but vary with respect to hair and eye color. We can formulate the problem of searching
the latent space of a generative adversarial network (GAN) [26] as a QD problem of discovering latent
codes that generate images maximizing a matching score for the prompt “Elon Musk”, while achieving
a diverse range of measures of hair and eye color, assessed by visual classification models [51]. More
generally, the QD objective is to maximize an objective f for each output combination of measure
functions mi. A QD algorithm produces an archive of solutions, where the algorithm attempts to
discover a representative for each measure output combination, whose f value is as large as possible.

While our example problem can be formulated as a QD problem, all current QD algorithms treat the
objective f and measure functions mi as a black box. This means, in our example problem, current
QD algorithms fail to take advantage of the fact that both f and mi are end-to-end differentiable
neural networks. Our proposed differentiable quality diversity (DQD) algorithms leverage first-order
derivative information to significantly improve the computational efficiency of solving a variety of
QD problems where f and mi are differentiable.

To solve DQD, we introduce the concept of a gradient arborescence. Like gradient ascent, a gradient
arborescence makes greedy ascending steps based on the objective f . Unlike gradient ascent, a
gradient arborescence encourages exploration by branching via the measures mi. We adopt the term
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Figure 1: An overview of the Covariance Matrix Adaptation MAP-Elites via a Gradient Arborescence
(CMA-MEGA) algorithm. The algorithm leverages a gradient arborescence to branch in objective-
measure space, while dynamically adapting the gradient steps to maximize a QD objective (Eq. 1).

arborescence from the minimum arborescence problem [8] in graph theory, a directed counterpart to
the minimum spanning tree problem, to emphasize the directedness of the branching search.

Our work makes four main contributions. 1) We introduce and formalize the problem of differentiable
quality diversity (DQD). 2) We propose two DQD algorithms: Objective and Measure Gradient
MAP-Elites via a Gradient Arborescence (OMG-MEGA), an algorithm based on MAP-Elites [13],
which branches based on the measures mi but ascends based on the objective function f ; and Co-
variance Matrix Adaptation MEGA (CMA-MEGA) which is based on the CMA-ME [19] algorithm,
and which branches based on the objective-measure space but ascends based on maximizing the QD
objective (Fig. 1). Both algorithms search directly in measure space and leverage the gradients of f
and mi to form efficient parameter space steps in θ. 3) We show in three different QD domains (the
linear projection, the arm repertoire, and the latent space illumination (LSI) domains), that DQD al-
gorithms significantly outperform state-of-the-art QD algorithms that treat the objective and measure
functions as a black box. 4) We demonstrate how searching the latent space of a StyleGAN [36] in
the LSI domain with CMA-MEGA results in a diverse range of high-quality images.

2 Problem Definition

Quality Diversity. The quality diversity (QD) problem assumes an objective f : Rn → R in
an n-dimensional continuous space Rn and k measures mi : Rn → R or, as a joint measure,
m : Rn → Rk. Let S = m(Rn) be the measure space formed by the range of m. For each s ∈ S
the QD objective is to find a solution θ ∈ Rn such thatm(θ) = s and f(θ) is maximized.

However, we note that Rk is continuous, and an algorithm solving the quality diversity problem
would require infinite memory to store all solutions. Thus, QD algorithms in the MAP-Elites [43, 13]
family approximate the problem by discretizing S via a tessellation method. Let T be the tessellation
of S into M cells. We relax the QD objective to find a set of solutions θi, i ∈ {1, . . . ,M}, such that
each θi occupies one unique cell in T . The occupants θi of all M cells form an archive of solutions.
Each solution θi has a position in the archivem(θi), corresponding to one out of M cells, and an
objective value f(θi).

The objective of QD can be rewritten as follows, where the goal is to maximize the objective value
for each cell in the archive:

max

M∑
i=1

f(θi) (1)

Differentiable Quality Diversity. We define the differentiable quality diversity (DQD) problem, as
a QD problem where both the objective f and measures mi are first-order differentiable.

3 Preliminaries

We present several state-of-the-art derivative-free QD algorithms. Our proposed DQD algorithm
MEGA builds upon ideas from these works, while introducing measure and objective gradients into
the optimization process.
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MAP-Elites and MAP-Elites (line). MAP-Elites [13, 43] first tessellates the measure space S into
evenly-spaced grid cells. The upper and lower bounds for m are given as input to constrain S
to a finite region. MAP-Elites first samples solutions from a fixed distribution θ ∼ N (0, I), and
populates an initial archive after computing f(θ) andm(θ). Each iteration of MAP-Elites selects
λ cells uniformly at random from the archive and perturbs each occupant θi with fixed-variance σ
isotropic Gaussian noise: θ′ = θi + σN (0, I). Each new candidate solution θ′ is then evaluated and
added to the archive if θ′ discovers a new cell or improves an existing cell. The algorithm continues
to generate solutions for a specified number of iterations.

Later work introduced the Iso+LineDD operator [61]. The Iso+LineDD operator samples two
archive solutions θi and θj , then blends a Gaussian perturbation with a noisy interpolation given
hyperparameters σ1 and σ2: θ′ = θi + σ1N (0, I) + σ2N (0, 1)(θi − θj). In this paper we refer to
MAP-Elites with an Iso+LineDD operator as MAP-Elites (line).

CMA-ME. Covariance Matrix Adaptation MAP-Elites (CMA-ME) [19] combines the archiving
mechanisms of MAP-Elites with the adaptation mechanisms of CMA-ES [30]. While MAP-Elites
creates new solutions by perturbing existing solutions with fixed-variance Gaussian noise, CMA-ME
maintains a full-rank Gaussian distribution N (µ,Σ) in parameter space Rn. Each iteration of
CMA-ME samples λ candidate solutions θi ∼ N (µ,Σ), evaluates each solution, and updates the
archive based on the following rule: if there is a previous occupant θp at the same cell, we compute
∆i = f(θi) − f(θp), otherwise if the cell is empty we compute ∆i = f(θi). We then rank the
sampled solutions by increasing improvement ∆i, with an extra criteria that candidates discovering
new cells are ranked higher than candidates that improve existing cells. We then update N (µ,Σ)
with the standard CMA-ES update rules based on the improvement ranking. CMA-ME restarts when
all λ solutions fail to change the archive. On a restart we reset the Gaussian N (θi, I), where θi
is an archive solution chosen uniformly at random, and all internal CMA-ES parameters. In the
supplemental material, we derive, for the first time, a natural gradient interpretation of CMA-ME’s
improvement ranking mechanism, based on previous theoretical work on CMA-ES [1].

4 Algorithms

We present two variants of our proposed MEGA algorithm: OMG-MEGA and CMA-MEGA. We
form each variant by adapting the concept of a gradient arborescence to the MAP-Elites and CMA-ME
algorithms, respectively. Finally, we introduce two additional baseline algorithms, OG-MAP-Elites
and OG-MAP-Elites (line), which operate only on the gradients of the objective.

OMG-MEGA. We first derive the Objective and Measure Gradient MAP-Elites via Gradient Ar-
borescence (OMG-MEGA) algorithm from MAP-Elites.

First, we observe how gradient information could benefit a QD algorithm. Note that the QD objective
is to explore the measure space, while maximizing the objective function f . We observe that
maximizing a linear combination of measures :

∑k
j=1 cjmj(θ), where c is a k-dimensional vector

of coefficients, enables movement in a k-dimensional measure space. Adding the objective function
f to the linear sum enables movement in an objective-measure space. Maximizing g with a positive
coefficient of f results in steps that increasing f , while the direction of movement in the measure
space is determined by the sign and magnitude of the coefficients cj .

g(θ) = |c0|f(θ) +

k∑
j=1

cjmj(θ) (2)

We can then derive a direction function that perturbs a given solution θ based on the gradient of
our linear combination g: ∇g(θ) = |c0|∇f(θ) +

∑k
j=1 cj∇mj(θ) . We incorporate the direction

function ∇g to derive a gradient-based MAP-Elites variation operator.
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We observe that MAP-Elites samples a cell θi and perturbs the occupant with Gaussian noise:
θ′ = θi + σN (0, I). Instead, we sample coefficents c ∼ N (0, σgI) and step:

θ′ = θi+ | c0 |∇f(θi) +

k∑
j=1

cj∇mj(θi) (3)

The value σg acts as a learning rate for the gradient step, because it controls the scale of the coefficients
c ∼ N (0, σgI). To balance the contribution of each function, we normalize all gradients. In the
supplemental material, we further justify gradient normalization and provide an empirical ablation
study. Other than our new gradient-based operator, OMG-MEGA is identical to MAP-Elites.

CMA-MEGA. Next, we derive the Covariance Matrix Adaptation MAP-Elites via a Gradient Ar-
borescence (CMA-MEGA) algorithm from CMA-ME. Fig. 1 shows an overview of the algorithm.

First, we note that we sample c in OMG-MEGA from a fixed-variance Gaussian. However, it would
be beneficial to select c based on how c, and the subsequent gradient step on θ, improve the QD
objective defined in equation 1.

We frame the selection of c as an optimization problem with the objective of maximizing the QD
objective (Eq. 1). We model a distribution of coefficients c as a k+1-dimensional GaussianN (µ,Σ).
Given a θ, we can sample c ∼ N (µ,Σ), compute θ′ via Eq. 3, and adapt N (µ,Σ) towards the
direction of maximum increase of the QD objective (see Eq. 1).

We follow an evolution strategy approach to model and dynamically adapt the sampling distribution
of coefficients N (µ,Σ). We sample a population of λ coefficients from ci ∼ N (µ,Σ) and generate
λ solutions θi. We then compute ∆i from CMA-ME’s improvement ranking for each candidate
solution θi. By updating N (µ,Σ) with CMA-ES update rules for the ranking ∆i, we dynamically
adapt the distribution of coefficients c to maximize the QD objective.

Algorithm 1 shows the pseudocode for CMA-MEGA. In line 3 we evaluate the current solution
and compute an objective value f , a vector of measure values m, and gradient vectors. As we
dynamically adapt the coefficients c, we normalize the objective and measure gradients (line 4) for
stability. Because the measure space is tessellated, the measuresm place solution θ into one of the
M cells in the archive. We then add the solution to the archive (line 5), if the solution discovers an
empty cell in the archive, or if it improves an existing cell, identically to MAP-Elites.

We then use the gradient information to compute a step that maximizes improvement of the archive.
In lines 6-12, we sample a population of λ coefficients from a multi-variate Gaussian retained by
CMA-ES, and take a gradient step for each sample. We evaluate each sampled solution θ′i, and
compute the improvement ∆i (line 11). As in CMA-ME, we specify ∆i as the difference in the
objective value between the sampled solution θi and the existing solution, if one exists, or as the
absolute objective value of the sampled solution if θi belongs to an empty cell.

In line 13, we rank the sampled gradients ∇i based on their respective improvements. As in
CMA-ME, we prioritize exploration of the archive by ranking first by their objective values all
samples that discover new cells, and subsequently all samples that improve existing cells by their
difference in improvement. We then compute an ascending gradient step as a linear combination
of gradients (line 14), following the recombination weights wi from CMA-ES [30] based on the
computed improvement ranking. These weights correspond to the log-likelihood probabilities of the
samples in the natural gradient interpretation of CMA-ES [1].

In line 16, CMA-ES adapts the multi-variate GaussianN (µ,Σ), as well as internal search parameters
p, from the improvement ranking of the coefficients. In the supplemental material, we provide a
natural gradient interpretation of the improvement ranking rules of CMA-MEGA, where we show
that the coefficient distribution of CMA-MEGA approximates natural gradient steps of maximizing a
modified QD objective.

CMA-MEGA (Adam). We add an Adam-based variant of CMA-MEGA, where we replace line 15
with an Adam gradient optimization step [38].

OG-MAP-Elites. To show the importance of taking gradient steps in the measure space, as opposed
to only taking gradient steps in objective space and directly perturbing the parameters, we derive two
variants of MAP-Elites as a baseline that draw insights from the recently proposed Policy Gradient
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Algorithm 1 Covariance Matrix Adaptation MAP-Elites via a Gradient Aborescence (CMA-MEGA)
CMA-MEGA (evaluate,θ0, N, λ, η, σg)

input :An evaluation function evaluate which computes the objective, the measures, gradients
of the objective and measures, an initial solution θ0, a desired number of iterations N , a
branching population size λ, a learning rate η, and an initial step size for CMA-ES σg .

result :Generate N(λ+ 1) solutions storing elites in an archive A.

1 Initialize solution parameters θ to θ0, CMA-ES parameters µ = 0, Σ = σgI , and p, where we
let p be the CMA-ES internal parameters.

2 for iter ← 1 to N do
3 f,∇f ,m,∇m ← evaluate(θ)
4 ∇f ← normalize(∇f ),∇m ← normalize(∇m)
5 update_archive(θ, f,m)
6 for i← 1 to λ do
7 c ∼ N (µ,Σ)

8 ∇i ← c0∇f +
∑k
j=1 cj∇mj

9 θ′i ← θ + ∇i

10 f ′, ∗,m′, ∗ ← evaluate(θ′i)
11 ∆i ← update_archive(θ′i, f

′,m′)
12 end
13 rank ∇i by ∆i

14 ∇step ←
∑λ
i=1 wi∇rank[i]

15 θ ← θ + η∇step
16 Adapt CMA-ES parameters µ,Σ,p based on improvement ranking ∆i

17 if there is no change in the archive then
18 Restart CMA-ES with µ = 0,Σ = σgI .
19 Set θ to a randomly selected existing cell θi from the archive
20 end
21 end

Assisted MAP-Elites (PGA-ME) algorithm [45]. PGA-ME combines the Iso+LineDD operator [61]
with a policy gradient operator only on the objective. Similarly, our proposed Objective-Gradient
MAP-Elites (OG-MAP-Elites) algorithm combines an objective gradient step with a MAP-Elites style
perturbation operator. Each iteration of OG-MAP-Elites samples λ solutions θi from the archive.
Each θi is perturbed with Gaussian noise to form a new candidate solution θ′i = θi + σN (0, I).
OG-MAP-Elites evaluates the solution and updates the archive, exactly as in MAP-Elites. However,
OG-MAP-Elites takes one additional step: for each θ′i, the algorithm computes ∇f(θ′i), forms a new
solution θ′′i = θ′i + η∇f(θ′i) with an objective gradient step, and evaluates θ′′i . Finally, we update
the archive with all solutions θ′i and θ′′i .

OG-MAP-Elites (line). Our second baseline, OG-MAP-Elites (line) replaces the Gaussian opera-
tor with the Iso+LineDD operator [61]: θ′ = θi + σ1N (0, I) + σ2N (0, 1)(θi − θj). We consider
OG-MAP-Elites (line) a DQD variant of PGA-ME. However, PGA-ME was designed as a rein-
forcement learning (RL) algorithm, thus many of the advantages gained in RL settings are lost in
OG-MAP-Elites (line). We provide a detailed discussion and ablations in the supplemental material.

5 Domains

DQD requires differentiable objective and measures, thus we select benchmark domains from previous
work in the QD literature where we can compute the gradients of the objective and measure functions.

Linear Projection. To show the importance of adaptation mechanisms in QD, the CMA-ME
paper [19] introduced a simple domain, where reaching the extremes of the measures is challenging
for non-adaptive QD algorithms. The domain forms each measure mi by a linear projection from Rn
to R, while bounding the contribution of each component θi to the range [−5.12, 5.12].

We note that uniformly sampling from a hypercube in Rn results in a narrow distribution of the linear
projection in R [19, 34]. Increasing the number of parameters n makes the problem of covering the
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LP (sphere) LP (Rastrigin) Arm Repertoire LSI
Algorithm QD-score Coverage QD-score Coverage QD-score Coverage QD-score Coverage

MAP-Elites 1.04 1.17% 1.18 1.72% 1.97 8.06% 13.88 23.15%
MAP-Elites (line) 12.21 14.32% 8.12 11.79% 33.51 35.79% 16.54 25.73%
CMA-ME 1.08 1.21% 1.21 1.76% 55.98 56.95% 18.96 26.18%
OG-MAP-Elites 1.52 1.67% 0.83 1.26% 57.17 58.08% N/A N/A
OG-MAP-Elites (line) 15.01 17.41% 6.10 8.85% 59.66 60.28% N/A N/A
OMG-MEGA 71.58 92.09% 55.90 77.00% 44.12 44.13% N/A N/A
CMA-MEGA 75.29 100.00% 62.54 100.00% 74.18 74.18% 5.36 8.61%
CMA-MEGA (Adam) 75.30 100.00% 62.58 100.00% 73.82 73.82% 21.82 30.73%

Table 1: Mean QD-score and coverage values after 10,000 iterations for each algorithm per domain.

measure space more challenging, because to reach an extremum mi(θ) = ±5.12n, all components
must equal the extremum: θ[i] = ±5.12.

We select this domain as a benchmark to highlight the need for adaptive gradient coefficients for
CMA-MEGA as opposed to constant coefficients for OMG-MEGA, because reaching the edges of
the measure space requires dynamically shrinking the gradient steps.

As a QD domain, the domain must provide an objective. The CMA-ME study [19] introduces two
variants of the linear projection domain with an objective based on the sphere and Rastrigin functions
from the continuous black-box optimization set of benchmarks [29, 31]. We optimize an n = 1000
unbounded parameter space Rn. We provide more detail in the supplemental material.

Arm Repertoire. We select the robotic arm repertoire domain from previous work [13, 61]. The
goal in this domain is to find an inverse kinematics (IK) solution for each reachable position of
the end-effector of a planar robotic arm with revolute joints. The objective f of each solution is
to minimize the variance of the joint angles, while the measure functions are the positions of the
end effector in the x and y-axis, computed with the forward kinematics of the planar arm [44]. We
selected a 1000-DOF robotic arm.

Latent Space Illumination. Previous work [20] introduced the problem of exploring the latent space
of a generative model directly with a QD algorithm. The authors named the problem latent space
illumination (LSI). As the original LSI work evaluated non-differentiable objectives and measures, we
create a new benchmark for the differentiable LSI problem by generating images with StyleGAN [36]
and leveraging CLIP [51] to create differentiable objective and measure functions. We adopt the
StyleGAN+CLIP [48] pipeline, where StyleGAN-generated images are passed to CLIP, which in turn
evaluates how well the generated image matches a given text prompt. We form the prompt “Elon
Musk with short hair.” as the objective and for the measures we form the prompts “A person with red
hair.” and “A man with blue eyes.”. The goal of DQD becomes generating faces similar to Elon Musk
with short hair, but varying with respect to hair and eye color.

6 Experiments

We conduct experiments to assess the performance of the MEGA variants. In addition to our
OG-MAP-Elites baselines, which we propose in section 4, we compare the MEGA variants with the
state-of-the-art QD algorithms presented in section 3. We implemented MEGA and OG-MAP-Elites
variants in the Pyribs [59] QD library and compare against the existing Pyribs implementations of
MAP-Elites, MAP-Elites (line), and CMA-ME.

6.1 Experiment Design

Independent Variables. We follow a between-groups design, where the independent variables are the
algorithm and the domain (linear projection, arm repertoire, and LSI). We did not run OMG-MEGA
and OG-MAP-Elites in the LSI domain; while CMA-MEGA computes the f and mi gradients once
per iteration (line 3 in Algorithm 1), OMG-MEGA and OG-MAP-Elites compute the f and mi

gradients for every sampled solution, making their execution cost-prohibitive for the LSI domain.

Dependent Variables. We measure both the diversity and the quality of the solutions returned by
each algorithm. These are combined by the QD-score metric [49], which is defined as the sum
of f values of all cells in the archive (Eq. 1). To make the QD-score invariant with respect to the
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Figure 2: QD-Score plot with 95% confidence intervals and heatmaps of generated archives by
CMA-MEGA (Adam) and the strongest derivative-free competitor for the linear projection sphere
(top), arm repertoire (middle), and latent space illumination (bottom) domains.

resolution of the archive, we normalize QD-score by the archive size (the total number of cells from
the tessellation of the measure space). As an additional metric of diversity we compute the coverage
as the number of occupied cells in the archive divided by the total number of cells. We run each
algorithm for 20 trials in the linear projection and arm repertoire domains, and for 5 trials in the LSI
domain, resulting in a total of 445 trials.

6.2 Analysis

Table 1 shows the metrics of all the algorithms, averaged over 20 trials for the benchmark domains
and over 5 trials for the LSI domain. We conducted a two-way ANOVA to examine the effect of
algorithm and domain (linear projection (sphere), linear projection (Rastrigin), arm repertoire) on
the QD-Score. There was a statistically significant interaction between the search algorithm and
the domain (F (14, 456) = 7328.18, p < 0.001). Simple main effects analysis with Bonferroni
corrections showed that CMA-MEGA and OMG-MEGA performed significantly better than each of
the baselines in the sphere and Rastrigin domains, with CMA-MEGA significantly outperforming
OMG-MEGA. CMA-MEGA also outperformed all the other algorithms in the arm repertoire domain.
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Figure 3: Result of latent space illumination for the objective prompt “Elon Musk with short hair.”
and for the measure prompts “A person with red hair.” and “A man with blue eyes.”. The axes values
indicate the score returned by the CLIP model, where lower score indicates a better match.

We additionally conducted a one-way ANOVA to examine the effect of algorithm on the LSI domain.
There was a statistically significant difference between groups (F (4, 20) = 260.64, p < 0.001). Post-
hoc pairwise comparisons with Bonferroni corrections showed that CMA-MEGA (Adam) significantly
outperformed all other algorithms, while CMA-MEGA without the Adam implementation had the
worst performance.

Both OMG-MEGA and CMA-MEGA variants perform well in the linear projection domain, where
the objective and measure functions are additively separable, and the partial derivatives with respect
to each parameter independently capture the steepest change of each function. We observe that
OG-MAP-Elites performs poorly in this domain. Analysis shows that the algorithm finds a nearly
perfect best solution for the sphere objective, but it interleaves following the gradient of the objective
with exploring the archive as in standard MAP-Elites, resulting in smaller coverage of the archive.

In the arm domain, OMG-MEGA manages to reach the extremes of the measure space, but the
algorithm fails to fill in nearby cells. The OG-MAP-Elites variants perform significantly better
than OMG-MEGA, because the top-performing solutions in this domain tend to be concentrated
in an “elite hypervolume” [61]; moving towards the gradient of the objective finds top-performing
cells, while applying isotropic perturbations to these cells fills in nearby regions in the archive.
CMA-MEGA variants retain the best performance in this domain. Fig. 1 shows a high-precision view
of the CMA-MEGA (Adam) archive for the arm repertoire domain.

We did not observe a large difference between the CMA-MEGA (Adam) and our gradient descent
implementation in the first two benchmark domains, where the curvature of the search space is well-
conditioned. On the other hand, in the LSI domain CMA-MEGA without the Adam implementation
performed poorly. We conjecture that this is caused by the conditioning of the mapping from the
latent space of the StyleGAN to the CLIP score.

Fig. 2 shows the QD-score values for increasing number of iterations for each of the tested algorithms,
with 95% confidence intervals. The figure also presents heatmaps of the CMA-MEGA (Adam) and
the generated archive of the strongest QD competitor for each of the three domains. We provide
generated archives of all algorithms in the supplemental material.

We visualize the top performing solutions in the LSI domain by uniformly sampling solutions from
the archive of CMA-MEGA (Adam) and showing the generated faces in Fig. 3. We observe that
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as we move from the top right to the bottom left, the features matching the captions “a man with
blue eyes” and “a person with red hair” become more prevalent. We note that these solutions were
generated from a single run of CMA-MEGA (Adam) for 10,000 iterations.

Overall, these results show that using the gradient information in quality diversity optimization results
in significant benefits to search efficiency, but adapting the gradient coefficients with CMA-ES is
critical in achieving top performance.

7 Related Work

Quality Diversity. The precursor to QD algorithms [50] originated with diversity-driven algorithms
as a branch of evolutionary computation. Novelty search [39], which maintains an archive of diverse
solutions, ensures diversity though a provided metric function and was the first diversity-driven
algorithm. Later, objectives were introduced as a quality metric resulting in the first QD algorithms:
Novelty Search with Local Competition (NSLC) [40] and MAP-Elites [13, 43]. Since their inception,
many works have improved the archives [18, 62, 57], the variation operators [61, 19, 11, 46], and the
selection mechanisms [12, 56] of both NSLC and MAP-Elites. While the original QD algorithms
were based on genetic algorithms, algorithms based on other derivative-free approaches such as
evolution strategies [19, 10, 46, 11] and Bayesian optimization [37] have recently emerged.

Being stochastic derivative-free optimizers [7], QD algorithms are frequently applied to reinforcement
learning (RL) problems [47, 2, 14] as derivative information must be estimated in RL. Naturally,
approaches combining QD and RL have started to emerge [45, 9]. Unlike DQD, these approaches
estimate the gradient of the reward function, and in the case of QD-RL a novelty function, in action
space and backpropagate this gradient through a neural network. Our proposed DQD problem differs
by leveraging provided – rather than approximated – gradients of the objective and measure functions.

Several works have proposed model-based QD algorithms. For example, the DDE-Elites algo-
rithm [23] dynamically trains a variational autoencoder (VAE) on the MAP-Elites archive, then
leverages the latent space of this VAE by interpolating between archive solutions in latent space as
a type of crossover operator. DDE-Elites learns a manifold of the archive data as a representation,
regularized by the VAE’s loss function, to solve downstream optimization tasks efficiently in this
learned representation. The PoMS algorithm [52] builds upon DDE-Elites by learning an explicit
manifold of the archive data via an autoencoder. To overcome distortions introduced by an explicit
manifold mapping, the authors introduce a covariance perturbation operator based on the Jacobian
of the decoder network. These works differ from DQD by dynamically constructing a learned
representation of the search space instead of leveraging the objective and measure gradients directly.

Latent Space Exploration. Several works have proposed a variety of methods for directly exploring
the latent space of generative models. Methods on GANs include interpolation [60], gradient
descent [3], importance sampling [64], and latent space walks [33]. Derivative-free optimization
methods mostly consist of latent variable evolution (LVE) [4, 24], the method of optimizing latent
space with an evolutionary algorithm. LVE was later applied to generating Mario levels [63] with
targeted gameplay characteristics. Later work [20] proposed latent space illumination (LSI), the
problem of exploring the latent space of a generative model with a QD algorithm. The method
has only been applied to procedurally generating video game levels [20, 58, 55, 17] and generating
MNIST digits [65]. Follow-up work explored LSI on VAEs [54]. Our work improves LSI on domains
where gradient information on the objective and measures is available with respect to model output.

8 Societal Impacts

By proposing gradient-based analogs to derivative-free QD methods, we hope to expand the potential
applications of QD research and bring the ideas of the growing QD community to a wider machine
learning audience. We are excited about future mixing of ideas between QD, generative modeling,
and other machine learning subfields.

In the same way that gradient descent is used to synthesize super-resolution images [42], our method
can be used in the same context, which would raise ethical considerations due to potential biases
present in the trained model [6]. On the other hand, we hypothesize that thoughtful selection of the
measure functions may help counterbalance this issue, since we can explicitly specify the measures
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that ensure diversity over the collection of generated outputs. For example, a model may be capable
of generating a certain type of face, but the latent space may be organized in a way which biases a
gradient descent on the latent space away from a specific distribution of faces. If the kind of diversity
required is differentiably measurable, then DQD could potentially help resolve which aspect of the
generative model, i.e., the structure of the latent space or the representational capabilities of the
model, is contributing to the bias.

Finally, we recognize the possibility of using this technology for malicious purposes, including
generation of fake images (“DeepFakes”), and we highlight the utility of studies that help identify
DeepFake models [28].

9 Limitations and Future Work

Quality diversity (QD) is a rapidly emerging field [7] with applications including procedural content
generation [27], damage recovery in robotics [13, 43], efficient aerodynamic shape design [22], and
scenario generation in human-robot interaction [16, 17]. We have introduced differentiable quality
diversity (DQD), a special case of QD, where measure and objective functions are differentiable, and
have shown how a gradient arborescence results in significant improvements in search efficiency.

As both MEGA variants are only first order differentiable optimizers, we expect them to have
difficulty on highly ill-conditioned optimization problems. CMA-ES, as an approximate second
order optimizer, retains a full-rank covariance matrix that approximates curvature information and
is known to outperform quasi-Newton methods on highly ill-conditioned problems [25]. CMA-ME
likely inherits these properties by leveraging the CMA-ES adaptation mechanisms and we expect it
to have an advantage on ill-conditioned objective and measure functions.

While we found CMA-MEGA to be fairly robust to hyperparameter changes in the first two benchmark
domains (linear projection, arm repertoire), small changes of the hyperparameters in the LSI domain
led CMA-MEGA, as well as all the QD baselines, to stray too far from the mean of the latent space,
which resulted in many artifacts and unrealistic images. One way to address this limitation is to
constrain the search region to a hypersphere of radius

√
d, where d is the dimensionality of the latent

space, as done in previous work [42].

While CLIP achieves state-of-the-art performance in classifying images based on visual concepts,
the model does not measure abstract concepts. Ideally, we would like to specify “age” as a measure
function and obtain quantitative estimates of age given an image of a person. We believe that the
proposed work on the LSI domain will encourage future research on this topic, which we would in
turn be able to integrate with DQD implementations to generate diverse, high quality content.

Many problems, currently modelled as optimization problems, may be fruitfully redefined as QD
problems, including the training of deep neural networks. Our belief stems from recent works [53, 41],
which reformulated deep learning as a multi-objective optimization problem. However, QD algorithms
struggle with high-variance stochastic objectives and measures [35, 15], which naturally conflicts
with minibatch training in stochastic gradient descent [5]. These challenges need to be addressed
before DQD training of deep neural networks becomes tractable.
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