
1.  Introduction
Regional hydrologic models have been widely deployed for operational flood forecasting (Johnson et al., 2019; 
Maidment, 2017), future change projection (Hagemann et al., 2013), and water resources management (Beck 
et al., 2020; Guo et al., 2021; Mizukami et al., 2017). They also need to support downstream applications such 
as crop yield prediction (Ines et al., 2013), pest control (Piou et al., 2019), and water quality modeling (Dick 
et al., 2016; Strauch et al., 2017). The accuracy of these models has important implications for relevant govern-
ment agencies and public stakeholders that place trust in them. The demand for accurate modeling capabilities 
will likely be on the rise due to increased risks of floods and droughts because of climate change (IPCC, 2021).

Traditionally, regional hydrologic models describe not only streamflow but also other water stores in the hydro-
logic cycle (snow, surface ponding, soil moisture, and groundwater), as well as fluxes (evapotranspiration, 
surface runoff, subsurface runoff, and baseflow), whereas newer, data-driven machine learning approaches 
tend to focus on prediction of the variable on which it has been trained. The physical states (stores) and fluxes 
in traditional models help to provide a full narrative of the event, for example, high antecedent soil moisture 
or  thawing snow primed the watershed for floods, which are important for communication with stakeholders. 

Abstract  Predictions of hydrologic variables across the entire water cycle have significant value for water 
resources management as well as downstream applications such as ecosystem and water quality modeling. 
Recently, purely data-driven deep learning models like long short-term memory (LSTM) showed seemingly 
insurmountable performance in modeling rainfall runoff and other geoscientific variables, yet they cannot 
predict untrained physical variables and remain challenging to interpret. Here, we show that differentiable, 
learnable, process-based models (called δ models here) can approach the performance level of LSTM for the 
intensively observed variable (streamflow) with regionalized parameterization. We use a simple hydrologic 
model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable 
programming framework, to parameterize, enhance, or replace the process-based model's modules. Without 
using an ensemble or post-processor, δ models can obtain a median Nash-Sutcliffe efficiency of 0.732 
for 671 basins across the USA for the Daymet forcing data set, compared to 0.748 from a state-of-the-art 
LSTM model with the same setup. For another forcing data set, the difference is even smaller: 0.715 versus 
0.722. Meanwhile, the resulting learnable process-based models can output a full set of untrained variables, 
for example, soil and groundwater storage, snowpack, evapotranspiration, and baseflow, and can later be 
constrained by their observations. Both simulated evapotranspiration and fraction of discharge from baseflow 
agreed decently with alternative estimates. The general framework can work with models with various process 
complexity and opens up the path for learning physics from big data.

Plain Language Summary  Recently, deep neural networks like long short-term memory 
(LSTM) have received a lot of attention for producing high-accuracy simulations in hydrology, but they do 
not respect physical laws and remain difficult to understand. However, what if you can have a model with 
similar accuracy, but with clarity about physical processes? What if at the same time the model respects 
physical laws like mass conservation and produces interpretable outputs (like soil moisture, groundwater 
storage, evapotranspiration and baseflow), with which you can tell a whole story to stakeholders? What if the 
same framework allows you to ask precise questions about different parts of hydrology and re-examine your 
understanding of some parts of the physical system or check if your past equations are correct? This paper 
delivers a system that achieves these grand goals and opens many avenues for further exploration.
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They allow us to pose specific scientific questions like what are the types of floods that have occurred—soil 
moisture dependent  precipitation excess, snowmelt, or rain-on-snow? (Berghuijs et  al.,  2016). Some process 
granularity (meaning the ability to describe the level of details that discern different processes) is also critically 
important for downstream applications. For example, agricultural models require knowledge of soil moisture and 
evapotranspiration demand, while water temperature models require a separation between surface runoff and 
baseflow. Through calibrating the models to streamflow, the hope was that the other fluxes and states would  also 
be constrained via their physical linkages. However, due to the dreaded issue of parameter nonuniqueness or 
equifinality (Beven, 2006) (where calibrated parameters can take vastly different positions in the parameter space 
and obtain essentially equivalent calibrated outcomes), calibration sometimes results in distorted physics, that 
is, multiple studies reported poor results for ET when the model was solely calibrated on streamflow (Rientjes 
et al., 2013; Tsai et al., 2021).

Recently, purely data-driven deep learning (DL) models (LeCun et  al.,  2015; Shen,  2018a,  2018b) showed 
surprisingly strong performance in hydrologic modeling, but they do not resolve internal hydrologic dynam-
ics. These models have very generic internal structures that allow them to learn directly from big data without 
invoking problem-specific theories and assumptions. A particularly popular architecture in hydrology is long 
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997). LSTM's accuracy has been demonstrated for 
many hydrologic variables on large data sets including soil moisture (Fang & Shen, 2020; Fang et al., 2017, 2019; 
Liu et  al.,  2022), streamflow (Feng et  al.,  2020; Konapala et  al.,  2020; Kratzert, Klotz, Shalev, et  al.,  2019; 
Sun et al., 2021; Xiang & Demir, 2020; Xiang et al., 2020), dissolved oxygen (Zhi et al., 2021), groundwater 
(Solgi et al., 2021; Wunsch et al., 2021), and water temperature (Rahmani, Lawson, et al., 2021; Rahmani, Shen, 
et al., 2021), covering every part of the hydrologic cycle (Shen et al., 2021). It is widely publicized that LSTM 
represented a “step-change” in performance which also suggests our traditional models were far from optimality 
(Nearing et al., 2021). The growth from two LSTM papers in hydrology in 2017 to 300+ papers in 2021 (Shen & 
Lawson, 2021) demonstrated its appeal and popularity.

Nevertheless, many variables of interest are not adequately observed, so pure DL models do not apply to them. 
For hydrologic modeling, it remains challenging to interpret what is being learned by LSTM, in part because it 
does not output physical states or fluxes. While it is possible to correlate LSTM's cell states to some physical 
states with regression approaches (Lees et al., 2021), the physical meaning of these cell states cannot be guaran-
teed explicitly, and we cannot run such regression tests before having access to the observations of those physical 
variables. The regression approach also does not allow us to freely ask questions about how the system functions. 
The hydrologic community appears to be at a crossroads: seemingly, they cannot have both predictive power and 
scientific understanding at the same time, yet both are crucial for projecting the impacts of our future climate.

For streamflow prediction, the current best performance with LSTM without using an ensemble and with forc-
ing data from the North American Land Data Assimilation System (NLDAS; different forcing data sets have a 
moderate influence on results) (Xia et al., 2012) shows a median Nash-Sutcliffe model efficiency coefficient 
(NSE) of 0.72, reported for the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) 
data set (Addor et al., 2017; Newman et al., 2014) with 671 basins across the USA (Feng et al., 2020; Kratzert 
et al., 2020). In a more interpretable modeling framework, Jiang et al. (2020) showed the possibility to connect 
a convolutional neural network (CNN) as a post-processor (or correction) layer to a conceptual process-based 
model encoded as a recurrent neural network. Their model achieved median NSE values of 0.48 and 0.71 without 
and with the CNN post-processor, respectively, for 591 basins (a subset of the 671 CAMELS basins). While this 
work is encouraging and is an important step forward, a workflow without the use of a post-processing layer 
could potentially provide better physical significance and interpretability.

Our earlier work showed that a framework called differentiable parameter learning (dPL) could employ big data 
and machine learning approaches to find parameter sets for process-based geoscientific models (Tsai et al., 2021). 
dPL provided similar performance compared to evolutionary algorithms for the main calibration variable, and 
presented better results for spatial generalization and uncalibrated variables, while also using orders of magni-
tude lower computational effort than traditional calibration. dPL superseded earlier regionalization schemes in 
PUB tests. Such strengths are partly because dPL leverages a beneficial data scaling curve where the inclusion 
of many sites allows them to synergize with each other and make the whole procedure markedly more efficient 
and well-constrained. dPL is named as such because it employs differentiable programming (Baydin et al., 2018), 
which tracks the gradients of the outputs of process-based models with respect to input parameters or neural 
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network weights, for the models' parameterization. Differentiability enables large-scale neural networks to work 
with process-based models. While dPL gives an initial glimpse at the power of applying differentiable program-
ming to hydrology, it alone does not penetrate model process descriptions, and thus the performance is still 
limited by the structure of the existing model. In terms of accuracy, dPL can find close to optimal parameters for 
process-based models, but the end outcomes still lag far behind pure DL models.

Expanding from the advances of dPL, here we demonstrate a new hydrologic modeling paradigm where learn-
able, differentiable process-based models with embedded neural networks (NN) to provide parameterization 
or module replacements can achieve similar predictive performance as LSTM models. We call them δ models 
because they fully leverage differentiable programming so the models are “learnable” and “evolvable.” Further, 
such learnable models (with a physical model as the backbone) respect mass balances, can output important 
internal physical fluxes, and allow us to ask and answer new scientific questions. We imposed several additional 
requirements on our framework: (a) each step of the main model calculation either has physical logic associated 
with physical terms, or uses a neural network but with its effects quantified, (b) mass balances are observed, and 
(c) multiple internal fluxes and states are described (e.g., groundwater and surface water contributions should be 
distinguished in our test case). This paper is intended to be a concise report on the methodology, performance, 
and implications, with myriad research questions set in motion for the future.

In hydrologic modeling, there is a large distinction between locally calibrated models and regionalized models 
(meaning parameters are related to autocorrelated, widely applicable features, not just calibrated on a gauge) 
(Hrachowitz et al., 2013). Only regionalized models are applicable to ungauged basins, though they will always 
have poorer performance than in gauged basins with site-by-site calibration, sometimes substantially (Beck 
et al., 2020; Hogue et al., 2005; Kumar et al., 2013; Rosero et al., 2010). LSTM can be regionalized when given 
basin-averaged attributes like soil composition or slope as inputs to distinguish between basins (in some studies, 
when the LSTM network is trained on a basin-by-basin basis, it essentially is a locally calibrated model). LSTM 
is also not immune to performance degradation when applied to ungauged basins, but it has been shown to score 
higher than locally calibrated hydrologic models even when tested out of sample (Feng et al., 2021; Kratzert, 
Klotz, Herrnegger, et al., 2019). In fact, regionalized LSTM remained competitive even in the scenario of being 
applied in large, contiguous regions with no data if some ensemble methods were used (Feng et al., 2021). There-
fore, while locally calibrated models are certainly useful, in this work we focus only on regionalized frameworks 
for wider applicability in the future.

2.  Methods and Data Sets
As an overview, we use an existing process-based model as a backbone, which can be based on either discrete 
(modifying from a backbone with discrete formulation) or continuous (written in a differential equation 
format) formulations. Only the discrete version is demonstrated in this paper. In this example, we selected the 
Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak & Habib, 2010; Beck et  al.,  2020; 
Bergström, 1976, 1992; Seibert & Vis, 2012) as the backbone. HBV is a simple bucket-type hydrologic model 
that simulates hydrologic variables including snow water equivalent, soil water, groundwater storage, evapotran-
spiration, quick flow, baseflow, and total streamflow. We then altered parts of the backbone model structure, 
coupled it with differentiable parameter learning (dPL) as a regionalized parameterization scheme, and replaced 
parts of the model with neural networks. Different from Bennett and Nijssen (2021), the key here is that the whole 
framework is differentiable, so we can enable “end-to-end” training and no intermediate ground truth data for the 
output of the neural networks is required. We then trained and tested the model on the CAMELS data set.

2.1.  dPL and dPL + HBV for Comparison

Differentiable parameter learning (dPL) only concerns the parameter space and is used to support parameterization of 
the evolved HBV model, as well as to serve as a comparison case when coupled with the unmodified HBV model. The 
dPL framework can be described concisely as θ = gA(A,x) where θ represents HBV parameters, A contains some static 
attributes such as topography, soil texture, land cover, and geology, x is the meteorological forcings (Section 2.3.1), 
and gA is the parameter estimation neural network. We tried treating parts of θ as being either static or dynamic. If a 
parameter is treated as static, the same value is used throughout the HBV simulation. If it is treated as dynamic, the 
model gets a new value for this parameter every day, which we call dynamic parameterization (DP), denoted by super-
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script  t. To support both static and dynamic parameterization, the network gA is in fact an LSTM model. For either static 
or dynamic parameterization, the same network gA is used to parameterize all basins so we can achieve regionalized 
predictions, but the parameters will be different because the inputs to gA are different between basins. We further note 
that the parameters of the physical models themselves are not what was directly tuned during training; we only tuned 
the weights of the gA neural networks. A main feature of the dPL framework is that 𝐴𝐴 𝐴𝐴 is subsequently provided to the 
HBV model and gA is trained together with the rest of the model by the global loss function involving all sites. In 
machine learning language, this framework is called “end-to-end” in that there are no intermediate ground-truth data as 
supervising data for 𝐴𝐴 𝐴𝐴 . This avoids two issues: first is that we do not normally have ground-truth data for 𝐴𝐴 𝐴𝐴 (while some 
soil parameters may be available, most other parameters like groundwater recession parameters or runoff factors are 
not); second is that we minimize the chance for error with the intermediate steps.

2.2.  The Differentiable, Learnable Process-Based Model

The time-discrete HBV model is described succinctly in Table 1 and illustrated in Figure 1. This model has five 
state variables. We implemented the time-discrete HBV model on PyTorch, a platform supporting automatic 
differentiation (Paszke et al., 2017). Other platforms could work similarly.

Module Default HBV equations Equation modifications

Parameterization [The parameter set {θ r, γ, β} is to be calibrated individually for each basin 
or regionalized]. θ r represents parameters other than γ and β.

[We employed regionalized training using dPL]

Static parameters: {θ r, γ, β} = gA(A, x)

Dynamic parameters: {θ r, γ t, β t} = gA(A, x) (or only 
one of γ and β is dynamic)

Snow (Sp and Sliq) ΔSp = Ps + Rfz − smelt: Solid snowpack

�Ps: Precipitation as snow
�Rfz = (θTT − T)θDDθrfz: Refreeze of ponding water
�smelt = (T − θTT)θDD: Snowmelt

Unchanged

ΔSliq = smelt − Rfz − Isnow: Liquid in snow

�Isnow = Sliq − θCWH*Sp: Snowmelt infiltration

Surface soil water (Ss) ΔSs = Isnow + Pr − Peff − Ex − ET

�Pr: Precipitation as rain
�Peff = W(Pr + Isnow): Effective rainfall to produce runoff
�W = min((Ss/θFC) β, 1): Soil wetness factor; θFC is maximum soil 
moisture
�Ex = (Ss − θFC): Excess
�ET = η*Ep: Actual ET, Ep is potential ET
�η = min(Ss/(θFCθLP),1): ET efficiency; θLP is soil moisture threshold of 
evaporation

Dynamic parameters:
W = min((Ss/θFC)^β t, 1)
η = min((Ss/(θFCθLP))^γ t, 1)
NN replacement option:
Peff = NNr(θFC, β, Ss, Ss/θFC, Pr + Isnow)

Upper subsurface zone (Suz) ΔSuz = Peff + Ex − Perc − Q0 − Q1

�Perc = min(θperc, Suz): Percolation
�Q0 = θK0(Suz − θuzl): Fast flow
�Q1 = θK1Suz: subsurface stormflow

Unchanged

Lower subsurface zone (Slz) ΔSlz = Perc − Q2

�Q2 = θK2Slz: baseflow

Unchanged

Discharge Q = Q0 + Q1 + Q1 n parallel components: 𝐴𝐴 𝐴𝐴 =
𝑛𝑛
∑

𝑖𝑖=1

𝑓𝑓𝑖𝑖 (𝑄𝑄0,𝑖𝑖 +𝑄𝑄1,𝑖𝑖 +𝑄𝑄2,𝑖𝑖)

Routing 𝐴𝐴 𝐴𝐴
∗(𝑡𝑡) = ∫

𝑡𝑡max

𝑜𝑜
𝜉𝜉 (𝑠𝑠 ∶ 𝜃𝜃𝑎𝑎, 𝜃𝜃𝜏𝜏 ) ∗ 𝑄𝑄(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑑𝑑 

𝐴𝐴 𝐴𝐴 (𝑡𝑡 ∶ 𝜃𝜃𝑎𝑎, 𝜃𝜃𝜏𝜏 ) =
1

Γ(𝜃𝜃𝑎𝑎)𝜃𝜃
𝜃𝜃𝑎𝑎
𝜏𝜏

𝑡𝑡
𝜃𝜃𝑎𝑎−1𝑒𝑒

−
𝑡𝑡

𝜃𝜃𝜏𝜏  

Note. The main balance equations are bolded and the supporting equations and explanations are indented below them. For simplicity, some minor equations and 
thresholding functions (for preserving mass positivity) are omitted here. Δ indicates changes in a daily time step; S terms with subscripts indicate state variables; θ 
terms in the HBV equations represent physical parameters, and θ r represents physical parameters other than γ and β.

Table 1 
Major Equations for the Original and Modified Time-Discrete HBV Models
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Here are the explanations and rationales for the modifications:

1.	 �We added a parameter to the ET equation (γ in Table 1's “Equation modifications” column for surface soil 
water) to allow finer controls on ET efficiency by landscape characteristics and vegetation. Previously, the 
related parameters (maximum soil moisture and soil moisture threshold for evaporation reduction) were 
intended to only reflect the impacts of soil. The idea of the power-law formulation came from Lai and 
Katul (2000). We only use this added γ parameter in the models with dynamic parameterization (DP), as to 
be described in the next point 2.

2.	 �We tested setting one or both of two parameters as being time dynamic. The first is setting γ to be dynamic 
(γ t) to mitigate the errors from the potential ET equation and to mimic the impacts of vegetation. For the 
latter, the impacts would be season-dependent due to the phenological cycle of vegetation, for example, in the 
summer, the vegetation roots will be more active; after drought, vegetation may need time to recover its water 
use efficiency. Because a model like LSTM can automatically capture such effects while the original HBV 
cannot, HBV may never reach the performance of LSTM without considering seasonally varying parameters. 
The second parameter that can be set to dynamic is β. This parameter characterizes the relationship between 
surface soil moisture and effective rainfall (the amount of water available for runoff). The curve roughly 
characterizes how soil wetness translates into effective rainfall, and β is inversely related to runoff. Having a 
dynamic β t can allow the forcing history to influence runoff production.

3.	 �To represent spatial heterogeneity, we conceptualized each basin as being composed of multiple parallel 
components, each of which can be described by an HBV model. The total fluxes and states, for example, 
discharge, ET, and water storage, are weighted average fluxes and states of these components. The parameters 
of all components are simultaneously estimated by gA. As an early exploration, we assigned a uniform weight 
to all components, but future efforts can examine relating the weights to soil and vegetation fractions as done 
in some traditional hydrologic models.

4.	 �We tested replacing the effective rainfall part of the model with a neural network (NNr) (Peff = NNr(θFC, β, 
Ss, Ss/θFC, Pr + Isnow)) to examine if there were more suitable relationships to describe the moisture-runoff 
relationship than the original one (Peff = W(Pr + Isnow); W = min((Ss/θFC) β, 1) in the surface soil water (Ss) 
row in Table 1). The NN replacement method can be similarly applied to other modules like groundwater and 

Figure 1.  The sketch of the differentiable model framework. A neural network gA (in this case a long short-term memory 
[LSTM] unit) outputs the physical parameters for a process-based model (here, the HBV hydrologic model). Each physical 
parameter can be set as either static or time-dynamic, and either way, there is no feedback from δ models' states to these 
LSTM-estimated parameters during a forward run. The process-based model supports differentiable programming as it is 
implemented on a machine learning platform. In the process-based models, certain parts of the model can be replaced by 
neural networks and the structure can be updated. Here, we also increased the number of storage components to represent 
sub-basin-scale heterogeneity. Notably, the framework is trained in an “end-to-end” fashion and there are no intermediate 
supervising data (or labels) for the outputs of the neural networks (either gA or the optional NN replacements). The main 
loss function is calculated between the process-based model output and observations—in our example, discharge—and the 
gradients are backpropagated all the way to these neural networks. Red symbols are static parameters and green symbols are 
time-dependent parameters.

gA(A,x)
LSTM unit

Dynamic

Sta�c

Forcing

soil, land cover,
geology, others…

Precipita�on/Temperature

Q2

Q1
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ET, but here we only applied it to the effective rainfall component to constrain the model's flexibility. Other 
replacements can be investigated in future work.

5.	 �As in Tsai et al. (2021) and Mizukami et al. (2017), we added a routing module to the hydrologic model with 
two parameters (Table 1). This module assumes a gamma function for the unit hydrograph and convolves the 
unit hydrograph with the runoff to produce the final streamflow output, which is compared to the observed 
streamflow. This routing module is employed in all of our HBV-based simulations in this paper.

We use the symbology δn( ) to represent different dPL + evolved HBV models for easy reference. Here, n is 
the number of multiple components. δ1 represents the single-component (original) HBV model; δn represents 
the evolved HBV model with multiple components; δn(β t) represents the multi-component model with dynamic 
parameter β; and δn(NNr) represents the multi-component model with the soil-runoff relation replaced by a 
simple neural network (NNr). Here, only the δn(NNr) model employs the optional neural network replacement for 
the process inside the HBV calculation. Many other backbones other than HBV can be used, but all of the models 
in this paper used HBV as the backbone. All the δ models used are summarized in Table 2.

2.2.1.  Model Training, Hyperparameters, and Other Details

We trained the models on 15 years' worth of data from 1 October 1980 to 30 September 1995 and evaluated the 
performance on another 15 years' worth of data from 1 October 1995 to 30 September 2010. The 5 years' worth of 
data from 1 October 1980 to 30 September 1985 were used as validation data to select the hyperparameters. For the 
hyperparameters of the LSTM unit used as gA in dPL + HBV (Figure 1), we chose 256 hidden states. A mini-batch 
size of 100 and a length of 365 days were used to form the training instances of time series in one mini-batch, 
calculate the loss function, and train the dPL + HBV framework. These two hyperparameters were the same as our 
previous LSTM-based streamflow model trained on the CAMELS data set (Feng et al., 2020). An alternative is to 
use an automatic hyperparameter tuning package, but we did not explore that option here. For each training instance, 
we used additional 1 year of meteorological forcings as the warm-up period for initializing the state variables of 
HBV during training. For the simulation and performance evaluation on the testing period, we used the forcings of 
the whole training period to first initialize the state variables. The number of components n was set as 16 for all the 
multi-component HBV models. In addition to the dPL models, we also ran the purely data-driven LSTM streamflow 
model with the same training configuration and on the same time periods for performance comparison. The hyper-
parameters of the LSTM streamflow model were the same as in our previous study (Feng et al., 2020). Additionally, 
to be comparable with previous regionalized modeling studies (Rakovec et al., 2019), we also ran some dPL exper-
iments on the same training/testing periods and meteorological forcings as theirs.

2.2.2.  Loss Function and Evaluation Metrics

Our loss function (Equation 1) was defined as a weighted combination of two parts based on root-mean-square 
error (RMSE) calculations on all basins (in practice, a mini-batch of basins during training). The first part was the 
RMSE calculated on the predicted and observed streamflow, while the second part was the RMSE calculated on the 
transformed streamflow (Equation 2). The transformation in the second part of the loss aims at improving low flow 
representation. We used a parameter 𝐴𝐴 𝐴𝐴 to assign weights to different parts of the loss function. Different values of 𝐴𝐴 𝐴𝐴 
were manually tuned using validation data and generally larger values would lead to better base flow characterization 
but lower peak flow performance. We chose the value 0.25 to balance the performance on low and peak flow and 
used it to train all the HBV models. For the benchmark LSTM streamflow model, we applied the transformation 
(Equation 2) and normalization as preprocessing steps, which were found to give slightly better NSEs in our previous 
study (Feng et al., 2020). The loss function of the LSTM streamflow model was the RMSE of the normalized data.

Loss = (1.0 − 𝛼𝛼)

√

∑𝐵𝐵

𝑏𝑏=1

∑𝑇𝑇

𝑡𝑡=1

(

𝑄𝑄
𝑡𝑡𝑡𝑡𝑡

𝑠𝑠 −𝑄𝑄
𝑡𝑡𝑡𝑡𝑡

𝑜𝑜

)2

𝐵𝐵 ∗ 𝑇𝑇
+ 𝛼𝛼

√

∑𝐵𝐵

𝑏𝑏=1

∑𝑇𝑇

𝑡𝑡=1

(

𝑄̂𝑄
𝑡𝑡𝑡𝑡𝑡

𝑠𝑠 − 𝑄̂𝑄
𝑡𝑡𝑡𝑡𝑡

𝑜𝑜

)2

𝐵𝐵 ∗ 𝑇𝑇

� (1)

𝑄̂𝑄
𝑡𝑡𝑡𝑡𝑡 = Log10

(
√

𝑄𝑄𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀 + 0.1
)

� (2)

Here, 𝐴𝐴 𝐴𝐴
𝑡𝑡𝑡𝑡𝑡 represents the streamflow on day t and basin b; the subscripts s and o represent simulations and obser-

vations, respectively; 𝐴𝐴 𝑄̂𝑄
𝑡𝑡𝑡𝑡𝑡 is the transformed streamflow in order to improve low flow representations; 𝐴𝐴 𝐴𝐴 is a 

small positive value (here, using 1E−6) for stabilizing the gradient calculation of the square root at zero; B and T 
respectively represent the number of basins (same as the batch size, 100 here) and total days (same as the length 
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of training instance, 365 here) in a training minibatch; and 𝐴𝐴 𝐴𝐴 is a weighted parameter which is 0.25. For model 
evaluation, we computed Nash-Sutcliffe model efficiency coefficients (NSE; Nash & Sutcliffe, 1970). NSE is 
one minus the ratio of the error variance of the modeled time series divided by the variance of the observed time 
series. It is 1 for a perfect model and 0 for the long-term mean value used as the prediction. The Kling-Gupta 
model efficiency coefficient (KGE; Gupta et al., 2009) is another popular metric that considers correlation, bias, 
and flow variability error. KGE, similar to NSE, is 1 for a perfect simulation.

2.3.  Input and Observation Data Sets

2.3.1.  Forcing, Streamflow, and Attribute Data

We used the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) data set (Addor 
et al., 2017; Newman et al., 2014) which contains meteorological forcings, streamflow observations, and attributes 
for 671 basins in the conterminous United States (CONUS). We tested multiple sets of forcings (one at a time), 
including Daily Surface Weather Data on a 1-km Grid for North America (Daymet) (Thornton et al., 2020) and 
the North American Land Data Assimilation System (NLDAS) (Xia et al., 2012) meteorological forcings from 
CAMELS with the daily minimum and maximum NLDAS temperature data obtained from Kratzert (2019a). This 
was both to test the suitability of the forcing data sets as well as to see if the differentiable models responded in 
the same way as LSTM. The HBV model only used three forcing variables due to its formulations: precipitation 
(P), temperature (T), and potential evapotranspiration (Ep). Describing the total evaporative demand, Ep was esti-
mated using the Hargreaves (1994) method, which considers mean, maximum, and minimum temperatures and 
latitudes. For gA, x = {P, T, Ep} was used as the dynamic forcings. For the comparison LSTM streamflow model, 
we used {P, T, solar radiation, vapor pressure, day lengths} as forcings. The inputs to HBV were predetermined 
by its structure, while they can include any relevant variable for LSTM. While this seems to give LSTM an advan-
tage as it would have access to more data, the main point is to show how much progress can be made by making 
HBV differentiable and learnable, and we want the comparison LSTM to represent the highest bar.

We used the streamflow data compiled by the CAMELS data set, which was, in turn, obtained from the streamflow 
network of the United States Geological Survey (USGS). Static attribute data from CAMELS including 35 topogra-
phy, climate, land cover, soil, and geology variables in total (Table A1 in Appendix A) were included as inputs to gA 
in dPL to train regionalized models. We also acquired the simulations of other regionalized models from previous 
studies as comparisons for our dPL models (Kratzert, Klotz, Shalev, et al., 2019; Rakovec et al., 2019).

2.3.2.  Baseflow Index and Evapotranspiration for Evaluation

The baseflow index (BFI L13) was derived from applying Lyne and Hollick filters with warmup periods to stream-
flow hydrographs by Ladson et al. (2013), which was compiled and included in CAMELS. Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), part of the National Aeronautics and Space Administration Earth 
Observing System (NASA/EOS) project, uses satellite data to estimate terrestrial surface evapotranspiration. The 
improved ET algorithm of the MOD16A2 data set is based on the Penman-Monteith equation (Monteith, 1965; 
Mu et al., 2011; Running et al., 2017). The input data include meteorological reanalysis data of daily surface 
downward solar radiation and air temperature, and MODIS products such as albedo, land cover, leaf area index, 
and fraction of photosynthetically active radiation. The data cover all basins in CAMELS. We composited the 
outputs from our models as 8-day data following the same composite methodology as MOD16A2, and compared 
them.

3.  Results and Discussion
We first briefly showcase the surprising performance of the evolved differentiable HBV models and put them 
in the context of previous literature. Then, we compare simulated internal variables to other estimates. We 
will mainly use the results forced by Daymet for discussion while also providing NLDAS-forced results for 
comparison.

3.1.  Streamflow Metrics

On the CAMELS data set, strikingly, some of the δ models, namely δn(γ t, β t), δn(NNr), δn, δn(β t), and δn(γ t) in 
Table  2, achieved median NSE values of >0.71. δn(γ t, β t), in particular, had a median NSE of 0.732, which 
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approached that of LSTM (median NSE = 0.748, which represents the known best value with Daymet forcing 
and without an ensemble–this result is slightly higher than the corresponding value of 0.74 reported in Kratzert 
et al. [2020]) (Figure 2 and Table 2). They were both clearly ahead of dPL + HBV (representing the unmodified 
model with optimized, regionalized parameters, median NSE = 0.640), and MPR + mHM (representing another 
well-established traditional model with a different regionalization scheme, median NSE  =  0.53). Other tests 
showed similar patterns. For the KGE metric, δn(γ t, β t) and δn were both very close to LSTM (Figure 2b). In 
addition, with the NLDAS forcing, the median NSEs of both LSTM and δn(γ t, β t) declined to 0.719 and 0.711, 
respectively, which means the gap between them was even smaller with NLDAS (Figure A1 in Appendix A). This 
suggests Daymet has a better forcing quality, and also suggests LSTM and δ models have been able to extract 
value from a better forcing dataset.

These strengths in metrics have matching real-world implications as shown by time series comparisons for several 
example basins (Figure 3). The HBV model underestimated flood peaks for basin A in east Texas, while the 

Figure 2.  NSE comparison of different models on the CAMELS data set for the testing period. The dashed lines represent 
models with the training/testing periods of hydrologic years 1999–2008/1989–1999 using Maurer et al. (2002) forcing, 
while the solid lines represent models with the training/testing periods of 1980–1995/1995–2010 using Daymet forcing. 
MPR + mHM is from Rakovec et al. (2019). The letter B here represents the number of CAMELS basins used for the 
evaluation. NSE50 is the median NSE value.

Model name Median streamflow NSE Spatial correlation of BFI Median ET correlation

δn(γ t, β t) 0.732 0.760 0.844

δn(NNr) 0.723 0.774 0.817

δn 0.714 0.739 0.779

δn(β t) 0.729 0.725 0.801

δn(γ t) 0.716 0.731 0.842

dPL + HBV (=δ1) 0.640 0.560 0.770

LSTM (ours) 0.748 - -

LSTM (Table A1 in Kratzert et al. [2020]) 0.74 - -

Note. δ refers to the differentiable process-based model built on HBV as the backbone; subscript n (n = 16 here) indicates multiple components were used. Superscript 
t (as in γ t or β t) indicates where dynamic parameterization is applied (otherwise, parameters are treated as constants).

Table 2 
Model Performances for the Test Period With Daymet Forcing Data and Without the Use of Ensemble
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evolved structure could moderately mitigate this problem (Figure 3a). For basin B, close to the Great Lakes, 
the evolved model corrected the peak magnitude from the original HBV model (Figure 3b). We can clearly see 
improved flow dynamics from basin C located in the Rocky Mountains. The evolved model improved both the 
peak and the recession limb here (Figure 3c).

The fact that we can approach LSTM performance using a process-based, mass-conservative model is refreshing 
because in previous studies, the gap between LSTM and process-based models with a wide variety of structures 
appeared to be uncrossable. These results indicated that it is difficult for expert-derived formulas to match the 
ability of trained neural networks, a pattern we have seen repeatedly in recent studies across various disciplines. 
In this work, however, we observe that the gaps in performance between LSTM and learnable models (δ models) 

Figure 3.  (a–c) Time series comparisons for several basins with NSE values close to the median—dPL+ original HBV (δ1) 
versus LSTM versus evolved HBV with DP, δn(β t). The numbers in the legends show the NSE metric for the whole testing 
period (1995–2010). (d) Locations of basins in (a–c).
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are not so large. This highlights the power of having learnable structures and adaptivity in the model. We note that 
while the median is close, LSTM is better for the low-performing basins (lower 20th percentile). This could be due 
to LSTM's ability to correct bias in precipitation, which frequently causes low performance but cannot be fixed 
by δ models due to mass balance limitations. Future effort with δ models could include specific terms to learn 
precipitation bias, for example, as a function of mountainous elevation or snowfall (Adam & Lettenmaier, 2003).

Considering the nuances of the configurations and comparing them laterally with the literature, the performance 
of optimization in our differentiable framework, dPL (median NSE = 0.732) should be close to optimum for 
this backbone, HBV. First, we have not employed a neural network as a post-processor. Previous results showed 
that using an LSTM as a post-processor to a hydrologic model produces the same results as LSTM itself (Frame 
et al., 2021). In this case, post-processors can strongly alter the simulation so that the contributions from the 
front-end model are no longer clear. Second, as mentioned earlier, previous results with traditional hydrologic 
models almost always showed regionalized parameterization to be weaker than site-by-site calibration (Beck 
et al., 2020)—previous best results with regionalized hydrologic models had a median of 0.53 in the CONUS 
(Rakovec et al., 2019). Lastly, LSTM used more forcing variables in this study, and thus had more information. 
The result of our regionalized formulation is close to the record-holding LSTM models. Presumably, like LSTM, 
it also benefits from the efficiency and data synergy of learning from big data (Fang et al., 2022).

Adding parallel units appeared to have a large benefit (Table 2), judging by the differences between the δn (n 
denoting multi-component) and δ1 (1 denoting single-component) models. With just this change alone, we 
were able to elevate the median NSE from ∼0.640 to 0.714 for δn, or 0.723 for δn(NNr). As described earlier, 
the point of adding parallel components is to mimic landscape heterogeneity resulting from land cover, slope, 
and soil combinations in a basin. The results suggest that heterogeneity plays an important role in the basin 
and must be resolved, although it may not need the explicit overlay of geospatial data sets as commonly done 
in physics-based hydrologic models. The idea of multiple components is spiritually similar to LSTM's large 
number of hidden and cell states. However, while LSTM can be modified to have a notion of approximate mass 
conservation with physical meaning of the stores (Hoedt et al., 2021), in our framework, the stores and fluxes 
are naturally linked to familiar physical concepts. These results were obtained by applying a uniform weight 
fraction to all the components, but we hypothesize that using geographically meaningful areal fractions (which 
would require substantially more data preprocessing effort and is out of the scope of this work) could slightly 
improve the results.

The models that do not utilize dynamic parameterization (DP) already presented substantial improvements 
over traditional models, but DP further pulled up the performance. The δn and δn(NNr) models (without DP) 
were at median NSE values of 0.714 and 0.723, respectively (Table 2), already significantly higher than the 
regionalized original HBV (median NSE = 0.640) or mHM (median NSE = 0.53, using Maurer forcing). We 
also ran a case with dPL+ unmodified HBV using Maurer forcing for comparison and obtained the red dashed 
line with median NSE 0.618 in Figure 2. This shows that DP is not necessarily needed for the model to be 
operational. However, we should not let go of trying to further narrow the gap to LSTM (adding DP raised 
median NSE from 0.714 to 0.732) because it is symptomatic of some more fundamental structural issues to be 
explored below. After various attempts (Table 2 and some undocumented efforts), we were never able to get a 
median NSE above 0.725 without DP.

The estimated dynamic runoff factor β t, which is negatively related to runoff, has a dominant seasonal cycle that 
resembles seasonal water storage, with spikes that sometimes correspond to storms (Figure 4, obtained from 
the δn(β t) model). β t starts at the highest level in September, reaches bottom in March or April, and starts to rise 
in May or June. It corresponds to increasing runoff (other conditions being equal) from October to March, and 
reducing runoff from May to September, which matches the rhythm of the seasonal water storage cycle. In the 
original HBV, only the surface layers (Ss and Suz) influence quick runoff, and the deeper groundwater reservoirs 
have no feedback to surface runoff—that is, quick flow generation is not influenced by how much water there 
is in deeper groundwater layers in the model. In reality, this feedback can be important, as large water storage 
in the basin can prime the basin for large runoffs. Hence, an explanation is that the dynamic parameterization 
captured this problem and introduced a mechanism for high water storage accumulated over months to increase 
runoff. This is consistent with the observations that β t in the hot Texas basins (Figures 3a and 4a) has flashier 
and less seasonal responses—runoff in these basins tend to be flash infiltration excess, and the effect of water 
storage is limited. β t for Basin B in the Midwest has a clear seasonal cycle (on a side note, the high-frequency 
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fluctuations may be suppressed in the future via a smoothness condition), consistent with the hydrology of the 
region (Niu et al., 2014; Shen et al., 2013). β t for Basin C is much drier and has a more muted seasonal cycle. 
Another concurrent possibility is that β t also reflects a more established canopy in warm seasons to increase 
abstraction and reduce runoff.

For γ t and β t, their states in DP reflect the impacts of accumulated forcings at the monthly scale. Models like 
LSTM could implicitly capture such seasonal effects. In contrast, the original HBV, as well as many conceptual 
models, simply does not have these processes and memory. Other parameters must be distorted for the original 
model to compensate for their absence. If our theory is true, we expect that no process-based models, learnable 
or not, can achieve optimal performance without adding these states.

The value of replacing the soil moisture-runoff formula with an NN was moderate: δn(NNr) is between δn and δn(γ t, 
β t) in terms of both NSE and ET correlation (Table 2). This means the formulation of the soil moisture-runoff 
equation in HBV may not be inadequate but the NN may have found a better relationship. This NN also provided 
an opportunity to study more suitable relationships in the model, which can be pursued in the immediate next 
stage of the work. We caution that the effect of NNr may be conditional on the other setup of the model such as 
forcings (due to their different bias characteristics) and other modules. However, the state-of-the-art performance 
likely results from the accumulation of many small steps.

3.2.  Comparisons of the Baseflow Index and ET

As opposed to the LSTM model which can only predict trained variables like total streamflow, the evolved HBV 
(δ) models can elucidate the different sources of streamflow and ET. Overall, we found that the baseflow and ET 

Figure 4.  Time series of dynamic parameters β and γ estimated from the models δn(β t) and δn(γ t), respectively, for the three 
basins shown in Figure 3. The gray lines represent the parameter values from all 16 components while the solid colored (blue 
or red) lines represent the component which has the median temporal average parameter value among all the components.
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metrics tended to be consistent with NSE—that is, models with better NSE also tended to have better correlations 
of baseflow and ET (Table 2), although some exceptions did exist. The δn(γ t, β t) model which had the highest 
median NSE also ranked the second highest in baseflow correlation with BFI L13 and the highest in median ET 
correlation with MODIS. dPL+ unmodified HBV (δ1) had the lowest streamflow NSE, and at the same time, 
lowest BFI and ET correlations with alternative estimates.

There is a decent correlation (R = 0.760 for δn(γ t, β t) and 0.739 for δn) between the simulated BFI (Q2/Q) and 
BFI derived from Ladson et al. (2013), BFI L13 (Figure 5e), showing the subsurface module in evolved HBV 
has captured the rough baseflow patterns across the CONUS (Figures 5c and 5e). It should be noted that there 
is no ground truth in the baseflow index and the results of baseflow recession analysis can vary significantly 
based on the procedure and assumptions employed and do not represent ground truth. Hence, we place more 
emphasis on the general spatial pattern rather than the absolute values in the BFI. We notice high BFI associ-
ated with thick and permeable soil in the southeast and western US, and in the Upper Colorado River basin. 

Figure 5.  (a) Map of baseflow index (BFI) according to USGS baseflow separation analysis; (c) Baseflow predicted by the 
trained model (long-term average Q2/Q from dPL + evolved HBV, δn); and (e) the correlation between USGS BFI and Q2/Q. 
(b, d, and f) Same as (a, c, and e) but for the subset of basins with NSE > 0.5.
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We also notice low BFI values along the Appalachian Plateau extending into the Central Plains, in line with 
previous analysis of terrestrial water storage data and streamflow (Fang & Shen, 2017). The HBV-predicted 
BFI (Q2/Q) becomes higher than BFI L13 toward the higher ranges. Q2/Q from basins with NSE values over 0.5 
has a higher correlation with BFI L13 than for the whole data set (Figure 5f), again shows consistency between 
streamflow and ET metrics. On a side note, the basins with NSE < 0.5 (the basins present in Figure 5a but 
missing in Figure 5b) concentrate on the upper Great Plains, which has been known for a long time to cause 
difficulties for various kinds of models (Feng et al., 2020; Newman et al., 2015). We suspect this is due to 
incorrect watershed boundaries, highly concentrated rainfall, and the existence of cross-basin water transfer, 
that is, large-scale groundwater flow and springs.

It is not surprising that the simulated Q2/Q agrees to a certain extent with the values derived from baseflow sepa-
ration analysis, which is based on streamflow hydrographs. Passing water through the system and releasing it as 
Q2 is the primary way for the model to mathematically introduce slowly varying base flows. However, the point is 
that we can now directly diagnose different parts of streamflow contributions by learning from data, and further 
link them to downstream applications such as water temperature predictions.

For δ1, δn, and δn(γ t, β t) models, the median temporal correlation of ET was respectively 0.770, 0.779, and 0.844 
(Table 2), and the median RMSE was respectively 7.15, 6.96, and 6.10 mm/8 days against the 8-day integrated 
MOD16A2 ET product on CAMELS basins. As mentioned above, correlation with MOD16A2 improved from 
the original HBV to δn(γ t, β t), which was consistent with the improvement of streamflow NSE (Figure 6a, 
Table 2). These ET metrics appear better than the accuracy levels reported for other estimates evaluated against 
MOD16A2. To give an example, when evaluated on a monthly scale, Velpuri et al. (2013) reported R 2 of ∼0.56 
and an RMSE between 26 and 32  mm/month between MOD16A2 and FLUXNET stations. Even without 
training on ET, the differentiable process-based models can predict reasonable daily ET, which LSTM cannot 
do at all.

We also note that the model with dynamic parameterization has a higher median correlation with MOD16A2. 
γ t had a minor benefit for NSE but a more noticeable benefit on ET, even though the model did not train on ET. 
The ET correlation of δn(γ t) is better than δn, and δn(γ t, β t) is better than δn(β t). This suggests the system calls for 
memory mechanisms (referring to state variables that hold information and a way to update them) associated 
with ET. All of these observations suggest ET can be better aided by using dynamic parameterization for γ. 
Regarding why it is useful to enable dynamic parameterization for γ t, which is related to ET, we hypothesize 

Figure 6.  (a) Temporal correlation between simulated ET and the estimates from MOD16A2 8-day product for the CAMELS 
basins (each box summarizes 671 basins), from three evolved HBV models. (b) Spatial correlation of the long-term mean ET 
(each circle represents a basin).
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that two factors are at play: (a) the potential ET formula (Hargreaves) could not adequately capture the ET 
demand but DP (with γ t) could correct it, and (b) there are some missing memory mechanisms (or states) in the 
design of the HBV model, in terms of representing seasonally varying ecosystem states like vegetation density, 
leaf area index, rooting depth, and xylem states (Mackay et al., 2015). These states reflect the impacts of accu-
mulated forcings at the monthly scale. Models like LSTM could implicitly capture such seasonal effects. In 
contrast, the original HBV model, as well as many other conceptual models, simply does not have a functional 
vegetation module.

It is difficult to provide a lateral comparison based on daily ET data to the literature regarding the value of 
learning from streamflow. There is a lack of evaluation of ET on the CAMELS basins in the literature, while the 
FLUXNET data, which were often used to evaluate ET products, were not coincident with the CAMELS basins to 
examine the effects of learning from streamflow data. MOD16A2, estimated using a modified Penman-Monteith 
equation (Mu et  al.,  2011), should not be interpreted as ground truth. The point here is not that this model 
produces more accurate ET (which will be studied in future work), but that the differentiable process-based model 
can now be constrained and evaluated by multi-source, multifaceted observations.

3.3.  Further Discussion

In this work, we limited ourselves to frameworks that support prediction in ungauged basins, even though we 
leave the rigorous PUB benchmark to future work. Our parameterization and learning schemes are regionalized 
and based on widely available inputs, and are thus applicable to large scales. Due to the lack of physical laws, 
LSTM may not learn the true causal relationship between static inputs and outputs. Therefore, we hypothesize the 
decline in performance from training basins to ungauged basins will be less significant for our learnable physical 
model than LSTM. Our future work will rigorously evaluate this hypothesis.

It is an expert's choice as to which model (each with varying degree of complexity) we use as a backbone, and 
how much model structure we retain, but that choice impacts what kind of question can be asked. Here, we chose 
a backbone that discerns soil moisture, groundwater, quickflow, and baseflow such that we can support down-
stream applications like stream temperature and ecosystem modeling. It is possible to use an even simpler hydro-
logic model with fewer storage components and less process granularity, but such a model would have limited 
support for downstream applications. On the flip side, one could use a much more complex model as a backbone, 
but generally, adding too many structural constraints may degrade model accuracy. The effect of the backbone 
should be investigated in the future with alternative backbones. In the end, we may have to make a conscious 
choice between interpretability and accuracy. We recommend backbone models with a process granularity that 
enables providing a narrative to stakeholders.

Having process granularity and physical fluxes and variables gives us another advantage—we can now use 
multiple observations to constrain the model or inform unobserved variables. For example, since soil mois-
ture observations are more widely available from satellite missions, we could use these observations, apart 
from streamflow, to constrain the model and update model states using the DL equivalent of data assimi-
lation. Including additional observations to constrain different parts of the hydrologic model could reduce 
uncertainty and make the model more robust (Dembélé et al., 2020; Efstratiadis & Koutsoyiannis, 2010). 
This would not be possible for an alternative model whose backbone does not include soil moisture as an 
output.

Here, the NNs are embedded into a time-discrete model which explicitly integrates over the time steps. Strictly 
speaking, the NNs in this framework learn the time-integrated operator which varies based on the time step size. 
This could be interpreted as using a forward Euler scheme to integrate over time. It is also possible to place 
the NN on the differential equation and use more accurate numerical solvers for time integration (Rackauckas 
et al., 2021), which would force the NN to learn the continuous operator. Both approaches are valid, but there may 
be performance or computational efficiency differences. The discrete version would require little change to the 
existing models (the code could be translated verbatim), which already have well-understood numerical schemes. 
The differential equation version would need stable integrator schemes in place, but it would also be a valuable 
avenue to explore.
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While we showed the necessity of employing dynamic parameterization (DP) to reduce the gap to LSTM, we 
caution against an overuse of DP in the model. For one, many parameters, such as groundwater recession param-
eters, should not be dynamic. Additionally, because LSTM is so powerful, if we apply DP throughout the system, 
it has a high chance of achieving high performance, but we may start to lose physical significance and the system 
may revert to being an LSTM variant. The effects of DP should be quantified, its role justified by physical 
mechanisms, and its importance should be limited. In our case, DP only had a minor impact (median NSE 0.714 
improved to 0.732). In other words, the variance to be explained by DP should not overwhelm the physical part. 
For future differentiable modeling methods, one important research direction would be ways to limit or constrain 
the roles of neural networks and retain physical significance.

We think the groundwater component still has significant room for improvement because the current groundwa-
ter formulations are too simple. The inter-bucket exchange terms in conceptual hydrologic models are typically 
unidirectional and do not consider the feedbacks and balances between multiple layers. Future efforts should 
pay special attention to improving the groundwater component, even though groundwater improvement does not 
necessarily get reflected in the NSE values.

4.  Conclusion
The strong performance of the evolved HBV model shows that, with the aid of learnable units (both for 
parameterization and process description), the process-based modeling paradigm can be elevated to nearly 
state-of-the-art performance. The differentiable, learnable modeling we proposed here seeks to reduce the 
architectural elements of DL while coupling its fundamental elements (backpropagation, regularization, gradi-
ent descent, etc.) to domain process descriptions. The success of this framework means we can now use differ-
entiable programming to ask mechanistic questions. The above statements are not to say that pure DL models 
are not useful—they are an inherent component of the differentiable modeling framework, remain highly valu-
able because they can be quickly set up to gauge the information content in data sets, and can provide a wealth 
of diagnostic signals.

We have imposed upon ourselves some stringent conditions (mass conservation, physical calculations, and 
interpretable physical outputs). The unchanged parts of the numerical model serve as physical constraints, 
allowing our model to output physical states and fluxes that are valuable for downstream applications. Utiliz-
ing a backbone with a sufficient level of process granularity is important to help with this mission. In the 
near future, the impacts of different backbones and their implications on internal variables need to be inves-
tigated. As processes continue to be improved and new backbones are tested, it would not be impossible for 
differentiable models to completely equal or exceed the performance of LSTM or other deep networks like 
transformers.

The strengths of the differentiable models and LSTM models over traditional hydrologic models highlight the 
power of adaptive learning capacity. There seems to be a chasm between the performance of models with and 
without learnable components, but the gaps are minor between those alternatives that do have them. However, to 
enable learning complex functions, differentiable programming will be required because traditional optimization 
capabilities can barely handle more than dozens of parameters. Numerically approximating the derivatives is 
prohibitively expensive for large neural networks. Thus, we see differentiable programming as an inevitable and 
promising path toward substantial growth.

Since the evolved HBV model has better results than dPL + HBV by replacing specific parts of the model, 
it is now easier (compared to using LSTM) to answer questions, for example, What should have been the 
moisture-runoff equation if the original one was not good enough? How should we parameterize a ground-
water recession param eter? These questions themselves were beyond the scope of this work, but can be 
answered by replacing the physical descriptions of differentiable HBV with neural networks. Since we showed 
a well-performing parameterization scheme and that NN replacements for certain modules can be learned, it 
logically follows that this flexibility allows us to ask novel questions and help answer some of hydrologists' 
nemesis questions in the future.
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Appendix A
Figure  A1 provides the benchmark results (same experiments as Figure  2) with NLDAS forcings. Table  A1 
describes the inputs to the parameter estimation network.

Figure A1.  The comparison of NSE for the NLDAS forcing. The items are the same as Figure 2a but the differentiable 
models and the LSTM were forced with NLDAS. The dashed lines were still run with the Maurer forcing to enable 
comparison.

Variables Descriptions Units

Forcing P Precipitation mm/day

T Daily mean temperature °C

Ep Potential evapotranspiration mm/day

Attributes p_mean Mean daily precipitation mm/day

pet_mean Mean daily PET mm/day

p_seasonality Seasonality and timing of precipitation -

frac_snow Fraction of precipitation falling as snow -

Aridity PET/P -

high_prec_freq Frequency of high precipitation days days/year

high_prec_dur Average duration of high precipitation events days

low_prec_freq Frequency of dry days days/year

low_prec_dur Average duration of dry periods days

elev_mean Catchment mean elevation m

slope_mean Catchment mean slope m/km

area_gages2 Catchment area (GAGESII estimate) km 2

frac_forest Forest fraction -

Table A1 
The Summary of Input Variables to the Parameter Learning Neural Network gA Including Three Dynamic Forcings and 35 Static Attributes
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Data Availability Statement
The code for the differentiable model can be downloaded at https://doi.org/10.5281/zenodo.7091334. CAMELS 
data can be downloaded at https://dx.doi.org/10.5065/D6MW2F4D (Addor et al., 2017; Newman et al., 2014). 
The extended NLDAS and Maurer forcing data for CAMELS can be downloaded at https://doi.org/10.4211/
hs.0a68bfd7ddf642a8be9041d60f40868c (Kratzert, 2019a) and https://doi.org/10.4211/hs.17c896843cf940339c-
3c3496d0c1c077 (Kratzert,  2019b). MODIS ET data can be downloaded at https://modis.gsfc.nasa.gov/data/
dataprod/mod16.php (Running et al., 2017).
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