
Under review as a conference paper at ICLR 2021

DIFFERENTIAL-CRITIC GAN: GENERATING WHAT
YOU WANT BY A CUE OF PREFERENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes Differential-Critic Generative Adversarial Network (DiCGAN)
to learn the distribution of user-desired data when only partial instead of the entire
dataset possesses the desired properties. Existing approaches select the desired
samples first and train regular GANs on the selected samples to derive the user-
desired data distribution. DiCGAN introduces a differential critic that can learn
the preference direction from the pairwise preferences over the entire dataset.
The resultant critic guides the generation of the desired data instead of the whole
data. Specifically, apart from the Wasserstein GAN loss, a ranking loss of the
pairwise preferences is defined over the critic. It endows the difference of critic
values between each pair of samples with the pairwise preference relation. The
higher critic value indicates that the sample is preferred by the user. Thus training
the generative model for higher critic values encourages the generation of user-
preferred samples. Extensive experiments show that our DiCGAN can learn the
user-desired data distributions.

1 INTRODUCTION

Learning a good generative model for high-dimensional natural signals, such as images (Zhu et al.,
2017), video (Vondrick et al., 2016) and audio (Fedus et al., 2018) has long been one of the key
milestones of machine learning. Powered by the learning capabilities of deep neural networks,
generative adversarial networks (GANs) (Goodfellow et al., 2014) have brought the field closer to
attaining this goal. Currently, GANs are applied in a setting where the whole training dataset is of user
interest. Therefore, regular GANs no longer meet our requirement when only partial instead of the
entire training dataset possesses the desired properties (Killoran et al., 2017). It is more challenging
when the given dataset has a small number of desired data.

Adapting vanilla GAN to this setting, a naive way is to first select the samples possessing the desired
properties and then perform regular GAN training only on the selected samples to derive the desired
distribution. However, vanilla GAN fails when the desired samples are limited. FBGAN overcomes
the limited data problem by iteratively introducing desired samples from the generation into the
training data. Specifically, FBGAN is pretrained with all training data using the vanilla GAN. In
each training epoch, the generator first generates certain amounts of samples. The generated samples
possessing the desired properties are selected by an expert selector and used to replace the old
training data. Then, regular WGAN is trained with the updated training data. Since the ratio of the
desired samples gradually increases in the training data, all training data will be replaced with the
desired samples. Finally, FBGAN would derive the desired distribution when convergence. However,
bluntly eliminating undesired samples may lead to a biased representation of the real desired data
distribution. Because the undesired samples can also reveal useful clues about what is not desired.
Suppose we want to generate old face images, however the training data contains only a few old
face images whereas it has many young face images. In this case, the young face images can be
used as negative sampling (Mikolov et al., 2013) to learn the subtle aging features (e.g. wrinkles,
pigmented skin, etc.), which guides the generation of the desired old face images. The conditional
variants of GAN, such as CGAN (Mirza and Osindero, 2014) and ACGAN (Odena et al., 2017) can
be also applied in this setting by introducing condition variables to model the conditional desired
data distribution. However, the generation performance of condition-based GAN is governed by
the respective conditions with sufficient training observations. When the desired data is limited, the
conditional modeling is dominated by the major classes, i.e., undesired data, resulting in a failure

1

Under review as a conference paper at ICLR 2021

(a) (b)
Real data

Fake data

Undesired data

DiCGAN critic boundary� direction

WGAN critic boundary� direction

Preference direction

Figure 1: Illustration of why DiCGAN can learn the user-desired data distribution. (a) DiCGAN’s
critic pushes fake data towards the real desired data while WGAN’s critic pushes fake data towards
the entire real data. (b) The change of DiCGAN’s critic direction is driven by the preference direction.
Note that the preference direction is learned from all pairwise preferences.

to capture the desired distribution. All the literature methods require user-defined criteria to select
the desired data in order to learn the distribution of the desired data, which may not exist in real
applications.

Instead of soliciting a ready-to-use criteria, we consider a more general setting where GAN can be
guided towards the distribution of user-desired data by the user preference. In particular, pairwise
preferences are the most popular form of user preference due to their simplicity and easy accessi-
bility (Lu and Boutilier, 2011). Therefore, our target is to incorporate pairwise preferences into the
learning process of GAN, so as to guide the generation of the desired data.

Relativistic GAN (RGAN) (Jolicoeur-Martineau, 2019) is a variant of regular GAN and is proposed
to learn the whole data distribution. It considers the critic value as the indicator of sample quality and
defines the discriminator using the difference in the critic values. The critic value in RGAN is similar
to the ranking score, but it is used to describe sample quality. Motivated by this, we consider taking
the critic value as the ranking score and define the ranking loss for pairwise preferences based on
the critic value directly. In particular, the difference in critic values for each pair of samples reflects
the user’s preference over the samples. This is why we call our critic the differential critic, and we
propose Differential-Critic GAN (DiCGAN) for learning the user-desired data distribution. As shown
in Fig. 1, the differential critic incorporates the user preference direction, which pushes the original
critic direction towards the real desired data region instead of the entire real data region. The main
contributions are summarized as follows:

• We propose DiCGAN to learn the distributions of the desired data from the entire data using
pairwise preferences. To the best of our knowledge, this is the first work to promote the ratio of
the desired data by incorporating user preferences directly into the data generation.

• We introduce the differential critic by defining an additional pairwise ranking loss on the WGAN’s
critic. It endows the difference in the critic values between each pair of samples with user
preferences.

• The empirical study shows that DiCGAN learns the distribution of user-desired data and the
differential critic can derive the preference direction even from a limited umber of preferences.

2 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Network (GAN) (Goodfellow et al., 2014) performs generative modeling
by learning a map from low-dimensional input space Z to data space X , i.e., Gθ : Z → X , given
samples from the training data distribution, namely, x ∼ pr(x). The goal is to find θ which achieves
pθ(x) = pr(x), where pθ(x) is the fake data distribution x = Gθ(z). Let p(z) be the input noise
distribution and G indicate Gθ. GAN defines a discriminator D that is trained to discriminate real
data from fake data to guide the learning of G.

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) proposes to use the Wasserstein metric as a critic,
which measures the quality of fake data in terms of the distance between the real data distribution and
the fake data distribution. The Wasserstein distance (W-distance) is approximated by the difference
in the average critic values between the real data and the fake data. The empirical experiments show

2

Under review as a conference paper at ICLR 2021

that the W-distance between two distributions corresponds well to the quality of the generated data.
WGAN’s objective function is defined as follows:

min
G

max
D

Epr(x) [D(x)]− Epθ(x) [D (x)] , (1)

where D is the critic and satisfies 1-Lipschitz.

3 DICGAN FOR USER-DESIRED DISTRIBUTION

No longer learning the distribution of the whole dataset, GAN is applied in a new scenario, where
the distribution of the partial dataset is what we desire. User-desired data may refer to some certain
class of data among multiple class datasets, or observations with/without some particular attributes.
Such data can be induced from the user preference, which can be represented as an ordering relation
between two or more samples in terms of the desired properties. We propose differential-critic GAN
to learn the desired data distribution from the user preferences along with the whole dataset.

3.1 LEARNING THE DISTRIBUTION OF USER-DESIRED DATA

Following the score-based ranking literature, we suppose that there exists a numeric score associated
with each sample, reflecting the user’s preference for the sample. A higher score indicates that its
corresponding sample is preferred by the user. In detail, let f denote a score function that maps
sample x to score f(x). Then, if sample x is desired by the user, its score f(x) exceeds a predefined
threshold ε, namely, I(f(x) > ε) = 1. I is a sign function, which equals 1 if its condition is true and
0 otherwise. For the sake of explanation, we use pr(x), pd(x), pu(x) to denote the distribution of the
whole data, the user-desired data and the undesired data, respectively.

FBGAN (Gupta and Zou, 2019) was proposed to learn the distribution of the desired data pd(x). FB-
GAN executes alternatively between two steps: (1) construct the desired dataset Xd = {x|I(f(x) >
ε) = 1, x ∼ pr(x)}; (2) train GAN on Xd to derive pd(x). However, the assumption that the score
function f is predefined in FBGAN may be too restrictive for real applications, where no universal
and explicit criteria exists. Further, the definitions of the desired/undesired samples are highly
dependent on the choice of the threshold ε. The removal of the so-called undesired samples may
result in a biased representation of real desired data distribution.

Instead of relying on a predefined score function, we propose to learn the desired data distribution in
a straightforward manner from the user preference. Here, we consider a general auxiliary informa-
tion, i.e., the pairwise preferences, to represent the user preference, due to its simplicity and easy
accessibility. For any two samples x1, x2 ∼ pr(x), let x1 � x2 denote that x1 is preferred over x2
according to the user-defined criteria. Let X be the training samples, i.e., X = {xi ∼ pr(x)}. A
collection of pairwise preferences S is obtained by:

S =
{
s = (x1, x2)|x1 � x2, x1, x2 ∈ X

}
. (2)

Definition 1 (Problem Setting). Given the training samples X and the pairwise preferences S, the
target is to learn a generative model pθ(x) that is identical to the distribution of the desired data
pd(x), i.e., pθ(x) = pd(x).

3.2 DIFFERENTIAL CRITIC GAN

Instead of WGAN’scritic for quality assessment, we present the differential critic for modelling
pairwise preferences. The differential critic can guide the generation of the user-desired data.

3.2.1 PAIRWISE PREFERENCE

In this section, we consider incorporating the pairwise preference into the training of GAN.

The score-based ranking model (Zhou et al., 2008) is used to model the pairwise preferences. It learns
the score function f , of which the score value, called ranking score in the model, is the indicator of
the user preference. Further, the difference of ranking scores can indicate the pairwise preference
relation. That is, for any pair of samples x1, x2, if x1 � x2 then f(x1)− f(x2) > 0 and vice versa.
For any pairwise preference s : x1 � x2, the ranking loss we consider is as follows:

h(s) = max (0,− (f (x1)− f (x2)) +m) , (3)

3

Under review as a conference paper at ICLR 2021

where m is the ranking margin. For other forms of ranking losses, the reader can refer to (Zhou et al.,
2008).

Instead of learning the score function independent of GAN’s training, we consider incorporating
it into GAN’s training, guiding GAN towards the generation of the desired data. The critic in
RGAN (Jolicoeur-Martineau, 2019) is similar to the score function, where the critic values are used
to describe the sample quality. We are motivated to take the critic value as the ranking score and
define the ranking loss on the critic value directly. In particular, the difference in the critic values for
each pair of samples reflects the user’s preference over the samples.

Remark 1 (Pairwise regularization to the generator). It is possible to consider a pairwise regular-
ization to the generator. As the target is to learn the desired distribution, the regularization to the
generator can be used to make the critic values of the generated samples larger than those of the
undesired samples. We construct the regularization with the principle similar as FBGAN. Specifically,
a selector is first applied to give a full ranking for the training data and then bottom K samples are
picked up as the undesired samples. The pairwise preferences are then defined over the generated
samples and the undesired samples.

3.2.2 LOSS FUNCTION

We build DiCGAN based on WGAN and the pairwise ranking loss is defined over the WGAN’s critic.
The loss function for DiCGAN is defined as:

min
G

max
D

Epr(x) [D(x)]− Epθ(x) [D (x)]− λ 1

|S|
∑
s∈S

[h (s)] . (4)

where h(s) is the pairwise ranking loss (equation 3). λ is a balance factor, which will be discussed
further in section 3.3. Similar to WGAN, we formulate the objective for the differential critic LD and
the generator LG as:

LD =
1

b

b∑
i=1

D(xi)−D(G(zi))− λ 1

ns

ns∑
j=1

h(sj), LG =
1

b

b∑
i=1

−D(G(zi)), (5)

where b is the batch size. This is the same for the fake samples. ns is the number of pairs sampling
from S.

The advantages of DiCGAN are twofold: (1) The introduced ranking loss in DiCGAN is defined on
the critic value. Apart from WGAN, it can be easily applied to other GAN variants developed based
on the critic, e.g., RGAN. (2) DiCGAN leverages the entire dataset. The pairwise preferences are
constructed on the whole dataset. Thus the undesired samples are also utilized during the training.

In the following, we argue that the differential critic in DiCGAN can guide the generator to learn
the user-desired distribution from two aspects. (1) As shown in Fig. 1, the differential critic in
DiCGAN provides the direction towards the real desired data. We denote the critic direction as the
moving direction of fake data, which is orthogonal to the decision boundary of the critic. Referring to
equation 4, DiCGAN’s critic loss consists of two terms: the vanilla WGAN loss and the ranking loss.
The vanilla WGAN loss imposes the critic direction from the fake data to the real data. Meanwhile,
the ranking loss induces a user preference direction, which points from the undesired data to the
desired data. Combining these two effects, the critic direction of DiCGAN targets for the region of
the real desired data only. (2) DiCGAN assigns high critic values for user-desired data and promotes
the generation of samples with high critic values. The vanilla WGAN loss encourages the critic to
assign high critic values for real data and low critic values for fake data. Meanwhile, the ranking
loss encourages high critic values to be assigned to the real desired data while low critic values are
assigned to real undesired data. Therefore, the real desired data achieves high critic values from the
critic. Similar to WGAN, the training paradigm of DiCGAN promotes the generation of samples with
high critic values, which is equivalent to encouraging the generation of user-desired data in DiCGAN.

3.3 REFORMULATING DICGAN TO ENSURE DATA QUALITY

Let us revisit the objective of DiCGAN (equation 4). The first two terms of equation 4 can be
considered as the WGAN regularisation, which ensures the generated data distribution is close to the

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Training algorithm of DiCGAN
1: input: training data X, pairwise preferences S
2: initilization: balance factor λ, #generated samples ng, #pairs ns, batchsize b, #iterations per epoch ni,

#critic iterations per generator iteration ncritic

3: Pretrain D and G
4: repeat
5: % Shift to the user-preferred distribution
6: Generate samples using equation 7
7: Replace old samples in X with Xg using equation 8
8: Obtain pairwise preferences R using equation 2
9: % Training of D and G at an epoch

10: for i = 1, . . . , ni do
11: for t = 1, . . . , ncritic do
12: Sample {xi}bi=1 from X, {zi ∼ p(z)}bi=1

13: Sample {sj}ns
j=1 from S.

14: Train the differential critic D using LD in equation 5
15: end for
16: Train the generator G using LG in equation 5
17: end for
18: until converge

whole real data distribution, i.e., pθ ≈ pr. The third term serves as a correction of WGAN, which
makes WGAN slightly biased to our target of learning the desired data distribution, i.e., pθ = pd.

Therefore, the WGAN regularisation serves as the cornerstone of our DiCGAN. Particularly, if the
desired data distribution is close to the entire data distribution, the rank loss easily corrects the WGAN
to achieve the desired data distribution. Otherwise, the satisfactory performance of DiCGAN may
require the online hyperparameter tuning of λ during the training process.

According to the above analysis, we consider reformulating the objective of DiCGAN, i.e., equation 4
into an equivalent objective with a hard WGAN constraint:

min
G

max
D
−
∑
s∈S

[h (s)] , s.t. d(pr, pθ) =
∣∣Epr(x) [D(x)]− Epθ(x) [D (x)]

∣∣ ≤ ε. (6)

where ε > 0. Note that we impose an explicit non-negative constraint on d(pr, pθ), to highlight that
it is a distance metric. It is still equivalent to WGAN loss from its definition. Therefore, equation 4 is
the Lagrangian function. Since equation 6 imposes a hard constraint on the WGAN loss, it is more
difficult to optimize compared to equation 4. However, more efficient solutions of DiCGAN can be
explored by analyzing equation 6 regarding the hard constraint on d(pr, pθ).

In terms of a minor correction situation, this means the desired data distribution pd is close to the
real data distribution pr. Therefore, the hard constraint dominates the training goal of DiCGAN. By
assigning a proper λ to ensure the constraint is satisfied, equation 4 can learn the distribution of the
user-desired data while ensuring data quality.

In terms of a major correction situation, this means the desired data distribution pd is quite diverse
from the real data distribution pr. Therefore, DiCGAN needs to achieve an equilibrium between
the correction, imposed by the ranking loss, and the hard constraint, imposed by the WGAN loss.
However, a large correction may not ensure the quality of the generated data, since the WGAN loss,
used to guarantee the image quality, is defined between the generated data and the whole real data.
To avoid the major correction, we propose to break the major correction into a sequence of minor
corrections to ensure data quality. Namely, at each epoch, we first use the generator G to generate ng
samples, denoted as Xg:

Xe
g ← {Ge(z1), . . . , Ge(zng)}, {zi ∼ p(z)}ng

i=1, (7)

where e is the epoch index. Then we replace the old training samples with the generated samples:

Xe+1 ← Xe \Xe
o ∪Xe

g, (8)

where Xe
o are the old (least-recently added) ng samples in Xe.

Due to the ranking loss, the generated data distribution peθ is closer to the desired data distribution pd,
compared to the constructed per at each epoch. Therefore, the iterative replacement (equation 8)

5

Under review as a conference paper at ICLR 2021

1.5 0.5 0.5 1.5
1.5

0.5

0.5

1.5

(a) Data

0.5 0.0 0.5
Feature

0

2

4

Cr
iti

c
va

lu
e

(b) WGAN

0.1 0.0 0.1
Feature

3

2

1

0

Cr
iti

c
va

lu
e

real (desired)
real (undesired)
fake

(c) DiCGAN

1.5 0.5 0.5 1.5
1.5

0.5

0.5

1.5

(d) WGAN

1.5 0.5 0.5 1.5
1.5

0.5

0.5

1.5

(e) DiCGAN
Figure 2: (a-c) Comparison of the critic in DiCGAN and WGAN. DiCGAN’s critic can assign higher
critic values for real desired data than real undesired data while WGAN’s critic cannot. (d-e) The
visualization of the generated samples from DiCGAN and WGAN. Learning the desired distribution
means that the fake data should overlap with the real desired data only.

can gradually shift the real data distribution pr towards the desired data distribution pd. Namely,
d(pr, pd) > · · · > d(per , pd) > d(pe+1

r , pd) > · · · . So that only a minor correction needs to be
imposed on peθ through optimizing equation 4 at each epoch. Iteratively, the generated distribution
pθ shifts towards pd. The training algorithm is summarized in Algorithm 1. For the sake of easy
optimization, we pretrain the differential critic D and the generator G using WGAN.

4 CASE STUDY ON SYNTHETIC DATA

To gain an intuitive understanding of the difference between our DiCGAN and WGAN regarding the
critic and the generator, we conduct a case study on the synthetic dataset.

The synthetic dataset consists of two concentric circles by adding Gaussian noise with a standard
deviation of 0.05 (See Fig. 2a). The samples located on the inner circle are considered to be the
desired data, while the samples on the outer circle are defined as the undesired data. By labeling
the desired data as y = 1 and the undesired data as y = 0, we can construct the pairwise preference
for two samples x1 and x2 based on their labels. Namely x1 � x2 if y1 = 1 ∧ y2 = 0, and vice
versa. The pairs are constructed within each mini-batch. Our target is to learn the distribution of
the desired data (i.e., samples on the inner circle), using the whole data along with the constructed
pairwise preferences.

4.1 WGAN VS DICGAN ON CRITIC

Experiment setting: we fix the generator and simulate the fake data as the 2D Gaussian blob with
a standard deviation of 0.05 (green pluses). We first train the critic to converge. Then, we project
the output on the second last layer of the critic into 1D space using kernel principal components
analysis (Schölkopf et al., 1997), to derive the projected features. To explore the difference between
the critics of WGAN and DiCGAN, we draw the curve of the critic values versus the projected
features for WGAN and DiCGAN, respectively (Fig. 2b, 2c).

From Fig. 2b, 2c, we can see: (1) in terms of the real data and the fake data, the critic of both WGAN
and DiCGAN can achieve perfect discrimination. Meanwhile, the projected features of the real data
and those of the fake data are also completely separated; (2) in terms of the real desired data and the
real undesired data, the critic of DiCGAN assigns higher values to the desired samples, compared to
the undesired samples. This is because our ranking loss expects a higher ranking score (i.e., critic
values) for the corresponding desired data. (3) In contrast, the critic of WGAN assigns lower values
to the desired data, since the desired data is closer to the fake data compared to the undesired data.

4.2 WGAN VS DICGAN ON GENERATOR

Experiment setting: we train the critic and the generator following the regular GANs’ training
procedure. The generation results of WGAN and DiCGAN is shown in Fig. 2d, 2e.

DiCGAN (shown in Fig. 2e) only generates the user-desired data, i.e., generated data covering the
inner circles, while WGAN (shown in Fig. 2d) generates all data, i.e., generated data covering the
inner and outer circles. As the critic in DiCGAN can guide the fake data towards the real data region
and away from the undesired data region, the generator thus produces data which is similar to the
real desired data. Because the critic in WGAN pushes the fake data to the real data region only, the
generator finally produces whole real-alike data.

6

Under review as a conference paper at ICLR 2021

(a) Epoch 0 (b) Epoch 1 (c) Epoch 2 (d) Epoch 5 (e) Epoch 10
Figure 3: Generated digits of DiCGAN on MNIST. DiCGAN learns the distribution of small digits.

5 EXPERIMENTAL STUDY

DiCGAN is applied to learn the distribution of the desired data on MNIST (Lecun et al., 1998) and
CelebA-HQ (Karras et al., 2018) datasets. Due to the limited space, we present more experiment
results in the appendix.

Networks & Hyperparameters The balance factor λ and the ranking margin m is set to 1. We adopt
the same network structures as in (Gulrajani et al., 2017). See the appendix for other settings.

Evaluation Metric To evaluate the performance of learning the desired data distribution, we calculate
the percentage of user-desired data in GAN’s generation, i.e., the ratio of the desired generated data
to the whole generated data (D/W). We use inception score (IS) (Salimans et al., 2016) and multiscale
structural similarity (MS-SSIM) (Odena et al., 2017) to evaluate the quality and intra-class diversity
for GANs’ generation, respectively.

Baselines We compare DiCGAN with WGAN (Gulrajani et al., 2017), CWGAN (Mirza and Osindero,
2014) and FBGAN (Gupta and Zou, 2019). WGAN is only trained with the desired data to derive the
desired distribution. CWGAN is the extension of GAN with a conditional label c. To train CWGAN,
we split the training data into the desired class (c = 1) and the undesired class based on a predefined
user criteria (c = 0). Then p(x|c = 1) is the desired data distribution. FBGAN adopts an iterative
training paradigm to derive the desired data distribution. At each training epoch, FBGAN resorts to
an extra selector to select the desired samples from the generated samples and performs regular GAN
training using the selected desired samples. ACGAN (Odena et al., 2017) also shows poor results
like CWGAN when the desired data is limited, so we do not report here.

5.1 LEARNING THE DISTRIBUTION OF DESIRED DIGITS

We design the experiment to learn the distribution of small digits in MNIST. We use 50K 28× 28
images as the training data. Zero is the smallest digit in MNIST, thus as the desired data,

As for WGAN and CWGAN, zero digits in the training data are regarded as the desired samples
(c = 1), whose size is 4, 950. The other digits are labeled as the undesired samples, whose size is
45, 050 (c = 0). WGAN is only trained with the constructed desired data. CWGAN conditions on
c to model a conditional data distribution p(x|c) for MNIST dataset. FBGAN and our DiCGAN
resort to a classifier, pre-trained for digit classification, to obtain the labels for the generated samples.
At every training epoch, FBGAN generates 50000 samples and requests the classifier to label them.
Then the images are ranked using the predicted label, with the smaller digit ranked higher. The
generated images with digits ranked in the top 50%, i.e., small digits, are selected as the desired
data to replace old training data. As for DiCGAN, the pairwise comparison can be obtained for two
images x1 and x2 according to their predicated label y1 and y2, namely x1 � x2 if y1 < y2, and vice
versa. At each iteration, we construct 32 pairwise preferences for each mini-batch with 64 training
samples.

Fig. 3 presents the generated MNIST images randomly sampled from the generator of DiCGAN.
It shows that the generated MNIST digits gradually shift to smaller digits during the training, and
converge to the digit zero. We sample 50K samples from the generators of various GANs and
respectively calculate the percentage of digit zero and digits zero to four among the generated digits
for a quantitative evaluation. In Table 1, only small digits are generated by DiCGAN and FBGAN;
WGAN and CWGAN can also learn the distribution of the desired digit since the dataset is simple
and has relatively sufficient data for the desired digit. However, WGAN and CWGAN do not exhibit
a smooth convergence to digit zero like FBGAN and DiCGAN (See Fig. 10 in the appendix). In
addition, when the dataset is complex and the desired data is insufficient, WGAN and CWGAN fail,
which is described in the next section.

7

Under review as a conference paper at ICLR 2021

5.1.1 COMPARISON OF DICGAN AND FBGAN
Though FBGAN achieves good performance in learning the desired data distribution, it requires a
lot of supervision information from the selector. We calculate the number of effective pairs (#EP)
used in DiCGAN and FBGAN, respectively. #EP in DiCGAN denotes the total number of explicitly
constructed pairs during the training, i.e., #EP =

∑ne

i=1

∑ni

j=1 ns. FBGAN selects the desired
samples from the generated samples. #EP can be induced by the implicit pairs implied by the desired
samples versus the undesired samples, i.e., #EP =

∑ne

i=1 ngd × ngu, where ne is the number of
training epochs. where ngd and ngu denote the number of desired samples and undesired samples in
the generation, respectively.

Fig. 4a shows that (1) the #EP used in DiCGAN is much smaller than that in FBGAN at each training
epoch; (2) the total #EP used in DiCGAN is significantly less than that in FBGAN, which can be
reflected from the shadow area. In total, DiCGAN used 9.53e4 effective pairs while FBGAN used
2.02e8 effective pairs. Our DiCGAN is scalable to the large training dataset, e.g. MNIST. #EP in
DiCGAN is linearly correlated to the training size. In contrast, #EP in FBGAN is determined by
ngd and ngu, which are both linearly correlated to the training size. Thus #EP in FBGAN thus is
quadratically correlated to the training size.

5.1.2 COMPARING DICGAN AND FBGAN GIVEN THE LIMITED SUPERVISION
We compare DiCGAN and FBGAN on MNIST dataset given the limited supervision. Specifically,
the query amount of resorting to the pre-trained classifier to obtain the prediction of the generated
samples is restricted to 5, 000 for both FBGAN and DiCGAN.

Fig. 4d shows that DiCGAN can learn the desired distribution while FBGAN fails, only generating
10.3% digit zero, which is consistent with the visual results in Fig. 4b and Fig. 4c. This supports the
claim that the negative samples are beneficial to learn the user-desired distribution. Particularly, the
preference direction can be captured by our differential critic even the supervision is limited, which
guides the generation towards the desired data.

5.2 LEARNING THE DISTRIBUTION OF FACE WITH THE DESIRED ATTRIBUTE

We consider old face images as the desired data and design the experiment to learn the distribution
of old face images on CelebA-HQ. CelebA-HQ dataset is the high quality version of a subset from
Celeb Faces Attributes (CelebA) dataset, which consists of 30K images face images of celebrities,
annotated with 40 binary attributes such as age. We resize the images to 64× 64. The training setting
for each GAN is similar to those mentioned above. (See the appendix for more details).

Method
MNIST CelebA-HQ

D/W D/W IS MS-SSIMtop 1 top 5
Original 9.9 51.1 22.1 2.81 0.52

WGAN (subset) 97.3 98.2 73.8 1.77 0.60
CWGAN 95.0 96.4 16.4 2.12 0.65
FBGAN 100.0 100.0 98.2 2.05 0.60
DiCGAN 100.0 100.0 99.5 1.93 0.60

Table 1: Results on the MNIST and CelebA-HQ
dataset. Top 1 refers to digit zero. Top 5 refers to
digits zero to four.

In Fig. 5, we visualize the generated face im-
ages randomly sampled from the generator of
each model. (1) WGAN has poor generation
since its training data, i.e., the desired subset is
insufficient. (2) CWGAN has good quality of
generation but fails to capture the desired distri-
bution. There is only two old face image out of
9 randomly sampled images. (3) All sampled
images from FBGAN and our DiCGAN are the
desired old faces. We sample 10K samples from
the generator and calculate the percentage of old
face images among the generated samples for quantitative evaluation. In Table 1, almost all the
images generated by DiCGAN and FBGAN are old face images. WGAN and CWGAN both fail to

0 10 20 30 40 50
Epoch

101

103

105

107

#E
P

pe
r e

po
ch

FBGAN
DiCGAN

(a) (b) (c)

Method
MNIST

top 1 top 5
FBGAN 10.3 52.6
DiCGAN 99.7 99.9

(d)

Figure 4: (a) Comparison between DiCGAN and FBGAN w.r.t. #EP per epoch on MNIST in
Section 5.1. (b) The generated results of FBGAN in Section 5.1.2. (c) The generated results of
FBGAN in Section 5.1.2. (d) % of desired digits (D/W) of FBGAN and DiCGAN in Section 5.1.2.

8

Under review as a conference paper at ICLR 2021

(a) WGAN (b) CWGAN (c) FBGAN (d) DiCGAN
Figure 5: Generated images by WGAN, CWGAN, FBGAN and DiCGAN. The green boxes refer to
the images which are classified as old images by a trained classifier.

capture the distribution of old face images. As for the quality and the diversity, (1) GAN shows the
lowest IS, meaning a poor-quality of generation. The generations of other GANs except for WGAN
present similar IS and MS-SSIM. (2) We calculate the IS of the old faces in the training data (denoted
as “original” in Table 1. The IS and MS-SSIM of the generations do not exhibit a big difference from
the “original”, which means that the quality and the diversity of the generations are relatively good.

6 DISCUSSIONS

Current GAN (Goodfellow et al., 2014; Mirza and Osindero, 2014; Odena et al., 2017; Gupta and
Zou, 2019) based methods require user-defined criteria to select the desired data in order to derive the
distribution of the desired data. There are two limitations for these methods: (1) the criteria are not
always accessible in real applications; (2) eliminating the handcrafted undesired samples loses useful
information about what is not desired. Other works (Gómez-Bombarelli et al., 2018; Engel et al.,
2018) proposed to find the subset of the latent space corresponding to the desired data and generates
data from the latent subset. However, they also rely on user-defined criteria for labeling the desired
data or a ready-to-use score function to find the subset of the latent space with high scores.

This paper proposes DiCGAN to learn the distributions of the user-desired data from the entire data
using the pairwise preferences. We empirically demonstrate the efficacy of DiCGAN in terms of
promoting samples with user-desired properties on MNIST and CelebA-HQ datasets, respectively.
One promising future direction for DiCGAN could be the minority population promotion for imbal-
anced data tasks, such as imbalanced classification problems, few-shot learning, one-shot learning
or even an open-set problem. Another interesting direction of DiCGAN could be the desired policy
generation in imitation learning if the pairwise comparison between the policies can be properly
designed.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pages 214–223, 2017.

Jesse Engel, Matthew Hoffman, and Adam Roberts. Latent constraints: Learning to generate
conditionally from unconditional generative models. In International Conference on Learning
Representations, 2018.

William Fedus, Ian J Goodfellow, and Andrew M Dai. MaskGAN: Better Text Generation via Filling
in the . In International Conference on Learning Representations, 2018.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic Chemical Design Using a Data-Driven
Continuous Representation of Molecules. ACS Central Science, 4(2):268–276, 2018. doi: 10.1021/
acscentsci.7b00572. URL https://doi.org/10.1021/acscentsci.7b00572.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

9

https://doi.org/10.1021/acscentsci.7b00572

Under review as a conference paper at ICLR 2021

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

Anvita Gupta and James Zou. Feedback gan for dna optimizes protein functions. Nature Machine
Intelligence, 1(2):105, 2019.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard
GAN. In International Conference on Learning Representations, 2019.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Nathan Killoran, Leo J Lee, Andrew Delong, David Duvenaud, and Brendan J Frey. Generating and
designing dna with deep generative models. arXiv preprint arXiv:1712.06148, 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

Tyler Lu and Craig Boutilier. Learning mallows models with pairwise preferences. In International
Conference on Machine Learning, pages 145–152, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier gans. In International conference on machine learning, pages 2642–2651, 2017.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component
analysis. In International conference on artificial neural networks, pages 583–588. Springer, 1997.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In
Advances in neural information processing systems, pages 613–621, 2016.

Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu. Learning to rank with ties. In Proceedings of
the 31st Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’08, page 275–282, New York, NY, USA, 2008. Association for Computing
Machinery.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pages 2223–2232, 2017.

A COMPARISON OF DICGAN AND FBGAN

We plot the ratio of generated zero digit to the whole generated data (D/W) of DiCGAN and FBGAN
during the training process in Fig. 6a. It shows that DiCGAN converges faster than FBGAN.

We explore the gap in the performance between DiCGAN and FBGAN evolves as the
number of supervision increases on MNIST. Specifically,the query amount of resorting to
the pre-trained classifier to obtain the prediction of the generated samples is restricted to
5K, 50K, 100K, 150K, 180K, 200K, 500K for both FBGAN and DiCGAN.

10

Under review as a conference paper at ICLR 2021

0 20 40
Epoch

0.2

0.4

0.6

0.8

1.0

D/
W

FBGAN
DiCGAN

(a)

5K 50K 100K 150K 180K 200K 500K
Number of Supervision

0.2

0.4

0.6

0.8

1.0

D/
W

FBGAN
DiCGAN

(b)

Figure 6: Comparison of DiCGAN and FBGAN. (a) plots the ratio of generated zero digit to the
whole generated data (D/W) versus the training epoch for FBGAN and DiCGAN, respectively. (b)
plots the ratio of generated zero digit to the whole generated data (D/W) versus the number of
supervision for FBGAN and DiCGAN, respectively.

Fig. 6b plots D/W versus the number of supervision for FBGAN and DiCGAN, respectively. It shows
that (1) DiCGAN always learns the desired data distribution even given the limited supervision; (2)
when given the limited supervision, FBGAN fails to learn the desired distribution, i.e., achieving a
small D/W; (3) FBGAN performs better and achieves a higher D/W, narrowing the performance gap
with DiCGAN as the number of supervision increases.

B ABLATION STUDY

The objective in our DiCGAN (equation 4) consists of two components, i.e., the WGAN loss, which
serves as the cornerstone of DiCGAN, and the ranking loss, which serves as the correction for WGAN.
Meanwhile, we introduce the operation of replacement (equation 8) during the model training.

0 20 40
Epoch

0.00

0.25

0.50

0.75

1.00

D/
W

DiCGAN(= 0)
DiCGAN(ng = 0)
DiCGAN

(a)

0 20 40
Epoch

0.00

0.25

0.50

0.75

1.00

D/
W

DiCGAN(= 0)
DiCGAN(ng = 0)
DiCGAN

(b)

Method MNIST
top 1 top 5

Original 9.9 51.1
WGAN 9.8 50.9

DiCGAN (λ = 0) 9.1 54.6
DiCGAN (ng = 0) 24.0 87.8

DiCGAN 100.0 100.0

(c)

Figure 7: (a-b) The percentage of desired samples (D/W) versus epoch in DiCGAN (λ = 0), DiCGAN
(ng = 0) and DiCGAN. (a) plots the D/W of the digit zero. (b) plots the D/W of the digit zero to four.
(c) The percentage of desired samples (D/W)from the orginial datasets, WGAN, DiCGAN (λ = 0),
DiCGAN (ng = 0) and DiCGAN.

To analyze the effects of the correction for WGAN (the third term in equation 5) and the replacement
operation, we plot the percentage of desired samples (D/W) versus the training epoch for DiCGAN
(λ = 0), DiCGAN (ng = 0) and DiCGAN in Fig. 7a, 7b. Meanwhile, the the converged percentage
of desired samples (D/W) are reported in Fig. 7c. It can be seen that

1. Without the correction term (λ = 0), DiCGAN cannot learn the desired data distribution.
The percentage of desired samples (D/W) from DiCGAN (λ = 0) remains constant during training
on MNIST (Fig. 7a, 7b) compared with the original datasets (Fig. 7c). This is because that the
remaining WGAN term in DiCGAN(λ = 0) focuses on learning the training data distribution.

2. Without the replacement (ng = 0), DiCGAN makes a minor correction to the generated
distribution. In Fig. 7a, 7b, the D/W of DiCGAN (ng = 0) slightly increases compared with

11

Under review as a conference paper at ICLR 2021

(a) PRG-1

(b) PRG-2

Figure 8: Generated digits of PRG-1 and PRG-2 on MNIST during the training process.

the original datasets. This is consistent with our analysis that the correction term would drive the
generation towards the desired distribution.

3. DiCGAN learns the desired data distribution with a sequential minor correction. The D/W
of DiCGAN grows with training and reaches almost 100% when convergence. The correction
term drives DiCGAN’s generation towards the desired data slightly at each epoch. With the
iterative replacement, the minor correction sequentially accumulates and finally the generated
distribution shifts to the desired data distribution.

C PAIRWISE REGULARIZATION ON THE GENERATOR

As discussed in Remark 1, the pairwise regularization is possibly added to the generator. We consider
two cases of adding the regularization to the generator. First, we only add the pairwise regularization
to the generator (PRG-1). Second, we add the regularization to the generator together with the
regularization on the critic (PRG-2).

The objective for PRG-1 is as follows:

LD = Epr(x) [D(x)]− Epθ(x) [D (x)] , (9)

LG = Epθ(x) [D (x)]− λg
1

|S′ |
∑
s∈S′

[h (s)] . (10)

where h(s) is equation 3. S
′

is the pairwise preferences constructed between the generated data and
the undesired data, i.e., S

′
=
{
s = (x1, x2)|x1 � x2, x1 ∼ pθ(x), x2 ∼ pu(x)

}
. Now the generator

consists of two terms, the original WGAN loss on the generator aims to achieve Epθ(x) [D (x)] >
Epr(x) [D(x)], while the regularization aims to achieve Epθ(x) [D (x)] > Epu(x) [D(x)]. Since the
undesired data is subset of the real data, i.e., {x|x ∼ pu(x)} ⊆ {x|x ∼ pr(x)}, the WGAN loss
always dominates the training of the generator. Therefore, PRG-1 degenerates to WGAN.

The objective for PRG-2 is as follows:

LD = Epr(x) [D(x)]− Epθ(x) [D (x)]− λ 1

|S|
∑
s∈S

[h (s)] , (11)

LG = Epθ(x) [D (x)]− λg
1

|S′ |
∑
s∈S′

[h (s)] , (12)

where S is constructed based on equation 2. Although the generator consists of two terms, same to
our analysis about PRG-1, the extra pairwise regularization on the generator is invalid. Meanwhile,
the extra pairwise regularization on the critic works like that in DiCGAN. Therefore, the whole
framework degenerates to DiCGAN.

We conducted the experiments on MNIST to show the effectiveness of these two methods. λ and λg
are both set to 1. Fig. 8 shows the generated digits of PRG-1 and PRG-2 during the training process.
PRG-1 failed to learning the desired distribution. PRG-2 can learn the desired distribution. The
quantitative results are consistent with the visual results, with 13.9% and 99.4% D/W, respectively.

12

Under review as a conference paper at ICLR 2021

(a) Epoch 0 (b) Epoch 10 (c) Epoch 20 (d) Epoch 50 (e) Epoch 100
Figure 9: Generated images of DiCGAN on CIFAR. DiCGAN aims to learn the distribution of car
images of CIFAR. The training dataset is composed of car and plane images in CIFAR-10.

D LEARNING THE DISTRIBUTION OF DESIRED OBJECTS

We consider cars as the desired objects and design the experiment to learn the distribution of cars in
CIFAR.

Sample selection in FBGAN: A classifier, pretrained for classifying cars and planes, is adopted for
selection. The generated objects, classified to car, are selected to replace the old training data.

Pairwise preferences construction in DiCGAN: Denoting label of CIFAR image as y, the pairwise
preference between two images x1 and x2 are x1 � x2 when y1 = “car”, y2 = “plane”, and vice
versa. At each iteration, we construct 32 pairs by random sampling pairs from the mini-batch 64
samples.

Method CIFAR (IS)
D/W IS MS-SSIM

Dataset 50.0 4.96 0.45
FBGAN 93.9 3.78 0.52
DiCGAN 95.4 3.67 0.49

Table 2: Results on CIFAR dataset.

In Fig. 9, we visualize the generated CIFAR images ran-
domly sampled from the generator of DiCGAN. It shows
that DiCGAN gradually generates cars, as we desired.

Meanwhile, we sample 10K samples from the generator
and calculate the percentage of car images among the
generated samples for quantitative evaluation. In Table 2,
(1) almost all images generated by DiCGAN and FBGAN
are car images; (2) the percentage of car images generated
by WGAN is similar to the training dataset.

E EXPERIMENT SETTINGS

Hyperparameter The batch size b is set to 50 for MNIST, 64 for CIFAR and CelebA-HQ datasets.
The #generated samples ng is set to 50K for MNIST, 1K for CIFAR and 3, 000 for CelebA-HQ,
respectively. Other hyperparameters are adopted the same as in Gulrajani et al. (2017).

We construct pairwise preferences using the minibatch samples at each iteration based on the
classification labels. We construct the pairs by randomly selecting two samples from the minibatch
samples, respectively. The pairs, in which two samples belong to the same class, i.e., same digits or
same objects, are removed.

CelebA-HQ training setting WGAN is only trained with the constructed desired dataset. CWGAN
conditions on c to model a conditional data distribution p(x|c). There are 6, 632 samples labeled
as desired and 23, 368 samples labeled as undesired in the training data. A classifier, pre-trained
for classifying young faces and old faces, is adopted for predicting the labels for the generated face
images. At every training epoch, FBGAN generates 3, 000 images and those classified as the old are
selected to replace the old training data. As for DiCGAN, the generated face image classified with
the old attribute is preferred over the face image classified with the young attribute. At each iteration,
we construct 32 pairs by random sampling pairs from the mini-batch 64 samples.

F MORE VISUAL RESULTS

13

Under review as a conference paper at ICLR 2021

(a) WGAN (subset)

(b) CWGAN

(c) FBGAN

(d) DiCGAN
Figure 10: Generated digits of DiCGAN on MNIST during the training process.

(a) Epoch 0 (b) Epoch 1 (c) Epoch 2 (d) Epoch 4 (e) Epoch 5

Figure 11: Generated images of DiCGAN on CelebA-HQ. DiCGAN learns the distribution of old
faces. DiCGAN gradually generates more old face images.

14

	Introduction
	Generative Adversarial Networks
	DiCGAN for User-desired Distribution
	Learning the Distribution of User-desired Data
	Differential Critic GAN
	Pairwise Preference
	Loss Function

	Reformulating DiCGAN to Ensure Data Quality

	Case Study on Synthetic Data
	WGAN vs DiCGAN on Critic
	WGAN vs DiCGAN on Generator

	Experimental Study
	Learning the Distribution of Desired Digits
	Comparison of DiCGAN and FBGAN
	Comparing DiCGAN and FBGAN Given the limited Supervision

	Learning the Distribution of Face with the Desired Attribute

	Discussions
	Comparison of DiCGAN and FBGAN
	Ablation Study
	Pairwise regularization on the Generator
	Learning the Distribution of Desired Objects
	Experiment Settings
	More Visual Results

