
SPHERICAL FUNCTION REGULARIZATION FOR PARALLEL MRI
RECONSTRUCTION

Abstract. From the optimization point of view, a difficulty with parallel MRI with simultaneous coil sensitivity
estimation is the multiplicative nature of the non-linear forward operator: the image being reconstructed and the coil
sensitivities compete against each other, causing the optimization process to be very sensitive to small perturbations.
This can, to some extent, be avoided by regularizing the unknown in a suitably “orthogonal” fashion. In this paper,
we introduce such a regularization based on spherical function bases. To perform this regularization, we represent
efficient recurrence formulas for spherical Bessel functions and associated Legendre functions. Numerically, we
study the solution of the model with non-linear ADMM. We perform various numerical simulations to demonstrate
the efficacy of the proposed model in parallel MRI reconstruction.
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1. Introduction. Parallel MR imaging can be formulated as a nonlinear inverse problem
with a nonlinear forward operator F, which maps the proton density u and the coil sensitivities
c = (c j, c2, . . . , cJ)T to the measured k-space data g as

(1) F(u, c) :=
(
PF (u · c1), PF (u · c2), . . . , PF (u · cJ)

)T
= g.

Here P is the binary sub-sampling mask, F is the discrete 2D Fourier transform, and g =

(g1, g2, . . . , gJ)T the acquired k-space measurements for J receiver coils. As shown in [11, 9],
the problem (1) can be solved by the iteratively regularized Gauss-Newton (IRGN) method
[2, 7, 6, 8].

Instead of the iteratively regularized IRGN approach, in this paper we will assume that
the coil sensitivities can be sparsely represented in a spherical function basis { f +

l }. With
c j =

∑L
l=1 a( j)

l f +
l , we will in the variational model promote sparsity by taking

Rc(c) = αRa(a) for Ra(a) =

J∑
j=1

L∑
l=1

|a( j)
l |.

Therefore, we consider the model

(2) min
v=(u,a)

1
2

J∑
j=1

∥∥∥PF (G(v)) j − g j

∥∥∥2
2 + α0Ru(u) + αRa(a),

for an appropriate definition of G that we provide in section 2.

2. The new regularization model and its numerical realization. In order to cast the
model (2) in the preconditioned ADMM framework, we define

B(v) :=
(
G(v),∇u, a

)
,

. By analogue, following [3], we extend the preconditioned ADMM to non-linear B as

wk+1 = argmin
v

F(pk) + 〈λk, B(v) − pk〉 +
δ

2

∥∥∥B(v) − pk
∥∥∥2

+ ρ−1
k+1

∥∥∥v − wk
∥∥∥2

Qk
v
,(3a)

pk+1 = argmin
q

F(q) + 〈λk, B(wk+1) − q〉 +
δ

2

∥∥∥B(wk+1) − q
∥∥∥2

+ ρ−1
k+1

∥∥∥q − pk
∥∥∥2

Qk
q
,(3b)

λk+1 = λk + δ(B(wk+1) − pk+1).(3c)
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For our specific problem, the minimizations are over v ∈ �N2+J∗l(ñ)
max , and q ∈ �J∗N2+2∗N2+J∗l(ñ)

max .
Since these functions are smooth,

F̃1(v) ≈ F̃1(wk) + F̃1
′(wk)(v − wk), and F̃2(q) ≈ F̃2(pk) + F̃2

′(pk)(v − pk),(4)

where F̃1
′(wk) and F̃2

′(pk) are the Fréchet derivative of F̃1 at wk and F̃2 at pk. Using (4), (3a),
and (3b) are replaced by

wk+1 = argmin
v
〈λk, Jk

qv〉 +
δ

2

∥∥∥Jk
qv − rk

v

∥∥∥2
+ ρ−1

k+1

∥∥∥v − wk
∥∥∥2

Qk
v
,(5a)

pk+1 = argmin
q

F(q) + 〈λk, Jk
qv〉 +

δ

2

∥∥∥Jk
qv − rk

v

∥∥∥2
+ ρ−1

k+1

∥∥∥q − pk
∥∥∥2

Qk
q
,(5b)

where still v ∈ �N2+J∗l(ñ)
max , and q ∈ �J∗N2+2∗N2+J∗l(ñ)

max .
It follows easily from (5a) and (5b)

wk+1 = wk − τk
v Jk

v
∗
λ̄k,(6)

pk+1 =

(
I + τk

q∂F
)−1(

pk − τk
qJk

q
∗
(
λk + δ

(
B(wk+1) − pk

)))
.(7)

Finally, (6), (7) and (3c) yields Algorithm 1 for the solution of (2). Its convergence is studied
in [3] based on the results of [12].

Algorithm 1 Linearised preconditioned ADMM for (2)

Initialization w0, p0, λ0 and δ.
Set λ̄0 = µ0.
while ”stopping criterion is not satisfied” do

Jk
v = F̃1

′(wk)
Choose τk

v such that τk
vδ <

1
‖Jk

v ‖
2

Compute wk+1 by (6)
Compute Jk

q by Jk
q = F̃2

′(pk)
Choose τk

q such that τk
qδ <

1
‖Jk

q‖
2

Compute pk+1 by (7)
Compute λk+1 by (3c)
Compute λ̄k+1 = 2λk+1 − λk

end while
Return wk, pk, λk and λ̄k

Output the reconstruction image uk and the coefficient vector ak via wk.

3. Numerical experiments. Our numerical experiments are based on the synthetic brain
phantom from [1, 5]. In the numerical simulations, we set the number of coils J = 8. For the
generation of k-space measurement data g j, j = 1, 2, . . . , J, we use the approach of [3]. We
generate 8 coil sensitivity maps based on a measurement of a water bottle with an 8-channel
head coil array. We apply the 25% subsampling mask shown in Figure 1. We evaluate the
results of the proposed approach in terms of the peak signal-to-noise (PSNR) and the Struc-
tural SIMilarity (SSIM) given in [13]. In the computation of the spherical basis function f +

l ,
we use the Larmour frequency ω = 42.58. The conductivity σ and the dielectric permittiv-
ity ε are the optimal (σ, ε) for the heterogeneous model in [10] with σ = 0.6, ε = 50. The
magnetic permeability for water is µ = 1.2566 × 10−6. We initialize the Algorithm 1 with
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(a) Brain phan-
tom

(b) k-space
sampling mask

Fig. 1: (a) shows the brain phantom. (b) shows the spiral-shaped 25% k-space sub-sampling
mask.

(a) 1200 itera-
tions

(b) 1500 itera-
tions

(c) 1800 itera-
tions

Fig. 2: Reconstructed brain slice using (2) and ñ = 5.

u0 = 0 ∈ �N2
, a0 = (1, . . . , 1) ∈ �Jl(n)

max , and take as step lengths τk
v = 1/8, τk

q = 23, and
δ = 1/24 and the remaining v0, λ0, λ̄0 are all also initialized to zero in the two algorithms.
For numerical reconstruction corresponding to (1), we use the codes from [3], available from
[4]. With ñ = 5, stopping after 1000, 1200, and 1500 iterations, the reconstruction results for
the model (2) are shown in Figure 2. The reconstruction results for the model (1) in Figure 3.
In Table 1 we report the PNSR and SSIM [13] values. From these results we can observe that
the reconstruction quality of the model (2) is much better than the model (1) when iterations
are 1000, 1200, and 1500.

4. Conclusions. In this paper, we have established a new model for parallel MRI re-
construction based on sparse regularization of coil sensitivities in spherical basis function
bases. We have developed efficient recurrence formulas for the computation of these func-
tions. By numerical reconstructions and comparison between (2) and (1), we think that the
reconstruction quality for proposed model (2) is better than the model (1).
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(a) 1200 itera-
tions

(b) 1500 itera-
tions

(c) 1800 itera-
tions

Fig. 3: Reconstructed brain slice using (1).

Table 1: Reconstruction quality comparison between (2) with ñ = 2, 5 and (1).

Method stopping itr. k PSNR(dB) SSIM
1200 26.0725 0.9997

using (2) with ñ = 5 1500 25.5883 0.9997
1800 25.8730 0.9997
1200 24.7173 0.9996

using (1) 1500 24.1524 0.9996
1800 23.6702 0.9995
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