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Abstract: We propose a novel approach that biases actions during policy search
by lifting the concept of redundancy resolution from multi-DoF robot kine-
matics to the level of the reward in deep reinforcement learning and evolution
strategies. The key idea is to bias the distribution of executed actions in the
sense that the immediate reward remains unchanged. The resulting biased ac-
tions favor secondary objectives yielding policies that are safer to apply on the
real robot. We demonstrate the feasibility of our method, considered as pol-
icy search with redundant action bias (PSRAB), in a reaching and a pick-and-
lift task with a 7-DoF Franka robot arm trained in RLBench – a recently in-
troduced benchmark for robotic manipulation – using state-of-the-art TD3 deep
reinforcement learning and OpenAI’s evolutionary strategy. We show that it is
a flexible approach without the need of significant fine-tuning and interference
with the main objective even across different policy search methods and tasks
of different complexity. We evaluate our approach in simulation and on the
real robot. Our project website with videos and further results can be found at:
https://sites.google.com/view/redundant-action-bias

Keywords: Deep Reinforcement Learning, Evolution Strategies, Redundancy
Resolution, Action Bias

1 Introduction
Deep reinforcement learning has achieved remarkable success in recent years ranging from Atari
games [1] to complex locomotion [2, 3] and dexterous manipulation tasks [4, 5]. Likewise, evolution
strategies provide a highly scalable alternative, which is capable of reducing the effective wall-clock
time to a fraction at the cost of sample efficiency [6, 7]. Despite their successes, both approaches
are challenging to train on real-world systems due to their high sample complexity. Further, they
still suffer significant instabilities [8] making them very prone to changes in hyperparameters and
rewards. To improve the efficiency of learning and the quality of learned policies, reward shaping
can be used, which however often needs significant fine-tuning. Another popular means for im-
provement is imitation learning, which enhances exploration and pushes the agent’s policy towards
demonstrated expert policies by inserting those into the replay buffer [9, 10, 11]. We interpret the
latter as adding an expert bias on the training data.

We propose an alternative approach to add a bias by lifting the concept of redundancy resolution
from multi-DoF robot kinematics to the level of the reward in deep RL and evolution strategies.
The key idea is to bias to the distribution of executed actions while keeping the immediate reward
unchanged. This redundant action bias (RAB) favors secondary objectives, e.g., for pushing the
agent towards safer state-space regions or avoiding obstacles. We investigate RAB for reaching and
manipulation policies exploiting the kinematic positioning redundancy of 7-DOF arms. We show
that for both, deep reinforcement learning and evolutionary strategies, RAB is a feasible means to
consider secondary objectives without much interference with the main learning task. Our approach
yields safer and more natural-looking policies while keeping the reward-function as simple as pos-
sible. In contrast to reward shaping, we also demonstrate that our approach does not require any
fine-tuning when used in different policy search methods and across tasks of different complexity.
Further, we show that our approach can handle interference between the main and secondary objec-
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tive, and can enhance the performance of agents, which might get trapped in a local optimum. We
denote this approach policy search with redundant action bias (PSRAB).

In our experiments, we train reinforcement learning agents using the state-of-the-art twin-delayed
deep deterministic policy gradient (TD3) algorithm [3] as well as agents using OpenAI’s evolution
strategy [6] (OpenAI-ES). Training is conducted in RLBench [12], a benchmarking environment for
robotic manipulation, on a simulated Franka Panda robot arm. All agents are trained in joint-space
on a reaching and a pick-and-lift task with varying kinematic redundancy resolution. Finally, all
agents are evaluated on the real robot using zero-shot transfer.

2 Related Work
In recent years, a lot of work in robotics considered reinforcement learning in task-space as no
forward kinematics need to be learned by the agent while redundancy resolution of complex robots
is often left to the controller [9, 10, 13, 14]. For example, Kaspar et al. [13] trained a peg-in-
hole task using a soft actor-critic (SAC) [15] agent to generate high-level commands in task-space.
These commands were then translated to joint-space using the operational space control (OSC)
framework [16], which handles the redundancy resolution. Note that this nevertheless requires the
developer to define a redundancy resolution criterion as generally no degrees of freedom should
remain uncontrolled. Besides this, handling the agent’s actions and redundancy resolution in the
same action-space allows to take advantage of all DOFs of the robot, which is convenient in case
of interference between the main and the secondary objective. Our results shows that training and
resolving redundancy together in the joint-space allows a more flexible adaption by the agent.

Regarding learning in joint-space, Peng et al. [17] presented an approach that learned an object-
pushing task using a simulator with randomized dynamics. They used a recurrent version of the
deep deterministic policy gradient (DDPG) [18] algorithm with a long short-term memory (LSTM)
network [19]. They used hindsight experience replay (HER) [14] to allow efficient training with
sparse rewards. Despite the redundant robot arm, they did not explicitly handle redundancy. Our
results, however, indicate that not handling redundancy results in policies with high variety, which
even exploit idiosyncrasies of a simulator yielding unnatural behavior that is infeasible in reality.
Kumar et al. [20] used a proximal policy optimization (PPO) agent to solve a reaching task on envi-
ronments with surrounding obstacles. Additionally, they used curriculum learning to incrementally
increase the state-space cardinality. They carefully shaped the reward function to utilize redundancy
and avoid obstacle contact. In contrast, our approach directly learns on the full state-space and han-
dles redundancy without reward shaping. Huang et al. [21] presented a problem of reward shaping
for in-hand manipulation, where a penalty reward for non-gentleness led to policies that may avoid
contact altogether. We argue that it is beneficial to keep the reward function as simple as possible
and use conventional approaches, such as redundancy resolution, to take secondary objectives into
account.

We use redundancy resolution to push the agent towards desired, e.g., safer, state-space regions.
Hence, our approach can be associated with so-called safe reinforcement learning [22], which covers
approaches that consider safety constraints during the learning and/or deployment process. The
authors in [9, 10, 11] combined reinforcement learning with learning from demonstrations (LfD) to
impose an expert bias on the training set. For example, Vecerik et al. [11] trained a DDPG agent on
different insertion tasks, where expert demonstrations were collected beforehand and inserted into
the replay buffer. They showed that using expert demonstrations with a prioritized experience replay
(PER) buffer [23] allows efficient training in a sparse reward setting.

3 Algorithmic Background
We consider the standard reinforcement learning setup. At each time step t, the agent observes
a state st 2 S and uses its policy ⇡ : S ! A to choose an action at 2 A, which results in a
subsequent state st+1 2 S . After each taken action at, the reward function r : S ⇥A ! R returns
a scalar signal rt, which evaluates the last state-action transition. The objective is to maximize
the sum of discounted rewards Rt =

PT
i=t �

i�tr(si, ai), where � 2 [0, 1] is a discount factor
and T is the length of an episode. We assume that a state st is fully observable for simplicity.
We optimize a differentiable policy ⇡✓ parametrized by ✓ with respect to the performance measure
J(✓) = Es⇠p⇡ [Rt| ⇡✓], where p⇡ is the likelihood of a trajectory under policy ⇡. The parameters ✓
can be updated based on the positive gradient of the expected return such that ✓t+1  ✓+⌘r✓J(✓),
where r✓J(✓) is the policy gradient, i.e., the gradient of the policy’s performance. Policy gradient
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methods sample rollouts following their policy ⇡ and update the parameters based on the sampled
policy gradient of an episode, which generally has high variance [24].

Actor-Critic Methods: In contrast, actor-critic methods learn either a state or action-value repre-
sentation and train the policy on that instead. Within this work, we consider an action-value function
Q⇡(st, at) = Esi>t⇠p⇡,ai>t⇠⇡[Rt| st, at], which describes the estimated sum of discounted rewards
when starting in state st, taking action at, and following the policy ⇡ thereafter. The policy is con-
sidered as the actor while the action-value function is considered as the critic. For a deterministic
policy, Silver et al. [25] provided the deterministic policy gradient:

r✓J(✓) = Es⇠p⇡ [raQ
⇡(s, a)|a =⇡(s)r✓⇡✓(s)] . (1)

Action-value functions are expressed using the recursive bellman equation and can be solved using
the bootstrapping principle such as in Q-Learning. As we are interested in continuous state and
action-spaces, we use a differentiable function Q�(st, at) for the critic as well, where � denotes
the parameter vector. We drop the dependency on ⇡ in Q as we optimize the critic off-policy by
minimizing the loss:

L(�) = Est,st+1⇠p⇡,at⇠µ[(Q�(st, at)�⌥t)
2] , (2)

where µ is an arbitrary behavior policy, e.g., encouraging exploration, and ⌥t is the target used for
updating the critic:

⌥t = r(st, at) + �Q�(st+1,⇡(st+1)) . (3)

Deep Deterministic Policy Gradient (DDPG): Approximate reinforcement learning is known to
be relatively unstable and sample inefficient. To tackle this, DDPG [2] builds on the success of deep
Q-learning [26] and adapts the two main mechanisms of the latter – target networks and experience
replay – to the actor-critic case. DDPG uses two target networks – one for the actor and one for the
critic – to generate a consistent target ⌥. Both target networks slowly track their online counterparts.
The replay buffer stores every transition during training in a tuple of (st, at, rt, st+1). The actor and
the critic are then updated on randomly sampled experience from the replay buffer. This breaks the
correlation between samples of an episode and allows sample reuse.

Twin Delayed DDPG (TD3): Fujimoto et al. [3] introduced three modification to DDPG to further
enhance performance and stabilize training. Firstly, they delayed the actor updates to enhance the
quality of action-values. That is, while the critic is updated every dQ steps, the actor is updated every
d⇡ steps, where dq < d⇡ . Secondly, they tackled the problem of narrow peaks in the action-value
estimate of deterministic policies by introducing target policy smoothing. During target generation
(c.f., Equation (3)), noise is added to the actions chosen by the policy. Thirdly, they tackled the
overestimation bias of actor-critic architectures by introducing a second critic (and target critic),
which are both used for target generation. That is, Equation (3) is adapted to:

⌥t = r(st, at) + � min
i=1,2

Q0
�0,i(st+1,⇡

0
✓0(st+1) + "̃) with "̃ ⇠ clip(N (0, �̃),�c, c) , (4)

where Q0
�0,i is the target network of the i-th critic, ⇡0

✓0 is the target network of the actor, and "̃ is a
noise vector drawn from a Gaussian with zero mean and variance �̃ clipped between �c and c.

Evolution Strategies Instead of optimizing the policy parameters, evolution strategies optimize the
parameters of a search distribution p from which the policy parameters can be sampled, where
 denotes the parameters of the search distribution. Therefore, we reformulate the reinforcement
learning problem to a black-box optimization (BBO) problem. The black-box function we want to
optimize is the fitness F of an offspring ✓̃ sampled from p on a complete episode under a parame-
terized policy ⇡✓̃. That is, the performance measure used to optimize the search distribution’s param-
eters is defined as J( ) = E✓̃⇠p ,s⇠p⇡

[F (✓̃)] = E✓̃⇠p ,s⇠p⇡
[R̂0|⇡✓̃], where R̂0 =

PT
i=0 r(si, ai) is

the sum of undiscounted rewards when starting in an initial state s0 and running a complete episode
under policy ⇡✓̃. The parameters  can be updated using the gradient of J( ) known as search
gradient [27]:

r J( ) = E✓̃⇠p ,s⇠p⇡
[F (✓̃)r ln p (✓̃)] . (5)
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OpenAI-ES OpenAI-ES [6] is a special type of evolution strategy, which uses an isotropic Gaussian
with a mean vector ✓ and a fixed standard deviation as its search distribution p ⇠ N (✓,�2I). As
the standard deviation is fixed, the search distribution’s parameters  only include the mean vector
✓. Inserting the isotropic Gaussian into Equation (5) and approximating the expectation by sampling
yields:

r✓J(✓) ⇡
1

�N

�X

i=1

NoX

j=0

Fj(✓̃)
✓̃ � ✓
�2

=
1

�N�

�X

i=1

NoX

j=0

Fj(✓ + �✏)✏ , (6)

where � is the number of offsprings drawn from p , No is the number of episodes on which an off-
spring is evaluated on, and ✏ is sampled from N (0, I) as ✓̃ ⇠ N (✓,�2I) is equivalent to ✓̃ = ✓ + �✏.
OpenAI-ES uses mirrored sampling [28] and rank-based fitness shaping [27]. The latter substitutes
the fitness Fj in Equation (6) with rank-based utilities uj , to render the algorithm invariant to rank-
preserving (i.e, strictly monotonic) transformation of the fitness function [29].

4 Policy Search with Redundant Action Bias Kinematic Redundancy

Task Redundancy

Figure 1: Kinematic re-
dundancy (top) as a sub-
type of task redundancy
(bottom), where the task
is to reach the red dot.

This section presents our method to exploit redundancy for biasing the
actions in order to push the agent towards more desired state-space re-
gions, i.e., regions satisfying secondary objectives.

Task Redundancy and Redundancy Constraint: To avoid interfer-
ence with the main objective, we consider redundancy with respect to
the immediate reward of a state-action transition. It is noted that this
is a simplified redundancy definition, as the actual main objective is
defined by the cumulated reward. A biased action ât = at + b̂ is re-
dundant with respect to at in st, if the rewards of the biased and un-
biased state-action transition are equal, i.e., the redundancy constraint
is r(st, ât) = r(st, at). As the reward remains unchanged, we denote
this as task redundancy. When the bias b̂ does not affect the pose or the
position of the end-effector in a robotic task, it can be simplified to kine-
matic redundancy as it is considered here. Figure 1 illustrates kinematic
and task redundancy in a reaching task. All rewards used are functions
of the end-effector position p(e) (c.f., Equation (13) and (15)) allowing
us to express the redundancy constraint using the position of the end-effector after a state-action
transition such that p(e)t+1(st, ât) = p(e)t+1(st, at).

Problem setting – State-Space and Action-Space, and Redundancy resolution: Our task space
comprises proprioceptive information of the 7-DOF Panda robot arm and a task-specific sub-state:
joint positions q 2 R7, joint velocities q̇ 2 R7, joint torques ⌧ 2 R7, joint position of the gripper
fingers qg 2 R2, a binary value g 2 {0, 1} indicating whether the gripper is open or not, and
a task-specific sub-state ⇠ 2 RN⇠ (c.f., Equation (14)). Relying on velocity control in order to
apply standard robotic redundancy resolution methods, an action consists of desired joint velocities
q̇d 2 R7 and a binary value d 2 {0, 1} indicating whether the gripper should be closed or not:

s = (q, q̇, ⌧, qg,g, ⇠)
> 2 R24+N⇠ a = (q̇d,d)

> 2 R8 . (7)

In our tasks, we have redundancy in positioning of the M = 3 Cartesian DoF of the end-effector by
means of the N = 7 DoF of the robot. To resolve this redundancy, we generate motion q̇0 in the
null-space of the Jacobian Jv , which maps joint velocities q̇ to linear velocities v of the end-effector:

q̇0 = (I� J+v Jv)g , (8)

where J+v = J>v (JvJ
>)�1 is the right pseudoinverse of Jv and (I � J+v Jv) is a nullspace projector,

which maps an arbitrary vector g 2 RM into the Jacobian’s nullspace.

Secondary Objective and Action Bias: Through the choice g, a secondary objective can be ex-
pressed. The only constraint is that the secondary objective is a function of q. Our first objective is
to stay close to a desired reference joint configuration q̃ such that the loss can be defined as:

L1(q) =
1

2
(q � q̃)>W(q � q̃) , (9)
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where W 2 RN⇥N is a diagonal matrix, which weights the error in each dimension. In doing so, we
can provide an upright joint configuration q̃ as a reference to avoid skewed configurations, which are
more likely to cause contact with the table and look less natural. We also define a loss for collision
avoidance in the sense that we want to maximize the distance between robot links and obstacles:

L2(q) =
NX

i=1

KX

j=1

wii dij(q)
�1 , (10)

where dij is the distance between the link of the i-th joint and the j-th obstacle, wii are the diagonal
elements of W , and K is the number of obstacles. Regardless of the choice of loss L, g can be
defined as a step into the direction of the negative gradient of L. That is, q̇0 can be computed with:

q̇0 = �↵(I� J+v Jv)rqL(q) , (11)
where ↵ denotes a step-size parameter. Now the velocities q̇0 can be used to bias the policy without
interfering with the main task, i.e., changing the reward of a state-action transition:

ât = ⇡✓(st)| {z }
at

+b̂ with b̂ = (q̇0, 0)
> . (12)

To allow a comparison to evolution strategies, we add only the unbiased action at to the replay
buffer, even though TD3 is able to learn on off-policy actions. When using RAB, the secondary ob-
jective is solved in the space of redundant actions, which limits the optimization scope of secondary
objectives and thus limits the interference with the main objective. In contrast, when doing reward
shaping, both objectives are embedded in the reward and thus have a similar optimization scope;
both objectives are optimized in the same action-space. This inherently causes interference of the
objectives making reward shaping tedious to tune, as shown in [21].

5 Experiments
This section presents the results of this work. We train TD3 and OpenAI-ES with and without
redundancy resolution on a reaching task, and on a pick-and-lift task. We evaluate the trained agents
both in simulation and on the real robot. Videos and results can be found on the project website.
5.1 Simulation Setup
RLBench is based on PyRep [30] and CoppeliaSim [31], and provides the reaching and pick-and-
lift tasks. Our project website presents the adaptions made to RLBench as well as the distrubtion
strategy for TD3.
Reaching Task The goal in the reaching task is to put the robot’s tip at a target position – indicated
by a red sphere (c.f., Figure 3). The target position is randomly sampled within a boundary in
front of the robot. The task-specific sub-state (c.f. Equation (7)) consists of the target position:
⇠(reach) = p(tar)t 2 R3. RLBench only comes with sparse rewards yet allows reward shaping. We
use a distance-based reward r(d) for the reaching task:

r(reach)t = r(d)(p(e)t , p(tar)t ) = � ·min
n
d(p(e)t , p(tar)t )�1, d�1

min

o
, (13)

where d(.) is a distance function, dmin is a minimum distance to limit the maximum reward, and �
is a scaling parameter.
Pick-and-Lift Task: The goal in this task is to pick an object – a cube with an edge length of 5 cm –
and lift it to a target position. The position of the object and the target position are sampled randomly
within a boundary in front of the robot. The task-specific sub-state consists of the position of the
object p(obj)t 2 R3, the orientation of the latter encoded as a quaternion q(obj)t 2 R4, the position of
the target p(tar)t 2 R3, and a binary value ◆t indicating whether the object is grasped or not:

⇠(pal) =
⇣
p(obj)t , q(obj)t , p(tar)t , ◆t

⌘>
2 R11 . (14)

As for the reaching task, we use distance-based rewards, which are extended with sparse rewards for
(partial) success:

r(pal)t = ⇣̄t
⇣
r(d)(p(e)t , p(obj)t ) + ◆tr

(d)(p(obj)t , p(tar)t ) + ◆tr
(grasp)

⌘
+ ⇣tr

(succ) , (15)

where ⇣t is a binary value that is 1.0 for success and else 0.0, r(succ) is the reward for success, ◆t is
binary value that is 1.0 if the object is grasped and else 0.0, and r(grasp) is the reward for grasping
the object. ⇣̄t is the negation of ⇣t.
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OpenAI-ES
Secondary Objective

(lower is better)(higher is better)
Main Objective

TD3
Secondary Objective

(lower is better)(higher is better)
Main Objective

Pick-and-Lift Task

Reach-Target Task

Pick-and-Lift Task

Reach-Target Task

Figure 2: Validation results of TD3 and OpenAI-ES with and without redundancy resolution on
different tasks during training (abscissa shows training episodes). Every 2500 training episodes,
the training was paused and the agents were evaluated on 1000 random validation episodes (i.e., no
exploration). Then, the means were taken to plot a single point of the reward and the loss.

Training: All critics and actors are trained with an identical network architecture as in [2]: two
hidden layers with 400 and 300 neurons. For TD3, the Adam optimizer [32] was used with a
learning rate of 1e�3 for the actor and the critic. At each time step, the critic is updated on a
batch of 100 samples drawn randomly from the replay buffer. At the beginning of training, the
replay buffer is filled to half with experience from a pure random policy. Then, the proportion
of pure random actions is continuously decreased during training until its minimum. In addition,
uncorrelated exploration noise is added to the actions. For the reaching task, we used an action
delay of d⇡ = 2 and, for the pick-and-lift, we used d⇡ = 20, which was needed to stabilize training.
For OpenAI-ES, we use a momentum optimizer with a learning rate of 1e�2 and used a batchsize
of 128 off-springs, which is significantly less than in [6], to limit the computational costs. Further,
we found that the trained policy generalizes too much and lacks sensitivity to small changes in the
state. This resulted in a policy that always puts the gripper in the center of the boundary. We found
that evaluating each off-spring on N episodes (c.f., Equation (6)) – instead of one as done by the
original authors – solved this problem.

5.2 Results
Figure 2 presents the validation results of TD3 and OpenAI-ES agents trained on the reaching and
the pick-and-lift task with and without redundancy resolution using a reference configuration, which
is shown on the left side of Figure 3. Note that the reward is shown per step for TD3 and per episode
for OpenAI-ES, as the latter demands fixed episode lengths. Our intent is to show the difference
in performance between an agent with and without RAB, and not between TD3 and OpenAI-ES.
Further, note that the RAB was not adapted across the different agents and tasks, i.e., the weights
W and the step-size ↵ (c.f., Equation (9) and (11)) to control the strength of the bias and thus the
final orientation of the end-effector are kept fixed. For each task, the main objective – consisting of
the proportion of successful episodes and the reward – and the secondary objective – consisting of
the loss L1 (c.f., Equation (9)) – are shown. For agents not using redundancy resolution, the loss
L1 is calculated for comparison, but is not optimized. For agents using redundancy resolution, the
loss L1 is optimized using RAB. For those agents, the plots of the secondary objective show the best
solution found under the current policy ⇡✓. It is emphasized that the main objective is optimized over
multiple episodes – using TD3 or OpenAI-ES – while the secondary objective is optimized within an
episode using RAB. Starting with the TD3 agent in a reaching task (upper left plot), it can be seen
that our approach does not have a noteworthy effect on the main objective while minimizing the loss
for the secondary objective. Both agents solve the reaching tasks at the end of training. However,
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Figure 3: Impact of redundancy resolution on an OpenAI-ES agent when using a reference position
(left side; c.f., Equation (9)) in a reaching task. Here, the final performance is shown.
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Figure 4: Impact of redundancy resolution on a TD3 agent in a simulated and a real pick-and-lift task
when using a reference position (c.f., left side in Figure 3). Here, the final performance is shown.

the one with redundancy resolution has significantly less self-motion as shown in the supplementary
video. As can be seen in the upper right plot, both OpenAI-ES agents were not able to fully solve
the reaching task. However, it can be seen that RAB has not only a positive effect on the secondary
objective but also on the main objective. This is due to the fact that the agent without RAB learned
in two stages; at the beginning of training, it updated towards policies, which quickly brought the
end-effector in the vicinity of the target position’s spawn boundary, and later it learned to reach the
target position within the boundary. This resulted in a similar two-stage behavior in the final policy,
where the agent quickly moves into the spawn boundary and then flips the gripper to reach the target.
This flipping behavior caused the high L1 loss of the agent without RAB. As RAB pushes the agent
towards an upright configuration, the agent learned to smoothly reach the target without getting
trapped in a two-stage behavior, which avoided the local optimum and increased final performance.
Figure 3 presents an exemplary episode. This result shows that the interference between the main
and secondary objective – due to our simplified redundancy constraint – can have a positive effect
as well. We hypothesize that such a positive effect arises when agents learn an unnatural behavior –
here flipping the gripper – and when both objectives are aligned well – it is natural to grasp from an
upright configuration. TD3 was also able to solve the pick-and-lift task, as shown in the lower-left
plot. As can be seen, RAB slowed down training yet reaches a similar performance at the end. We
hypothesize that this is due to the reduction of one DoF of the end-effector when putting the gripper
on the table, which might simplify learning to grasp at the beginning of training. Further, it can be
seen that the agent without RAB has a significantly higher variance in performance throughout the
training, which can be traced back to the greater variance of the state distribution. Figure 4 presents
an exemplary episode of a TD3 agent with and without RAB on a simulated and a real pick-and-lift
task. As can be seen, RAB again significantly reduces the loss of the secondary objective and has
a positive influence on the orientation of the end-effector allowing it to grasp the object without
physical contact with the table. This allows the straightforward transfer of the trained policy from
simulation to the real robot without compromising safety. Finally, the lower right plot shows the
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Reference Configuration

Figure 5: Biasing the agent’s actions to grasp from the right using a inclined reference position in a
pick-and-lift task. Here, the final performance is shown.

Figure 6: Biasing the agent’s actions to avoid collision with an obstacle using a distance-maximizing
loss (c.f., Equation (10)) in a reaching task. Here, the final performance is shown.

performance of an OpenAI-ES agent on a pick-and-lift task. As can be seen, neither of the agents
was able to solve the task as they get stuck in a local optimum, which is approaching the object. As
for TD3, RAB reduced the variance in performance and reduced the loss of the secondary objective
yet led to slightly worse performance of the main objective.

RAB can be used for different desired end-effector orientations as well. As an example, in Figure 5
we provided a reference position where the end-effector is inclined to the right. Passing the latter to
a TD3 with RAB on a pick-and-lift task yielded a policy that grasps from the right, which was very
rarely experienced without RAB. Note that such a reference position causes more interference with
the main objective, as the resulting policy generates more complex trajectories. Interestingly, the
agent learned to overcome the bias for some object positions resulting in policies that evenly grasp
the object, similarly to Figure 4. The video on our prject website presents such a case. This shows
that training and resolving redundancy together in the same action-space allows a more flexible
adaption by the agent in case of interference.

Finally, we have used the loss L2 shown in Equation (10) to maximize the distance between the
robot’s links and an obstacle. Figure 6 presents the results of a TD3 agent on a reaching task. As
can be seen, RAB resulted in a policy that ducks under the obstacle. It is emphasized that the agent
can not “see” the obstacle, as it is not part of its state-space nor is it included in the reward. Note
that RAB does not guarantee collision-free policies when considering kinematic redundancy, as it
does not control end-effector movement. We provide more results and insights, especially on the
real robot, on our project website.

6 Conclusion
We demonstrated the use of an action bias derived from the concept of redundancy resolution known
from multi-DoF robot kinematics to push the agent towards desired state-space regions in order to
satisfy secondary objectives. This allows us to keep the reward function as simple as possible, which
streamlines the setup of reinforcement learning environments. We showed that our approach can be
applied across different tasks and policy search methods without much fine-tuning and performance
loss while allowing flexible adaption by the agent in case of interference with the main objective.
We argued that the limited optimization scope of RAB makes it more straightforward to apply, when
compared to reward shaping. Even though we have considered a simplified redundancy constraint, it
is possible to extend this approach to action-spaces that are truly redundant to the main objective. As
an example, in the case of actor-critic algorithms, we propose to search in the critic’s nullspace for
actions that have redundant action-values. But future work has to investigate the actual size of this
nullspace and perhaps introduce approaches to deliberately expand the latter. Further, experiments
have to show the feasibility of this approach as the critic only provides an estimate of the actual
action-values.
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