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Abstract

Graphical models have been widely used as parsimonious encoders of assumptions
of the underlying causal system and provide a basis for causal inferences. Models
encoding stronger constraints tend to require higher expressive power, which are
also harder, and sometimes impossible to empirically falsify. In this paper, we
introduce two new collections of distributions that include counterfactual quan-
tities which are experimentally accessible under counterfactual randomizations.
Correspondingly, we define two new classes of graphical models for encoding
empirically testable constraints in these distributions. We further present a sound
and complete calculus, based on counterfactual calculus, which licenses inferences
in these two new models with rules that are within the empirically falsifiable bound-
ary. Finally, we formulate a hierarchy over several graphical models based on the
constraints they encode and study the fundamental trade-off between the expressive
power and empirical falsifiability of different models across the hierarchy.

1 Introduction

Causal information is fundamental across a wide range of scientific disciplines and human decision-
making, and it is increasingly recognized as a necessary ingredient for advancing Al and machine
learning in enhancing robustness, interpretability, and generalizability [16| [1]. The Pearl Causal
Hierarchy (PCH) organizes such information into three layers: the observational, the interventional,
and the counterfactual, corresponding roughly to the ordinary human capabilities of seeing, doing,
and imagining (16, 3]]. Each layer is formalized through a distinct symbolic language and encodes
causal quantities with increasingly expressive semantics. For example, consider a system with two
observed variables, X (treatment, e.g., diet) and Y (outcome, e.g., BMI). Layer 1 (£;) includes
observational distributions, like P(y|z), which represents the probability of observing BMI y among
those who naturally follow diet . Layer 2 (L3) contains interventional distributions, like P(y|do(x)),
which represents the probability of having BMI y among those who were externally assigned to diet .
Layer 3 (L3) comprises counterfactual distributions, like P(y,|x’), which represents the probability
of having BMI y if the diet had been set to z among those who would naturally follow diet z'.

When the true causal mechanism underpinning a phenomenon of interest — formally represented by
a Structural Causal Model (SCM) — is known, all layers of the PCH are immediately computable.
Unfortunately, it is rare for SCMs to be known at this level of precision in most real-world scenarios.
This limitation gives rise to the field of causal inference, which seeks to understand the conditions
under which valid inferences can be made given access to limited features and data from the causal
system. The inferential process can be illustrated through the causal inference engine [1, Sec. 1.3.4],
as illustrated in Fig. The engine takes three inputs: {(1) Query, (2) Data, (3) Model}, each
reflecting a different aspect of the underlying SCM. The Query specifies the causal quantity of
interest, the Data consists of data gathered through interactions with the environment like random
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Figure 1: Unobserved SCM and the causal inference engine. The engine takes as input a query, a
model, and datasets, and returns whether the query is computable from the assumptions and data.

samplings or randomized experiments, and the Model encodes assumptions about the SCM. A
common language for articulating such assumptions is provided by graphical models, particularly
causal diagrams [14, |15 3L 1] and their variants, which encode constraints describing how different
quantities within the PCH relate to one another. For example, Pearl’s celebrated treatise Probabilistic
Reasoning in Intelligent Systems developped a comprehensive account of Bayesian Networks (BN)
as encoders of conditional independencies — that is, £ equality constraints within an observational
distribution, such as P(y | «) = P(y) [14]. In contrast, Causal Bayesian Networks (CBN) encode
equality constraints across distributions in both £; and L, like P(y|do(x)) = P(y|x) [15, 2 [3].
Counterfactual Bayesian Networks (CTFBN) further extend this framework to encode constraints
across L3 distributions, like P(y.,x) = P(y, ) [} Sec. 13.2].

For a graphical model to be sufficient for supporting inference on a query, there must be a match
in expressiveness between the model’s constraints and the query, as illustrated in Fig. [2] This
requirement aligns with Nancy Cartwright’s famous motto “no causes in, no causes out” [5], as
mathematically formalized by the Causal Hierarchy Theorem (CHT): to perform inferences on a
quantity in layer ¢, one needs knowledge from layer ¢ or above [3|, Corollary 1]. For instance, given an
Lo query, a BN encoding only £, constraints is insufficient, while a CBN encoding both £ and £,
constraints is both sufficient and necessary for inference. A CTFBN encoding L3 constraints, while
sufficient for the target query in Lo, imposes assumptions that are stronger than necessary [6} [1].
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Figure 2: Expressive power of queries and graphical models
along the PCH. The model’s constraints should be at least
as expressive as the query for the causal inference engine to
work. Layer 3 is partitioned into two sub-regions: the green
region represents L3 distributions that cannot be accessed
via any experiments, while the blue region represents those
that can, at least in principle, be sampled via experiments.



L1 and L distributions are, at least in principle, attainable via random sampling and randomized
controlled trials [8]]. In contrast, L3 encodes counterfactual knowledge traditionally considered be-
yond the reach of physical experimentation. For example, the probability of necessity and sufficiency
(PNS), P(yz,y./), is an L3 quantity that cannot be obtained via any randomized experiments. Yet,
recent work by Bareinboim, Forney and Pearl have revealed that an £3 quantity known as the effect of
the treatment on the treated (ETT), P(y.|z’), can be sampled through a new experimental procedure
called counterfactual randomization [4]. Subsequent work further refined and characterized the
set of L3 distributions that are realizable in principle [19]. These advances reveal that L3 is not
monolithic but instead contains distributions with varying degrees of empirical accessibility. This
heterogeneity naturally raises the question of what assumptions are sufficient and necessary to support
counterfactual inference — a question we now address directly.

The empirical heterogeneity of L3 distributions naturally raises a central question: what assumptions
are sufficient and necessary to support counterfactual inference? In this paper, we addresses that
question by analyzing the region between Lo and L3 in the PCH, illustrated in the orange zone
of Fig.[2] We introduce formal languages, models, and inferential machinery for two families of
realizable distributions that extend beyond the Fisherian interventional world yet remain empirically
accessible. In doing so, we give a precise mathematical form to Cartwright’s principle: only when
the assumptions built into a model (“causes in”’) are adequate can the corresponding counterfactual
queries (“causes out”) be answered. Our main contributions are as follows:

(1) Graphical Models & Inferential Machinery: We introduce symbolic languages and valuation
semantics for two new collections of distributions, each entail quantities that become experimentally
accessible by a distinct implementation of counterfactual randomization. We then define two new
classes of graphical models, CBN2.25 and CBN2.5, that encode constraints within these distributions
which are amenable to empirical testing. We prove that counterfactual calculus with graphical checks
form a sound and complete inferential machinery for CBN2.25 and CBN2.5.

(2) Hierarchy of Graphical Models: We formally define a hierarchical structure for graphical models
based on constraints they encode and analyze this structure from two angles: (a) expressive power and
(b) empirical falsifiability. We show that models higher in the hierarchy encode stronger assumptions
that permit more expressive queries, but are increasingly harder to falsify.

Notations. We denote variables by capital letters, X, and values by small letters, z. Bold letters,
X represent a set of variables and x a set of values. The domain of X is denoted by Val(X).
Two values x and z are consistent if they share common values for X N Z. We denote by x\Z the
value of X\Z consistent with x and by x N Z the subset of x corresponding to variables in Z. We
assume the domain of every variable is finite. W, denotes an arbitrary counterfactual event, and
V(W,) ={W € V|W; € W, }. GIW] denotes a vertex-induced subgraph over W. We use kinship
notation for graphical relationships: parents (Pa), children (C'h), descendants (De), ancestors (An).

Definitions and Background. We use Structural Causal Models (SCM) as the underlying semantical
framework [13]. An SCM M is a 4-tuple (V, U, F, P(u))), where U is a set of exogenous (latent)
variables, distributed according to P(u); V is a set of endogenous (observable) variables; F is a set
of functions such that for each V; € V, f; maps from a set of exogenous variables U; C U and a set
of endogenous variables Pa; C 'V to the Val(V;) [3]. An SCM M induces a causal diagram G over
'V where directed edges reflect functional arguments and bidirected edges reflect shared or correlated
latent confounders. We assume the model has no cyclic dependencies among variables. Two variables
belong to the same c-component if they are connected by a path made entirely of bidirected edges.

Intervention do(x) in an SCM M creates a submodel My, where functions generating X are replaced
with constant values x. The functions in My are denoted as Fy. Given a set of variables Y C V,
the solution for Y in M defines a potential outcome denoted as Yx(u). ||Yx|| denotes the exclusion
operator such that [|Yy || = Y, with Z = X N An(Y )¢, z = x N Z and Gx is G with all incoming
edges into X removed. An SCM M also induces all quantities within the Pearl Causal Hierarchy
(PCH): for any Y, Z,...,X, W C V, £; (Observational): PM(y) = > 1[Y(u) = y|P(u); Lo
(Interventional): PM(yx) = 3", 1[Yx(u) = y]P(u); L3 (Counterfactual): PM(yy, ..., zw) =
Y 1 Yx(u) =y, ..., Zy(u) = z]P(u). We denote the collection of all £; distributions as P*1,
the collection of all £» distributions as P£2, and the collection of all £3 distributions as P~Z3.

Equalities or inequalities between polynomials over £; terms represent special marks an SCM
imprints on its distributions, called invariance constraints. A graphical model (also known as a



compatibility relation) is a pair (G, P), where G is a graph and P is a collection of distributions over
V. The missing edges in G represent certain invariance constraints within P. Some examples of
graphical models corresponding to three layers of the PCH are Bayesian Network (BN) [14]], Causal
Bayesian Network (CBN) [3]], and Counterfactual Bayesian Network (CTFBN, [1]]).

The counterfactual randomization action (CTF-RAND(X — C)(i)) [4, [19] is an experimental
procedure to fix the value of X as an input to functions generating C C C'h(X) using a randomising
device having support over Val(X), for unit i, where Ch(X) stands for variables taking X as an
argument in their functions. A feasible action set describes all experimental actions allowed in a
system. The maximal feasible action set contains all sampling, intervention and CTF-RAND actions
over all variables and gives the agent the most granular experimental capabilities. More detailed
background definitions and examples are provided in Appendix [A]for reference.

2 CBN2.25 and CBN2.5: Graphical Models for Realizable Constraints

In this section, we provide a fine-grained analysis of the counterfactual layer (L3) by circumscribing
subsets of distributions that are realizable given a feasible action set. We assume all actions required
to sample from any Lo distribution are available, together with certain counterfactual randomization
capabilities. Specifically, we define two collections of realizable distributions, each determined
by a different degree of flexibility in how counterfactual randomization propagates to downstream
variables (Sec.[2.T). We then introduce the corresponding graphical models encoding constraints in
these distribution sets (Sec.[2.2)), followed by the inferential machinery for each model (Sec. [2.3).

2.1 Formal Languages for Realizable Counterfactual Distributions

Before introducing the two layers of language, we first provide two definitions of interventional sets
that help distinguish between them.

Definition 1 (Interventional Variable Set). Given a set of random variables V, an interventional
variable set is a subset of V on which an intervention is performed.

Definition 2 (Interventional Value Set). Given a set of random variables V, an interventional value
set, x € Val(X), is a specific assignment of values to an interventional variable set X C V.

For each interventional variable set X, there may exist multiple corresponding interventional value
sets x drawn from Val(X). For example, given a binary variable X, its corresponding interventional
variable set is { X'}, while the interventional value set can either be {X = 0} or {X = 1}.

The first collection of realizable distributions is defined under the assumption that each CTF-RAND
on X fixes a single value of z across all its children. E]The symbolic representation and valuation of
distributions in this collection, given an SCM, are provided below.

Definition 3 (Layer 2.25 (L2.25)). An SCM M = (U, V,F, P(u)) induces a family of joint
distributions over V, indexed by each interventional value set x. For each X, Y C 'V, x € Val(X):

pH /\ V;[xl'] = Ui, /\ V;[xi\ni] =
VieEY\X V;ieYNX, v;=V;Nx
(H
= Z 1 /\ Vi[xi] (u) = v, /\ ‘/i[xi\'ui] (u) =v; | P(u).
u | viev\x V,eYNX, v;=ViNx

such that (i) x; C x and \J, x; = x; and (ii) for any v; € x and all V; € Y, if V; € An(V}) in
Mx\vj, then v; € x;. The collection of all such distributions is denoted PL2as,

Condition (i) of Def. [3|ensures that only assignments from the intervention value set x appear in the
subscripts, and that each value in x appears at least once. This prevents redundancy in representing
the same distribution under different intervention value sets, e.g., when x C x’. Condition (ii)
requires all descendants of an intervened variable X to share the same value z, unless the path from
X to a descendant is blocked by another variable in the intervention set. These two conditions reflect
the limited flexibility allowed under the restricted counterfactual randomization action.

'For both L2205 and Lo 5, we assume that counterfactual randomization is allowed for all variables in V.
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Figure 3: Differences in how intervention on X affects downstream variables in Lo, £ 25 and Lo 5.

The second collection of distributions relaxes this restriction by allowing each child of X to receive
a potentially different randomized value. This more flexible form of counterfactual randomization
expands the class of realizable distributions beyond those in the first collection.

Definition 4 (Layer 2.5 (L25)). An SCM M = (U, V F, P(u)) induces a family of probability
distributions over V indexed by each interventional variable set X. For each Y , X C V:

PM( /\ Vige) = Vis /\ Vicenw) = m)

VieY\X VieYNX, v;=V;Nx
(2
=> 1{ N Vi, (@) =i, A Vigepon (@) = ”i]P(u)
u VieY\X VieYNX, v, =V;Nx

such that (i) X; C X, x; € Val(X;), and |J, X; = X and (ii) for any V; and any B € X N Pa(V}),
and for all V; € Y: if V; ¢ X and V; € An(V;) in My, then x; N B = x; N B. The collection of
all such distributions is denoted by P~

Def. [3] and Def. [4] serve as templates for enumerating distributions in the two layers. Their key
distinction lies in indexing: L5 o5 distributions are indexed by specific interventional value sets
x € Val(X), whereas L5 5 distributions are indexed by interventional variable sets X. The more
specific indexing in L 25 imposes stronger restrictions on the expressiveness of its distributions,
as reflected in the corresponding conditions. As in Def. [3] condition (i) of Def. ] requires each
intervention variable to appear at least once in the subscript, but it relaxes the former by allowing
multiple value assignments for X. Condition (ii) is likewise weakened, enforcing value consistency
only at the level of X’s children rather than from X itself.

Example 1 (SCM inducing L5 95/L25). Consider the SCM M = (U = {U,,U,,U.},V =
{X,Y,Z},F,P(u)), where F = {X < f,(Up); Z <+ f.(X,U,);Y < f,(X,Uy)} and U, 1L
U. 1L U,,. The distribution P(X,Y,, Z,), indexed by the interventional value set { X = x}, belongs
10 L 95. It satisfies conditions in Def.[3| by having consistent subscripts x across all children of X,
i.e., Y and Z. In contrast, the distribution P(X,Y,,, Z,+) does not belong to L1 a5 because it contains
conflicting value assignments for X, making it unindexable by any specific interventional value set.
However, it does belong to Lo 5 since the conditions in Def. {|allow different value assignments for
the same variable in the intervention variable set. This difference between the two layers is illustrated
in Fig. c) and (d). Finally, the L3 distribution P(Y,,Y") lies outside both languages, as it includes
the same variable Y under two different submodels, which is not permitted in Lo o5 or Lo 5. |

The evaluation processes for distributions in these two new layers are illustrated in Fig. ] with
interventional distributions (£5) shown on the left and full counterfactual distributions (L3) on the
right. In L5 o5 and Lo 5, a variable in Y is always evaluated within one submodel: each intervened
variable in V; € X is evaluated in its own submodel M, \,,, while each non-intervened variable
is evaluated in My, according to the value of X it receives. The submodels in L2 25 and Lo 5 are
further constrained by the conditions in Def. 3] and Def. ] respectively. Comparing across layers
in the PCH, L5 95 and L, 5 are more expressive than Lo, since Lo evaluates all variables in Y
within a single submodel, while L5 25 and L5 5 allow joint evaluation across multiple submodels (i.e.,
counterfactual worlds). At the same time, they are less expressive than the full L3, which imposes no
such restrictions on which submodels may be joined.

2.2 Graphical Models

With these new collections of distributions defined, we now introduce two graphical models that
encode the corresponding constraints and compatibility relations.
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Figure 4: Given an SCM’s initial state (i.e., population) (a), we show the different functional
transformations (b) and the corresponding induced distribution (c) of each layer of the hierarchy. (i)
represents the transformation (i.e., F) from the natural state of the system (P(U)) to an interventional
world (i.e., with modified mechanisms Fx), (ii) to multiple counterfactual worlds representing
Lo.95/ L5, and (iii) to multiple counterfactual worlds with no constraints on the worlds joint.

Definition 5 (CBN2.25 Semi-Markovian). Given a causal diagram G, and let P*225 be the collection
of all L o5 distributions over V. G is a CBN2.25 for P*2:25 if the following hold:

(i) [Independence Restrictions] For a fixed intervention value set v in Val(V) and a subset of
variables W C V. Let W, be the set of counterfactuals of the form Wya = with pa,, taking values
inv, Cy, ..., Cy the c-components of GIV(W.,)], and Cy,, ..., Cy, the corresponding partition over
W.. Then P(W.,) factorizes as:

!

PO A W) =T1PC A W) 3)
Wpa,, €W J=1  Wpa, €Cy,

(ii) [Exclusion Restrictions| For every variable Y € V with parents Pay, for every set Z C 'V \(Pa, U

{Y'}), and any counterfactual set W . such that P(Ypa ., W) € Pfaas;

P(Ypay’z, W.,) = P(Ypay7 W.) “)

(iii) [Consistency Restrictions] For every variable Y € V with parents Pa,, X C Pa,, for every set
Z C V\(XU{Y}), and any counterfactual set W such that P(Yyx, = y, X5 = x, W) € P£2:25;

P(Yz:y7Xz:x7W*):P(sz:y,Xzzx,W*) 5

This definition closely resembles CTFBN [1]], sharing the same types of constraints but restricted to
distributions circumscribed by £ 25. Condition (i) requires variables not sharing latent confounders
be jointly independent once their parents are fixed by intervention. Condition (ii) states that once the
parents of a variable Y are fixed, no further intervention can affect its value, regardless of any other
observation. Finally, condition (iii) connects observations and interventions: if a parent X of Y is
observed to be = while both X and Y™ are under the same intervention do(Z = z), this is equivalent
to intervening on Y by do(Z = z, X = ). Importantly, the next proposition establishes that a causal
diagram G induced by an SCM M is a CBN2.25 for the £5 o5 distribution generated by M.

Theorem 1 (L3 25-Connection — CBN2.25). The causal diagram G induced by the SCM M is a
CBN2.25 for P*2:25 the collection of all Ls o5 distributions induced by M.

Example 2 (CBN2.25). Given the SCM in Example the fork, the pair (G, P*2:23) is a CBN2.25,
where G denotes the causal diagram in Fig. a) and P*225 satisfies the following constraints:

(i) [Independence Restrictions]

P(X, Y, Zz) = P(X)P(Y2)(Zs) (©6)

(ii) [Exclusion Restrictions]
P(Xya=2,W,)=P(X =2, W,),aC{z,y} 7
P(Y,., =y, W,)=P(Y, =y, W,) 3
P(Zyy=2W,)=P(Z, =2, W,) 9)



(iii) [Local Consistency]

PY=yX=2)=PY,=y,X =1) (10)

PY, =y, X. =2, W,)=PY.u =y, X, =2,W,) (11)
PZ=2z2,X=2,W,)=P(Z,=2,X =2,W,) (12)
PZ,=2X,=2,W,) =P(Zy, =2 X, =2,W,) (13)

Here, W, can be any set of counterfactual variables such that P(-) € P*2:25, |

Similarly, a graphical model for L5 5 can be defined by imposing the same types of constraints on
distributions restricted to L5 5. In this case, the causal diagram G induced by an SCM M is also a
CBN2.5 for the £, 5 distributions generated by M. Details on CBN2.5 are given in Appendix [B]

2.3 Inferential Machinery

It can be observed that the listed constraints in the definitions of CBN2.25 and CBN2.5 are local: that
is, they involve counterfactual variables with their parents. These local constraints serve as the building
blocks to derive more global statements involving variables that may be far apart in the system.

Example 3 (Local to Global Constraints). Consider the
CBN2.25 from Example[2|and the distributions P(y.,z)  P(y.,x) =P
and P(y, x). One may ask how these two distributions -p
are related, like, whether P(y.,x) = P(y,x). This re- p
lation cannot be read off directly from the model, since P

P

( (Bq.(@) (4
( (Eq.(11)) (5)
(Yo, x2)  (Eq.(@)) (16)
( (Eq.(7) (7
( (Eq.(10)) (18)

it does not appear as a local constraint in the basis =
(Example[2). However, it can be derived by composing =
several local constraints, as shown on the right. |

The inferential machinery associated with a graphical

model facilitates the process of composing the local constraints and determining whether a query
can be expressed as a function of the available data. For £; assumptions, the standard machinery
for the probabilistic constraints encoded in a BNs is d-separation [[14]. For CBNs (L2), Pearl’s
celebrated do-calculus serves this role [[15]], while for CTFBNs (L3), the corresponding tool is the
ctf-calculus [6]. As discussed earlier, the key distinction between CBN2.25/CBN2.5 and CTFBN lies
in the distributions to which the constraints apply. Building on ctf-calculus, we develop an inferential
machinery for CBN2.25 and CBN2.5 by restricting the rules to distributions in their respective layers.
Definition 6 (Counterfactual Calculus (ctf-calculus) for CBN2.25(CBN2.5)). Let G be a CBN2.25
(CBN2.5) for P*225 (P£2:5) then P*225 (P£25) satisfies the Counterfactual-Calculus rules accord-
ing to G. Namely, for any disjoint sets X, Y ,Z, W, T,R C 'V the following three rules hold:

Rule 1 (Consistency Rule - Observation/Intervention Exchange)

P(yr,.x,%T,, W«) = P(yT.,XT,, Wy) (19)

Rule 2 (Independence Rule - Adding/Removing Counterfactual Observations)
P(yr‘xtaw*) = P(Yr|w*) lf(Yr A Xt‘W*) inGa (20)

Rule 3 (Exclusion Rule - Adding/Removing Interventions)
P(Yxa:s Ws) = P(yz, W) if (XN An(Y) = 0) in Gz 2y
where G 4 is the AMWN G4 (G, Y, UXy UW,) E] and all P(-) in the rules belong to P*225 (P£2:5),

The three rules of the calculus can be viewed as global counterparts to the three conditions in the
definitions of CBN2.25 and CBN2.5. It is important to note that the ctf-calculus rules must, for
each model, be restricted to distributions in the appropriate layer. For example, the calculus for
CBN?2.25 is limited to distributions in P£2-25 while for CBN2.5 it is limited to P£2-5. To enforce
this, we introduce a graphical check to verify that all P(-) appearing in the rules correspond to valid
distributions in the given model. In L 5, it checks the counterfactual ancestor set, whereas in Lo 25
it must also examine the descendants of ancestors, since the more restrictive CTF-RAND imposes
stronger consistency requirements across downstream variables sharing the same intervened parents.

Definition and algorithm for Ancestral Multi-World Network (AMWN) are given in Appendix



Definition 7 (Counterfactual Reachability Set). Given a graph G and a potential outcome Yy,
the counterfactual reachability set of Yx, denoted CRS(Yx), consists of each |Wx|| such that
W e (An(Y) U {De(V) : VV € X}) \ X, and |Wy\ || such that W € (An(Y) U {De(V) :
VYV € X}) NX. For a set W,, CRS(W.,.) is defined as the union of the CRS of each potential
outcome in the set, with the following merging rule: if{Wi[xi] }i € W, have CRS sets containing
counterfactual variables { Rix,) }; over the same variable R, then { Ry, }; are merged into a single
variable || Rjy,x,]|| whenever ||W; = Wi, foralli.

Lemma 1. A distribution Q = P(W.,.) induced by any SCM compatible with a given graph G
belongs to: (a) L2 o5 if and only if CRS(W ) satisfies: (i) it does not contain any pair of potential
outcomes Wy, Wy of the same variable W under different regimes (s # t); and (ii) it does not contain
any pair of potential outcomes Rs, Wy with inconsistent subscripts, i.e., sN'T #tNS. (b) Los if
and only if An(W.,) does not contain any pair of potential outcomes Wy, Wy of the same variable
W under different regimes (s # t).

Example 4 (CRS Check - Not in Ls.95). Consider the causal diagram in Fig. a) and
whether P(Z,,Y,) belongs to Ls o5 induced by the corresponding SCM. The reachability set
is CRS(Z,,Yy) ={X, Zy,Ys, Zy, Yy }. Since the joint counterfactual { Z,,, Z,+ } appears in this
set with Z under different regimes, Lemma implies that P(Z,,,Y,/) is not an L4 o5 distribution. B

[Uix;]

With Lemma [I] ensuring that the relevant distributions lie within the corre-
sponding layers, we can apply the ctf-calculus in CBN2.25 and CBN2.5. X Y.

Theorem 2 (Soundness and Completeness for CBN2.25/CBN2.5 Identifiabil-

ity). An Lo.05 or Lo.5 quantity Q is identifiable from a given set of observa- Figure 5: AMWN
tional and interventional distributions and a causal diagram G if and only QA(Q,.{YI, X}) of
if there exists a sequence of applications of the rules of the ctf-calculus for G in Flg (a).
CBN2.25/CBN2.5, together with the probability axioms restricted to Lo 25/L2 5,

that reduces Q) to a function of the available distributions.

Example 5 (Effect of the Treatment on the Treated). Consider the causal diagram G in Fig.[5(a)
and the effect of treatment on the treated (ETT), defined as Q = P(y,. | «'), with observational
distribution P(v) as input. Q) can be derived using the ctf-calculus rules as follows:

P(y.|2") = P(y.) (Rule 2: Y, L X in Ga(G,{Y,, X}) Fig. ) (22)
= P(y.|z) (Rule 2: Y, L X in Ga(G,{Y,, X}) Fig. ) (23)
= P(y|z) (Rule 1: Consistency). (24)

Steps Eq. and followfrom Lemma since CRS(X,Y,) ={X, Z,, Y.} isin Lo o5. [ ]

3 Hierarchy of Graphical Models

In this section, we develop a refined view of the PCH by incorporating the two new graphical models
that allow counterfactual inference between Lo and the full £3. We then illustrate how models in the
hierarchy differ in the queries they support and in the falsifiability of the assumptions they encode.
First, note that the two new collections of distributions can be positioned naturally within the PCH.

Theorem 3 (PCH*, or Augmented PCH). Given an SCM M and its induced collections of ob-
servational (P£1), interventional (P*2), L5 (P£225), Lo 5 (P£25), and counterfactual (P*3)
distributions:

Pﬁl C Pﬁz C P£2.25 C Pﬁz.s C P53. (25)

The illustration in Fig. [6] provides a global view of the components involved in the analysis. The
SCM M* sits at the top of the generative process and induces both the PCH distributions on the left
and the causal diagram on the right. This augments the original PCH by explicitly incorporating the
intermediate layers P£225 gnd P£25. The connection between each collection of distributions (left)
and its associated graphical model (right) defines the corresponding compatibility relations. Building
on this hierarchy of distributions, we turn to the constraints encoded by each graphical model. Given
a causal diagram G, the constraints it encodes arise from the interpretation of its missing edges. As
we move higher in the hierarchy of graphical models, the missing edges correspond to increasingly
stronger constraints on the distributions, and, by implication, to a finer partitioning of the space of
SCMs, 2. This progression is illustrated in the example below.



Example 6 (Constraints from Missing Edges). Consider the causal diagram in Fig. [%a). The
constraints encoded by the missing directed edge from Z to Y across different layers are (P(-)
denotes the power set):

BN: P(Y | X,Z)=P(Y | X) (26)
CBN: P(Yy;.) = P(Yz) (27)
CBN2.25: P(Y,.,W,) = P(Y;,W,), YW, € P{X, Z,}) (28)
CBN2.5: P(Y,,,W,) = P(Y,,W.), YW, € P{X, Z,.}) UP({X, Z,}) (29)
CTFBN: P(Y,.,W.,) = P(Y,,W,), YW, (30)

Moving from BN to CBN augments the model with Lo constraints, and moving further to CBN2.25,
CBN?2.5, and CTFBN introduces L3 constraints. Among the counterfactual models, higher layers
allow increasingly flexible forms of W ., corresponding to stronger assumptions.

The missing bidirected edge encodes independence constraints at different layers:

CBN: P(Z,)=P(Z|X =), PY,) =PY|X=x) 31)
CBN225: P(Z,,Y,,X) = P(Z,) P(Y,) P(X) 32)
CBN2.5:  P(Zy,Yy,X) = P(Z,) P(Yy) P(X) 33)

cteBN: Pl A Z., N Yu.Xx|=P| A Z|P N\ Yo | PX)
ze Val(X) '€ Val(X) z€ Val(X) '€ Val(X)

As we move up the hierarchy, independence constraints involve richer sets of counterfactual variables,
reflecting the stronger assumptions imposed. CBN encodes the parent do/see constraints restricted
to P2, In contrast, CBN2.25 introduces counterfactual constraints beyond Lo, and together with
consistency conditions, these imply the parent do/see restrictions of CBN. CBN2.5 uses the same
constraint forms as CBN2.25 but permits more flexible subscripts in joint counterfactuals. At the top,
CTFBN allows the most expressive independence constraints, spanning broad joint counterfactual

distributions and implying those in CBN2.5 via marginalization. |
In fact, the constraints encoded
by graphical models higher in the
hierarchy always subsume those e D SCM A4 * B
of the models lower in the hierar- e y " Dependenc

X o v pendencies
chy. This monotonicity property

PCH Causal Diagram

defines the hierarchy of graphical
models, as illustrated in Fig. [6] PZ ) P waJ PS’M] PZ ]

Theorem 4 (Hierarchy of Graph- —

ical Models, PCH*). Given a
causal diagram G, the set of con-

straints it encodes when inter-

preted as a graphical model at G—;;l% Invariance
layer i is always a subset of the Hodes Constraints
constraints it encodes when in-

terpreted at a higher layer j, for

all v < j.

Figure 6: Pearl Causal Hierarchy (PCH*) and hierarchy of graphi-

As discugsed earlier in the' €ON-  cal models induced by an SCM
text of Fig. [T] the causal infer-

ence engine operates by match-

ing a query with a model that en-

codes a sufficient — and ideally only necessary — set of assumptions. This matching logic can be
understood from two complementary perspectives.

The first concerns the expressive power of a model: the extent to which its assumptions are sufficient
to support valid inference for a given query. When the expressiveness of the query exceeds that of the
model’s assumptions, the causal inference engine lacks the necessary ingredients to proceed. For



example, a BN encodes only £; constraints and is therefore blind to £ structure, making it unable
to evaluate queries such as P(y | do(x)). Similarly, a CBN, which encodes only £, constraints,
cannot support inference for L3 queries like P(Y,, X). In contrast, when a model’s assumptions are
expressive enough to support the query, we say that the query and the model are matched. A CTFBN,
which sits at the top of the hierarchy in terms of expressive power, can in principle match the most
demanding queries in the PCH

The second perspective concerns the empirical falsifiability of a model: whether the assumptions
it encodes are not only sufficient but also necessary for the query at hand. As one ascends the
hierarchy, models impose increasingly stronger counterfactual constraints, many of which cannot be
directly falsified with the given data collections, whether observational (P~1), interventional (P%2),
or those realizable via counterfactual randomization (P£2‘25, P~£25). If a model encodes assump-
tions beyond what is strictly required, these may become empirically untestable and ontologically
burdensome. Accordingly, the preferred model for a given query is the most parsimonious one that
still supports valid inference, striking a balance between expressive power and empirical falsifiability.

Example 7 (Natural Direct Effect (NDE)). Consider G in Fig. [/} The nat- Z

ural direct effect from X to Y, NDE, ,(y) = P(ys,z,) — P(ys). Ap- / \
plying unnesting, the first term becomes . P(yy ., z), which is ID if and X——Y
only if NDE is ID. Let Q be P(yy», 2:), which is an Lo 05 query in this
case. @) can be identified in the CBN2.5 associated with G via ctf-calculus
as P(Yz», 22)=P(y|x’, 2) P(z|x). A CTFBN, which encodes stronger con-
straints than CBN2.5, can also identify Q), but it brings in unnecessary as-
sumptions such as P(Zy, Zy, X) = P(Zy, Z ) P(X), which cannot be empirically falsified with
current data collection methods. In contrast, a CBN is not expressive enough to represent () at
all. This example highlights the parsimony dimension: although both CBN2.5 and CTFBN can in
principle support the query, the more parsimonious CBN2.5 is preferable since it avoids unnecessary,
unfalsifiable commitments. |

Figure 7: Causal di-
agram for NDE

This example highlights the trade-off between the expres-

siveness of queries and the parsimony of models. The Q Layer GM Suff. | Nec.
optimal match occurs when the assumptions in the model Las CBN X 7
are both sufficient and necessary for the intended inference £2'5 CBN25 7 7
(illustrated in Table[T)). The introduction of CBN2.25 and 1:2'5 CTEBN 7 X

CBN2.5 refines the necessity boundaries in L3, ensuring
that queries in £2 95 and L2 5 can be matched with more Table 1: Examples of Matching between
parsimonious and empirically testable models. In short, Graphical Models and Queries. ‘Suff.”:=
higher models in the hierarchy gain inferential power by Sufficient and ‘Nec.”:= Necessary
encoding constraints over increasingly expressive distri-

butions, but at the expense of falsifiability. It is therefore

crucial for researchers to choose models that strike an appropriate balance between expressive power
and empirical testability for the task at hand.

4 Conclusions

In this paper, we introduced two new classes of graphical models, CBN2.25 and CBN2.5, which
encode constraints over distinct collections of distributions realizable under counterfactual random-
ization. We showed that these models are naturally induced by SCMs (Thm.[I]) and established a
sound and complete inferential machinery for them (Thm. [2). We then placed the new distribution
classes within the PCH (Thm. 3 and proved that graphical models over the PCH form a hierarchy
(Thm. [). Finally, we highlighted the trade-off between expressive power and empirical falsifiability
across the hierarchy. Taken together, these results refine the landscape of graphical models and
provide a more nuanced map of the space between Lo and L3. They also offer practical guidance for
selecting models that balance inferential power with empirical testability, while accounting for the
societal risks and ethical considerations inherent to each application domain. We further hope that
these results serve as a theoretical foundation for future work on broader empirical evaluation and
computational cost analysis of counterfactual graphical models across diverse domains.

3This does not immediately imply that the query is identifiable, only that it can be represented in principle.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we claim to define new symbolic languages,
graphical models and inferential machinery; and to define a hierarchical structure over
several graphical models. All contributions and results claimed are provided in the main
body of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly stated the assumptions underlying all results in the paper, which
provides the ground for future work to improve and extend our results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For all definitions and theorems in the paper, clear statements and explanations
of the assumptions are provided when they are introduced. Complete proofs for each
proposition and theorem are given in Appendix. [C]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully reviewed and adhered to the NeurIPS Code of Ethics throughout
the process.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction and the conclusion, we discuss how the results in the paper
can have an impact on how researchers understand and use graphical models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Our paper does not rely on any assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM not used in this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background and Definitions

A.1 SCMs and Graphical Models

In this section, we review key concepts and definitions that are fundamental to this work.

We adopt Structural Causal Models (SCMs) as the baseline generative framework, following the
presentation in [3]]. The discussion there is more detailed and may be consulted if additional context
on these foundational notions is needed.

Definition 8 (Structural Casual Model (SCM) [3]]). A structural causal model M is a 4-tuple
(U, V,F,P(U)), where

e U is a set of background variables, also called exogenous variables, that are determined by
factors outside the model;

* Visaset{Vi,Va,...,V,,} of variables, called endogenous, that are determined by other
variables in the model — that is, variables in U U V;

o Fisa set of functions { f1, fa, ..., fn} such that each f; is a mapping from (the respective
domains of) U; U Pa,; to V;, where U; C U, Pa; C V \ V,, and the entire set F forms a
mapping from U to V. That is, fori = 1,...,n, each f; € F is such that

v; + fi(pay, w;), (35)
i.e., it assigns a value to V; that depends on (the values of) a select set of variables in UUV;
and

* P(U) is a probability function defined over the domain of U.

Intervention in an SCM can be viewed as a modification of the model by changing the mechanism of
the intervened variables, while keeping all other components of the SCM intact.

Definition 9 (Submodel — “Interventional SCM” [15]]). Let M be a structural causal model, X a
set of variables in V, and x a particular realization of X. A submodel My of M is the causal model
MX = <U7Va]:xa P(U)>a (36)

where
Fx={fi : Vi ¢ X} U{X + x}. 37

The impact of the intervention on an outcome variable Y is commonly called the potential outcome:

Definition 10 (Potential Outcomes [[15])). Let X and Y be two sets of variables in V, and u be a
unit. The potential outcome Y x () is defined as the solution for Y of the set of equations Fx with

respect to SCM M (o1, Y pm, (0)). That is, Yx(u) 2 Y pq, (0).

An SCM induces observational, interventional, and counterfactual distributions over the endogenous
variables, which form three layers known as the Pearl Causal Hierarchy (PCH).

Definition 11 (Pearl Causal Hierarchy (PCH) ([3]) ). An SCM M = (U, V, F, P(u)) induces three
layers of probability distributions that form the Pearl Causal Hierarchy. Forany Y ,Z,.... X, W C 'V,
the three layers of distributions are given by:

e L1 (Observational):

PM(y) => 1[Y(u) = y|P(u) (38)

e Lo (Interventional):
PM(ye) = > 1[Yx(u) = y|P(u) (39)

* L3 (Counterfactual):
PM(yy, . 2w) = 3 1[Yy(u) =y, ..., Zy(u) = 2] P(u) (40)



' (i) (i) (i)
Observational Interventional Counterfactual
(a)  External state } P(U) P(U) P(U) i
(b)  Transformation 3’ F ‘ e Fo || Fu ||
(¢) Induced Distribution P(Y) P(Yy) P(Yyx,...,Zy)

Figure 8: Given an SCM’s initial state (i.e., population) (a), we show the different functional
transformations (b) and the corresponding induced distribution (c) of each layer of the hierarchy. (i)
represents the transformation (i.e., F) from the natural state of the system (P(U)) to an observational
world, (ii) to an interventional world (i.e., with modified mechanisms Fx), and (iii) to multiple
counterfactual worlds (i.e., with multiple modified mechanisms).

The collection of all L1 (Observational) is denoted as P**, the collection of all Lo (Interventional)
is denoted as P*2, and the collection of all L3 (Counterfactual) is denoted as PLs,

PCH specifies both the symbolic representation and the valuation of each probabilistic quantity given
an underlying SCM. If the SCM is fully specified, every quantity in any layer of the PCH can be
computed directly via Def. [[T| (Fig[8). In the causal inference engine (Fig. [T, this correspondence is
depicted by the arrow from M* to the PCH.

In practice, however, only partial knowledge of the SCM is available, so only a subset of the PCH can
be observed. For example, the observational distribution may be available (Fig.|l} item (2)), while the
interventional distribution remains unobserved and must be queried (item (1)). Each causal inference
task therefore rests on assumptions about the structural “marks” left by the SCM on its distributions.
These assumptions take the form of invariance constraints, defined as follows:

Definition 12 (Invariance Constraint). Given an SCM M™, an invariance constraint is an equality or
inequality between polynomials over L; terms of the PCH.

A common example is conditional independence in the observational distribution. For instance,
P(y | ) = P(y) encodes that X is probabilistically independent of Y.

Invariance constraints can be seen as coarsening the PCH: they abstract away from specific numerical
values and instead capture relationships among distributions. As more invariance constraints are
included, the granularity of knowledge about the underlying SCM increases. To avoid enumerating
constraints individually, we exploit graphical models, which encode them systematically and parsimo-
niously by linking invariance constraints to graph topology (e.g., relations among parents, neighbors,
and ancestors). The natural first step in this process is to construct a causal diagram from a given
SCM, since the diagram directly captures the topological relations that determine which invariances
hold.

Definition 13 (Causal Diagram [3]]). Consider an SCM M = (U, V| F, P(u)). Then G is a causal
diagram of M if constructed as follows:

(1) add a vertex for every endogenous variable in the set V
(2) add an edge V; — Vi for every Vi, V; € V if V; appears as an argument of f;
(3) Add a bidirected edge V; «----+V; for every V;,V; € V if

(a) the corresponding functions f;, f; share some common U € U as an argument, or
(b) the corresponding U;,U; € U are correlated.

The causal diagram G can be viewed as a non-parametric coarsening of the SCM M: it preserves
the structural signatures (i.e., the arguments of the functions and dependency relationships among
exogenous variables) while abstracting away from their specific parametrization. In Fig.[T] this is
depicted by the arrow from M* to G.
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(a) Fork (b) Chain

X

Figure 9: Two causal diagrams encoding knowledge about the causal mechanisms governing three
observable variables X, Z and Y.

Graphical e Physical Sampling Inferential Related
Layer Model Distribution Procedure Machinery Lit.
Ly BN P(V) random sampling d-separation | [14,/15]
randomized controlled
Lo CBN P(V]do(x)), Vx trials (RCT) do-calculus | [15}12]3]]
L3 CTFBN P(W.),VW, counterfactual randomization | ctf-calculus [6, 1]

Table 2: Sample graphical models and their corresponding distributions, physical sampling procedures,
and inferential machinery for each layer of the PCH.

Pairing a causal diagram with the set of invariance constraints it encodes over a collection of
distributions defines a graphical model, also referred to as a compatibility relation. For any SCM, its
induced causal diagram G together with the corresponding PCH distributions naturally form such a
relation. In this way, the invariance constraints encoded in G serve as surrogates for the empirical
content of the underlying SCM, summarizing knowledge about the different layers of distributions it
induces.

Definition 14 (Graphical Model). Let V denote a set of endogenous variables. A graphical model is
a pair (G, P), where

1. G = (V, E) is a graph whose nodes correspond to the variables in V, and
2. P is a collection of probability distributions defined over V,

such that the absence of an edge (V;, V) ¢ E encodes one or more invariance constraints that are
satisfied by distributions in P.

Depending on the assumptions made on different layers of the PCH, a different graphical model can
be defined. As alluded to earlier, some examples of models corresponding to the three layers of the
PCH are Bayesian Network (BN) [14], Causal Bayesian Network (CBN) [3]], and Counterfactual
Bayesian Network (CTFBN) [l1, Sec. 13.2]. These graphical models are powerful tools for encoding
assumptions to perform causal inference tasks such as identification (Fig. [I)), with each model
accompanied by its own inferential machinery like d-separation for BNs, do-calculus for CBNs, and
ctf-calculus for CTFBNS [14, [15}16].

As we ascend the PCH, the corresponding graphical models encode invariance constraints over
increasingly richer sets of distributions. These enlarging sets of constraints naturally induce a
hierarchy: models higher in the hierarchy support more powerful inferences but depend on stronger
assumptions, which are correspondingly harder to verify empirically.

Example 8 (SCM and Graphical Models). Consider the SCM M = (U = {U,,U,,U,},V =
{X,Z, Y}, F,P(u)), where

X U,

F=¢Z+ XU, (41)
Y+~ XoU,

P(u) : Uy ~ Bernoulli(0.2),U, ~ Bernoulli(0.4), U, ~ Bernoulli(0.3) (42)

The endogenous variables V represent, respectively, a treatment X (e.g., a diet) and outcomes Z
andY (e.g. patient’s BMI and cholesterol level). The exogenous variables Uy, U, and U, represent
other variables outside the model that affect X, Z, and Y, respectively.
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Given the SCM, all quantities from the PCH can be computed following Def. by mapping from
each U = u to all potential outcomes derived from M, as shown in Table[3| L, distributions will
only involve the observed variables X, Z, and Y, and L4 distributions will have additional access to
the all potential outcome variables like Z,, and Y, individually. L3 includes joint distributions over
all potential outcomes in the table, capturing the full range of counterfactual dependencies.

However, in practice, the SCM is often not observed with such details, and we analyze the invariance
constraints that hold in the distributions it induces. For example, it can be calculated from Table 3]
that

P(x) = P(xy),Y(z,y) (43)
P(y:mm) = P(y,aﬁ),V(x,y) (44)

These invariance constraints can be represented using the causal diagram shown in Fig. [%a). When
this causal diagram is interpreted as the graphical model for different layers of the PCH, it encodes
different constraints according to the definitions of models:

® El BN:
P(x,y,z) = P(x)P(z|z) P(y|r) (45)

® EQ CBN:
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Figure 10: Constraints listed in the definition of a graphical model serves as a local basis that implies
all constraints encoded in the model. Blue lines represent a set of local invariance constraints that can
be composed to imply the global constraint represented by the red line.

(i)
P(z,y,2) = P(x)P(z|z)P(y|z) (46)
P(y,z|do(x)) = P(y|do(x))P(z|do(x)) (47)

(ii)
P(z|do(a)) = P(z),Va C {z,y} (48)
P(z|do(z,y)) = P(z|do(x)) (49)
P(yldo(x, z)) = P(y|do(x)) (50)

(iii)
P(z|do(z)) = P(z|z) (51
P(z|do(z,y)) = P(z|do(y), ) (52)
P(y|do(z)) = P(y|z) (53)
P(y|do(z,z)) = P(y|do(2),z) (54)

e L3 CTFBN:

(i)
P(X,Zy Zpr Yo, Yo ) = P(X)P(Zy, Zo )P(Ya, Yor) (55)

(ii)
P(xaaw*) = P($,W*),Va - {Z7y} (56)
Pz, Wi) = P(Yo, W) (58)

(iii)
P(z,z,w,) = P24, T, W,) (59)
P(Zy,l‘y, *) = P(nyyxva*) (60)
P(y,z,w.) = P(Ys, 7, W) (61)
Py, @2, Wy) = P(Yps, To, Wy) (62)

Interestingly, the constraints explicitly listed in the definitions of graphical models represent only a
subset of all the constraints implied by the model. These explicitly stated constraints are typically
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P(z|xy) = P(z|x) P(y|do(x)) = P(y|x) P(z,x) = P(z,,x) —
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P(y|do(2)) = P(y) P(y, %) = P(3,x)
. . Global Closure

Figure 11: Illustration of how an SCM induces the PCH, invariance constraints, causal diagram, and
graphical models, following Example @

local, involving variables and their immediate parents. Importantly, these local constraints form
a “basis” from which all other (global) constraints in the model can be spanned, as illustrated in
Fig. The process of composing local constraints to derive global ones underpins the operation of
the causal inference engine.

For example, consider the constraint:
P(y|do(z)) = P(y) (63)

This is a constraint that does not involve the parents and does not appear in the local basis, since X
which is in the parents of Y does not appear in the expression. Still, it can be derived by combining
various local constraints as shown next:

P(y|do(z)) = Y P(yldo(z), ) P(z|do(z)) (64)
= Z P(y|do(zz)) P(x|do(2)) (Eqf4) (65)
= Z P(y|do(x))P(x|do(z)) (EqB0) (66)
= Z P(y|z)P(x|do(z)) (BEqp3) (67)
= Z P(y|z)P(x) (Eql48) (68)

= P(y) (69)

The connections among these different moving parts — the SCM, the PCH, the causal diagram, the
invariance constraints and the graphical model — are illustrated in Fig. [I1| The constraints in each
model determines its inferential power. Given the L1 constraints, the only inference can be drawn is
that Y and Z are independent conditional on X in the observational distributions. However, with
the Lo constraints, the causal effect from the treatment to the outcome can be inferred, and in this
case it coincides with their observational correlation (i.e. P(yldo(x)) = P(y|z)). If we are able to
interpret the causal diagram as an Ls object, say a CTFBN, the local constraints can be leveraged to
infer that the effect of the treatment on the treated (ETT). To witness, the ETT is also equal to the
conditional distribution, P(y,|z') = P(y|z). [ ]
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Figure 12: SCM Induced DAG or Causal Diagrams

In the following sections, we give the definitions and examples for graphical models introduced in
previous works ([[14} [15} 3L 11).

A.2 L;: Bayesian Networks

The first graphical model encodes invariance constraints in the observational distributions. Firstly, we
formally define how to construct a graph from an SCM.

Definition 15 (Confounded Component of an SCM [3])). Given an SCM M = (U, V, F, P(u)),
let U, UY, ..., Uj C U be disjoint maximal subsets of the exogenous variables in M such that

P(u) = HLZl P(UY). Then, we say that V;,V; € V are in the same confounded component (for
short, C-component) of M if |[{U$|US N'U; # 0, U NU; # 0} > 0, that is, if f; and f; have

both latent arguments in some common U¢,.

Definition 16 (SCM-induced DAG [3])). Consider an SCM M = (U, V,F, P(u)). Then G is a
DAG induced by M if it:

* has a vertex for every endogenous variable in the set V
* has an edge V; — V; for every V;, V; € V if V; appears as an argument of f;

* there exists an order over the functions in F such that for every pair V;, V; in the same C-
component of M such that f; < f;, the edge V; — V; and the edges Vi, — V};, V), € Pa;
arein G.

Definition 17 (Markov Relative to [14]]). A probability distribution P(V) over a set of observed
variables V is said to be Markov relative to a graph G if:

P(V) = H P(vi|pa;) (70)

where Pa; = {V; e V|(V; = V) € G}.
Definition 18 (Bayesian Network [[14]). A directed acyclic graph (DAG) G is a Bayesian Network
for a probability distribution P over the variables in 'V if P is Markov relative to G.

Example 9 (SCM-induced BN). Consider the SCM M = (U = {U.,U;,U,},V =
{Z,X,Y},F, P(u)) where

Z U,

F=X+2ZVU, (71)
Y+~ ZaU,

P(u) : U, ~ Bernoulli(0.5), U, ~ Bernoulli(0.5),U, ~ Bernoulli(0.5) (72)

Its SCM-induced DAG is shown in Fig. a) and its induced observational distribution P(v)
satisfies:

P(v) = P(2)P(x]z) P(y|2) (73)
forall x,y, z in Val(X) x Val(Y') x Val(Z). The DAG in Fig. [12[(a) is a BN for P(v).

A.3 L,: Causal Bayesian Networks

The second graphical model encodes invariance constraints in the interventional distributions.

Definition 19 (CBN Markovian [3]]). Let P, be the collection of all interventional distributions
P(V|do(x)),X C V,x € Val(X), including the null intervention, P(V), where V is the set of
observed variables. A directed acyclic graph G is called a Causal Bayesian Network for P if:
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1. [Markov] P(V)|do(x) is Markov relative to G;
2. [Missing-link] For every V; € V,V; & X such that there is no arrow from X to V; in G:
P(v;|do(pa;), do(x)) = P(v;|do(pa;)) 74)

3. [Parents do/see] For every V; € V,V; & X:
P(v;|do(pa;), do(x)) = P(v;|pa;, do(x)) (75)

Example 10 (SCM-induced CBN Markovian). Consider the SCM from Example[9) Its induced
causal diagram is shown in Fig. [I2(a) and its induced set of interventional distributions P satisfy:

1. [Markov]
P(v) = P(z)P(z]z)P(y|2) (76)
P(vldo(z)) = P(z|do(x))P(y|z, do(z)) (77)
P(vl|do(y)) = P(z|do(y)) P(z|z, do(y)) (78)
P(vl|do(z)) = P(x|do(2)) P(y|do(2)) (79)
2. [Missing-link]
P(|do(y, 2)) = P(x|do(z)) (80)
P(yldo(x, z)) = P(y|do(2)) (81)
P(z|do(a)) = P(z),Va C {z,y} (82)
3. [Parents do/see]
P(z|do(z)) = P(z]2) (83)
P(z|do(y, z)) = P(z|z,do(y)) (84)
P(yldo(2)) = P(yl2) (85)
P(yldo(z, 2)) = P(y|z, do(x)) (86)

The causal diagram in Fig.[[2(a) is a CBN Markovian for P..

Similar to the confounded components in an SCM (Def. [I3)), there is also a corresponding set of
confounded components in the causal diagram induced.

Definition 20 (Confounded Component [21]])). Let Cy, Cs,...Cy be a partition over the set of
variables V, where C; is said to be a confounded component (for short, C-component) of G if for
every Vi, V; € C; there exists a path made entirely of bidirected edges between V; and V; in G and
C,; is maximal.

Definition 21 (Augmented Parents). Let < be a topological order over the variables V1, ...,V
in G, let G(V;) be the subgraph of G consists only of variables in V1, ..., V;, and let C(V;) be the
C-component of V; in G(V;). The augmented parents of V;, denoted as Paj', is the union of parents
of all variables in C(V;) that comes before V; in topological order:

Paf = Ujv,er, Pa;\{Vi} (87)
where T; = {X € C(V;) : X < V;}.

We use Gx to denote the mutilated graph with all incoming edges to X removed from G. The
augmented parent of V; in Gx is denoted Pa™.

Example 11 (Augmented Parents). Consider the SCM M = (U = {U,, U}, V =
{Z,X,Y}, F,P(u)) where

Z U,

F=X+ZVvU (88)
Y<XoU

P(u) : U, ~ Bernoulli(0.5),U ~ Bernoulli(0.5) (89)
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The causal diagram G it induces is shown in Fig. [I2|b). The respective augmented parents of X, Y, Z
ingG are:

Paf ={} (90)
Pa;cr ={Z} ©n
Pal = {X, 7} 92)

If we consider the induced subgraph G(Y, Z) where there are no edges at all, it is the same graph as
G~ In this graph, nodes Y and Z form their own c-components respectively, so their augmented
parents are both empty:

Pa?t ={} (93)
Palt = {} 94

Definition 22 (Semi-Markov Relative to [3]]). A probability P(V) is said to be semi-Markov relative
to a graph G if for any topological order < of G:

P(V) = H P(vilpa;) (95)

Definition 23 (CBN Semi-Markovian [3]]). Let P, be the collection of all interventional distributions
P(V|do(x)),X C V,x € Val(X), including the null intervention, P(V), where V is the set of
observed variables. A directed acyclic graph G is called a Causal Bayesian Network for P if,
considering Pa;H' in all compatible topological orders over V:

1. [Semi-Markov] P(V|do(x)) is semi-Markov relative to G;
2. [Missing directed-link| For every V; € V\X, W C V\(PaXt UX U {V;}):
P(uildo(x), paz, do(w)) = P(vi]do(x), pa=") 96)

3. [Missing bidirected-link] For every V; € V\X, let PaX" be partitioned into two sets of
confounded and unconfounded parents, Pa$ and Pa} in Gx::

P(v;|do(x), pasi, do(pay’)) = P(v;|do(x), pa;, pay’) 97)

Example 12 (SCM-induced CBN Semi-Markovian). Consider the SCM from Example [[1} Its
induced causal diagram is shown in Fig. [I2(b) and its induced set of interventional distributions P
satisfy:

1. [Semi-Markov]

P(v) = P(2)P(x|2) P(y|z, ) (98)
P(v|do(z)) = P(z|do(z))P(y|do(z)) 99)
P(vldo(y)) = P(z|do(y)) P(x|z, do(y)) (100)
P(v|do(=)) = Plaldo(2))P(ylz, do(2)) (101)
2. [Missing directed-link]

P(x]z,do(y)) = P(z[z) (102)
P(z|do(z),do(y)) = P(z|do(z)) (103)
P(yldo(x), do(z)) = P(y|do(x)) (104)
P(z|do(a)) = P(z),Va C {z,y} (105)

3. [Missing bidirected-link]
P(z|do(z)) = P(x|2) (106)
P(xldo(y, z)) = P(z[z,do(y)) (107)
P(ylz, do(z)) = P(ylz, 2) (108)

The causal diagram in Fig. [I2|b) is a CBN Semi-Markovian for P..
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A4 L3: Counterfactual Bayesian Networks

If we climb further up the PCH, we get another graphical model that encodes structural constraints in
the counterfactual distributions.

Definition 24 (CTFBN Markovian [1, Def. 13.2.1]). A directed acyclic graph G is a Counterfactual
Bayesian Network for P 4 if:

1. [Independence Restrictions] Let W, be a set of counterfactuals of the form Wy , then
P(W.,) factorizes as

P A W)= II PC A W) (109)

Wipa,, €W VEV(W.)  Wipa, IWEV(W.)

2. [Exclusion Restrictions] For every variable Y € V with parents Pa,, for every set
Z C V\(Pay U{Y}), and any counterfactual set W ., we have

P(Ypa,,z; Wx) = P(Ypa,, W) (110)

3. [Local Consistency] For every variable Y € V with parents Pa,, let X C Pa,, then for
every set Z C V\(X U {Y'}), and any counterfactual set W ., we have

P(Y;:y>Xz:Xvw*):P(sz:anz:X;W*) (111)

Example 13 (SCM-induced CTFBN Markovian). Consider the SCM from Example[9} Its induced
causal diagram is shown in Fig. @a) and its induced set of counterfactual distributions P 4 satisfy:

1. [Independence Restrictions)

P(z,x., 20,y yon) = P(2) P22, 20 ) P(ysr, yo) (112)

2. [Exclusion Restrictions)

P(zy.,wy) = P(z,,W,) (113)
P( xz:w*) = P(ysz*) (114)
P(za,w.) = P(z,w,),Va C {x,y} (115)
3. [Local Consistency)
P(z,z) = P(z,,2) (116)
P(xy, zy) = P(xyz, 2y) (117)
P(y,z) = P(y., 2) (118)
P(yacazx) = P(yacZaZ:c) (119)

The causal diagram in Fig. [I2]a) is a CTFBN Markovian for P .

Definition 25 (CTFBN Semi-Markovian [[1, Def. 13.2.2]). A directed acyclic graph G is a Counter-
factual Bayesian Network for P 4 if:

1. [Independence Restrictions| Let W, be a set of counterfactuals of the form Wy, , C1, ..., Cy

the c-components of G|V (W..)], and Cy,, ..., C;, the corresponding partition over W ..
Then P(W.,.) factorizes as

1
PCAN W) =ITPC A Woan) (120)

Wha, EW. Whpa,, €Cj,

2. [Exclusion Restrictions| For every variable Y € V with parents Pa,, for every set
Z C V\(Pa,U{Y}), and any counterfactual set W, we have

P(Ypa, 2, Wi) = P(Ypa,, W) (121)
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3. [Local Consistency| For every variable Y € V with parents Pa,, let X C Pa,, then for
every set Z C V\(X U {Y'}), and any counterfactual set W ., we have

P(Y, = 4, X, = x,W,) = P(Yes = 9, X, = x, W,.) (122)

Example 14 (SCM-induced CTFBN Semi-Markovian). Consider the SCM from Example[I1] Its
induced causal diagram is shown in Fig. b ) and its induced set of counterfactual distributions P 4
satisfy:

1. [Independence Restrictions)

P(z,x., 20,y Yorr) = P(2)P(T2y Ty Yurr s Yoo (123)

2. [Exclusion Restrictions)
P(ay., w.) = Pz, W) (124)
P(Yuzy Wi) = P(Ya, W) (125)
P(za,w.) = P(z,w,),Va C {z,y} (126)

3. [Local Consistency)

P(x,z) = P(x,,2) (127)
P(zy, zy) = P2y, 2y) (128)
Py, x) = P(ya, v) (129)
Py, x.) = P(yzz, 22) (130)

The causal diagram in Fig. [I2|b) is a CTFBN Semi-Markovian for P .

A.5 Counterfactual Randomization

An agent may sometimes interact with a system of interest through experiments, thereby collecting
data from different layers of the PCH. Counterfactual randomization is an experimental procedure
that enables an agent to observe the value of a variable before an intervention takes effect [4]. For
instance, a doctor may be able to determine a patient’s natural choice of drug prior to randomly
assigning treatment in a clinical trial. This extension of experimental capability is formalized in
the following definition of a new type of physical action that an agent may be able to perform in an
environment.

Definition 26 (Counterfactual (ctf-) Randomization (Def. 2.3 [[19]])). For a variable X and some
particular unit ZEI in the target population of the environment, the operation

CTF-RAND(X — C)® (131)

denotes fixing the value of X as an input to the mechanisms generating C C Ch(X) for this
particular unit, where Ch(X) is the set of variables whose mechanisms take X as an argument.

The value of X is assigned randomly with support over Domain(X).
The essential differences between Fisherian randomization and CTF-RAND(X — C)( are:

1. cTE-RAND does not erase unit ’s natural decision X (i)

2. While Fisherian randomization affects all children of X, CTF-RAND only affects the chosen
subset C C C'h(X), leaving Ch(X) \ C untouched.

Importantly, CTF-RAND can only be enacted under certain structural conditions. These include
environments where one can measure a unit’s natural decision while simultaneously randomizing its
actual decision [4], or settings where counterfactual mediators allow altering how a subset of children
perceive the value of X [19]. In either case, ctf-randomization enables multiple randomizations on
the same variable X for a single unit <. Further, CTF-RAND must always be applied with respect to
a graphical child variable; it is not possible to bypass a child and directly alter the perception of a
descendant.

“This definition discusses a unit-specific experimental procedure, as it takes a physical perspective on how an
agent interacts with the units in a system.
3 Another way to understand this difference is that the unit’s natural inclination is taken into account.
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Figure 13: Hierarchy of action sets to realize distributions in different layers

Example 15 (CTF-RAND). Consider the SCM from Example[8} Counterfactual randomization on X
allows an agent to observe the natural value of X, say x', while simultaneously assigning a specific
value x as input to its children Z and Y. This is illustrated graphically in Fig.[3|(b), and as a result,
the L3 distribution P(X = x', Zx—,,Yx—,) becomes experimentally accessible (i.e., realizable). B

By including the counterfactual randomization action into our experimental toolkit, we obtain the
action set that gives the agent the most granular experimental capabilities.

Definition 27 (Maximal Feasible Action Set (SCM) [19]). Given an SCM M = (U, V, F, P(u)).
The maximal feasible action set AT (M) is the set of all actions the agent can perform in M with the
most granular interventional capabilities:

(i) SELECT"): randomly choosing, without replacement, a unit i from the target population, to
observe in the system;

(ii) READ(V)(i),VV € V. measuring the way in which a causal mechanism fy € F has
physically affected unit i, by observing its realised feature V(9);

(iii) RAND(X)(i),VX € V: erasing and replacing i’s natural mechanism fx for a decision
variable X with an enforced value drawn from a randomising device having support over
Domain(X);

(iv) CTF-RAND(X — C)) VX VC € Ch(X): fixing the value of X as an input to the
mechanisms generating C € Ch(X) using a randomising device having support over
Domain(X), for unit i, where Ch(X) stands for the set of variables that take X as an
argument in their mechanisms.

SELECT with READ correspond to random sampling. When SELECT and READ are permitted over
all units and variables, all distributions in £, are realizable. Adding RAND to the action set gives
the agent the ability to perform randomized experiments. When SELECT, READ and RAND are
permitted over all units and variables, all distributions in Lo are realizable. With CTF-RAND, some
distributions in L5 also become realizable. These distributions are the ones that lie within P£2-25 and
P£25 If we can perform all actions from the maximal feasible action set in an environment, we are
able to draw samples from any distributions in P#25. For L3 distributions that lie beyond P*25,
there is currently no known experimental procedure to sample from them. From the definitions of
action sets, we observe a hierarchical structure in the feasible actions an agent can perform to access
distributions at different layers, as illustrated in Fig. [I3] This hierarchy of action sets match the
hierarchical structure of distributions from the perspective of realizability.
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B Details on Layers 2.25 and 2.5

B.1 Nested Counterfactuals

The counterfactual variables in the symbolic representation of L5 o5 and Lo 5 are all of the form Yy,
where the subscript x indicates that an intervention do(X = x) has been performed in the system.
There is another type of counterfactual variables which represents interventions like do(X = X,),
where the variable X is set to behave as another counterfactual variable, say X,. A random variable
Y in such a system is represented with a counterfactual of the form Yx, , which is called a nested
counterfactual.

All nested counterfactuals can be unnested via the Counterfactual Unnesting (CUT) process below
and be transformed into non-nested ones.

Corollary 1 (Counterfactual Unnesting (CUT) [6]). Let Y, X € V,T,Z C 'V, and let 7 be a set of
values for Z. Then,the nested counterfactual P(Yt,x, = y) can be written with one less level of
nesting as:

P(Yr,x, =y) = Y P(Yr.. =y, X, =) (132)

Nested counterfactuals may also belong to L5 o5 and Lo 5, provided that

their unnested form, derived via the Counterfactual Unnesting Theorem, 7
contains only distributions admissible within the corresponding layer. / \
Lemma 2 (Nested Counterfactuals in Lo 95/L5 5). A nested counterfac-

tual belongs to L4 95/Lo 5 if and only if there exists a sequence of appli-
cations of the CUT procedure that reduces it to a function of unnested Figure 14: Causal Dia-
counterfactuals in Lo 25/L2 5. gram: path X — Y rep-
Example 16 (Natural Direct Effect (NDE)). Consider the causal diagram resents the Natural Direct
in Fig. The natural direct effect from X to'Y can be written in Effect (NDE)
counterfactual language as

X—Y

NDE; (y) = P(ys,z,) — P(yz) (133)
The first term is a nested counterfactual, and we can derive its unnested expression by applying CUT.

P(yx/,ZT,) = ZP(ym’ZaZx) (134)

From this unnested expression, we can conclude that it is in Lo as P(Yy ., Z,) satisfies the
conditions in Def. |4} However, it is not in L2 25 due to the conflicting subscript x and x' in the two
counterfactual variables joint.

B.2 Examples for £2425 and £2_5

Def. E] and Def. E] can be viewed as the template to enumerate distributions in L5 25 and Lo 5. The
key difference between the two layers is that L4 o5 is indexed by specific interventional values, while
Lo 5 is indexed by interventional variables. This difference is illustrated in Examplewhere different
value assignments for the interventional variable set X is allowed in L5 5 but not in Lo 25. We further
illustrate this difference in another example below.

Example 17 (Difference in Indexing between L5 o5 and Lo 5). Consider the SCM from Example
where the variables V = {Z, X, Y} form a chain Z — X — 'Y topologically. Let the interventional
variable set be {Y'}.

» For Lo o5, it is indexed by a specific interventional value. So we need to fix the value
assignment of Y to bey € Val(Y'). Then by Def. 3| P(Z,, X,,Y), where Z and X share
the same subscript, is a distribution in Lo o5.

* For Ly 5, the interventional variable can take any value in its domain unless it is constrainted
by Cond. (ii) of Def. | when two variables are descendants of the same child of an
intervened value. In this example, Z and X are not in descendants of Y. As a result,
there is no constraint on value assignment t0'Y for Z and X. Taking any y,y' € Val(Y),
P(Z,,X,,Y) is a distribution in Lo 5.
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This example shows that the increased flexibility of indexing in Lo 5 compared to Lo o5 allows it to
include more distributions.

Cond. (i) of Def. [3|and Def. [d|ensures that all variables in the intervention set must appear at least
once as subscript in the counterfactuals joint. This avoids any redundant symbolic representation to
appear during the enumeration of distributions in the languages, as illustrated in example below.

Example 18 (Cond. (i) of Def. [3|and Def. [). Consider the same SCM from Example [I[1|where
the variables V.= {Z, X, Y} form a chain Z — X — Y topologically. Given two interventional
variable sets {} and {Y'}.

The empty interventional set gives the distribution P(Z, X,Y), where all subscripts are empty.
This is consistent with our understanding that empty intervention is equivalent to observation.
For the interventional variable set {Y '}, if Cond. (i) is not imposed, P(Z,X,Y) would also be
compatible with the symbolic representation for distributions in these layers. This means that the
same distribution is repetitively enumerated under different interventional variable sets. To avoid this
redundancy, we impose Cond. (i) to require the union of all subscripts to cover the interventional
variable set. In other words, y must appear as a subscript in at least one of the counterfactuals joint.
As a result, the enumeration would not produce P(Z, X,Y), but rather, produces distributions like
P(z,,X)Y) P(Z,X,,Y)or P(Z,,X,,Y) for L35, and also P(Z,, X,/,Y) for Lo 5.

Cond. (ii) of Def. 3]and Def. [ reflects how counterfactual randomization enforces consistent values
over downstream variables. For L5 o5, counterfactual randomization on variable X is restrained such
that all children of X shares the same value x. As a result, all descendants of X share the same value
x. In contrast, counterfactual randomization in Lo 5 allow each child of X to interpret X differently.
Yet, given that counterfactual randomization cannot bypass a child to affect descendants directly, it
still imposes a consistent value constraint over the descendants of X. This constraint starts at the
children of X, instead of at X itself.

Example 19 (Cond. (ii) of Def. 3|and Def. [d). Consider the causal diagram in Fig. 3(a) and the
intervention on X. In Lo, the submodel fixes X = x and we obtain the distribution P(Y, Z|do(z)).
In L5 55, all downstream variables of X must include x in its subscript, i.e., Y, , Z,. At the same time,
counterfactual randomization allows us to join the natural value of X with the other counterfactual
variables and obtain the distribution P(X,Y,, Z,). In L o5, the downstream variable consistency
is only enforced at the child level. In this example, different subscripts of X for'Y and Z are allowed
and we obtain the distribution P(X,Y,, Z,/). The difference between the three layers are illustrated
graphically in Fig.

B.3 Details on CBN2.5

In this section, we give the detailed definition and theorem for CBN2.5.

Definition 28 (CBN2.5 Semi-Markovian). Given a mixed graph G and let P*2 be the collection of
all Lo 5 distributions. G is a Causal Bayesian Network 2.5 for P25 if:

1. [Independence Restrictions] Let W be a set of counterfactuals of the form Wya = with
distinct W, Cy, ..., C; the c-components of G[V(W.,)], and Cy, ..., Cy, the corresponding
partition over W, such that P(W,.) € P25 Then P(W.,,) factorizes as

l
PC AN W) =IIPC A Woa) (135)

Wha,, €W Wha, €Cj

2. [Exclusion Restrictions| For every variable Y € V with parents Pa,, for every set
Z C V\(Pa, U{Y}), and any counterfactual set W, such that P(Ypa 2, W) € P~e2s,

we have
P(Ypa, .z Ws) = P(Ypa,, W.) (136)

Yy

3. [Local Consistency| For every variable Y € V with parents Pa,, let X C Pa,, then for
every set Z C V\(X U {Y'}), and any counterfactual set W . such that P(Yy, = y, X, =
x, W.) € P£25 we have

P(}/z = y7XZ = X7W*) = P(sz = anZ = X, W*) (137)
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Theorem 5 (L5 5-Connection — CBN2.5 (Markovian and Semi-Markovian)). The Causal diagram
G induced by the SCM M following the constructive procedure in Def. [13|is a CBN2.5 for P*25, the
collection of all Ls 5 distributions induced by M.

Example 20 (CBN2.5). Consider the SCM from Example|[l]

The Causal Diagram is induces is shown in Fig. [35{a) and the collection of realizable distributions
P~25 it induces satisfies the following constraints:

1. [Independence Restrictions)

P(X,Yy, Zy) = P(X)P(Y)(Za) (138)

2. [Exclusion Restrictions)
P(Xq=2,W,)=P(X =2, W,),aC{zvy} (139)
P(sz = yaw*) = P(Yx = y,W*) (140)
P(Zyy = 2,W,) = P(Zy = 2, W.,) (141)

3. [Local Consistency)

PY=yX=x2)=PY,=y,X =1) (142)
P, =y X. =1)=P(Yaor =y, X: = ) (143)
P(Z=2X=12)=P(Z, =2 X =) (144)
P(Zy=2X,=2) = P(Zyy = 2, X, = ) (145)

B.4 Independence Constraints and AMWN

The independence rule in ctf-calculus requires the construction of another graphical object, known
as the Ancestral Multi-World Network (AMWN) [6]. We reproduce the algorithm for AMWN
construction and the theorem stating its soundness.

Algorithm 1 AMWN-CONSTRUCT(G, W.,)

Input: Causal Diagram G and a set of counterfactual variables W,
Output: G4(W.,), the AMWN constructed from G and W,
1: Initialise G’ by adding variables in An(W.,.) together with the directed arrows witnessing the
ancestrality

2: for each node V' € 'V appearing more than once in G’ do

3: Add anode Uy and an edge Uy — Vi for every instance Vi of V.

4: end for

5: for each bidirected V' ¢----s W where V and W are in G’ do

6: Add a node Uy and edges from it to Vi and Wy for every instance Vy of V or W, of W
inG’.

7: end for

return G’.

Theorem 6 (L3 Independence Constraints — Counterfactual d-separation). (Theorem 1 in [I6])
Consider a causal diagram G and a collection of counterfactual distributions, P%s, induced by the
SCM associated with G. For counterfactual variables Xy, Yy, Z,,

Xl LAYl V1 Z4Dgs = Xl AL Y2l | 1 Z4]Dpes (146)

In words, if | X¢|| and ||Yz|| are d-separated given ||Z.|| in the diagram G (Xy, Yy, Zy.), then || X¢||
and ||Yy|| are independent given ||Z.|| in every distribution P*3 compatible with the causal diagram
g.

When adapting ctf-calculus to CBN2.25 and CBNZ2.5, there is an extra step to ensure that the

distributions belong to the corresponding layers. This can be added as an extra step before Step 1 of
Alg. [T]to check that:

» CBN2.25: CRS(W,,) satisfies Lemmall]
+ CBN2.5: An(W.,) satisfies Lemmal[l]

The same check applies to the other two rules of ctf-calculus too.
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C Proofs

C.1 Supporting Lemmas

Lemma C.1 (Casual Diagram of Submodel). Given an SCM M and its causal diagram G, the causal
diagram induced by its submodel My is Gx, i.e., G with all incoming edges to X removed.

Proof. By Def.[9] M replaces f, with X < x for all X € X. As aresult, X have no endogenous
or exogenous parents. By the causal diagram construction in Def. edges that point to X are added
only when X have parents. Thus, there is no edges incoming to X in the causal diagram induced by
M. In addition, given that My keeps all other components of M intact, all other edges remain the
same. Therefore, the causal diagram induced by My is G with all incoming edges to X removed,
denoted as Gx. O

Corollary 2. Condition (ii) of Def. [Bland Def. {| can be translated to an equivalent graphical
condition:

Lo.95: Foranyv; € x, forall V; € Y, if V; € An(V;) in QW, then v; € x;.

Lo5: Forany Vi, B € XNPa(V;), forall V; € Y, if Vi & X and V; € An(V}) in Gx;, then
XiﬂB:ijB.

Proof. 1t follows from Lemma[C.1] O

Lemma C.2. Given a causal diagram G over V and a set of counterfactual events W, if P(W..) is
in P*225 of all SCMs compatible with G, then P(|W.||) is also in P*225 of all SCMs compatible
with G.

Proof. If P(W,) is in P~L225 of all SCMs compatible with G, it satisfies both conditions of Def.
[3l We prove that after applying the exclusion operator to W, the distribution still satisfies both
conditions of Def. 3

Let the set of potential outcome variables in W be denoted as {W1, ..., W, ]} P(W,) is
indexed by the union of subscripts of all I/Vlt € W,, and we denote this index by t= U t;. The
exclusion operator does not add subscripts to the variable, so let the new index set be the union of
subscripts of all [[W;, || € [[W.|| and denote it as t’' = £ [, t}. Cond. (i) of Def. Ist111 holds.

Given that P(W.,) also satisfies Cond. (ii) of Def. 3| I and by Cor. [2] it means that whenever there
is a directed path from 7" € T to W; € V[W,] in GT W tis in the subscript of W, i.e. t € t;.
Applying the exclusion operator on W;, removes varlables in t; that does not have a directed edge
to W; in G Thus, it does not affect those that satisfy the antecedent of Cond. (ii) of Def. 3| As a
result, whenever the antecedent of Cond. (ii) of Def. [3|holds, ¢ still belongs to the subscript of V.
So Cond. (ii) of Def. [3still holds.

Given that P(||W.||) satisfies both conditions of Def. [3| it is in P~2-25, O

Lemma C.3. Given a causal diagram G over V and a set of counterfactual events W ., if P(W )
is in P£25 of all SCMs compatible with G, then P(|W.|) is also in P*25 of all SCMs compatible
with G.

Proof. The proof is very similar to Lemma|C.2] with the key point being that the exclusion operator

on WW;, removes variables in t; that does not have a directed edge to W; in G, Thus, it does not

affect those that satisfy the antecedent of Cond. (ii) of Def. [4] L]

Lemma C.4. Given a causal diagram G over V and a set of counterfactual events W, = {Wi[x,]}
with all subscripts taking consistent values from the same set v € Val(V), if |[W; .|| = [|[W;
for all i, then P(W.,.) is in P*2:25 of all SCMs compatible with G.

[Uix;]
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Proof. The exclusion operator removes subscripts « from W; if there is no directed path from X to
Wi in G Thus, the subscripts that remain after exclusion capture precisely the cases in which the
antecedent of Cond.(ii) in Deﬁnitionholds. If [|[Wi, I = [[Wig,, |l the subscript in x; accounts
for all instances in U; * x; that are restricted by Cond. (ii). Therefore, P(W ) satisfies Def. [3|and
belongs to P%2:25, O

Lemma C.5 (ctf-calculus — do-calculus reduction (Lemma 6 in [6]])). ctf-calculus subsumes do-
calculus.

Lemma C.6 (ctf-calculus 2.25 — do-calculus reduction). ctf-calculus restricted to P*225 subsumes
do-calculus.

Proof. This result follows from the proof of Lemma[C.5| where all steps in the reduction only involves
quantities within P%225 O

Given a graphical model with bidirected edges, G, the set V of observable variables represented as
vertex can be partitioned into subsets called c-components [21]] such that two variables belong to the
same c-component if they are connected in G by a path made entirely of bidirected edges.

Definition 29 (Ancestral components [[6]). Let W, be a set of counterfactual variables, X, C
W., and G be a causal diagram. Then the ancestral components induced by W, given X,,
are sets Aq.,As.,... that form a partition over AnW ,, made of unions of ancestral sets

An[Gx, (wy)[We, Wy € W Sets AnGx, ()| Wi, and An[gx*(WQ[tZ])]WQ[tZ] are put fo-

1]
gether if they are not disjoint or there exists a bidirected arrow in G connecting variables in those
sets.

Lemma C.7 (Ancestral Set Factorization (Lemma 3 in [6])). Let W, be an ancestral set, that is,
An(W,) = W,, and let w, be a vector with a value for each variable in W ... Then,

P(W,=w.)=P( J\ Wpa, =w) (147)
WieW,

where each w is taken from w .. and pa,, is determined for each Wy € W, as follows:

(i) the values for variables in Pa,, N'T are the same as in t, and

(ii) the values for variables in Pa,,\'T are taken from w. corresponding to the parents of Wy.

Lemma C.8 (C-component Factorization (Lemma 4 in [6])). Let P(W,. = w..) be a distribution
such that each variable in W .. has the form Wy, let W1 < Wy < - - - be a topological order
over the variables in G[V(W.,.)], and let Cy, ..., Cy, be the c-components of the same graph. Define
Cj. = {Wpa, € W. | W € C;} and c;, as the values in w, corresponding to C;,, then
P(W. = w.) decomposes as

P(W,=w.) =[] P(C;. =c;.) (148)
J

Lemma C.9 (Ancestral Setin Lo 95/L25). P(W.) is in Lo.95/Lo. 5 if and only if the distribution
over its ancestral set P(An(W.,.)) is also in L2925/ L2 5.

Proof. For Ly.95, CRS(An(W,)) = CRS(W.) by Def. [7} and for Ly5, An(An(W,)) =
An(W,) by Def. 2?2. Thus, W, satisfies Lemmaif and only if An(W.,) satisfies Lemma O

Lemma C.10 (Ancestral Set Factor in L2 25/ L2.5). Let W, be an ancestral set, that is, An(W ) =
W., and let w, be a vector with a value for each variable in W ... Then, P(W.,.) is in L2.25/L2 5
only if its ancestral set factor P(/\Wtew* Wha, = w) isin L3.25/Ls 5.

Proof. If P(W,) isin L3.25/L2 5, then there does not exist two variables W and Wy in W, with
inconsistent subscripts. Therefore, the ancestral set factorization will also have distinct W for each
Whpa,,- It satisfies conditions in Def. [3{Def. 4| with consistent values from w., for Lo o5 and with
Pa,, blocking all directed path from other variables to . O
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Algorithm 2 cTFIDU(Y ., ¥+, Z, G)

Input: G causal diagram over variables V; Y, a set of counterfactual variables in V; y, a set of
values for Y, ; and available distribution specification Z.

Output: P(Y. =y.) in terms of available distributions or FAIL if not identifiable from (G, Z)

L let Y. < ||[Y.].

2: if there exists Yy € Y, with two or more different values iny, (Yx) or Y, € Y, withy.(Y,) #y
then return 0.
end if
if there exists Yy € Y, with two consistent values in y, (Yx) or Y, € Y, withy.(Y,) =y then
remove repeated variables from Y, and values y,.
5: end if
6: let W, < An(Y,), and let Cy,, ..., Ck. be corresponding ctf-factors in G[V (W..)].
7: for each C; s.t. (C;, = c¢;) is not inconsistent, Z € Z s.t. C;NZ = () do
8.
9

W

let B; be the c-component of Gz such that C; C B, compute Py/\g, (B;) from Pz(V).
: if IDENTIFY(C;, B;, Py\B, (B:),G) does not FAIL then
10: let PV\C@ (Cz) “— IDENTIFY(Ci, BZ', PV\B% (Bz)7 g)

11: let P(Ci = cix) < Py\c,(C;) evaluated with values (ci. UUg, cc,, Pa.)-
12: move to the next C;.

13: end if

14: end for

15: if any P(C;. = c;.) is inconsistent or was not identified from Z then return FAIL.
16: end if
17: return P(Y. =y.) < >y \y. [I; P(Ci = cin).

Lemma C.11 (C-component Factor in L5 25/L25). Let P(W, = w..) be a distribution such that
each variable in W, has the form Wpaw, with its c-component factorization P(W, = w,) =
[I; P(C;. = c;.). Then, P(W.) is in L2.25/La.5 only if its c-component factors P(C;, = c;.)
are in £2.25/£2.5.

Proof. If P(W,) is in L2.25/L4 5, then it has distinct W for each counterfactual in the set and
satisfies Def. [3/Def. [4 This property is not affected by c-component factorization as it only partitions
'W.. into subsets connected by bidrected paths. As a result, each P(C;, = c;,) will also satisfy Def.
BIDef. F O

Lemma C.12 (Consistency (Lemma 1 in [6])). Given SCM M and X,Y € V, T, R C 'V, and let x
be a value in the domain of X. Then,

P(YT*7XT* = ac) :P(YT*MXT* :.’L'), (149)
where T, represent any combination of counterfactuals based on T.

Lemma C.13 (Exclusion operator (Lemma 2 in [6])). Let Yx be a counterfactual variable, G a
causal diagram, and

Yy suchthat Z = X N Ang_(Y) and z = x N Z. (150)

Then, Y, = Yy holds for any model compatible with G. Moreover, this transformation is denoted as
[(Ya)ll := Yz

Lemma C.14 (Independence in L2 55/L25). Given a CBN2.25/CBN2.5, Theorem@is sound when
the AMWN is constructed over W, where P(W.,) is in L 25/ L2 5.

Proof. The soundness follows from soundness of Theorem[6] where the ancestral set factorization
constructed over {X¢, Y, Z} in the proof is also in the corresponding layers L2 25/L2 5 by Lemma
and Lemmal[C.1Q
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Algorithm 3 cTFID (Y., y., X, X«, Z, G)

Input: G causal diagram over variables V; Y, X, a set of counterfactual variables in V; y,, x, a
set of values for Y, and X,; and available distribution specification Z.
Output: P(Y. =y. | X« = x,) in terms of available distributions or FAIL if non-ID from (G, Z).
1: Let Ay, Ao, ... be the ancestral components of Y, U X, given X,.
2: Let D, be the union of the ancestral components containing a variable in Y, and d, the
corresponding set of values.
3: let Q < CTFIDU(Up, cp, Dpa,>d«, Z, G).

4oreturn g\ ) @ Dax, @

C.2 Proofs for Main Theorems

Theorem 1 (L5 25-Connection — SCM-CBN2.25). The Causal diagram G induced by the SCM M
following the constructive procedure in Def. |13|is a CBN2.25 for P*2:25 the collection of all L .25
distributions induced by M.

Proof. Let M be an SCM, P#225 the L5 o5 distributions it induces and G its causal diagram. We
prove that (G, P#225) is a CBN2.25, by showing that the 3 conditions defined in Def. ?? holds in
P*225 according to G.

(Independence Restrictions) Given a potential response of the form W, , its value only depends on
the exogenous variables U,, which appear as arguments in fy;,. Let W, be the set of counterfactuals
of the form W, = with pa,, taking consistent values from v € Val(V), P(W.) falls in L5 o5 as it
satisfy conditions of Def. [3| Let Cy, ..., C; be the c-components of G[V(W,)], and C4,, ..., Cy,
the corresponding partition over W.. Then the set of exogenous variables U(W.,) can be partitioned
as U(C,,),...,U(C;,) where U(C, ) and U(C; ) are disjoint forall i, j = 1,...,,i # j, due to

the absence of bidirected paths between variables in C; and and variables C;. Then by Def. [3]
(Exclusion restrictions) Given a potential response of the form Yy, ., its value only depends on
the exogenous variables U, which appear as arguments in fy as pa, are fixed. Thus, Ypawz(u) =
Ypﬁay (u). Then by Def. |3} for any counterfactual set W such that P(Ypa - =y, W, = w,) €
P 2.25

P(Ypa,z =1, Ws=w.) =Y _ 1(Ypa 2(u) =y, W.(u) = w,)P(u) (151)
= 1(Ypa, (1) =y, W, (u) = w.) P(u) (152)
= P(Ypa, =y, W, =w,) (153)

which proves the exclusion restrictions are satisfied.

(Consistency restrictions) Given u € Val(U) such that Y,(u) = y, X, (u) = x, W, (u) = w,, for
someY € V,X C Pa,,ZC V\(XU{Y}),R=Pa,\(XUZ), we have

Yz(u) = fy(zNpay, X,(u), Ry(u),u(U,)) (154)
= fy(zﬁpay,x,RZ(u),u(Uy)) (155)
= Y,x(u) (156)

Then by Def. 3} for any counterfactual set W such that P(Y, = y, X, = x, W, =w,) € P£2-25,
P(Y, =y, X, =x, W, =w.) = > 1(Yz(u) =y, X (u) =x, W, (u) =w.)P(u) (I57)
= 1(Yaz(u) =y, X5 (u) = x, W.(u) = w,)P(u) (158)

= P(sz =y, Xz =%x, W, = W*) (159)

which proves the consistency restrictions are satisfied. O
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Definition 30 (Counterfactual Reachability Set). Given a graph G and a potential outcome Yy,
the counterfactual reachability set of Yx, denoted CRS(Yy), conmsists of each |Wx| s.t. W €
(An(Y) U {De(V) : ¥V € X}\X and [|[Wy\ | s.t. W € (An(Y) U {De(V) : VV € X}) N X.
For a set W, CRS(W.,) is defined to be the union of the CRS of each potential outcome in the
set, such that for any set of variables {Wi[x” }: C W, with their CRS set having counterfactual

variables {R[xi]}i over the same variable R, {R[xi]}i is merged into one variable || Ry x| if
HWi[Uixi] = Wi[xﬂ for all i.

Lemma 1. A distribution Q = P(W.,) is in the Lo 95/Ls 5 distributions induced by any SCM
compatible with a given graph G if and only if the set CRS(W..) satisfies (i) and (ii) / An(W )
satisfies (i): (i) Does not contain any pair of potential outcomes Wy, Wy of the same variable W
under different regimes where s # t; (ii) W . does not contain any pair of potential outcomes Rg, Wy
with inconsistent subscripts where sN'T £t N S.

Proof. Consistent values across the variables are enforced by (ii). Each CRS set corresponding to
a potential outcome Y, includes all variables that must remain consistent with Y, under the regime
*. When taking the union of CRS sets over multiple potential outcomes, and if the union does not
contain any pair of potential outcomes W, Wy for the same variable W under different regimes, then
two cases arise:

(a) All CRS sets are disjoint with respect to the variables from which their potential outcomes
are derived. This implies that the ancestral and descendant sets of these variables are also
disjoint, so there is no directed path crossing the CRS sets in a way that would trigger the
antecedent of Cond. (ii) in Definition 3]

(b) Any overlapping CRS sets must involve counterfactuals over the same variable, which
are merged as |I/VT;[UW] | = |Wi[wv]| for all 4. This condition implies that the variables
underlying these merged CRS sets are consistent, by Lemma[C.4]

Therefore, P(W.,.) satisfies conditions in Def. |3|and belongs to PL2o2s,
The graphical check for L5 5 is proved in Corollary 3.7 of [19]. O

Theorem 2 (Soundness and Completeness for CBN2.25/CBN2.5 Identifiability). An Lo 25/L2 5
quantity Q is identifiable from a given set of observational and interventional distributions and a
CBN2.25/CBN2.5 if and only if there exists a sequence of applications of the rules of ctf-calculus
for CBN2.25/CBN2.5 and the probability axioms restrained within Ly 25/Lo 5 that reduces @ into a
function of the available distributions.

Proof. The soundness of the calculus for L5 95/L5 5 follows from the soundness of the ctf-calculus
rules. The soundness of the ctf-calculus rules in turn follows from Lemma[C.12]for Rule 1, Lemma
for Rule 2 and Lemma[C.13|for Rule 3.

To prove that it is complete, we rely on the completeness of the CTFID algorithm reproduced as
Algo. E] and Algo. E] [7]. Specifically, we show that if the query is in Lo 25/L5 5, all steps of the
CTFID algorithm can be justified by the rules of ctf-calculus for CBN2.25/CBN2.5 and the probability
axioms restrained within L2 95/L5 5.

Line 1 and 2 of Algo. |3|are justfied by Lemma and Lemma if the input query P(Y . =
v«|Xs = x4) is in L395/Ls 5, then the ancestral set factorization P(UDteD* Dpa, = d) over
D. = An(Y.,X,) and d. € Val(D,) consistent with y,,x, is also in L9 .95/L25. Thus the
probability axioms underlying the marginalization step have all quantities within the corresponding
layers.

Line 1 of Algo. [2]is justified by rule 3 of the ctf-calculus and Lemma|[C.2]and Lemma|[C.3| where both
D. and ||D.|| are in the corresponding layers. Line 2 to 3 are justified by quantities in L3 95/L2 5
having consistent values. Line 4 to 5 follow from probability axiom to remove redundant variables.
From line 6 to 14, the algorithm identifies the factors based on c-componentes using IDENTIFY [21]
which soundness can be justified with do-calculus [9], which in turn is subsumed by ctf-calculus 2.25
by Lemma|[C.6 At line 17, the algorithm returns the result as a product that is justified by Lemma
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Therefore, given a query in Lo 95/L5 5, CTFID is both sound and complete to determine if it is
identifiable from the available data without any intermediate step having quantities outside the
layer. O

Theorem 3 (PCH*). Given an SCM M and its induced collections of observational (P*1),
interventional(P*2), Lo o5 (P£225), Lo 5 (P%25), and counterfactual (P£3) distributions: P£1 C
PL2 C PL2.2s C PL2s C PLs.

Proof. With PCH already established and proved for £1,£> and L3 [3]], we prove that (1) P*2 C
P£2.25’ 2) PL2.2s C P£L2s5 gnd 3) PLas C PLs,

It is easy to show that P2 C P%225_ because each distribution in P*2? can be derived from a
marginalization of a distribution in P*225:

P(Y=yldo(X=x)= > P( N\ Vi, =uv, A Vio, =0i)  (160)

XeynX VieY\X VieYNX,v;=V;Nx

where the subscripts for all variables take the whole set x. Clearly, it is in P*2-25 as the consistent
subscripts satisfy conditions of Def. [3]

It is also easy to see that P~25 C P*3 because P** contains all possible joint distributions over all
counterfactual variables, whereas P*2-> imposes additional constraints over the joint of counterfactual
variables.

To prove that P£225 C P£25 we show that if a distribution satisfies Def. [3] it also satisfies Def.
First, note that the key difference between Def. E] and Def. E]lies in the two conditions. Thus, we only
need to prove that a distribution of the form P(Ay; cy\x Vii,) = Vis Avievnx v, =vinx Vieg o, =
v;) satisfying the two conditions in Def. must also satisfy the two conditions in Def. E]

For Cond. (i), both languages require the subscripts to cover the whole space of X. However, Def. 3]
is stronger by restricting the value assignments to the set x, while Def. 4{allows x; to take different
values from Val(X;). Thus, if Cond. (i) of Def. holds, Cond. (i) of Def. E]immediately holds.

For Cond. (ii) and by Cor. 2] the antecedent in Def. 4] checks if there is a directed path from B € X
to V; € Ch(B) to V; in G}Tj- If such a path exists, we denote it by p. There are two possibilities:

(a) pisin GW; (b) p is not in GW' For (a), Cond. (ii) of Def. [3| will enforce b to appear in
the subscript of both V; and V. For (b), it implies that there exists a variable X € X\X; that lies
on p between V; and V;. We focus on the subpath p’ of p directed from X to V;. If X is in An(V})

in foj, then X must be in X; by Cond. (ii) of Def. [3| which leads to a contradiction. If X is not
in An(Vj) in G, then there exists another X’ € X\X; that lies on p' between X and V;. We

can apply the same logic to shorten p until there is no more variable in X\ X; that fulfills the same
condition. When this terminal condition is hit, the final subpath enforces the variable in X\Xj on the
path to be in the subscript of V;. The same contradiction is achieved. As a result, there cannot be any
variable X € X\Xj that lies on p between V; and V;. Therefore, whenever the antecedent of Cond.
(ii) of Def. []is triggered, Cond. (ii) of Def. [3|also holds to enforce consistent subscripts between V;
and V.

This proves that all distributions in P%2:25 are also in P*25, or equivalently P22 C P*25,
O

Theorem 4 (Hierarchy of Graphical Models, PCH*). Given a causal diagram G, the set of constraints
it encodes when it is interpreted as a graphical model on layer i is a subset of the constraints it
encodes when it is interpreted as a graphical model on layer j, when © < j.

Proof. The constraints encoded by a BN are included as Cond. (i) of the corresponding CBN, making
the containment relationship is straightforward. The hierarchical relationship among the constraints
encoded by CBN2.25, CBN2.5, and CTFBN is also straightforward, as they share the same structural
form while progressively increasing the flexibility of distributions allowed at each level in the model
hierarchy. The containment relationship between CBN and CBN2.25 follows from the fact that
do-calculus is subsumed by the ctf-calculus 2.25 (Lemma|C.6), and that the constraints defined in
CBN imply all rules of do-calculus, while those in CBN2.25 imply all rules of ctf-calculus 2.25.
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Graphical Model | Meaning of Missing Directed Edge Meaning of Missing Bidirected Edge
L1: BN P(vi|pa;,nd;) = P(v;|pa;)
L5: CBN P(Uipai,z) = P(Uipai) P(v;|do(x), pay, do(pa;

= P(vi|do(x), paf, pa;’)
L5 95: CBN2.25 P(”Uzpa W) = P(v’bpa s W), P(Uipai 7 ,Ujpaj')h:VP(’U%;ai)P(Ujpaj :
2.25+ . with P(”UZ ,W*) c Pﬁz 25 wit i 7 J .
pa; .z and pa, and pa; taking consistent values

PUipa, 0 Wi) = PVig, s Wi, P(Viga,Viga,) = PVipa, ) P (Vg )

£2.5- CBN25 with P(Uzpa . W*) Pﬁg 5 \;lth ‘/Z 7& ‘/] i J
o P(Uz a;,z)? W*) - (vz a; y W ) P(’Uipai ’ Ujpa,-) = P(Uipai )P(vjpa")

L3: CTFBN ) for any w, ’ with pa; #pa; ifVi=V; ’

Table 4: Summary of how missing edges are interpreted in graphical models at different layers

Since the constraints encoded by graphical models are encoded by the missing edges in G, we can
alternatively establish the hierarchy by comparing how different models interpret these missing edges,
as summarized in Table[d] For missing directed edges, the constraint forms are consistent across
layers, but higher layers allow increasing flexibility in the sets w, that can be jointly conditioned
on. Similarly, for missing bidirected edges, the independence constraints in CBN2.25s, CBN2.5s,
and CTFBNSs share a common structure, with each successive model relaxing the limitations on how
these independencies are expressed:

* Independence constraints in CBN2.25s only apply to distributions over distinct variables
that share consistent parent values.

* Independence constraints in CBN2.5s extend to distributions over distinct variables, allowing
their parents’ values to vary freely.

* Independence constraints in CTFBNs apply to distributions over any variables, including
those of the form P(Wya , Wpar, ) as long as pa,, # paj,.

O

Theorem 5 (L5 5-Connection — CBN2.5 (Markovian and Semi-Markovian)). The Causal diagram
G induced by the SCM M following the constructive procedure in Def. H is a CBN2.5 for P*25, the
collection of all L 5 distributions induced by M.

Proof. The proof is similar to the proof for Theorem [I] with the independence restrictions expanded
to allow inconsistent parent values, and the exclusion and consistency restrictions expanded to join
more W, such that the distributions are within L5 5 instead of L3 o5. O

D Frequently Asked Questions

Q1. Where is the causal diagram coming from? Is it reasonable to expect the data scientist to
create one?

Answer. First, the assumption of the causal diagram is made out of necessity. The causal
diagram is a well-known flexible data structure that is used throughout the literature to
encode a qualitative description of the generating model, which is often much easier to
obtain than the actual mechanisms of the underlying SCM [15,120}|17]]. The goal of this paper
is not to decide which set of assumptions is the best but rather to provide tools to perform
the inferences once the assumptions have already been made, as well as understanding the
trade-off between assumptions and the guarantees provided by the method.

Second, the true underlying causal diagrams cannot be learned only from the observational
distribution in general. More specifically, there almost surely exist situations that M, and
M induce the same observational distribution but are compatible with different causal
diagrams (see [3, Sec. 1.3] for details). With higher layer distributions (such as distributions
from L5), it is possible to recover a more informative equivalence class of diagrams that
encode additional constraints present in the input layer [[12} [11}[10} 113} [22].

42



Q2.

Q3.

What is a graphical model and how can it help us in causal inference?

Answer. A graphical model is a modeling tool that allows one to represent a compatibility
relationship between a causal diagram G and a collection of distributions P. Specifically, it
encodes how the topological structure of the diagram can be interpreted to impose constraints
on the associated distributions. For instance, when restricting attention to £; distributions
(i.e., purely observational), Bayesian Networks (BNs) are the most prominent graphical
models to encode conditional independence constraints of the observational distribution
[14]. As we climb up the PCH and include more distributions into the collection, more
constraints start to emerge. To encode the richer set of causal constraints in Lo distributions
(i.e., interventional), the Causal Bayesian Network (CBN) was introduced [3]]. More recently,
CTFBN is introduced to encode the compatibility relationship between the causal diagram
and L3 distributions (i.e., counterfactual) [1]]. The models defined in this work further
refine the space of L3 distributions by restricting to constraints that are, at least in principle,
empirically falsifiable. In a nutshell, a graphical model should not be viewed merely as a
causal diagram, but rather as a formal specification of the compatibility relationship between
a pair (G, P). An example of a CBN is illustrated in Fig. where missing edges in the
causal diagram represent invariance constraints in the distributions.

The causal diagram in the graphical model offers a compact representation for constraints in
the associated distributions. These constraints are fundamental to causal inference, as they
constitute one of the three core inputs to the causal inference engine (Fig. [T). As discussed
ealier, the main task in causal inference is to determine whether a query from a higher layer
of the PCH can be identified as a function of observed data from lower layers. For example,
the task may be to identify a causal effect P(y|do(x)) when only the observational data P(v)
is available. According to the Causal Hierarchy Theorem (CHT), these layers are strictly
distinct, and it is impossible to ascend to a higher layer without additional assumptions
about that layer [3, Thm. 1]. The constraints encoded by graphical models serve precisely
this role — they encode the assumptions about higher layers that enable us to bridge the gap
and make such inferences possible. Given the CBN in Fig. the invariance constraint
P(Y|do(X)) = P(Y|X) allows us to identify the L5 query P(y|do(z)) as P(y|x), which
only involves observational distributions. Question 9 below will provide further details on
the inferential process by explaining how the local constraints defined in a graphical model
can be composed to derive additional constraints implied by the model.

Why do we need to introduce new layers to the PCH, besides the existing ones?

Answer. The original three layers of the PCH, capturing observational, interventional, and
counterfactual distributions, provide a natural partition among distinct capabilities in causal
reasoning. Layers 1 and 2 correspond to well-understood physical procedures: random
sampling for observational distributions and random experimentation for interventional
distributions. In contrast, Layer 3 consists of purely counterfactual quantities, that are
traditionally considered detached from empirical data collection in principle. In addition,
while Layers 1 and 2 are well-structured and homogeneous (each quantity within a layer
having a similar interpretation), Layer 3 is more heterogeneous and contains quantities that
represent different aspects of the underlying data-generating process.

More recently, Bareinboim, Forney and Pearl introduced a new experimental procedure,
counterfactual randomization, that allowed one to sample directly from an L3 distribution [4].
This work was further extended in [19]]. The introduction of counterfactual randomization
reveals a finer structure within Layer 3, distinguishing between counterfactual distributions
that are empirically accessible and those that are not. This fine-graining of Layer 3 is
illustrated in Fig. [I6] Notably, these new families of distributions have attractive properties,
including well-defined symbolic languages as well as a closed set of inferential rules, as
shown in this work. This new view opened up a natural way of partitioning L£3. In this work,
we studied the interplay between graphical models that inherent these features of the PCH
and have the property of empirical falsifiability.

To answer the question, the new layers introduced in the refined PCH may not be necessary
for all researchers. The original PCH already represents a major milestone in formalizing
the logic of causal inference. Still, for some researchers, the refinement and further parti-
tioning of Layer 3 can offer valuable insights. In particular, it allows for a more precise
understanding of the trade-off between empirical falsifiability and the inferential power of
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Figure

Graphical Model - CBN
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15: A CBN is a pair (G, P). Blue lines represent invariant constraints in P, which are

represented by features from G: missing directed edge from Y to X corresponds to the invariance
constraint P(X|do(Y)) = P(X) and missing bidirected edge between X and Y corresponds to the
invariance constraint P(Y |do(X)) = P(Y|X).

PLt PL2 PLaas PLes PLs P(U)
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Layer 1 Layer 2 Layer 2.25 Layer 2.5 SCM
(Observational) (Interventional) Layer 3 (Counterfactual) (unknown)
Figure 16: Pearl Causal Hierarchy (PCH*) induced by an unknown SCM M. Layers 1 and 2 are

realizable, and Layer 3 is partially realizable. The realizable portion of Layer 3 are further refined
into two new layers: 2.25 and 2.5.

Q4.

Q5.

graphical models, and provides a tighter feedback loop between theoretical assumptions and
experimental capabilities.

What is the difference between layers 2.25 and 2.5?

Answer. The main difference between L, 25 and Lo 5 lies in the type of counterfactual
randomization allowed. For L5 55, a counterfactual randomization applied to a variable X
assigns the same value x across all its children and descendants. As a result, distributions
in this layer cannot contain pairs of potential outcomes Wy, Ry with conflicting subscripts
where x € 5,2’ € t and x # 2’. In contrast, the counterfactual randomization action on a
variable X in Lo 5 is more flexible and allows each outgoing edge from X to take a different
value. This flexibility leads to the possibility of some distributions in the layer to include
potential outcomes with different subscripts. This difference is graphically illustrated in
Fig. [3] However, all descendants of each child of X must still share the same value of
x, unless all directed paths from X to the descendant are blocked by other intervened
variables. This restriction stems from the rules of counterfactual randomization, which
prohibit an intervention to bypass a child and directly affect a descendant’s perception of X.
In summary, the constraint on consistent subscript begins at the intervened variable X in
Lo o5, but shifts to the children of X in £ 5. These differences are reflected in the relaxed
conditions that define the symbolic language of L 5, relative to those of Lo o5.

Are all distributions within Layers 2.5 realizable?

Answer. Theoretically, all distributions in L5 5 are realizable if every action in the maximal
feasible action set is permitted. That is, in principle, an agent could draw samples from any
distribution in this layer through experimental procedures. However, whether a distribution
is realizable in practice depends on the physical constraints of the system. If certain actions
— such as counterfactual randomization on specific variables — are not feasible, then some
distributions in L5 5 will not be realizable in real-world settings [[19].
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| Query Layer | Graphical Model [ Sufficient [ Necessary |

Ly BN v v
Ly CBN v X
,CQ BN X V4
Lo CBN v v
Lo CBN2.25 v X
£2425 CBN X v
L2.95 CBN2.25 v v
£2‘25 CBN2.5 N X
£2,5 CBN2.25 X v
L5 CBN2.5 v v
£2,5 CTFBN V4 X
Ls CBN253 X v
L3 CTFBN v v

Table 5: Examples of Matching between Graphical Models and Queries. Rows highlighted in green
represent a match between the model and the query such that the assumptions in the model are both
sufficient and necessary for making inference about the query.

Q6.

Q7.

The same principle applies to other layers of the PCH. For example, all distributions in
L, are realizable in principle, assuming the agent can freely intervene on all variables.
However, practical constraints — such as cost, ethics, or technological barriers — may render
some interventions infeasible, thereby restricting the subset of L, distributions that can be
realized.

Given a causal diagram and a specification of the allowed actions, one can determine
whether a given set of distributions is realizable [19]. Viewed this way, the full collection of
distributions in £ 5 can be interpreted as the theoretical boundary of what is empirically
accessible through physical experimentation.

How does the hierarchical structure defined over graphical models provide useful information
on the models?

Answer. The hierarchical structure over graphical models offers a clear picture of the
differences in the strength of assumptions encoded by each model. In causal inference
specifically, the strength of the assumptions determines what queries the model may in
principle support — specifically, whether the causal inference engine can proceed and provide
useful insights about the query. For instance, an £5 query P(y|do(z)) cannot be answered
by a BN, which only encods £; constraints that does not have the power to bridge the
gap between the two layers. This limitation is formally captured by the Causal Hierarchy
Theorem (CHT), which states that to answer questions at one layer, one needs assumptions
at the same layer or even higher. This understanding allows practitioners to select models
from the hierarchy with sufficient inferential power for the query at hand.

On the other hand, the hierarchy also provides guidance in the opposite direction — helping
to identify when a model might be stronger than necessary. For instance, while any model
at or above a CBN in the hierarchy can answer an £y query P(y|do(x)), using a model
that makes counterfactual assumptions (e.g., a CBN2.5) would be unnecessarily strong
and harder to falsify. Therefore, knowing the hierarchy of graphical models also allows
practitioners to avoid choosing models that make extra assumptions not required in the target
inferential task.

Putting these observations together, Table [5| summarizes when a model is sufficient and/or
necessary for queries from each layer of the PCH. In short, the hierarchy serves as a practical
guide for selecting models that are both sufficient and necessary — maximizing inferential
power while minimizing unfalsifiable assumptions.

What is the difference between the hierarchical structure of languages and graphical models?

Answer. The hierarchical structure of the languages (i.e., the PCH) defines how different
families of distributions are related — specifically, each layer’s distributions form a subset
of those in the layer above. In parallel, the hierarchy of graphical models reflects how
constraints on these distributions are encoded through the topological properties of the
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causal diagram. Each graphical model at layer ¢ encodes constraints over the corresponding
family of distributions in layer ¢ of the PCH. Therefore, the hierarchy of the languages
directly informs the hierarchy of graphical models.

However, since a graphical model is defined as a compatibility relationship between a pair
(G, P), the expressiveness of the topological features in G also plays a critical role. As
we move up the hierarchy, the causal diagrams must support richer or more expressive
interpretations of missing edges to capture the increasingly complex constraints required
by higher-layer distributions. Both hierarchies are illustrated in Fig. [6] where square boxes
depict the hierarchy over distributions, and round boxes represent the hierarchy over the
constraints encoded by graphical models.

Why should a data scientist care about the trade-off between expressive power and empirical
falsifiability of the graphical models?

Answer. In any modeling task, it is generally desirable to construct a model that accurately
reflects the underlying generative process while also supporting future inferential tasks.
Achieving stronger inferential power often requires incorporating stronger assumptions into
the model. However, these assumptions can make the model more prone to errors that does
not match with reality. Empirical falsifiability acts as a form of regularization, enabling the
data scientist to identify, falsify and possibly correct wrong assumptions using empirical
evidence. As a result, the model can yield more reliable and trustworthy causal conclusions.
The importance of falsifiability echoes Karl Popper’s philosophy, which argues that scientific
theories must be testable and refutable — setting science apart from pseudoscience [18].
Thus, understanding where each graphical model falls on the spectrum of expressive power
versus empirical falsifiability is essential for practitioners who align with Popper’s principle.

What are the differences between local constraints and global constraints?

Answer. As discussed earlier when we introduce the inferential machinery for
CBN2.25/CBN?2.5, local constraints refer to those that are defined over distributions involv-
ing a variable and its parents, and they are the constraints that are explicitly stated in the
definitions of graphical models. For example, the local constraints in a BN are the conditional
independencies of the form P(v;|pa;,nd;) = P(v;|pa;), where pa, denotes the parents
and nd; the non-descendants of V;. Given a BN over the chain diagram X — Z — W — Y,
the local constraints include P(w|z,z) = P(w|z) and P(y|w, z,z) = P(y|w).

Global constraints, on the other hand, involve arbitrary subsets of variables, possibly far apart
in the causal diagram. These constraints are not explicitly listed in the model’s definition
but can be derived by composing local constraints. For example, given the same BN over
the chain above, a global constraint is P(y|z,z) = P(y|z), where the direct parent of Y,
namely W, is no longer explicitly conditioned on.

This distinction highlights the role of local constraints as a basis for implying the full set of
global constraints that a graphical model implies, as illustrated in Fig. [I0] This relationship
is mirrored in the connection between a graphical model and its associated inferential
calculus: the calculus rules form the closure of all global constraints that logically follow
from the local ones encoded in the model.

The process by which local constraints can be composed to yield global constraints was
illustrated in Example [3] We revisit this idea with a new example in Fig. [I0] Consider a
CBN over the chain diagram X — Z — Y. The local constraints specified in the definition
of the CBN are depicted as connecting lines between nodes within the small yellow circle.
These local constraints can imply additional constraints not explicitly listed in the definition.
One such global constraint is P(y|do(x)) = P(y|x), represented by the red connection line
in the figure. This global constraint can be derived by composing — or “gluing” — a sequence
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of local invariance constraints, shown as blue connection lines.

P(yldo(x)) =" P(yldo(z), 2)P(z|do(x))  (Probability Axiom) (161)
- Z P(y|do(x2))P(z|do(x)) (Cond. (iii) of Def.[[9)  (162)
- Z P(y|do(z))P(z|do(z)) (Cond. (ii) of Def.[T9)  (163)
- Z P(y|z)P(z|z) (Cond. (iii) of Def.[[9) (164
= Z P(ylzz)P(z|z) (Cond. (i) of Def. [T9) (165)
:Pz(y|ac) (Probability Axiom) (166)

In summary, although not all constraints are explicitly included in the local basis of a graph-
ical model definition, many are implied through its structure. Since the 1980s, this ability to
encode a parsimonious, polynomial-sized set of local constraints that implicitly represent an
exponential number of global constraints has been an attractive feature contributing to the
popularity and usefulness of graphical models in inferential tasks.

What is the connection between realizability and empirical falsifiability?

Answer. Realizability is a property of distributions, indicating that an agent can draw
samples from them through physical experimentation. For example, if an agent can intervene
on a variable X and fix it to a value z, it gains access to the interventional distribution
P(v | do(x)) in layer Lo.

In the context of graphical models, empirical falsifiability is property of constraints over
these distributions. To empirically falsify a constraint, the agent must have the experimental
capabilities to draw samples from all distributions involved in the constraint. In other words,
the constraint’s falsifiability requires the realizability of the associated distributions. For
instance, testing the constraint P(y | do(z,2)) = P(y | do(z)) requires the ability to
sample from both P(y | do(z, z)) and P(y | do(x)). Whether this is feasible depends on
the experimental capabilities and limitations of the system in question.

What is the difference between an SCM and Layer 3 distributions or Layer 3 graphical
models?

Answer. An SCM is a more granular level model with details about the exogenous variables
U, which induces the full set of distributions over the endogenous variables V in the PCH,
as illustrated in Fig. [ and Fig. [8] Specifically, given a distribution over the exogenous
variables P(u) and the structural equations that determine each endogenous variable as a
function of its parents (both endogenous and exogenous), we can compute all distributions
over the endogenous variables following the formula in the PCH definition (Def. [TT)). In
contrast, the PCH abstracts away from the exogenous variables, treating them as hidden
background factors unobserved by the agent. As a result, Layer 3 distributions and its
corresponding graphical models are defined solely in terms of the endogenous variables.
Given an SCM, it is also possible to evaluate individual level effects when the exogenous
state of a specific unit u € Val(U) is known, by solving the set of mechanisms following
the topological order of evaluation. Layer 3 distributions and graphical models, on the
other hand, offer population-level descriptions of causal relationships, without access to
individual-level information.

In a nutshell, an SCM provides full access to Layer 3 distributions and graphical models, as
it encodes the necessary generative mechanisms. However, the reverse does not hold: Layer
3 distributions or graphical models do not determine a unique SCM, since an SCM requires
additional, often unobservable, information about the exogenous variables and structural
mechanisms.

Given that the constructive procedure for the causal diagram is the same, why do we need,
or even have, different layers of graphical models?

Answer. Even though the same causal diagram G is shared across many different models,
the compatibility relationships it represents differ depending on the model. As discussed

47



earlier, a graphical model is a pair (G, P), where graphical feature in G are interpreted to
represent constraints in P. As P expands to include distributions from higher layers of the
PCH, the set of constraints that the graph must represent also becomes richer. As a result,
each missing edge is required to encode stronger and more expressive constraints over a
broader class of distributions. This is illustrated in Example [6|and Table 4]
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