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ABSTRACT

We introduce UniCon, a novel architecture designed to enhance control and ef-
ficiency in training adapters for large-scale diffusion models like the Diffusion
transformer. Unlike existing methods that rely on bidirectional interaction between
the diffusion model and control adapter, UniCon implements a unidirectional flow
from the diffusion network to the adapter, allowing the adapter alone to generate the
final output. UniCon reduces computational demands by eliminating the need for
the diffusion model to compute and store gradients during adapter training. UniCon
is free from the constrains of encoder-focused designs and is able to utilize all
parameters of the diffusion model, making it highly effective for transformer-based
architectures. Our results indicate that UniCon reduces GPU memory usage by
one-third and increases training speed by 2.3 times, while all maintaining the same
adapter parameter size. Additionally, without requiring extra computational re-
sources, UniCon enables the training of adapters with double the parameter volume
of existing ControlNets. In a series of image condition generation tasks, UniCon
has demonstrated precise response to control information and excellent generation
capabilities. UniCon makes the control of large-scale diffusion models feasible
and provides a basis for further scaling up of diffusion models.

1 INTRODUCTION

Diffusion generative models (Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021; Rombach
et al., 2022), with their exceptional generative effects and diversity, have significantly impacted
computer vision fields, such as creative design (Anciukevičius et al., 2023; Mittal et al., 2021; Cao
et al., 2024), image processing (Wang et al., 2023b; Lin et al., 2023; Yang et al., 2023; Yu et al.,
2024), and personalized content generation (Zhang et al., 2023; Mou et al., 2024; Li et al., 2024;
2023b; Zhao et al., 2024). This is particularly due to their ability to precisely control complex layouts,
poses, shapes, and image conditions through both textual and visual prompts. These functions
typically require training an additional adapter or controller network associated with the diffusion
model, enabling control of the output during the inference process (Zhang et al., 2023; Mou et al.,
2024; Zavadski et al., 2023; Zhao et al., 2024). The most successful representative is ControlNet
(Zhang et al., 2023) for Stable Diffusion (SD) (Rombach et al., 2022), which includes a trainable
copy of the SD U-Net encoder part and zero convolutions as connectors. To achieve higher quality
generation and more precise control, the parameter size of diffusion models has also been significantly
increased (Podell et al., 2023; Lin et al., 2024; Sauer et al., 2023). Starting from the original SD
model (Rombach et al., 2022) with 0.86 billion parameters, the advanced SDXL (Podell et al., 2023)
has scaled up to 2.6 billion parameters. The latest models (Peebles & Xie, 2023; Bao et al., 2023)
even replaced the commonly-used U-Net architecture with transformer-based models to obtain better
property. The benefits of scaling up have not yet reached their limit. We may expect larger diffusion
models and advanced transformer architectures to appear in the future (Xie et al., 2023; Han et al.,
2023; Luo et al., 2023; Chen et al., 2024a). Under this trend, the limitations of existing control
adapters for diffusion models have become increasingly apparent.

There are three main problems: First, as the parameters of the diffusion model increase, the size
of its adapter also needs to be expanded accordingly (Zhang et al., 2023). Existing adapters not
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Figure 1: This figure illustrates the schematic comparison between our proposed UniCon and
ControlNet. In UniCon, information flows unidirectionally from the diffusion model to the adapter
network, which directly outputs the results. This design is highly computationally efficient as it does
not require computing and storing gradients for the diffusion model. (c) displays results generated
from downsampled images, and (d) shows outcomes based on depth maps. UniCon achieves improved
performance while utilizing fewer resources.

only need to calculate their own gradients for training, but also have to calculate and store the
gradients of the diffusion model, placing significant strain on computational resources Mou et al.
(2024); Zavadski et al. (2023). This typically implies nearly double the additional overhead. Second,
while existing adapter designs exert control by modifying features in intermediate layers, they still
process these modified features using the original parameters of the diffusion model. The generative
capabilities of models with fixed parameters are limited when only the intermediate features are
modified. Third, the design of existing control adapters assumes that the diffusion models use
an encoder-decoder architecture (i.e. U-Net), which is inadequate for transformer-based diffusion
models due to their inability to separate encoder and decoder components. Since existing adapters
primarily implement control within the encoder part, their response to control signals lacks pixel-
level precision, particularly problematic in high-precision tasks such as image restoration based on
low-quality images.

In this paper, we introduce a novel design specifically tailored for training control adapters for the
next generation of large-scale diffusion models, such as DiT. This design facilitates further scaling up
of diffusion models and their control. Unlike the existing methods (Zhang et al., 2023; Zavadski et al.,
2023) that use adapters to intervene during the forward inference of diffusion models in a bidirectional
manner, our approach allows information to flow unidirectionally from the diffusion network to the
adapter, without flowing backward. The final output image will be generated by the adapter, NOT the
diffusion model. Our method is therefore called UniCon. Figure 1 illustrates the design difference of
UniCon and ControlNet. The advantage of UniCon is that during training, the diffusion model only
needs to perform forward propagation and does not need to compute or store gradients. Additionally,
UniCon can utilize all parameters and architectures of the diffusion model, not just those pertaining to
the encoder, making it entirely suitable for diffusion models with large scale transformer architecture.
Moreover, since the output processing is handled by the adapter, our design enables more precise
control over generation based on conditions. UniCon avoids micro-interventions in the diffusion
model architecture, thus could further enhance the versatility.

We test the UniCon architecture across a variety of conditional generative tasks, validating it on
both the SD U-Net diffusion model and the DiT diffusion model. Notably, when applying UniCon
adapter to the transformer-based DiT diffusion model, our approach saves half of the video memory
(VRAM) usage while achieving a 2.3X increase in training speed, without increasing the adapter’s
parameter size. It also delivers superior FID scores and condition fidelity in tasks involving image
generation from downsampled images, see Figure 1 (c). By employing our method in the generation
task according to canny edge, the parameter size of the adapter can be doubled without additional
computational resources. UniCon can further improve performance, where our method not only
enhances the quality of generation but also ensures optimal controllability.
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2 RELATED WORK

Diffusion generative models. The diffusion models (Sohl-Dickstein et al., 2015) have been ex-
plored across a variety of generative tasks, such as image-to-image translation (Saharia et al., 2022a;
Zhao et al., 2022; Li et al., 2023a), text-to-image synthesis (Rombach et al., 2022; Saharia et al.,
2022b; Avrahami et al., 2022; Jiang et al., 2022), image restoration (Saharia et al., 2022c; Daniels
et al., 2021; Kawar et al., 2022; Lin et al., 2023; Yu et al., 2024), image editing (Meng et al., 2021;
Avrahami et al., 2022; 2023), image inpainting (Nichol et al., 2021; Lugmayr et al., 2022), etc. Among
them, some text-to-image diffusion models are also used as foundation models. Their capabilities
can be applied to many downstream tasks. Model up has been an important means to improve the
capabilities of these foundation models, and a lot of efforts have been made, e.g.a series of works
proposed by the Stability AI, including SD-2.1 (Rombach et al., 2022), SD-XL (Podell et al., 2023),
SD-Cascade (Pernias et al., 2023), and SD3 (Esser et al., 2024). In order to further expand and
improve the capacity of the model, the large-scale transformer architecture is also introduced into the
diffusion models, including DiT (Peebles & Xie, 2023), U-ViT (Bao et al., 2023), SD3 (Esser et al.,
2024) and the PixArt family (Chen et al., 2023; 2024b;a).

Controlled generation of diffusion models. Pre-trained large-scale diffusion models serve as
foundational models that can be fine-tuned for a variety of downstream tasks. The fine-tuning process
should be designed to mitigate issues such as overfitting, model collapse, and catastrophic forgetting.
Various fine-tuning methods have been developed across multiple fields, including HyperNetworks
(Alaluf et al., 2022; Dinh et al., 2022), additive learning (Rosenfeld & Tsotsos, 2018; Mallya
et al., 2018; Mallya & Lazebnik, 2018; Serra et al., 2018), and Low-Rank Adaptation (LoRA) (Hu
et al., 2021). For diffusion foundation models, the most effective and commonly used approach
for enhancing generation quality and controllability involves training an additional adapter network
(Houlsby et al., 2019; Stickland & Murray, 2019; Li et al., 2022; Mou et al., 2024; Ju et al., 2024; Mo
et al., 2023). Zhang et al. (Zhang et al., 2023) first introduced ControlNet, an architecture designed
to incorporate spatial conditioning controls into large, pre-trained diffusion models. The ControlNet
is connected with zero-initialized convolution layers that progressively grow the parameters from
zero and ensure that no harmful noise could affect the fine-tuning. Building on this, ControlNet-XS
(Denis Zavadski & Rother, 2023) explored different sizes and architectural designs of ControlNet to
enhance control over the image generation process in stable diffusion-based models. Additionally,
T2I-Adapter (Mou et al., 2024) focused on aligning internal knowledge within T2I models with
external control signals, while keeping the original large T2I models unchanged. This approach
allows for the training of various adapters under different conditions, such as text and image, to
achieve detailed control and editing capabilities in the color and structure of the generated images.
Uni-ControlNet (Zhao et al., 2024) integrates various local and global controls into a single model,
using only two additional adapters for fine-tuning on pre-trained text-to-image diffusion models, thus
avoiding the extensive costs of training from scratch. Furthermore, surpassing existing diffusion-
based restoration methods (Wang et al., 2023b; Lin et al., 2023; Yang et al., 2023), SUPIR (Yu et al.,
2024) leverages the generative prior and the potential of model to enable photo-realistic restoration
of severely degraded images through textual prompts. This illustrates the significant potential of
diffusion models in enhancing image quality and fidelity in controlled generation tasks.

3 METHOD

Preliminary and motivation. A typical diffusion model involves two processes: a forward process
that gradually adds a small amount of noise to the image, and a corresponding backward denoising
process that recovers the input image by gradually removing the noise. Given a pre-trained diffusion
model H(·), it can either have a U-Net-like structure, as in SD, or a transformer structure, as in the
DiT model. When performing the backward generation process, the diffusion model takes the last
denoised result zt and time step t as well as the text prompt p as input, and predicts the next result of
denoising generation zt−1 = H(zt, t, p). The existing adapters directly modify the features Xh of
the intermediate layer of H during the denoising generation process to modify the generation results
according to conditions. Assume we have an adapter C(·), usually it may take zt, t and p as inputs.
Additionally, it may also take Xh as inputs (Zavadski et al., 2023). The output of the adapter C is
a series of residual modified values Xc of the intermediate layers Xh. In ControlNet, Xc will be
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Figure 2: The UniCon
design for both DiT
and SD U-Net. We
omitted some blocks
in the SD U-Net due
to the space limit.

directly added to the corresponding intermediate layer of H using element-wised addition to generate
a new representation X ′

h = Xc +Xh to implement conditional generation.

This intuitive paradigm aligns with the common practice of fine-tuning large pre-trained diffusion
models, yet it introduces several significant issues:

Firstly, this approach directly impacts the diffusion model; therefore, training the adapter involves
calculating the gradients of the modified diffusion model and subsequently backpropagating these
gradients to the adapter’s trainable parameters. To achieve rapid and stable convergence, the adapter’s
initial parameters are generally set as a trainable copy of the diffusion model. This can lead to training
costs for the adapter surpassing those of the diffusion model itself. For example, when training
ControlNet for DiT, when the gradient of ControlNet itself occupies about 18GB VRAM, the gradient
brought by the DiT diffusion model needs to occupy 16GB VRAM, and this cost can be optimized.
As the parameter number and resource demands of diffusion models escalate, training large adapters
for large-scale models presents significant engineering challenges.

Secondly, while modifying the features of intermediate layers can directly alter the output, this
technique still depends on pre-trained parameters to process these changes. When parameters are
fixed, adapting the model to new data by only changing the input of each layer restricts its generative
capabilities. Alternative methods such as LoRA (Hu et al., 2021) or full-parameter fine-tuning permit
direct modifications of parameters but also come with limitations. LoRA is constrained by its scale,
and full-parameter tuning risks losing previously learned generative capabilities.

Finally, the existing design of control adapters, which often assumes a U-Net-like encoder-decoder
diffusion architecture (Zhang et al., 2023; Mou et al., 2024; Zavadski et al., 2023; Zhao et al., 2024)
and focuses primarily on the encoder (Zhang et al., 2023), does not suit for transformer-based
diffusion models. This mismatch arises because it is difficult to distinctly separate the encoder
and decoder components in such models. Indiscriminately controlling the entire transformer model
escalates resource demands due to the necessity of computing and storing the diffusion model’s
gradients. Furthermore, since existing adapters mainly focus on the encoder, their response to control
signals lacks pixel-level precision, particularly problematic in high-precision tasks such as generation
based on low-quality images.

Unidirectional information flow design paradigm. We propose a design paradigm named UniCon
to address these issues. For a clearer understanding, readers are encouraged to refer to Figure1.
Our approach ensures that the pre-trained diffusion model H is used only for inference, thereby
eliminating the need to compute and store its gradients. Information flows unidirectionally from H to
the UniCon adapter CUC , positioning the adapter as a trainable decoder that processes information
from the diffusion model’s layers. Specifically, denote Xh = xh1, xh2, . . . as the outputs from the
intermediate layers of H. The UniCon adapter receives these intermediate features along with the
inputs of the condition c, time step t, and prompt p. The output of the adapter under this step is the
denoising result zt−1 = CUC(c, t, p,Xh). This design establishes a unidirectional information flow
path from zt → H(·) → Xh → CUC(·) → zt−1, ensuring that information does not revert to the
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(e) Replace Diffusion 
“Decoder” Part

Figure 3: Schematic representation of the five different variants we covered in our ablation studies.

Canny Replace Diffusion 
“Decoder” Part

“Decoder”-Part
UniCon Design X4 Downsampled Replace Diffusion 

“Decoder” Part
“Decoder”-Part
UniCon Design

Figure 4: The comparison between decoder-part-focused UniCon and replace diffusion decoder
part. The results indicate that if the complete pre-trained diffusion model is not preserved, there is a
significant decline in generative capabilities. These two models are shown in Figure 3 (d) and (e).

pre-trained diffusion model. By mirroring the architecture and parameters of the diffusion model in
the adapter and using a zero-initialized connector for integration, we can ensure stable training.

This design resolves issues found in existing approaches. Firstly, the diffusion model only participates
in forward inference, eliminating the need for computing and storing its gradients, which significantly
reduces computational costs. Secondly, all adapter parameters are trainable, and the adapter directly
delivers processed outputs, bypassing the fixed parameters of the diffusion model. At the same
time, the well-trained diffusion model remains unchanged, ensuring the generative capabilities are
less likely to be forgotten during fine-tuning. This enhances the generative capabilities and leads
to improved generation quality. Moreover, as there is no need to intervene in the diffusion model –
only to extract the computed features from intermediate layers – our solution is highly adaptable to
different diffusion architectures, from U-Net to transformer model with ease. Finally, the adapter no
longer relies solely on the encoder or parts of the diffusion model but instead produces the output
directly, further improving the preservation of control signals in tasks requiring high precision.

The proposed UniCon adapter designs. In this work, we use DiT and SD U-Net to validate
our UniCon adapter paradigm. Nevertheless, we note that the UniCon design paradigm is widely
applicable and can be employed across various diffusion models. Figure2(a) and Figure2(b) show the
structural details when UniCon is applied to DiT and SD U-Net. The design of the UniCon adapter,
applicable to both DiT and U-Net models, starts with a trainable copy that includes all parameters
and architectures of the diffusion model. In order to connect the diffusion model to the adapter, a
connector module is also required. For each output xh of a DiT block or U-Net block, it introduces
information from xh to the corresponding location in the adapter. Zero-initialized convolutional
layers (ZeroConv) or fully connected layers (ZeroMLP) are simple and stable choices for U-Net
and DiT. This approach prevents unwanted noise from affecting features in trainable replicas at the
beginning of training. We additionally propose here a new connector called Zero-initialization Feature
Transform (ZeroFT). ZeroFT not only utilizes element-wise addition but also incorporates element-
wise multiplication and a shortcut connection, enhancing the integration and transfer of information.
This setup is detailed in Figure2(c). The parameters in both two layers within ZeroFT – whether
convolutional or fully-connected layers – are initialized to zero. According to our experiments,
ZeroFT is more effective than ZeroMLP/Conv in generating effects and controlling performance.
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Task ControlNet Controllability↑ FID↓ Clip-Score↑Size

Canny
(SSIM)

Encoder 0.4748 51.52 0.7724
Decoder 0.5131 59.32 0.7507
Skip-Layer 0.4983 49.78 0.7776
Full 0.5053 50.17 0.7818

SR
(PSNR)

Encoder 34.82 26.43 0.7996
Decoder 34.85 25.84 0.8013
Skip-Layer 35.49 24.99 0.8009
Full 36.53 23.04 0.8026

(a) The results of copy different parts in ControlNet.

Task Connector Controllability↑ FID↓ Clip-Score↑Type

Canny
(SSIM)

ZeroMLP 0.5343 55.22 0.7612
ShareAttn 0.5236 56.22 0.7606

ZeroFT 0.5426 52.31 0.7696

SR
(PSNR)

ZeroMLP 35.67 22.99 0.8013
ShareAttn 35.55 23.03 0.8012

ZeroFT 35.64 22.07 0.8025

(b) The results of different connector designs used in
the UniCon Adapter.

Task Adapter Unidirectional Controllability↑ Generation Quality Text Consistency
FID↓ Clip-IQA↑ MAN-IQA↑ MUSIQ↑ Clip-Score↑

Canny
(SSIM)

Skip-Layer ✗ 0.4983 49.78 0.6629 0.1978 66.05 0.7776
✓ 0.5078 56.93 0.6224 0.1737 63.66 0.7561

Decoder ✗ 0.5131 59.32 0.6047 0.1621 62.51 0.7507
✓ 0.5343 55.22 0.6347 0.1780 64.27 0.7612

Full ✗ 0.5053 50.17 0.6397 0.1867 64.70 0.7818
✓ 0.5458 46.71 0.6577 0.2029 66.45 0.7889

SR
(PSNR)

Decoder ✗ 34.85 25.84 0.6979 0.2325 68.26 0.8013
✓ 35.59 23.55 0.7036 0.2358 68.61 0.8018

Full ✗ 36.53 23.04 0.7212 0.2609 69.91 0.8026
✓ 37.34 20.34 0.7251 0.2831 69.99 0.8022

(c) The effect of the proposed unidirectional information flow design.

Table 1: Ablation study of different adapter designs. The diffusion model used in these experiments
is DiT transformer-based model. ↑ indicates the larger the better and ↓ indicates the lower the better.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Tasks and datasets. We employ five different conditions image generation for testing: canny edge
(Canny, 1986), depth maps (Ranftl et al., 2021), OpenPose (Cao et al., 2019), 4× downsampling (SR)
(Wang et al., 2018), and blurring (sigma=2) followed by 4x downsampling (deblur+downsampling)
(Kong et al., 2022; Yu et al., 2024). These conditions can broadly be classified into two categories:
(1) tasks that require the model to generate high-level semantic content, such as OpenPose, depth
maps, and canny edge, which we refer as high-level control generation tasks; and (2) tasks that
emphasize local generation and require higher precision in control, such as 4× downsampling and
bluring+downsampling, which we call low-level control generation. The images for training are
selected from the LAION dataset (Schuhmann et al., 2022). We randomly select 2 million images
with resolutions higher than 512× 512. We center-crop and resize these images to 512× 512, and
pair them with the original text annotations from the LAION dataset to form image-text pairs. All
images are pre-processed to compute the various conditions required for training, except for the Pose
Condition. For the Pose Condition, we filter out images where no human pose was detected or key
poses accounted for less than 30% of the body. We also exclude images with more than three people,
as the pose detection error rate is higher in such cases.

Implementation details. In our experiments, we employed the PixelArt-α diffusion model as a
representative example of the DiT model (Peebles & Xie, 2023) and StableDiffusion-2.1 (Rombach
et al., 2022) as a representative example of the U-Net model. The training of the ControlNets was
conducted using IDDPM (Nichol & Dhariwal, 2021), maintaining the same noise schedule as the
diffusion models. All experiments were performed on four NVIDIA-RTX A6000 GPUs, employing
the AdamW optimizer with a learning rate of 2× 10−4. The experiments were conducted with a total
batch size of 64 and a total of 100,000 training steps.

Evaluation. We sample 1,000 images from the LAION Dataset for testing. Consistent with the
training setting, the pose condition in the test set underwent the same image selection criteria.
There are no duplicate images between the training and testing sets. To assess the controllability
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A traditional Japanese breakfast, which includes fish, rice, miso soup, vegetables.

Canny SD-T2I SD-ControlNet SD-UniCon Canny DiT-ControlNet DiT-UniCon

Depth Map DiT-ControlNet DiT-UniCon

Classic Contemporary Foyer.

Depth Map SD-T2I SD-ControlNet SD-UniCon

Yellow Ranunculus.

Pose DiT-ControlNet DiT-UniCon

A man in Black Slim Fit Stretch Cotton Shirt.

Pose DiT-ControlNet DiT-UniCon

A beautiful actress.

Contemporary mountain home in steamboat springs …

Figure 5: Comparison of different methods. We present the qualitative comparisons ControlNet
(Zhang et al., 2023) and T2I (Mou et al., 2024) with both Stable Diffusion (SD) (Rombach et al.,
2022) and Diffusion Transformer (DiT) (Peebles & Xie, 2023).

of different methods, we evaluate the alignment between the conditions of the generated images
and the ground-truth conditions. Different metrics were chosen based on the type of condition:
peak signal-to-noise ratio (PSNR) for low-level conditions; structural similarity (SSIM) (Wang
et al., 2004) for canny edge conditions; mean square error (MSE) for depth conditions; and mean
average precision (mAP) for object keypoint similarity in pose conditions (Zhao et al., 2024). In
addition to assessing controllability, we evaluated the quality of generation using metrics such as FID
(Heusel et al., 2017), Clip-IQA (Wang et al., 2023a), MAN-IQA (Yang et al., 2022), and MUSIQ (Ke
et al., 2021). Furthermore, the Clip-Score (Hessel et al., 2021) was used to evaluate the consistency
between generated images and their corresponding text prompts, ensuring an integrated and thorough
assessment of both image quality and fidelity to conditioned inputs.

4.2 ABLATION STUDY

The effect of copying “encoders” and copying “decoders” on diffusion control. Using Control-
Net as an example, we explored the influence of different parts of diffusion models on controlled
generation. The design of ControlNet involves making a trainable copy of the network’s “encoder”.
Based on the DiT architecture, we further designed three variants. The first variant involves making
a trainable copy of and controlling the “decoder” part (the latter half) of the network, as shown in
Figure 3(a). The second variant controls the entire network, covering both the encoder and decoder
parts. To keep the parameter number constant, we adopt a method of skipping and deleting every
other block, as shown in Figure 3(b), referred to as the “Skip-Layer” design. The final variant involves
making a trainable copy of the entire diffusion model, which we call the “Full” version.

We test these variants on canny and SR tasks. The results are displayed in Table 1a. First, comparing
different designs focusing on the encoder and decoder, the results indicate that while focusing on
the encoder leads to better image quality, focusing on the decoder enhances controllability. This
is probably because the understanding and generation of images and control signals are primarily
conducted in the first half of the network, whereas the precise control of generation details occurs
in the latter half. Specifically, for tasks such as SR that demand precise local control, a decoder-
focused design might be more suitable. Given the distinct advantages of both encoder and decoder in
controlling generation, we further explored the effects of utilizing both simultaneously. The results
from the Skip-Layer variant confirmed this approach, demonstrating improved generative performance
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Figure 6: Comparison of training VRAM usage and training time of different adapter designs.

and controllability at the same parameter number. This proves that for DiT, distinguishing between
encoder and decoder is not effective, and we should leverage the capabilities of different parts of
the entire diffusion model. The Full version, building upon the Skip-Layer, further increased the
parameter number, and its enhanced generative performance and controllability also affirmed the
importance of adapter capacity in controlling diffusion models.

Unidirectional information flow v.s. changing feature directly. The method proposed in this
paper differs significantly from existing approaches by introducing the concept of unidirectional
information flow. Maintaining the same adapter architecture and initialization, we opted to output
using adapters rather than directly changing the features of the diffusion model. We test various
adapter variants mentioned above, and the results are presented in Table 1c. Our results show
that employing the unidirectional information flow for output substantially enhances performance,
improving controllability and generative quality in both high-level and low-level tasks, whether using
the diffusion model’s “decoder” part or the full model as the adapter. For the “Skip-Layer” adapter,
the unidirectional information flow design did not lead to performance gains. This is intuitively due
to the skip-layer design compromising the output capability of the copied diffusion model. While
the Skip-Layer design enhances the effectiveness of ControlNet, it is not suitable for UniCon. This
ablation study demonstrates that a simple implementation of unidirectional information flow can
significantly enhance both control effectiveness and generation quality.

Training cost. A major advantage of UniCon is its computational efficiency. As gradients do
not need to be computed and stored for the diffusion model, UniCon significantly reduces VRAM
usage and speeds up training. We compare VRAM occupation and training speed between UniCon
and ControlNet in a single-GPU setup without any acceleration libraries. All experiments maintain
consistency with standard training in terms of model parameters, diffusion settings. All necessary
feature maps, such as text tokens, latent condition images, and latent ground-truth images, were
pre-computed. We select the same 100 training batches, each with a size of 16, and all speed tests
were performed on the same NVIDIA-RTX A6000 GPU. All parameters and computations were
performed in BFloat16 precision. We detail the VRAM consumption as follows: (1) Weight: VRAM
used just for loading the model. (2) Activation: VRAM used for network forward propagation
without gradient computation. (3) Gradient: VRAM used to store gradients. (4) Optimizer: VRAM
used for updating learnable parameters of the model. We also record the time costs for network
forward propagation (FP) and backward propagation (BP). FP time accounted for the time spent on
the diffusion model forward step, and BP time included the total time for updating gradients and
optimizer parameters. Finally, we report the peak VRAM and average time costs over 100 iterations,
with results presented in Figure 6. It can be seen that UniCon significantly reduces VRAM usage
compared to ControlNet, saving nearly half the storage required for gradients, which are a major
component of VRAM consumption during training. In terms of training time, because it eliminates
the need to compute gradients for the diffusion model, the time spent on BP is also nearly halved.
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X4 Downsampled DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground Truth

X4 Downsampled SD-T2I SD-ControlNet SD-UniCon Ground Truth

X4 Downsampled SD-T2I SD-ControlNet SD-UniCon Ground Truth

Figure 7: Comparison of different methods on conditional generation with low-level control inputs.

The choice of the connector. We explored various methods for connecting diffusion models with
adapters and found that different connectors lead to different outcomes. Based on the DiT diffusion
model, we test three connector designs, including ZeroMLP, which is consistent with the ControlNet
(Zhang et al., 2023; Li et al., 2024), ShareAttention (Esser et al., 2024; Zhang & Agrawala, 2024),
which is suited for Transformer attention layers, and ZeroFT. The results of these designs are displayed
in Table 1b. The results indicate that our proposed ZeroFT connector offers superior control and
generative performance for both high-level and low-level tasks.

Retaining the original diffusion model preserves the previously learned generative capabilities.
During the development of UniCon, a natural question emerged: Given that the outputs are already
handled by the adapter, is it necessary to retain the pre-trained diffusion model, or can we just
fine-tune a part of it? We compared the UniCon structure shown in Figure 3(d) with a structure that
discards part of the diffusion model as shown in Figure 3(e). Figure 4 presents the results of this
comparison. The findings indicate that if the complete pre-trained diffusion model is not preserved,
there is a significant decline in generative capabilities. This demonstrates that although the diffusion
model in UniCon is used only for inference, the generative capabilities it has learned can still be
effectively utilized by the UniCon adapter.

4.3 COMPARISON

We also compare UniCon with existing adapter designs. For the DiT (Peebles & Xie, 2023) diffusion
models, we primarily conduct a direct comparison between UniCon and ControlNet (Zhang et al.,
2023). For the SD U-Net diffusion models, we compared UniCon with both ControlNet (Zhang et al.,
2023) and T2I-Adapter (Mou et al., 2024). These comparisons of controllable diffusion models were
conducted across all datasets.

Table 2 shows the results. It can be seen that our proposed UniCon outperforms the ControlNet
and T2I-Adapter in all tasks. In terms of controllability, UniCon excels in maintaining control
signals. UniCon also outperforms existing methods in image quality metrics, especially FID scores.
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Diffusion
Model Task Adapter Controllability Generation Quality Text Consistency

Metric Value FID↓ Clip-IQA↑ MAN-IQA↑ MUSIQ↑ Clip-Score↑

DiT

Canny ControlNet SSIM↑ 0.4748 51.52 0.6439 0.1861 65.24 0.7724
UniCon SSIM↑ 0.5458 46.71 0.6577 0.2029 66.45 0.7889

Depth ControlNet MSE↓ 84.65 53.63 0.6469 0.1838 64.88 0.7722
UniCon MSE↓ 82.56 51.49 0.6514 0.2002 65.51 0.7785

Pose ControlNet mAP↑ 0.4135 58.62 0.6332 0.1819 63.94 0.7430
UniCon mAP↑ 0.4627 57.85 0.6600 0.1929 65.00 0.7545

SR
ControlNet PSNR↑ 34.82 26.43 0.7147 0.2459 69.37 0.7996
UniCon-half PSNR↑ 35.64 22.07 0.7042 0.2675 69.51 0.8025
UniCon PSNR↑ 37.34 20.34 0.7251 0.2831 69.99 0.8022

Deblur+
SR

ControlNet PSNR↑ 37.63 29.18 0.7199 0.2517 69.72 0.8004
UniCon-half PSNR↑ 38.33 25.12 0.6998 0.2563 69.31 0.8014
UniCon PSNR↑ 41.13 21.29 0.7089 0.2701 69.80 0.8012

SD
U-Net

Canny
ControlNet SSIM↑ 0.4895 49.80 0.6683 0.2215 67.19 0.8168
T2I-Adapter SSIM↑ 0.3936 52.05 0.6783 0.2266 68.16 0.8155
UniCon SSIM↑ 0.5570 47.11 0.6704 0.2335 67.99 0.8189

Depth
ControlNet MSE↓ 85.70 54.30 0.6828 0.2262 67.90 0.8202
T2I-Adapter MSE↓ 87.72 55.09 0.6906 0.2331 68.12 0.8209
UniCon MSE↓ 85.00 53.45 0.6807 0.2262 67.85 0.8214

SR

ControlNet PSNR↑ 31.66 30.19 0.7373 0.3266 70.94 0.8044
T2I-Adapter PSNR↑ 18.94 48.20 0.6822 0.2795 70.91 0.7812
UniCon-half PSNR↑ 34.38 28.29 0.7387 0.3244 69.76 0.8037
UniCon PSNR↑ 35.69 22.80 0.7442 0.3271 70.48 0.8027

Table 2: Comparisons of different controllable diffusion models. ↑ indicates the larger the better and
↓ indicates the lower the better.

It should be noted that although the T2I-Adapter method is better than UniCon in some image
quality metrics, the control effect of the T2I method is not good. Combining our ablation studies
and comparative experiments, we also found that the scale of the adapter impacts the final outcomes.
UniCon-Half, with only half the parameters, performs notably worse than the full-parameter UniCon
but still performs better than ControlNet with a comparable parameter number. Notably, even the
full-parameter UniCon has a lower training computational cost than ControlNet.

Figure 5 shows some visual comparisons of high-level conditional generation tasks. As one can see
that our proposed UniCon excels in generating images with superior detail structure, such as more
intricate facial features, and fewer artifacts and tears. Additionally, UniCon surpasses other methods
in precision control, as demonstrated in the comparison of the second row’s first set. Although the
sushi rolls are small in scale and complex in structure, UniCon accurately generates sushi rolls at the
correct location, faithfully following the control conditions, unlike other methods that fail to strictly
adhere to these conditions and their generative capabilities are inferior to UniCon. Figure 7 further
illustrates UniCon’s performance in low-level control generation tasks, which demand high fidelity.
Our method not only maintains high-quality generation but also strictly adheres to the controls of the
input images, effectively generating even the smallest structures. UniCon demonstrates better results
in tasks such as image restoration and super-resolution based on diffusion models, showcasing broad
application prospects. More results can be found in Appendix.

5 CONCLUSION

This paper presents UniCon, a novel approach tailored for controlling large-scale diffusion models.
UniCon leverages unidirectional flow from the diffusion network to the adapter, simplifying the
computational process by eliminating the need to compute and store gradients of the diffusion
model. UniCon significantly reduces the VRAM requirements and enhances training speeds while
maintaining high fidelity in generated images.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. Hyperstyle: Stylegan inversion with
hypernetworks for real image editing. In Proceedings of the IEEE/CVF conference on computer Vision and
pattern recognition, pp. 18511–18521, 2022.
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A BROADER IMPACT

Controlled generation technology, as a pivotal innovation in the field of diffusion models, exerts
a significant impact across multiple sectors of society. In the creative industries, it enables artists
and designers to realize complex visions with unprecedented precision and flexibility, fostering
innovation in digital art, design, and multimedia content creation. In commercial applications,
controlled generation technology enhances marketing strategies by offering more targeted and
dynamic advertising visuals, effectively engaging consumers. Additionally, its influence extends
to education and training, where it can revolutionize teaching methods and materials, especially in
visually-dependent disciplines, by generating customized educational content and simulations.

Although our system enables artists, designers, and content creators to realize their creative visions
through precise control, it is crucial to recognize the potential negative societal impacts that could
arise from misuse or abuse, similar to other AI models for image generation and editing. To address
these issues, responsible deployment practices, ethical standards, and including special markers in
generated images to increase transparency are essential steps in achieving responsible use.

B LIMITATIONS

UniCon’s training process eliminates the need for the gradient of the base generative model, signifi-
cantly reducing computational overhead. However, UniCon does not decrease the network’s parameter
count, resulting in limited speed improvement during sampling compared to DiT-ControlNet.

C MORE DETAILS

Comparison Models. In our experiment with the stable diffusion v2.1 (SD), we employ the official
versions of the ControlNet (Zhang et al., 2023) and T2IAdapter (Mou et al., 2024) models without
any modifications. Since ControlNet is originally designed for U-Net, there is no official version
compatible with the DiT transformer-base diffusion model. Therefore, the DiT-ControlNet variant
used in our study is a reproduction by PixArt-α (Chen et al., 2023). Following the design principles of
ControlNet, the initial halves of the DiT blocks are copied and trained as the controller. The primary
difference from the U-Net-based ControlNet is the lack of skip connections in DiT-ControlNet.
This makes DiT-ControlNet unable to detach the gradient of the "Encoder" part of the base model,
significantly increasing peak VRAM usage.

Sampling scheme. We employ a second-order DPM solver sampler to generate images, with a
sampling step of 24. In our PixArt (Chen et al., 2023) experiment, we incorporated null tokens as
negative prompts and applied a CFG (Ho & Salimans, 2022) scale of 4.5. Conversely, in the SD v2.1
experiment, the negative prompt included terms such as “blurring, dirty, messy, worst quality, low
quality, frames, watermark, signature, jpeg artifacts, deformed, low-res, over-smooth”, and we used
a CFG scale of 7.5.

0 5 10 15 20 25 30 35 40 45 50 55
Hours

0.1

0.12

0.14

0.16

Lo
ss

ControlNet
UniCon-half

Figure 8: Comparison of training curves between ControlNet and UniCon-half for 100K iterations
under Canny edge condition. Notice that ControlNet and UniCon have similar values at the start of
training, but show differences after smoothing due to UniCon’s faster convergence.
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Task Training Steps Controllability Generation Quality Text Consistency
Metric Value FID↓ Clip-IQA↑ MAN-IQA↑ MUSIQ↑ Clip-Score↑

Canny

50K SSIM↑ 0.2974 70.40 0.4326 0.1167 50.96 0.7623
100K SSIM↑ 0.5458 46.71 0.6577 0.2029 66.45 0.7889
200K SSIM↑ 0.5400 46.49 0.6529 0.2079 66.78 0.7898
400K SSIM↑ 0.5507 46.13 0.6633 0.2082 66.50 0.7933

LQ

50K PSNR↑ 36.48 22.86 0.6996 0.2401 68.43 0.7909
100K PSNR↑ 37.34 20.34 0.7251 0.2831 69.99 0.8022
200K PSNR↑ 37.40 20.07 0.7172 0.2846 69.42 0.8014
400K PSNR↑ 37.35 19.94 0.7291 0.2819 69.97 0.8009

Table 3: Comparisons of different training steps for DiT-UniCon-Full. ↑ indicates the larger the better
and ↓ indicates the lower the better. Bold represents the best performance.
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Figure 9: Comparison of (a) DiT and (b) U-Net forward and backward propagating TFloats with
different adapters.

Metric calculations. We computed PSNR, SSIM, LPIPS, CLIP-IQA, MANIQA, and MUSIQ using
the pyiqa library1, with PSNR specifically calculated on the Y channel. FID scores were determined
via the clean-FID2. Additionally, MSE was calculated in the RGB domain, with values ranging from
0 to 256. We adopt the mean average precision (mAP) based on object keypoint similarity (OKS)
from (Cao et al., 2019; Zhao et al., 2024) as the metric for the pose condition.

Convergence tendency. To highlight UniCon’s training advantages, we compared its convergence
trends with ControlNet. As shown in Figure 8, UniCon retains ControlNet’s fast convergence.
Despite reversing the direction of information flow, UniCon ensures effective initialization by using a
zero-initialized Connector Block and copying parameters from the pre-trained base model.

Training Steps. We evaluated the performance of UniCon across varying training steps to identify
the optimal step size. As presented in Table 3, UniCon fails to converge at 50K steps for both
LQ and Canny tasks. Performance improves substantially from 50K to 100K steps, while further
increases beyond 100K yield only marginal gains. Hence, 100K steps is determined to be the most
cost-effective training step size.

Computational evaluation. As shown in Figure 9, we further analyzed the computational cost
of each adaptor during forward and backward propagation. With the same number of learnable
parameters, UniCon’s total computational cost is lower than ControlNet’s. In the UNet-Half setting,
UniCon’s FP TFloats are slightly higher because it copies the Decoder, which has more parameters

1https://github.com/chaofengc/IQA-PyTorch
2https://github.com/GaParmar/clean-fid
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Task Adapter Controllability Generation Quality Text Consistency
Metric Value FID↓ Clip-IQA↑ MAN-IQA↑ MUSIQ↑ Clip-Score↑

Canny

ControlNet SSIM↑ 0.4895 49.80 0.6683 0.2215 67.19 0.8168
UniControlNet SSIM↑ 0.4996 49.95 0.6749 0.2348 67.95 0.8152
GLIGEN SSIM↑ 0.4447 55.42 0.6802 0.2280 67.91 0.7901
T2I-Adapter SSIM↑ 0.3936 52.05 0.6783 0.2266 68.16 0.8155
ControlNeXt SSIM↑ 0.4568 53.03 0.6616 0.2153 66.68 0.8141
UniCon SSIM↑ 0.5570 47.11 0.6704 0.2335 67.99 0.8189

Depth

ControlNet MSE↓ 85.70 54.30 0.6828 0.2262 67.90 0.8202
UniControlNet MSE↓ 85.89 54.49 0.6846 0.2302 67.89 0.8217
GLIGEN MSE↓ 87.65 58.25 0.6851 0.2234 68.41 0.7964
T2I-Adapter MSE↓ 87.74 55.09 0.6906 0.2331 68.12 0.8209
ControlNeXt MSE↓ 86.81 55.71 0.6799 0.2291 68.00 0.8198
UniCon MSE↓ 85.00 53.45 0.6807 0.2262 67.85 0.8214

Table 4: Comparisons of different adapters for SD-UNet. ↑ indicates the larger the better and ↓
indicates the lower the better. Bold represents the best performance.

Adaptor Base Model PSNR↑ LPIPS↓ MUSIQ↑ CLIP-Score↑ FID↓
StableSR SD2.1 35.39 0.0839 69.57 0.7786 37.85
DiffBIR SD2.1 34.81 0.0940 69.76 0.7844 32.85
PASD SD2.1 36.17 0.0552 69.62 0.7925 25.61

UniCon SD2.1 35.69 0.0530 70.48 0.8027 22.80
UniCon PixArt-α 37.34 0.0453 69.99 0.8022 20.34

Table 5: Results of different diffusion-based image restoration models. ↑ indicates the larger the
better and ↓ indicates the lower the better. Bold represents the best performance.

than ControlNet’s copied Encoder. While T2I-Adaptor has the lowest FP TFloats, its control capability
is significantly weaker than UniCon’s, and its performance degrades noticeably in low-level tasks, as
shown in Table 2.

D PSEUDO CODES

Training Cost Experiments. In Algorithm 1, we present a pseudo code to evaluate the single-round
training cost. The sampling methods for training noise and timestep remain consistent with those
used during training. We subsequently report the peak memory usage and average time based on one
hundred rounds of training cost evaluation.

Core Difference between ControlNet and UniCon. Algorithm 2 and Algorithm 3 illustrate the
pseudo codes for the forward passes of ControlNet and UniCon, respectively. Unlike ControlNet,
UniCon avoids storing the base model’s gradients during forward propagation and truncates all
gradient connections from the base model to the controller. Consequently, the base model gradients
are not utilized during backpropagation. These modifications significantly reduce UniCon’s memory
overhead and training time compared to ControlNet.

E MORE COMPARISON RESULTS

More Adapters on Highlevel Tasks. To comprehensively compare UniCon’s performance, we
evaluated it against other high-level control methods on the UNet model, including UniControl-
Net (Zhao et al., 2024), GLIGEN (Li et al., 2023b), and ControNeXt (Peng et al., 2024). As shown in
Table 4, UniCon achieved the best controllability and FID scores on both canny and depth tasks. NR
metrics confirm that UniCon maintains strong control capabilities without notably compromising
image quality.

More Adapters on Lowlevel Tasks. Considering that several diffusion-based methods have been
applied to low-level tasks, we compared UniCon with related approaches in image restoration (Wang
et al., 2023b; Lin et al., 2023; Yang et al., 2023). As shown in Table 5, with SD2.1 as the base
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Adapter Condition Consistency Image Quality Text Consistency Diversity
PSNR↑ SSIM↑ LPIPS↓ Clip-IQA↑ MAN-IQA↑ MUSIQ↑ Clip-Score↑ FID↓

ControlNet 34.82 0.9352 0.0650 0.7147 0.2459 69.37 0.7996 26.43
ControlNeXt 34.31 0.9329 0.0679 0.7171 0.2534 69.36 0.7997 26.28
UniCon-Half 35.64 0.9512 0.0475 0.7042 0.2675 69.51 0.8025 22.07
UniCon-Half† 36.41 0.9512 0.0462 0.7189 0.2782 69.66 0.8008 21.34

Table 6: Comparisons of different adapters for PixArt-α on ×4 Super-Resolution task. † represents
the use of the pre-trained ControlNeXt model as the base model. ↑ indicates the larger the better and
↓ indicates the lower the better. Bold represents the best performance.

model, UniCon achieves the highest image quality, with fidelity significantly surpassing StableSR
and DiffBIR, and comparable to PASD. Furthermore, using PixArt-α as the base model, UniCon’s
fidelity improves significantly.

Discussion of ControlNeXt. Since ControlNeXt introduces only a small number of additional
parameters during training (Peng et al., 2024), it offers a significant advantage in inference speed
compared to other ControlNet variants. However, as shown in Table 6, ControlNeXt’s control capabil-
ities are slightly below ControlNet and significantly behind UniCon. While UniCon requires longer
inference time, it delivers better performance in scenarios with stricter consistency requirements.
Additionally, we found that UniCon and ControlNeXt offer complementary benefits. Using Control-
NeXt as UniCon’s pre-trained model significantly boosts UniCon’s performance, achieving much
higher fidelity and quality than ControlNet with the same number of parameters. This two-stage
training process can be viewed as a course-to-fine approach with high efficiency.

Visual Comparison. Due to space limitations, we provide more visual comparison results in
Figure 14, Figure 15 and Figure 16. Massive visual comparisons prove our method not only maintains
high-quality generation but also strictly adheres to the controls of the input images.

F FULL ABLATION STUDY RESULTS

Due to space limitations in the main text, we only present some results in the main text. We present
the complete ablation experimental results in Table 7, Figure 10, Figure 11, Figure 12 and Figure 13.

The Effect of Copying “Encoders” and “Decoders” on Diffusion Control. Visual comparisons
of different adapter structures in Figure 10 reveal that the “Encoders” model exhibits insufficient
controllability. In the canny task, this inadequacy manifests as the addition of objects misaligned with
the canny lines, such as the giraffe’s neck in Figure 10(a). In the SR task, it results in color shifts and
artifacts, such as the overall darkness and the sky with messy spots in Figure 10(b). Conversely, while
copying “Decoders” improves controllability, it compromises the quality of the generated images, as
evidenced by the coloring errors on the face in Figure 10(a) and the messy textures on vegetables and
human faces in Figure 10(b). This aligns with the conclusion that focusing on encoders leads to better
generation effects, whereas focusing on decoders enhances controllability. As shown in Table 7, the
“Skip-Layer” type achieves the highest controllability and image quality among the three copying
schemes with the same parameter count. The “Full” copying structure achieves higher metrics and
better visual effects by adding parameters on top of the “Skip-Layer” structure, as demonstrated in
Figure 10(a), where the “Full” type maintains facial features intact from multiple angles.

Unidirectional Information Flow vs. Changing Features Directly. As indicated in Table 7,
using adapters as outputs under the “Skip-Layer” structure negatively impacts the Canny task
and causes collapses in the SR task. This likely results from error accumulation in the adapters
during initialization with the "Skip-Layer" copying scheme. These errors are less influential when
the base diffusion model is used as the output but affect training stability when adapters directly
output. Beyond the “Skip-Layer” type, unidirectional information flow steadily improves the model’s
controllability. In the canny task, unidirectional information flow produces results more consistent
with the conditioned lines, as seen in Figure 11(a): the “Full” case 1 curtains and the “Decoder” case 1
water surface. In the SR task, it enhances fidelity, as exemplified by the Chinese string in Figure 11(b).
In conclusion, Figure 11 shows that unidirectional information flow significantly reduces training
overhead while maintaining overall image quality without degradation.
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The Choice of Connector. As demonstrated in Table 7, using ZeroFT as the connector in both
the Canny and SR tasks maintains the highest controllability and image quality metrics. Employing
ZeroFT enables the network to effectively manage relationships between objects in complex scenes.
For instance, with ZeroFT, the network can generate a more natural half-length photo of the woman
in Figure 12(a) and accurately process the margin between the hollow chandelier and wall in
Figure 12(b).

The Influence of Cross-Attention Blocks in Adapters. Previous work, such as BrushNet (Ju
et al., 2024), has discussed that removing cross-attention blocks connected to the text prompt in
the Adapter module can enhance the fidelity of ControlNet. We investigated whether this approach
would also be effective for UniCon. Therefore, we tested the impact of removing cross-attention
blocks in the canny and SR tasks in our complete ablation study. As shown in Table 7, removing
cross-attention blocks decreases all metrics in the canny task but improves them in the SR task.
Visually, dropping cross-attention causes incorrect color matching in the canny task, as seen in
Figure 13(a). However, in the SR task, it prevents the generation of cluttered high-frequency textures,
as illustrated in Figure 13(b). We speculate that this is because the SR condition already provides
sufficient information, making the text prompt less critical, while excessive text guidance can cause
CFG to produce messy high-frequency textures. In the canny task, the network relies more on the
text prompt to supplement the information that the condition alone cannot provide. Consequently, we
removed the cross-attention module in adapters for the SR and Blur+SR tasks.
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Encoder Decoder Skip-Layer Full

Blond girl sitting near red car.

A dining table.

×4 Downsampled Ground Truth

Encoder Decoder Skip-Layer Full

Watercolor painting of a deer.

Blonde Pixie, Disconnected.

Canny

(b)

(a)

Figure 10: Comparison of different variants of UniCon on conditional generation with (a) Canny and
(b) downsampled images.

Canny W/O W/ Canny W/O W/ Canny W/O W/

Tea plantation in Cameron highlands.

Design of modern living room.

Moose and Denali after sunrise from mirror pond.

Skip-Layer Decoder Full
White bedroom furniture, a white bedroom with a warm, boho summer vibe.

Soothing bedrooms that take inspiration from the clouds. Elbe Sandstone, Morning, Haze, Rock Needles, Landscape.

×4 Downsampled W/O W/ ×4 Downsampled W/O W/

Raw green gingham linen skinny tie. A girl with curly hair wearing a headpiece.

Decoder Full

A church at night.

Ground Truth Ground Truth

Head coach James Jones and Alex Copeland at a press conference at Shanghai Disneyland.

(a)

(b)

Figure 11: Comparison of different variants of UniCon with or without unidirectional flow on
conditional generation with (a) Canny and (b) downsampled images.
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ZeroConv ShareAttn ZeroFT

Rain squall near sunset, Grand Canyon NP.

A woman in a pale pink dress.

Canny

ZeroConv ShareAttn ZeroFT Ground Truth

old man in black suite holding camera portrait Italy black and white.

modern living room accessories furniture.

×4 Downsampled

(a)

(b)

Figure 12: Comparison of UniCon using different connectors on conditional generation with (a)
Canny and (b) downsampled images.

W/O W/

Tamako Love Story, Kyoto Animation.

Panoramic View of Kawaguchiko.

Canny W/O W/ Ground Truth

Concrete Wall Designs Striking Bedrooms.

Outdoor Patio with Wicker Rattan Set.

×4 Downsampled

(a) (b)

Figure 13: Comparison of UniCon adopting cross attention blocks in Adapter with (a) Canny and (b)
downsampled images.
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DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground Truth×4 Downsampled

DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground Truth×4 Downsampled

DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground TruthBlur & Downsample

DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground Truth×4 Downsampled

DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground TruthBlur & Downsample

DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground TruthBlur & Downsample

DiT-ControlNet DiT-UniCon-Half DiT-UniCon Ground TruthBlur & Downsample

Figure 14: Qualitative comparison of DiT with ControlNet (Zhang et al., 2023) and UniCon dealing
with downsampled image condition.
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Canny DiT-ControlNet DiT-UniCon

White Wolf With Blue Eyes. A man in a suit was standing in the astronomy exhibition hall.

Canny DiT-ControlNet DiT-UniCon

Canny DiT-ControlNet DiT-UniCon

A person is rowing a boat on the lake with snow-capped mountains in the background. A bird in flight, captured in mid-air.

Canny DiT-ControlNet DiT-UniCon

Depth DiT-ControlNet DiT-UniCon

Two birds standing on branches. A bear is in the grass.

Depth DiT-ControlNet DiT-UniCon

Depth DiT-ControlNet DiT-UniCon

The table is set with a variety of tableware and oranges. A bridge on the lake, autumn.

Depth DiT-ControlNet DiT-UniCon

Pose DiT-ControlNet DiT-UniCon

A man and a woman posing together, both of them wearing sunglasses. A person performing a push-up exercise.

Pose DiT-ControlNet DiT-UniCon

Pose DiT-ControlNet DiT-UniCon

Corvo Attano, the protagonist of "Dishonored." A woman wearing a garment with a shiny, metallic texture.

Pose DiT-ControlNet DiT-UniCon

Figure 15: Qualitative comparison of DiT with ControlNet (Zhang et al., 2023) and UniCon dealing
with canny, depth, and pose image conditions.
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Canny SD-T2I SD-ControlNet

A collection of macarons.

SD-UniCon

Canny SD-T2I SD-ControlNet

Woman and dog on the grass.

SD-UniCon

Depth SD-T2I SD-ControlNet

A lotus flower in full bloom.

SD-UniCon

A modern living room with a contemporary design.

Depth SD-T2I SD-ControlNet SD-UniCon

SD-T2I SD-ControlNet SD-UniCon Ground Truth×4 Downsampled

SD-T2I SD-ControlNet SD-UniCon Ground Truth×4 Downsampled

Figure 16: Qualitative comparison of SD with T2I-Adapter (Mou et al., 2024), ControlNet (Zhang
et al., 2023) and UniCon dealing with canny, depth, and downsampled image conditions.
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Algorithm 1 Pseudo Code for One Round Training Cost Evaluation

Require: sampled noise (eta), noised input (xt), timestep (t), prompt (y), condition (c)
1: device = torch.device(0)
2: model = model.to(device)
3: WEIGHT_MEMORY = torch.cuda.max_memory_allocated(device)
4: with torch.no_grad():

pred_eta = model(xt, t, y, c)
_ = MSE_Loss(pred_eta, eta)

5: ACTIVATION_MEMORY = torch.cuda.max_memory_allocated(device)
6: pred_eta = model(xt, t, y, c)

loss = MSE_Loss(pred_eta, eta)
loss.backward()

7: GRADIENT_MEMORY = torch.cuda.max_memory_allocated(device)
8: fp_start_time = time.time()
9: pred_eta = model(xt, t, y, c)

loss = MSE_Loss(pred_eta, eta)
10: FP_TIME = time.time() - fp_start_time
11: bp_start_time = time.time()
12: optimizer.zero_grad() loss.backward()

optimizer.step()
13: BP_TIME = time.time() - bp_start_time
14: OPTIMIZER_MEMORY = torch.cuda.max_memory_allocated(device)
15: return *_MEMORY, *_TIME

Algorithm 2 Pseudo Code for DiT-ControlNet Forward Pass

Require: noised input (xt), timestep (t), prompt embedding (y), condition (c)
1: x = base_model.image_embedding(xt)
2: t_emb = base_model.timestep_embedding(t)
3: c = controller.image_embedding(c)
4: t_emb_cond = controller.timestep_embedding(t)
5: x = x + c
6: for base_block, control_block in zip(base_model.blocks, controller.blocks) do
7: x = base_block(x, t_emb)
8: c = control_block(c, t_emb_cond)
9: x = x + control_block.connector(c)

10: end for
11: pred = base_model.proj_out(x)
12: return pred

Algorithm 3 Pseudo Code for DiT-UniCon Forward Pass

Require: noised input (xt), timestep (t), prompt embedding (y), condition (c)
1: with torch.no_grad():

x = base_model.image_embedding(xt).detach()
t_emb = base_model.timestep_embedding(t).detach()

2: c = controller.image_embedding(c)
3: t_emb_cond = controller.timestep_embedding(t)
4: c = c + x
5: for base_block, control_block in zip(base_model.blocks, controller.blocks) do
6: with torch.no_grad():

x = base_block(x, t_emb).detach()
7: c = control_block(c, t_emb_cond)
8: c = c + control_block.connector(x)
9: end for

10: pred = controller.proj_out(c)
11: return pred
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