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ABSTRACT

When sampling data of specific classes (i.e., known classes) for a scientific task,
collectors may encounter unknown classes (i.e., novel classes). Since these novel
classes might be valuable for future research, collectors will also sample them and
assign them to several clusters with the help of known-class data. This assigning
process is also known as novel class discovery (NCD). However, sampling errors
are common in practice and may make the NCD process unreliable. To tackle this
problem, this paper introduces a new and more realistic setting, where collectors
may misidentify known classes and even confuse known classes with novel classes
- we name it NCD under unreliable sampling (NUSA). We find that NUSA will
empirically degrade existing NCD methods if taking no care of sampling errors.
To handle NUSA, we propose an effective solution, named hidden-prototype-based
discovery network (HPDN). HPDN first trains a deep network to fully fit the
wrongly sampled data, then applies the relatively clean hidden representations
yielded by this network into a novel mini-batch K-means algorithm, which further
prevents them overfitting to residual errors by detaching noisy supervision timely.
Experiments demonstrate that, under NUSA, HPDN significantly outperforms
competitive baselines (e.g., 6% more than the best baseline on CIFAR-10) and
keeps robust even encountering serious sampling errors.

1 INTRODUCTION

Data, algorithms, and computing power create the boom in the field of artificial intelligence, especially
the supervised learning with many powerful deep models (Deng et al., 2009; Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015). Although these deep models can accurately identify or cluster the
classes appeared in the training set (i.e., known/seen classes), they do not have reliable extrapolating
ability in front of novel classes (i.e., unseen classes). For young children, after seeing some common
vehicles (e.g., cars and bicycles), they can easily distinguish (cluster) the unseen but similar ones (e.g.,
trains and steamships) based on previous experience. This fact motivates researchers to formulate a
novel problem called novel class discovery (NCD) (Han et al., 2020; 2019; Hsu et al., 2018; 2019;
Zhao & Han, 2021; Zhong et al., 2021a;b), aiming to accurately cluster novel classes using labeled
known-class data and unlabeled novel-class data.

Existing work (Chi et al., 2022) demystifies the underlying assumptions of NCD, then define NCD
strictly from the perspective of sampling, making NCD problem theoretically solvable. Specifically,
given a sampling task (i.e., collecting known-class data), the known-class and novel-class data are
sampled in the same scenario, but the novel-class data are sampled passingly, and experts cannot
identify them. Since the same scenario indicates that two groups have similar high-level semantic
features, employing knowledge of known classes to assist the clustering of novel classes is meaningful.

However, for professional and difficult sampling tasks, the experts may wrongly identify known
classes (i.e., internal errors), and even confuse the known classes with novel classes (i.e., external
errors). A direct example is to sample different varieties of privet, a type of shrubs. If experts are not
very proficient, they may wrongly identify ligustrum vicaryi and ligustrum quihoui (internal errors),
since they look very similar. Furthermore, they may confuse ligustrum vicaryi and kerria japonica
(i.e., external errors), since they both appear to be red. Motivated by this scenario, we propose a new
and challenging problem called NCD under unreliable sampling (NUSA), where we try to discover
novel classes under both internal and external sampling errors, as shown in Figure 1.
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Figure 1: Novel class discovery (NCD, (a)) is formulated by a sampling process (green arrows). When
collectors sample the data of required classes (i.e., bear, lion, wolf, and tiger) in a scenario, they may
encounter novel classes (i.e., squirrel and hare) that are unfamiliar, and they had better also sample
them for future research. Then, assigning them to several clusters with the help of known-class data
is known as NCD. However, collectors possibly make mistakes in practice, which is named as NCD
under unreliable sampling (NUSA, (b)). Here we consider two cases, where they misidentify the
known classes (i.e., internal errors, shown in blue boxes) and even confuse known classes with novel
classes (i.e., external errors, shown in yellow boxes).

The most direct solution to NUSA is the existing NCD methods (Fini et al., 2021; Han et al., 2020;
2019; Zhong et al., 2021a), and the results are shown in the left one of Figure 2. Clearly, NUSA
empirically degrades the four representative NCD methods, and previous methods cannot handle
NUSA well. Moreover, the label-noise learning methods (Han et al., 2018; Li et al., 2020) can be
employed to correct the labels1 of all the sampled data first, and then these data and revised labels
will be applied into the existing NCD methods to solve NUSA, which can be regarded as a two-step
solution to NUSA. However, existing label-noise learning methods cannot fully eliminate noises, and
experimental results (Table 1) show that residual errors still weaken NCD methods. Based on these
empirical results, the two types of sampling errors substantially invalidate both NCD methods and
the above two-step methods.

To address the sampling errors in NUSA, we propose the hidden-prototype-based discovery network
(HPDN). In terms of supervision, the sampled data with errors can be treated as data with label
noises. Li et al. (2021a) pointed out that if an architecture “suits” one task, training with noisy
supervisions can induce useful hidden representations. Inspired by this conclusion, HPDN first trains
a deep network (initialized by SimCLR (Chen et al., 2020)) to fully fit the wrongly sampled data.
This network can yield relatively clean hidden representations for novel-class data (Li et al., 2021a).
However, the right one of Figure 2 indicates the residual errors in hidden representations still degrade
the existing NCD methods. This is caused by the strong memory of deep networks (Zhang et al.,
2021), leading to the accumulation of residual noisy supervision information in training procedure.

To avoid further errors accumulation in the representation, unlike existing NCD methods, at clustering
stage, we detach the noisy supervision information in time. Then, we employ K-means (MacQueen
et al., 1967), an unsupervised clustering algorithm. Naive K-means uses all data representations at a
time and is sensitive to initial centers. However, given many data representations, proper initialization
is hard to choose, and it may be negatively affected by residual errors existed in representations, and
furthermore many iterations are required. Thus, we propose the mini-batch K-means with memories
of clustering centers (i.e., prototypes) to discover novel classes using hidden representations. Mini-
batches are easier to be initialized with K-means++ (Arthur & Vassilvitskii, 2006) due to their smaller
sample complexity. After obtaining centers of each batch, we take their matched average value (i.e.,
prototypes) to initialize each batch in next epoch, taking care of the whole dataset. In this way,
prototypes will gradually converge to a stable state as the final clustering centers.

To verify the effectivenss of HPDN, we perform experiments on three benchmarks: CIFAR-10,
CIFAR-100 and ImageNet. Experimental results show that HPDN outperforms existing baselines
(e.g., 6% more than the best baseline on CIFAR-10) and is very robust to sampling errors in NCD
(Figure 4), which confirms the effectiveness of HPDN.

1The novel classes are currently considered as one class.
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Left figure: Four SOTA NCD methods will fail
as the sampling error rate increases (from 10%
to 60%). Right figure: The residual sampling
errors in hidden representations will accumulate in
the training procedure of existing NCD methods
(taking RS (Han et al., 2020) and NCL (Zhong
et al., 2021a) on CIFAR-10 under 40% error rate
as an example), due to the strong memory of deep
networks (Zhang et al., 2021). This leads to the
ACC dropping quickly at a later stage.

Figure 2: Failures of SOTA NCD methods when encountering unreliable sampling.

2 RELATED WORK

Novel Class Discovery. NCD is a relatively new problem proposed in recent years, aiming to discover
novel classes (i.e., assign them to several clusters) by making use of similar but different known
classes. The first two works that proposed NCD and tried to solve it were KL-Divergence-based
contrastive loss (KCL) (Hsu et al., 2018) and meta classification likelihood (MCL) (Hsu et al., 2019),
which employed feature extractors to predict pairwise similarity of each novel-class data pair. Han
et al. (2019) proposed the deep transfer clustering (DTC) to first learn data embedding with metric
learning on labeled data, then to employ the deep embedded clustering method (Xie et al., 2016) to
cluster the novel-class data. To further extract information from data embedding, they proposed to
use the ranking statistics (RS) to yield the pairwise similarity and use self-supervised learning to
boost feature extraction (Han et al., 2020; 2021).

Recently, OpenMix (Zhong et al., 2021b) was proposed to mix known-class and novel-class data to
learn a joint label distribution, benefiting to find their finer relations. Then a neighborhood contrastive
learning (NCL) (Zhong et al., 2021a) was proposed to generate better discriminative representations.
Fini et al. (2021) used pseudo-labels in combination with ground-truth labels in a UNified Objective
function (UNO) that enabled better cooperation and less interference without self-supervised learning.
Zhao & Han (2021) proposed a two branch method focused on local and global information, and
used mutual knowledge distillation to promote information exchange and agreement.

Another work (Chi et al., 2022) demystify the assumption of NCD and formulated NCD with a
sampling process. They argued that the novel classes and known classes should have similar high-level
semantic meanings. Based on this assumption, they proved that NCD can be theoretical addressed
and linked NCD to meta-learning that served as the solution in their paper.

Label-Noise Learning. Label-noise learning is to train an effective model with corrupted labels.
Some works (Li et al., 2021b; Liu & Tao, 2016; Yao et al., 2020) estimated noise transition matrix to
recover ground-truth labels. Based on the trick that small-loss data can be viewed as clean ones, Han
et al. (2018) and Li et al. (2020) tried to filter clean data. Besides, Ren et al. (2018) used meta-learning
on clean labeled data to boost sample weight and transition matrix.

Deep Clustering. Deep clustering aims to identify classes in an unsupervised way based on deep
neural networks. Van Gansbeke et al. (2020) proposed to use self-supervised learning to obtain
features as a priori in a learnable approach. Zhan et al. (2020) proposed an effective joint clustering
and feature learning paradigm via decomposing feature clustering and integrating the process into
iterations of network update. Yang et al. (2020) proposed a powerful adversarial attack algorithm to
learn a small perturbation which can fool the clustering layers but not impact the deep embedding.

3 NCD UNDER UNRELIABLE SAMPLING

In this section, we first review the definition of NCD, and then formulate a new and more realistic
problem called NCD under unreliable sampling (NUSA), and show that the existing NCD methods
will fail to solve NUSA at last.

Definition 1 (Novel Class Discovery). In a sampling process, given a target label set I l (i.e., known
classes), we can collect known-class data Dl

clean = {(xl
i, yi)}N

l

i=1 and also unlabeled novel-class
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data Du
clean = {xu

i }N
u

i=1 with label set Iu, where yi ∈ I l, I l and Iu contain C l and Cu classes2.
Moreover, I l and Iu have similar high-level semantic meaning (Chi et al., 2022) but I l ∩ Iu = ∅.
The aim of NCD is to learn a clustering model for novel classes using Dl

clean and Du
clean.

Remark 2. Cu is always assumed to be prior knowledge in NCD literature. In practice, however, if
Cu is unknown, an alternative is to use heuristic algorithms (e.g., Elbow method (Thorndike, 1953),
Silhouette score (Rousseeuw, 1987)) to estimate it.

Sampling Errors. In practice, sampling errors are common especially in professional fields, making
NCD process unreliable. In this paper, we consider two important cases of sampling errors. One is
misidentifying the known classes (i.e., the blue boxes in Figure 1(b)), named internal error:
Definition 3 (Internal Sampling Error). Given a known-class label set I l and a collected known-class
dataset Dl = {(x̃l

i, ỹi)}N
l

i=1, we say Dl contains internal sampling errors if these is an i0 such that
ỹi0 ̸= yi0 , where yi0 ∈ I l is the ground-truth label of x̃l

i0
.

In addition, another case is confusing known classes and novel classes (i.e., the yellow boxes in
Figure 1(b)), named external error:
Definition 4 (External Sampling Error). Given a known-class label set I l, a collected known-class
dataset Dl = {(x̃l

i, ỹi)}N
l

i=1 and a collected novel-class dataset Du = {x̃u
i }N

u

i=1, we say there are
external sampling errors between Dl and Du if 1) there exists an x̃l

i whose ground-truth label
yi ∈ Iu or 2) there exists an x̃u

i whose ground-truth label yi ∈ I l, where Iu is the novel-class label
set that is unknown in advance.

Note that, since known classes and novel classes have similar high-level semantic features, if collectors
make mistakes when sampling known classes, they will probably confuse some specific known classes
and novel classes. Namely, the above two types of sampling error often simultaneously occur when
facing professional and difficult sampling tasks.

Problem Setup of NUSA. Based on both kinds of sampling errors, we can formulate a more realistic
problem called NCD under unreliable sampling (NUSA) as follows.
Definition 5 (NUSA). Given I l and Iu defined in Definition 1, in a sampling process, we can collect
known-class data Dl = {(x̃l

i, ỹi)}N
l

i=1 ∼ X l and also unlabeled novel-class data Du = {x̃u
i }N

u

i=1 ∼
Xu, where yi ∈ I l. The aim of NUSA is to learn a clustering model for novel classes by using Dl

and Du where Dl contains internal sampling errors (Definition 3) and there are external sampling
errors between Dl and Du (Definition 4).
NUSA Degrades Existing NCD Methods. As mentioned earlier, sampling errors may make NCD
process unreliable. To verify this claim, we employ four existing NCD methods (i.e., DTC (Han
et al., 2019), RS (Han et al., 2020), NCL (Zhong et al., 2021a), UNO (Fini et al., 2021)) to solve
NUSA, shown in the left one of Figure 2. We find that the clustering accuracy (ACC) sharply drops
as the sampling error rate (please refer to Section 5) increases from 10% to 60%. Therefore, sampling
errors negatively affect the performance of NCD methods. To ease the negative effects caused by
sampling errors, we propose a hidden-prototype-based discovery network (HPDN), to resist sampling
errors and keep good clustering performance in NUSA. We also give NUSA theoretical analysis and
a learning upper bound in Appendix E.

4 HIDDEN-PROTOTYPE-BASED DISCOVERY NETWORK

The core challenge of NCD is to obtain good representations of novel-class data. However, for NUSA,
these representations may be negatively affected by sampling errors. Thus, the keys to address NUSA
are to obtain relatively clean representations and avoid overfitting to residual sampling errors.

To tackle the sampling errors and accurately separate novel-class data, we propose an effective
framework HPDN (Figure 3), which is able to resist both internal error and external error mentioned
in Definition 3 and 4. In Section 4.1, we train a deep network to fully fit the sampled data and try
to yield clean data representations from hidden layers. In Section 4.2, we propose a mini-batch
prototypical K-means algorithm, which further prevents clustering model overfitting to residual errors.
Detailed method and its motivation are introduced in the following.

2Cu is assumed to be prior knowledge (Zhong et al., 2021b)
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HPDN contains two modules. 1) Obtaining clean hidden
representations of novel-class data (i.e., the top half
of figure). After initialized by SimCLR (Chen et al.,
2020), a deep network f is firstly trained with reweighted
known and novel class data, viewing all the novel classes
as one class, i.e., class C l + 1. Then, a proper hidden
layer is used to yield the representations of novel-class
data. 2) Clustering these representations with mini-batch
prototypical K-means (i.e., the bottom half of figure).
We divide a dataset into multiple mini-batches, and then
cluster each batch by classical K-means. After obtaining
the clustering centers of each mini-batch, we calculate
their prototypes to serve as initial clustering centers of
each mini-batch in the next epoch. Moreover, to avoids
oscillating around the local minimum, current prototype
memorizes the previous ones to control the learning rate.

Figure 3: Framework of hidden-prototype-based discovery network (HPDN).

4.1 ROBUST HIDDEN REPRESENTATION

Based on the discussion above, we will train a deep network to obtain relatively clean representations
that are not seriously affected by sampling errors. Given Dl and Du defined in Definition 5, we
first initialize a deep network by SimCLR (Chen et al., 2020) without any supervision. We find
that the sampled data with errors can be viewed as data with label noises from the perspective of
supervision. According to (Li et al., 2021a), if an architecture “suits” one task, training with noisy
labels can induce useful hidden representation. Thus, we temporarily view all the novel classes as
the class C l + 1 and generate D̂u = {(xu, C l + 1) : xu ∈ Du}. Then, we train a deep network
f : X → [0, 1]1×(Cl+1) to fully fit Dl ∪ D̂u. As the data size of class C l + 1 is more than others,
we reweight each data according to the data amount of each class in standard cross-entropy loss to
alleviate data imbalance, defined as,

ℓ(xi, yi; θf ) = −∆yi
eyi

log(f(xi)
T), ∆yi

=
|Dl ∪ D̂u|
nyi

(C l + 1)
, (1)

where (xi, yi) ∈ Dl ∪ D̂u, eyi
denotes a 1× (C l + 1) vector with a 1 in the yi-th coordinate and 0’s

elsewhere and θf denotes the parameters of the deep network f . nyi
denotes the data amount of class

yi, and | · | denotes the number of elements in a set.

After the training procedure, f can almost fully fit Dl ∪ D̂u (i.e., classification accuracy is more
than 99% empirically), indicating that f has overfitted the sampling errors. Based on the conclusion
of (Li et al., 2021a) mentioned above, we try to employ proper hidden layers of f to yield good
representations for novel-class data. As a deep network, f can be decomposed as f = fn◦fn−1◦· · ·◦
f1, where fz denotes the z-th layer in the deep network f . Without loss of generality, we assume that
the most clean representations are yielded by the z-th layer, i.e., ψz(x

u) := fz(fz−1(· · · f1(xu))),
∀xu ∈ Du, 1 < z < n. The choice of z is discussed in Section 5. Although ψz(x

u) is enough
good compared with ψn(x

u), it still contains residual sampling errors and causes continuous error
accumulation in the training procedure of existing NCD methods (right one of Figure 2). To address
this issue, we propose the mini-batch prototypical K-means, detaching the noisy supervision in time
and dividing dataset into multiple batches for better initialization and less iterations.

4.2 MINI-BATCH PROTOTYPICAL K-MEANS

Existing NCD methods use various kinds of supervision to help cluster data, e.g., pairwise similarity
(Han et al., 2020; Zhong et al., 2021a; Chi et al., 2022) and pseudo-label (Fini et al., 2021). These
supervisions are obtained using data representations and thereby negatively affected by sampling
errors for NUSA. Due to strong memory of deep networks (Zhang et al., 2021), the errors in
supervision will continuously accumulate in the training procedure and invalidate existing NCD
methods (Figure 2). Thus, we detach noisy supervision in time and employ fully unsupervised
method, K-means (MacQueen et al., 1967). For naive K-means, all the data representations are
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required at a time. We known K-means is very sensitive to initial centers (Arthur & Vassilvitskii,
2006). Selecting proper initial centers from all the representations contained residual errors is hard.
Thus we propose the mini-batch prototypical K-means, which divides dataset into multiple batches to
cluster respectively and takes the matched average centers (i.e., prototypes) as the initial centers of
each batch in next epoch.

In detail, given unlabeled novel-class data Du and batch size B, we partition Du into ⌈|Du|/B⌉
batches, i.e.,Du = Du

1 ∪· · ·∪Du
⌈|Du|/B⌉, where ⌈·⌉ denotes the round up function. Through partition,

mini-batch has smaller sample complexity so that is easier to initialize well (Canas et al., 2012).
For each mini-batch, e.g., D̄u

j , we firstly cluster D̄u
j by K-means, whose centers are initialized by

K-means++ (Arthur & Vassilvitskii, 2006). Then, K-means output the clustering centers of D̄u
j (i.e.,

{c0,ji }Cu

i=1) and the assignments of each data. However, the clustering centers of all the mini-batches
are very likely to be disordered, e.g., the first center in Batch A and the first center in Batch B do not
represent the same category. Thus, we use the Hungarian algorithm (Kuhn, 1955) to align the centers
of all the mini-batches and compute their prototype of the 0-th epoch defined as follows,

c0,∗i =
1

⌈|Du|/B⌉

⌈|Du|/B⌉∑
j=1

c0,ji , i = 1, . . . , Cu. (2)

Remark 6. Note that there is an extreme case where there may be missing categories in some
mini-batches. First of all, clustering data into all classes in a mini-batch will not make our algorithm
crushed, but it indeed will introduce some errors in the optimization procedure. In our method, we
shuffle novel-class data before dividing them in each updating step to alleviate this issue.

The prototype {c0,∗i }Cu

i=1 takes care of the entire Du by memorizing the centers of each batch. To
enforce each batch always consistent, we use the prototype {c0,∗i }Cu

i=1 that we just obtained as the
initial centers of each mini-batch in the next epoch. Through tuning, the variation of L2-norm of the
prototype (i.e., the first term of equation 3) is very small empirically, indicating that the prototype
converges to a stable state as the final clustering centers of novel-class data.

Moreover, to avoid oscillating around the local minimum in the iteration procedure, we let the current
prototype memorize the previous prototypes to control the learning rate. In detail, when this algorithm
enters into the epoch t, we obtain the prototype {ct,∗i }Cu

i=1. For epoch t+ 1, we have

ct+1,∗
i =

β

⌈|Du|/B⌉

⌈|Du|/B⌉∑
j=1

ct+1,j
i + (1− β)ct,∗i , (3)

where i = 1, . . . , Cu and β is a hyper-parameter used to control the learning rate. Obviously, the
larger β indicates the larger learning rate. The choose of β is detailed analyzed in Section 5. Therefore,
the prototype of epoch t+ 1, ct+1,∗

i , memorizes the information of all the previous t prototypes.

5 EXPERIMENTS

In this section, we conduct extensive experiments to verify the effectiveness of HPDN on NUSA,
involving 3 benchmark datasets and 12 baselines.

Datasets. Following (Zhong et al., 2021a), we evaluate our method on three important benchmark
datasets, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet (Deng et al., 2009). We report the results averaged over 3 runs on CIFAR-10, CIFAR-100.
For ImageNet, following (Han et al., 2020), we report the results averaged over 3 different label sets
of novel-class data. The detailed strategy for partitioning known and novel classes is in Appendix A.

Simulate sampling errors. Since the datasets we choose are correct originally, we need
to corrupt them manually to simulate the sampling errors through a transition matrix Q ∈
[0, 1](C

l+Cu)×(Cl+Cu), where Qij = P(ỹ = j|y = i) is the probability that wrong label ỹ
is flipped from ground-truth label y. Then, we give the precise definition of transition matrix:
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Table 1: Experimental results on HPDN and other baselines. We report the ACC±standard deviation
of ACC. All experiments are performed with sampling error rate of 40% and cross rate of 50%. Bold
values represent the highest average ACC in each column. We report the results averaged over 3 runs
on CIFAR-{10,100}. For ImageNet, following (Han et al., 2020), we report the results averaged over
3 different label sets of novel-class data. Results of all the methods are trained for 100 epochs.

Method CIFAR-10 CIFAR-100 ImageNet Average
Existing NCD methods

DTC (Han et al., 2019) 28.51%±1.03% 23.90%±0.77% 27.32% 26.58%
RS (Han et al., 2020) 34.60%±0.62% 21.28%±1.81% 29.10% 28.30%

NCL (Zhong et al., 2021a) 33.76%±0.26% 23.84%±0.65% 33.06% 30.22%
UNO (Fini et al., 2021) 37.93%±2.47% 26.11%±1.83% 32.56% 32.20%

Combine NCD methods with Co-teaching (Han et al., 2018)
DTC + Co-teaching 46.28%±2.33% 31.92%±0.79% 38.76% 38.97%
RS + Co-teaching 46.17%±1.40% 34.08%±2.10% 36.31% 38.85%

NCL + Co-teaching 48.33%±0.57% 35.74%±1.51% 43.29% 42.45%
UNO + Co-teaching 52.18%±3.85% 37.31%±3.14% 46.13% 45.21%

Combine NCD methods with DivideMix (Li et al., 2020)
DTC + DivideMix 45.03%±1.97% 33.74%±1.94% 37.68% 38.82%
RS + DivideMix 47.52%±0.78% 30.69%±2.07% 40.44% 39.55%

NCL + DivideMix 51.56%±1.66% 36.07%±0.75% 46.51% 44.71%
UNO + DivideMix 50.10%±2.49% 35.93%±1.88% 46.27% 44.10%

HPDN (Ours) 63.18%±2.06% 37.96%±1.22% 53.60% 51.58%

Q =


1− ρ ρ(1−τ)

Cl−1
. . . ρτ

Cu
ρτ
Cu

ρ(1−τ)
Cl−1

1− ρ . . . ρτ
Cu

ρτ
Cu

...
...

. . .
...

...
ρτ
Cl

ρτ
Cl . . . 1− ρ ρ(1−τ)

Cu−1
ρτ
Cl

ρτ
Cl . . . ρ(1−τ)

Cu−1 1− ρ

 ,
where ρ denotes the sampling error rate and τ
denotes the cross rate. Specifically, given an
instance to be sampled, ρ represents the prob-
ability that its category is wrongly identified.
Furthermore, given a fixed ρ, τ represents the
probability that an known-class (resp. novel-
class) instance is wrongly identified as a novel-
class (resp. known-class) instance. Based on
Definition 3 and 4, given the above transition
matrix, the internal error rate is ρ(1− τ) and the external error rate is ρτ .

Note that, although the internal (resp. external) error rates are evenly assigned to known classes
(resp. novel classes) in Q, this is not the only way to assign both errors between known classes and
novel classes. Since this is the first work to consider such a hard problem, we would like to focus
on this simple transition matrix at the current stage and leave more difficult transition matrices (e.g.,
instance-dependent transition matrices (Xia et al., 2020)) to future work.

Baselines. NUSA is a new problem and there is no straightforward solution to NUSA, thus we use
related NCD methods and corresponding two-step methods as baselines. Related NCD methods
include DTC (Han et al., 2019), RS (Han et al., 2020), NCL (Zhong et al., 2021a) and UNO (Fini et al.,
2021). Simple reviews about these methods are in Section 2. Two-step methods are to sequentially
combining label-noise learning methods and NCD methods. In detail, we firstly use label-noise
learning methods, e.g., Co-teaching (Han et al., 2018) and DivideMix (Li et al., 2020), to correct the
labels of known-class data and detect known (resp. novel) class data that are sampled as novel (resp.
known) classes. Then we combine four NCD methods and two label-noise learning methods to form
eight two-steps baselines whose abbreviations are shown in Table 5 (Appendix A).

Evaluation metric. For a clustering problem, we use the average clustering accuracy (ACC) to
evaluate the performance of clustering, which is defined as max

ϕ∈ L

1
N

∑N
i=1 1{ȳi = ϕ(yi)}, where

ȳi and yi denote the ground-truths and assigned indices. L is the set of mappings from indices to
ground-truths. We adopt the Hungarian algorithm (Kuhn, 1955) to find the optimal mapping and
then obtain the final ACC with it. We also use more metrics (i.e., homogeneity, completeness, and
v_measure) to evaluate NUSA methods in Appendix D. To evaluate how the number of novel classes
affects the NUSA methods, we perform additional experiments shown in Appendix C.

7



Under review as a conference paper at ICLR 2023

 τ=30% ρ=20%
ρ=30%
ρ=40%
ρ=50%
ρ=60%

(a) Fixed cross rate τ = 30%.

 τ=30% ρ=20%
ρ=30%
ρ=40%
ρ=50%
ρ=60%

(b) Fixed cross rate τ = 50%.

Figure 4: Experimental analysis about the robustness of HPDN under serious sampling errors. We take
CIFAR-10 with the cross rates of 30% (a) and 50% (b) as an example. The sampling error rate and cross rate are
introduced in Section 5. With the sampling error rate increasing from 20% to 60%, the lengths of corresponding
columns are almost equal, indicating that HPDN is robust enough to serious sampling errors in NUSA.

Implementation details. The details about network structures and hyperparameters are in Ap-
pendix G.

Comparison to baselines. We compare HPDN with four existing NCD methods and eight two-step
baselines as mentioned above. Both RS (Han et al., 2020) and NCL (Zhong et al., 2021a) need
a model that is pretrained with self-supervised learning on all the data and then is finetuned by
supervised learning on known-class data to output the features of novel-class data. To make a fair
comparison, we use the self-supervised pretrained models provided by RS and NCL.

From Table 1, we find that HPDN significantly outperforms the baselines on all three datasets. For
existing NCD methods, the ACCs tend to decrease at a later stage (Figure 2), because they are easy
to overfit the sampling errors. From the results of two-step baselines, they substantially outperform
NCD methods, indicating label-noise learning methods can effectively eliminate the negative effects
of sampling errors. However, errors cannot be completely eliminated especially when error rate is
large (e.g., ≥ 20%), and residual errors will accumulate in training procedure and further degrade
NCD methods. Thus, the strategy of detaching noisy supervision timely to avoid overfitting in HPDN
is really effective. Another important phenomenon is that the performance of HPDN on CIFAR-100
is not very good. This is because the data size of each class is small (i.e., 100 data per class) can they
are too fine-grained, and HPDN cannot well address this hard situation. In addtion, we show and
analyze the results of HPDN and eight baselines under lower error rate (i.e., 20%) in Appendix B.

Ablation study. In this subsection, we evaluate the effectiveness of each major component of HPDN
in Table 2. If we replace the hidden layer (i.e., the fourth block of ResNet-18 in our work) with the
last layer to yield representations, the ACC will drop more than 15% and 20% under sampling error
rates of 20% and 40% respectively. This demonstrates that the hidden layers are not affected too
much by sampling errors (Li et al., 2021a). If we eliminate the process of tuning prototypes, HPDN
will degrade into the naive K-means, causing the low ACC (drops more than 10%) with serious
oscillation. If we eliminate β in equation 3 (i.e., set β to 1), the prototypes will oscillate around the
optimal solution for many iterations, thus fail to converge to it.

Verify the robustness of HPDN under serious errors. In this subsection, we would like to verify
the robustness of HPDN under data with serious sampling errors. Therefore, we show a histogram
to compare the ACCs under the sampling errors rate of {20%, 30%, 40%, 50%, 60%} and the cross
rate of {30%, 50%}, taking CIFAR-10 as an example.

Comparing Figure 4 with Figure 2, as the sampling error rate increases, the performance degradation
of HPDN is negligible compared with other baselines. Thus, these experimental results verify the
robustness of HPDN under serious sampling errors in NUSA.

Analysis about the choice of β. In equation 3, we use the hyper-parameter β to control the learning
rate of prototypes. To make its updating stabler and faster, we empirically explore the choices of
initial β (Figure 5). We choose the initial β as {0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50} to
observe the change of ACC. We find that larger β may lead HPDN to be unstable and cause the
performance degradation. Too small β (e.g., 0.01) will make the convergence speed of HPDN too
slow, requiring more than 100 iterations, and make HPDN hard to be optimal. Thus, we choose 0.05
as the initial value based on above empirical evaluation.

Impact of batch sizes on mini-batch prototypical K-means. For clustering stage of HPDN,
we divide dataset into multiple mini-batches. Taking CIFAR-10 as an example, we evaluate
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Table 2: Ablation study of HPDN, taking CIFAR-10 as an example.

Method ρ = 0.2 ρ = 0.4

HPDN w/o HR 51.06%±3.20% 42.25%±2.94%
HPDN w/o Pro 58.05%±0.73% 57.73%±1.05%
HPDN w/o β 60.71%±3.62% 53.90%±1.81%
HPDN w/o SSL 61.71%±0.77% 56.46%±0.59%

HPDN 69.42%±1.93% 63.18%±2.06%

We choose the sampling error rates of 20%
and 40% respectively, with the cross rate of
50% fixed. HR: hidden representation, Pro:
mini-batch prototypical K-means, β: the hyper-
parameter used to control learning rate in equa-
tion 3, SSL: self-supervised learning initializa-
tion. Bold values represent the highest average
ACC in each column.

Table 3: Results of HPDN under different batch sizes, taking CIFAR-10 and ρ = 40% as an example.
Batch size 64 128 256 512 1024 all

HPDN 63.24%±2.42% 63.18%±3.03% 60.42%±1.73% 64.78%±2.51 68.57%±1.81% 57.33%

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.50
Initial value

50

52

54

56

58

60

62

64

A
C

C

HPDN

(a) Initial value of β.

1st B 2nd B 3rd B 4th B F
Different hidden layers

0

10

20

30

40

50

60

A
C

C

(b) Different hidden layers.

Take CIFAR-10 with ρ = 40% and τ =
30% as an example. (a) HPDN is a lit-
tle sensitive to initial. Smaller β is more
stable. β (b) The fourth block of ResNet
can yield best representations. “B” de-
notes the block and “F” denotes the fully-
connected layer.

Figure 5: Analysis about the initial value of β and hidden layers.

how batch size impacts the clustering performance empirically. We choose the batch size as
{64, 128, 256, 512, 1024} to observe the change of ACC. In addition, we use all the data repre-
sentations at once to perform clustering stage as a comparison. Results is shown in Table 3. Firsts, we
find mini-batch prototypical K-means substantially improves the clustering performance. Then, the
ACCs under different batch sizes change little (almost within standard deviation) so that this indicates
that batch size has little impact on HPDN. However, HPDN under smaller batch size requires more
iterations, thus the convergence speed is slower. Moreover, HPDN under larger batch size requires
more GPU memory and too large batch size will cause performance decreasing. To trade off, we
choose 128 as the batch size in this work.

Impact of different hidden layers on HPDN. HPDN uses data representations yielded by hidden
layers of deep networks, which are relatively clean compared with the representations of final layer.
However, the quality of representations yielded by different hidden layers is also very different.
We choose the representations yielded by 5 types of hidden layers (i.e., four blocks of ResNet and
the following fully-connected layer) to perform clustering, and the results are shown in Figure 5.
Obviously, the 4th block of ResNet can yield the best representations, which is the same as Li et al.
(2021a). The 1 ∼ 3 blocks of ResNet cannot learn effective high-level features that are useful to
clustering and the last fully-connected layer is seriously degraded by sampling errors.

6 CONCLUSION

Considering that sampling errors are common in real scenario of novel class discovery (NCD), this
paper introduces a more realistic and more challenging problem: NCD under unreliable sampling
(NUSA). However, existing NCD methods cannot handle NUSA well as the errors. To address this
novel problem, we propose an effective method called hidden-prototype-based discovery network
(HPDN). HPDN contains two modules: one is to obtain clean hidden-layer representations for novel-
class data and another is to alternately cluster each mini-batches then aggragate them, detaching
noisy supervision in time. We compare HPDN with 4 representative NCD methods and 8 competitive
baselines on three benchmark datasets (CIFAR-10, CIFAR-100 and ImageNet). Empirical results
demonstrate that HPDN can find better clustering centers for novel-class data compared to the 12
baselines. Especially, HPDN is robust to sampling errors and still performs well when facing serious
sampling errors, which enables a new road to discover novel classes in some professional fields.
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7 REPRODUCIBILITY STATEMENT

In this section, we briefly introduce how to reproduce our algorithm by yourself.

Our experiments are performed on Python 3.6.13, PyTorch 1.7.1, CUDA 11.2, and Tesla A100 GPUs.

The datasets that we use in this paper are all obtained from their official websites.

The main framework of our algorithm can be implemented according to the Alg. 1 with PyTorch.

The implementation details can be found in the following.

Obtain Hidden Representations. For a fair comparison with existing methods, we employ the
ResNet-18/ResNet-50 (He et al., 2016) as the backbones of {CIFAR-10,CIFAR-100}/ImageNet. The
backbone is initialized with SimCLR (Chen et al., 2020) for 300 epochs with the same training
strategy as (Chen et al., 2020). Known-class data and novel-class data are randomly sampled from
Dl and Du, whose batch size is set to 256/1024 for {CIFAR-10, CIFAR-100}/ImageNet. We use
SGD optimizer with initial learning rate 0.1, momentum 0.9, and weigh decay 1e− 4. In addition,
the learning rate decays 10 times after each 40 epochs. We pretrain the backbone for 100/150 epochs
for {CIFAR-10, CIFAR-100}/ImageNet. Then, we choose the outputs of the fourth block of ResNet
with average pooling as the hidden representations.

Mini-batch prototypical K-means. The batch size is set to 128 for all three datasets. We perform
the clustering step for 100 epochs for all three datasets. For hyper-parameter β in equation 3, it is
initialized by 0.05 and set to 0.05 ∗ 0.5epoch//20 in the training procedure, where “//” denotes the
exactly divisible operation. We will further analyze the choice of β in Section 5.
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Algorithm 1 Hidden-prototype-based Discovery Network (HPDN)

Input: deep network f = fn ◦ fn−1 ◦ · · · ◦ f1, known-class data Dl = {(xl
i, ỹi)}N

l

i=1, novel-class data Du =

{xu
i }N

u

i=1, learning rate γ, batch size B, network parameters θf , z that using fz to extract representations, the
maximum number of epochs T , hyper-parameter β;
1: Initialize θf and t = 0;
2: Label all the xu ∈ Du as the class C l + 1 and generate D̂u = {(xu, C l + 1) : xu ∈ Du};
#phase one: extract robust hidden representations.
while t < T do

for each mini-batch D̄ ⊂ Dl ∪ D̂u do
3: Compute L(D̄; θf ) =

1
B

∑
(x,y)∈D̄ ℓ(x, y; θf ) according to equation 1; % Compute the average

loss
4: Update θf = θf − γ∇θfL(D̄; θf ); % Update parameters of f

end
end
#phase two: mini-batch prototypical K-means.
while t < T do

for each mini-batch D̄u
j ⊂ fz(D

u) := {fz(xu) : xu ∈ Du} do
5: Initialize clustering centers {ct,ji }C

u

i=1 using K-means++ if t = 0; otherwise using {ct,∗i }C
u

i=1;
6: Cluster D̄u

j with K-means algorithm and update clustering centers {ct+1,j
i }C

u

i=1;
end
8: Update ct+1,∗

i according to equation 3 and set t = t+ 1; % Update prototypes and t
end
Output: clustering centers {cT,∗

i }C
u

i=1

A PARTITION WAY OF THREE BENCHMARKS

As a key assumption in NCD, known classes and novel classes have similar high-level semantic
features (Chi et al., 2022). Therefore, following existing works (Hsu et al., 2019; Han et al., 2019;
Zhao & Han, 2021), we partition a dataset into two parts according to classes, where one part serves
as the known-class group and the other one serves as the novel-class group. It is worth noting that
there are no overlaps between known classes and novel classes, and the number of novel classes is
assumed to be prior knowledge. The detailed way of partition can be seen in Table 4.

The influences of partition on NUSA (and NCD) methods are mainly in two aspects: 1) How similar
the semantic features of known and unknown classes are; 2) How fine-grained the novel classes are.
For the first aspect, the known-class data and novel-class data should have similar semantic features.
If not, this setting will become cross-domain NUSA (and NCD), which is beyond our current research
topic. Specifically, for CIFAR-10, they are more similar, while for ImageNet, they are less similar.
For the second aspect, the novel classes of CIFAR-10 are dog, frog, horse, horse, truck, which are
relatively coarse-grained, and the novel classes of CIFAR-100 are bicycle, bus, motorcycle, pickup
truck, train,maple, oak, palm, pine, willow, and etc., which are more fine-grained. Overall, our
experimental setup takes various situations of NUSA (and NCD) into account.

In addition, we evaluate how the number of novel classes, an important factor in clustering problem,
matters in NUSA. Therefore, we test the performances of HPDN and baseline methods on NUSA
with different numbers of novel classes, taking CIFAR-100 as an example. In detail, we choose
the number of known classes as 80 like before, and we choose the numbers of novel classes as
{20,10,5}, respectively. They are the 81-100 classes, 81-90 classes, and 81-85 classes in CIFAR-100,
respectively.

Table 4: Partition way of three datasets.
Dataset #Known class #Novel class

CIFAR-10 5 5
CIFAR-100 80 20
ImageNet 882 30

Table 5: Abbreviations of two-step baselines.
DTC RS NCL UNO

Co-teaching C+D C+R C+N C+U
DivideMix D+D D+R D+N D+U
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Table 6: Evaluate the impact of different numbers of novel classes on NUSA. Taking CIFAR-100 as
an example, we choose the numbers of novel classes as 5, 10, and 20, respectively. All experiments
are performed with the sampling error rate of 40% and the cross rate of 50%. Bold values represent
the highest average ACC in each column. We report the results averaged over 3 runs.

Number of novel classes 5 10 20
Existing NCD methods

DTC (Han et al., 2019) 26.72%±0.59% 24.75%±0.43% 23.90%±0.77%
RS (Han et al., 2020) 42.67%±1.05% 23.04%±1.44% 21.28%±1.81%

NCL (Zhong et al., 2021a) 27.83%±2.74% 32.70%±0.89% 23.84%±0.65%
UNO (Fini et al., 2021) 44.03%±2.25% 33.59%±1.66% 26.11%±1.83%

Combine NCD methods with Co-teaching (Han et al., 2018)
DTC + Co-teaching 42.64%±0.49% 34.35%±1.16% 31.92%±0.79%
RS + Co-teaching 56.81%±2.35% 39.51%±1.41% 34.08%±2.10%

NCL + Co-teaching 48.38%±1.97% 40.35%±1.13% 35.74%±1.51%
UNO + Co-teaching 60.72%±2.50% 46.26%±2.39% 37.31%±3.14%

Combine NCD methods with DivideMix (Li et al., 2020)
DTC + DivideMix 39.04%±0.85% 33.31%±1.22% 33.74%±1.94%
RS + DivideMix 50.27%±0.73% 35.18%±1.32% 30.69%±2,07%

NCL + DivideMix 45.69%±2.53% 39.83%±2.37% 36.07%±0.75%
UNO + DivideMix 60.89%±1,74% 42.09%±2.67% 35.93%±1.88%

HPDN (Ours) 64.40%±1.53% 45.14%±1.77% 37.96%±1.22%

B RESULTS OF HPDN UNDER LOWER ERROR RATE

In Table 8, we show the results of HPDN and baselines with noise rate 20% and cross rate of 50%.
We can find that HPDN almost outperforms all the baselines on three datasets, indicating that HPDN
still works effectively under lower sampling error rate. However, for CIFAR-100. The number of
test data of each class in CIFAR-10 is relatively few (i.e., each class has 100 data). HPDN relies on
good initialization of clustering centers. When few data meets sampling errors, the initialization task
will be hard for HPDN. We will further optimize the initialization process of HPDN to make it more
robust.

C IMPACT OF THE NUMBER OF NOVEL CLASSES ON NUSA

In this section, we evaluate how the numbers of novel classes affect the NUSA methods on CIFAR-
100. Note that the clustering accuracy (ACC) that is commonly used as the metric in NCD/NUSA and
other clustering-related problems does not take the number of novel classes into consideration. Thus,
we specifically design experiments to evaluate the effectiveness of HPDN with regard to different
numbers of novel classes.

We choose the number of known classes as 80 like previous works (Han et al., 2019; 2020), and we
choose the numbers of novel classes as 20, 10, and 5, respectively. We report the ACCs of HPDN and
all the baselines with different numbers of novel classes on CIFAR-100 in Table 6. We can find that
the number of novel classes is a crucial factor for the performances of NUSA methods. All of these
methods perform better when the novel classes are fewer. We can also find that HPDN outperforms
baseline methods almost for every number of novel classes, except for 10. However, their gap is still
within the error range. This mainly results from the relatively good robustness of UNO (Fini et al.,
2021).

D EVALUATE NUSA METHODS WITH MORE METRICS

To evaluate the NUSA methods more comprehensively and accurately, we employ another three
metrics, homogeneity, completeness, and v_measure (Rosenberg & Hirschberg, 2007), to evaluate the
HPDN and the baseline methods. A clustering result satisfies homogeneity if all of its clusters contain
only data points which are members of a single class. A clustering result satisfies completeness if
all the data points that are members of a given class are elements of the same cluster. V-measure
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Table 7: Evaluate NUSA methods with more metrics. Taking CIFAR-10 as an example, we use three
clustering metrics that are based on normalized conditional entropy to measure the NUSA methods,
i.e., homogeneity, completeness, and v_measure respectively. All experiments are performed with
the sampling error rate of 40% and the cross rate of 50%. Bold values represent the highest average
ACC in each column.

Metrics Homogeneity Completeness V_measure
Existing NCD methods

DTC (Han et al., 2019) 0.0563 0.0613 0.0587
RS (Han et al., 2020) 0.0506 0.1597 0.0769

NCL (Zhong et al., 2021a) 0.1769 0.1785 0.1777
UNO (Fini et al., 2021) 0.1618 0.1653 0.1635

Combine NCD methods with Co-teaching (Han et al., 2018)
DTC + Co-teaching 0.2479 0.2527 0.2503
RS + Co-teaching 0.3139 0.3392 0.3261

NCL + Co-teaching 0.3552 0.3807 0.3675
UNO + Co-teaching 0.3871 0.4006 0.3937

Combine NCD methods with DivideMix (Li et al., 2020)
DTC + DivideMix 0.2619 0.2778 0.2696
RS + DivideMix 0.3406 0.3955 0.3660

NCL + DivideMix 0.3797 0.4026 0.3908
UNO + DivideMix 0.4133 0.4310 0.4220

HPDN (Ours) 0.4742 0.4859 0.4800

is the harmonic average of homogeneity and completeness. These three metrics are based on the
normalized conditional entropy, which measure the clustering performance in a different view from
ACC and are commonly used in clustering problems. Constrained by space, we only report the results
of HPDN and the baseline methods regarding these three metrics on CIFAR-10, which are shown in
Table 7.

We can easily find that our method consistently outperforms the baseline methods with regard to these
three normalized conditional entropy-based metrics. For almost all the methods, the homogeneity is
slightly smaller than the completeness, indicating that there exist two or more classes are assign to
the same cluster except the wrongly assigned data points. Thus, existing methods and our HPDN
need to further improve the ability of clustering more fine-grained novel classes.

E THEORETICAL ANALYSIS OF NUSA

At beginning, we recall the definitions of NCD and NUSA.

Definition 7 (NCD). In a sampling process, given a target label set I l (i.e., known-class label set),
we can collect known-class data Dl

clean = {(xl
i, yi)}N

l

i=1 ∼ X l and also unlabeled novel-class data
Du

clean = {xu
i }N

u

i=1 ∼ Xu with label set Iu, where yi ∈ I l, I l and Iu contain C l and Cu classes
respectively. Moreover, I l and Iu have similar high-level semantic meaning (Chi et al., 2022) but
I l ∩ Iu = ∅. The aim of NCD is to learn a clustering model for novel classes using Dl

clean and
Du

clean.

For a more realistic scenario, collectors may make mistakes in sampling tasks especially for profes-
sional fields, named NCD under unreliable sampling (NUSA).

Definition 8 (NUSA). Given I l and Iu defined in Definition 7, in a sampling process, we can collect
known-class data Dl = {(x̃l

i, ỹi)}N
l

i=1 ∼ X̃ l and also unlabeled novel-class data Du = {x̃u
i }N

u

i=1 ∼
X̃u, where yi ∈ I l. The aim of NUSA is to learn a clustering model for novel classes by using Dl

and Du where Dl contains internal sampling errors (Definition 3) and there are external sampling
errors between Dl and Du (Definition 4).

For general NCD problem, existing work (Chi et al., 2022) pointed that NCD can be theoretically
solvable with two key conditions: (A) transformation set of X l (denoted as Πl) and transformation set
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of Xu (denoted as Πu) are good enough to make their high-level semantic features totally separable;
(B) Πl ∩ Πu ̸= ∅. For NUSA, however, the sampling errors may mislead the training process of
transformations, so that the corresponding high-level semantic features invalid as empirically verified
in Figure 2. In detail, we denote PXl and PXu as the distributions of X l and Xu respectively, and the
distributions PX̃l and P̃X̃u corrupted by sampling errors are defined as,

PX̃l = (1− δl)PXl + δlPXu , PX̃u = (1− δu)PXu + δuPXl ,

where δl (resp. δu) indicates that a proportion δl (resp. δu) of known (resp. novel) class data are
incorrectly sampled. Thus, given data sampled from P̃Xl and P̃Xu , if the learned transformations sets
Πl and Πu still satisfy condition (A), NUSA also can be theoretically solved.

For next analysis, we model the sampling errors with transition (van Rooyen & Williamson, 2018).
Given sample spaces X and X̃ , a transition from P1 ∈ P(X ) to P2 ∈ P(X̃ ) is a linear map
T : P(X ) → P(X̃ ). If X and X̃ are finite, transition T is just a matrix. For NUSA, internal errors
and external errors may appear at the same time, thus we can jointly model them through transition.
Given random variables X̃ l and X̃u with sampling errors, they can be represented as,

PX̃l = Q(PXl), PX̃u = Q(PXu),

where Q is the transition from ground-truth distribution to actual distribution with sampling errors.
PXl (resp. PXu ) represents the probability distribution of X l (resp. Xu). As our aim is to eliminate
the negative effects of sampling errors, we hope the transition Q could be invertible.

Definition 9 (Reconstructible transition (van Rooyen & Williamson, 2018)). A transition T ∈
T(X1,X2) is reconstructible if T has a left inverse; that is there exists a transition R ∈ T(X2,X1)
such that R ◦ T = 1P(X1), where P(X1) denotes the set of all distributions on sample space X1.

Thus, the left inverse of T is its reconstruction. For general case, we can always take the Moore-
Penrose pseudo inverse of T , R = (T ∗T )−1T ∗, as the reconstruction, where T ∗ is the dual operator
of T . If T itself is invertible, the reconstruction of T is R = T−1.

Our aim is to learn good transformation set Πl (resp. Πu) satisfying conditions (A) and (B) with
X̃ l and X̃u, such that the transformations in Πl (resp. Πu) can yield high-level semantic features of
samples drawn from X l (resp. Xu) to be totally separable. In detail, given a proper loss function
ℓ : Y ×F → R, and our objective is to find f ∈ F such that f can minimize

sup
D̃∼P

X̃l ,PX̃u

E(xu,yu)∼PXu ℓ(y
u, f(D̃)(xu)), (4)

where F is the hypothesis space, and Du is the novel-class data sampled from PXu . f(D̃) represents
the hypothesis trained on D̃ (i.e., data with sampling errors), and is obtained with the following
objective,

argmin
f∈F

E(x,ỹ)∼P
X̃l ,PX̃u

ℓ(ỹ, f(x)). (5)

However, as D̃ contains sampling errors, directly training f on D̃ using standard loss function does
not make sense. As mentioned in (van Rooyen & Williamson, 2018), we can use the corruption
corrected loss to eliminate the negative effects of sampling errors. As the sample spaces are finite
here, expectation of one random variable function on one distribution can be viewed as inner product
of them in Hilbert space. By properties of adjoint operator and definition of reconstruction, we have

EPf =< P, f >=< R ◦ T (P), f >=< T (P), R∗(f) >= ET (P)R
∗(f),

where < ·, · > denotes the inner product.

Theorem 10 (van Rooyen & Williamson (2018)). For all reconstructible transition T and loss
function ℓ : D ×F → R, the corruption corrected loss ℓR : D̃ ×F → R is defined as,

ℓR(·, f) = R∗(ℓ(·, f)), ∀f ∈ F .

Then for all distribution P, we have

ED∼Pℓ(D, f) = ED̃∼T (P)ℓR(D̃, f), ∀f ∈ F .
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Proof. This theorem can be directly derived according to the above discussion.

In detail, we define the class probability distribution of a data point (x, ỹ) that is outputted by the
last layer of a deep network as δ(x) ∈ RCl

, where f(x) = argmax
i

δi(x) and ỹ is the corrupted

supervision information. With the reconstructible transition T , there exists

δ̃i = P(Ỹ = i) =
∑
j

P(Ỹ = i|Y = j)P(Y = j) =
∑
j

Tjiδj = T⊤
i · δ.

Through the reconstructibility of T , we can directly derive δ = (T⊤)−1δ̃, which links the noisy
supervision and ground-truth in the view of data representations. This result is consistent with
Theorem 10. Next, we equivalently define the loss function with regard to the class probability
distribution, i.e., L(δ(x), y) := ℓ(f(x), y) = ℓ(argmax

i
δi(x), y). Then we can derive the following

theorem to show how to obtain clean data representations under noisy supervision.
Theorem 11. Let f∗ = argmin

f∈F
E(x,y)∼p[ℓ(f(x), y)] with f∗ = argmax

i
δ∗i and L is k-Lipschitz.

For any f = argmax
i

δi ∈ F learned with noisy supervision, we have

R(f) ≤ R(f∗) + k · ∥(T⊤)−1∥2 · Ep∥δ̃(x)− δ̃∗(x)∥2,
where δ̃(x) = T⊤δ(x) and δ̃∗(x) = T⊤δ∗(x).

Proof.
R(f)−R(f∗) = Ep[ℓ(f(x), y)− ℓ(f∗(x), y)] = Ep[L(δ(x), y)− L(δ∗(x), y)]

= Ep[L((T⊤)−1δ̃(x), y)− L((T⊤)−1δ̃∗(x), y)]

≤ Ep[k · ∥(T⊤)−1δ̃(x)− (T⊤)−1δ̃∗(x)∥2]
= Ep[k · ∥(T⊤)−1(δ̃(x)− δ̃∗(x))∥2].

Thus, we have
R(f)−R(f∗) = |R(f)−R(f∗)|
= |Ep[k · ∥(T⊤)−1(δ̃(x)− δ̃∗(x))∥2]|
≤ Ep|k · ∥(T⊤)−1(δ̃(x)− δ̃∗(x))∥2|
≤ Epk · ∥(T⊤)−1∥2 · ∥δ̃(x)− δ̃∗(x)∥2
= k · ∥(T⊤)−1∥2 · Ep∥δ̃(x)− δ̃∗(x)∥2.

Theorem 11 tells us that if the reconstructible transition T is known, the regret risk of the model
trained with noisy supervision is bounded by k · ∥(T⊤)−1∥2 · Ep∥δ̃(x)− δ̃∗(x)∥2. This error bound
indicates that if the model fits noisy data very well, i.e., the term Ep∥δ̃(x)− δ̃∗(x)∥2 is very small,
and then the regret risk R(f)−R(f∗) will also be very small. Thus, the reconstructible transition
can help us to obtain clean data representations under noisy supervision.

Based on Theorem 10 and Theorem 11, we can change our learning objective from equation 5 to
argmin

f∈F
E(x,ỹ)∼P

X̃l ,PX̃u
ℓR(ỹ, f(x)). (6)

In this work, the sampling errors that we consider are class-dependent and can be simulated with the
following transition matrix,

Q =


1− ρ ρ(1−τ)

Cl−1
. . . ρτ

Cu
ρτ
Cu

ρ(1−τ)
Cl−1

1− ρ . . . ρτ
Cu

ρτ
Cu

...
...

. . .
...

...
ρτ
Cl

ρτ
Cl . . . 1− ρ ρ(1−τ)

Cu−1
ρτ
Cl

ρτ
Cl . . . ρ(1−τ)

Cu−1 1− ρ

 ,
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as introduced in Section 5 in detail. It is easy to verify the determinant of Q is nonzero, indicating
that Q is invertible. That is to say, the transition in NUSA is reconstructible, and there exists
ℓR = (Q−1)∗(ℓ) as the corrected version of ℓ.

According to above discussion and the PAC-Bayes bound (Zhang, 2006), we have the following
bound of learning with sampling errors (van Rooyen & Williamson, 2018).
Theorem 12. For reconstructible transition T , algorithms f : D → F , distributions PXl , PXu ,
PX̃l = T (PXl) and PX̃u = T (PXu) and bounded loss function ℓ,

E(x,y)∼P
Xl ,PXuED̃∼P

X̃l ,PX̃u
ℓ(y, f(D̃)(x)) ≤ ED̃={(x,ỹ)}∼P

X̃l ,PX̃u
ℓR(ỹ, f(D̃)(x))+∥ℓR∥∞

√
2 log(|F|)

n
,

where ∥ · ∥ denotes the infinite norm.

Motivated by Theorem 12, we can turn to learn with data with sampling errors D̃,
f∗ = argmin

f∈F
E(x,ỹ)∈D̃ℓR(ỹ, f(x)). (7)

Thus, there exists
E(x,ỹ)∈D̃ℓR(ỹ, f

∗(x)) ≤ E(x,ỹ)∈D̃ℓR(ỹ, f(x)) = E(x,y)∼P
Xl ,PXu ℓ(y, f(x)), ∀f ∈ F . (8)

Then, we can modify Theorem 12 to the following version.
Theorem 13. For reconstructible transition T , algorithms f : D → F , distributions PXl , PXu ,
PX̃l = T (PXl) and PX̃u = T (PXu) and bounded loss function ℓ,

E(x,y)∼P
Xl ,PXuED̃∼P

X̃l ,PX̃u
ℓ(y, f∗(D̃)(x)) ≤ inf

f∈F
E(x,y)∼P

Xl ,PXu ℓ(y, f(x))+∥ℓR∥∞

√
2 log(|F|)

n
.

Proof. This theorem can be directly derived from Theorem 10 and Theorem 12.

From Theorem 13, we can find the learning risk mainly depends on ∥ℓR∥, which is decided by the
transition T .

For naive training strategy, we aim to minimize
E(x,ỹ)∈D̃ℓ(ỹ, f(x)),

where f = fn ◦ fn−1 ◦ · · · ◦ f1. However, in our method, we use the representations yielded by
hidden layers of deep networks. In this paper, we employ the second last layer and turn to minimize

E(x,ỹ)∈D̃ℓ(ỹ, fn−1 ◦ fn−2 ◦ · · · ◦ f1(x)).

That is, we employ ℓ(ỹ, f−1
n ◦ f(x)) to approximate ℓR(ỹ, f(x)). fn is likely to be not invertible, but

we can use the Moore-Penrose pseudo left inverse of fn instead. In this view, the last layer fn serves
as the approximation of the transition T implicitly.

F COMPARISON OF HPDN AND SOTA STANDARD NCD METHODS

HPDN is specifically designed for NCD under unreliable sampling (NUSA). Encountering sampling
errors, HPDN will be much more robust according to Table 1 and 8. However, HPDN cannot
outperform SOTA standard NCD methods, e.g., (Zhao & Han, 2021) and (Zhong et al., 2021a). The
main difference between the SOTA standard NCD methods and HPDN is the clustering procedure (the
warm-up procedures are similar). For standard NCD methods, e.g., (Zhao & Han, 2021) and (Zhong
et al., 2021a), their main framework of clustering is to use the data representations induced by deep
networks to compute pairwise similarity and then obtain the pairwise pseudo-labels, and the clustering
problem is reduced to binary classification problem (Hsu et al., 2019). With the strong fitting ability
of a deep network, they can achieve good performance in standard NCD. However, encountering
sampling errors (i.e., NUSA), deep networks are also easy to overfit these errors due to their strong
fitting ability. In addition, these errors will accumulate more and more in the training procedure,
causing performance degradation (Figure 2). For HPDN, to alleviate the bad effect of sampling errors,
we detach all the supervision information in time and propose an Mini-batch Prototypical K-means
to perform clustering. K-means is a fully unsupervised method. With useful data representations,
our Mini-batch Prototypical K-means manages to avoid the accumulation of sampling errors. As its
limited fitting ability, our method may not be able to outperform SOTA standard NCD methods.
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Table 8: Experimental results on HPDN and other baselines. We report the ACC±standard deviation
of ACC. All experiments are performed with sampling error rate of 20% and cross rate of 50%. Bold
values represent the highest average ACC in each column. We report the results averaged over 3
runs on CIFAR-10, CIFAR-100. For ImageNet, following (Han et al., 2020), we report the results
averaged over 3 different label sets of novel-class data. Results of all the methods are trained for 100
epochs.

Method CIFAR-10 CIFAR-100 ImageNet Average
Existing NCD methods

DTC (Han et al., 2019) 30.26%±1.64% 25.10%±1.61% 34.19% 29.85%
RS (Han et al., 2020) 34.56%±1.80% 21.93%±0.68% 35.02% 30.50%

NCL (Zhong et al., 2021a) 34.71%±0.75% 25.07%±2.34% 34.18% 31.32%
UNO (Fini et al., 2021) 40.19%±1.88% 27.18%±1.90% 36.92% 34.76%

Combine NCD methods with Co-teaching (Han et al., 2018)
DTC + Co-teaching 58.41%±3.22% 39.27%±1.37% 50.38% 49.35%
RS + Co-teaching 55.63%±1.85% 39.60%±3.57% 53.23% 49.49%

NCL + Co-teaching 57.96%±0.82% 40.38%±1.06% 47.17% 48.50%
UNO + Co-teaching 62.37%±2.50% 42.26%±2.85% 55.16% 53.26%

Combine NCD methods with DivideMix (Li et al., 2020)
DTC + DivideMix 60.48%±2.14% 41.23%±3.11% 52.93% 51.55%
RS + DivideMix 64.17%±2.08% 44.21%±3.64% 54.16% 54.18%

NCL + DivideMix 61.40%±0.68% 38.39%±1.84% 50.92% 50.24%
UNO + DivideMix 65.59%±2.37% 42.13%±2.39% 54.79% 54.17%

HPDN (Ours) 68.85%±3.11% 43.72%±1.04% 60.16% 57.58%

G IMPLEMENTATION DETAILS

Our experiments are performed on Python 3.6.13, PyTorch 1.7.1, CUDA 11.2, and Tesla A100 GPUs.

Obtain Hidden Representations. For a fair comparison with existing methods, we employ the
ResNet-18/ResNet-50 (He et al., 2016) as the backbones of {CIFAR-10,CIFAR-100}/ImageNet. The
backbone is initialized with SimCLR (Chen et al., 2020) for 300 epochs with the same training
strategy as (Chen et al., 2020). Known-class data and novel-class data are randomly sampled from
Dl and Du, whose batch size is set to 256/1024 for {CIFAR-10, CIFAR-100}/ImageNet. We use
SGD optimizer with initial learning rate 0.1, momentum 0.9, and weigh decay 1e− 4. In addition,
the learning rate decays 10 times after each 40 epochs. We pretrain the backbone for 100/150 epochs
for {CIFAR-10, CIFAR-100}/ImageNet. Then, we choose the outputs of the fourth block of ResNet
with average pooling as the hidden representations.

Mini-batch prototypical K-means. The batch size is set to 128 for all three datasets. We perform
the clustering step for 100 epochs for all three datasets. For hyper-parameter β in equation 3, it is
initialized by 0.05 and set to 0.05 ∗ 0.5epoch//20 in the training procedure, where “//” denotes the
exactly divisible operation. We will further analyze the choice of β in Section 5.
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