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Abstract
Many works have demonstrated that deep neural
networks (DNNs) are vulnerable to adversarial
examples. A deep learning system involves a cou-
ple of elements: the learning task, data set, deep
model, loss, and optimizer. Each element may
cause the vulnerability of the deep learning sys-
tem, and simply attributing the vulnerability of
the deep learning system to the deep model may
impede addressing the adversarial attack. So we
redefine the robustness of DNNs as the robustness
of the deep neural learning system, and we exper-
imentally find that the vulnerability of the deep
learning system also roots in the learning task it-
self. In detail, this paper defines the interval-label
classification task for the deep classification sys-
tem, whose labels are predefined non-overlapping
intervals instead of a fixed value (hard label) or
probability vector (soft label). The experimental
results demonstrate that the interval-label classi-
fication task is more robust than the traditional
classification task while retaining accuracy.

1. Introduction
Deep Neural Networks (DNNs) (Szegedy et al., 2017;
Krizhevsky et al., 2017) are even indispensable for many
tasks, such as computer vision (CV), natural language
processing (NLP) and speech recognition (SR) (LeCun
et al., 2015). However, DNNs are demonstrated to be
vulnerable to adversarial examples. The adversarial
example is crafted by adding adversarial perturbation to
the original legitimate example to fool DNNs while being
imperceptible to humans.

There are two kinds of adversarial attacks, namely
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poisoning attack and evasion attack (Yuan et al., 2019).
The poisoning attack ruins the victim model in the training
phase, while the evasion attack tries to fool the victim in the
testing phase. In this paper, we focus on the evasion attack.
The evasion attack falls into three categories according to
the manner to craft the adversarial perturbation, namely
single-step attack, iterative attack, and optimization-based
attack. The single-step attacks directly add the adversarial
perturbation into the legitimate example (Goodfellow et al.,
2015) or map the legitimate example as an adversarial
example(Baluja & Fischer, 2018). The iterative attacks
(Kurakin et al., 2017b;a) iteratively explore the adversarial
perturbation. For instance, Fast gradient sign method
FGSM (Goodfellow et al., 2015) adds the scaled gradient
sign to the legitimate example. Project gradient descent
(PGD) (Kurakin et al., 2017a) is a multi-step attack, which
consists of few single-step attacks. Carlini & Wagner (CW)
(Carlini & Wagner, 2017) is also a multi-step attack, which
formulates the attack as an optimization problem.

Most of existing methods to improve the robustness
of deep learning system pay attention to the training
data, the model architecture, training loss, and parameter-
updating strategy. For training data-level methods, feature
nullification (Wang et al., 2017) randomly nullifies features
to improve the robustness of the target model. The work
in (Das et al., 2018) demonstrates that image compress
can be employed to improve the robustness of DNNs;
as to model architecture-level method, in (Xie et al.,
2019), the denoising module is introduced to the target
model; as to training-loss-based methods, (Zhang et al.,
2019; S. et al., 2020) introduce regularization loss; for the
parameter-updating strategy methods, (Katz et al., 2017)
updates model parameters with the simplex-like method.
Jonathan Uesato et al. update model parameters with
approximate gradients (Uesato et al., 2018). Moreover, the
adversarial example detection methods (Wang et al., 2018;
Meng & Chen, 2017; Ma et al., 2019) are also employed
to improve the robustness of the deep learning system by
keeping the adversarial example away from the deep model.

As introduced above, existing methods mainly focus
on elements related to the deep model, and few methods
focus on the robustness of the learning task itself. To better
investigate adversarial robustness, we extend the robustness
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Figure 1. The workflow of the interval-label classification learning
system. Unlike the traditional multi-class DNN classifier, the
output of the last full-connected layer of the interval-label DNN
classifier is a one-dimension scalar. The label of input is the
interval corresponding output falls into. ‘None’ means the input
does not belong to any category.

of the deep model to the robustness of the deep learning
system. In this paper, we take the deep image classification
system as an instance to demonstrate that the vulnerability
of deep learning systems may also root in the learning task.
Our contributions are summarized as follows.

• We extend the issue of the adversarial robustness of the
deep model to the adversarial robustness of the deep
learning systems. The deep learning system consists of
the predefined learning task and elements to implement
the learning task.

• We define the interval-label classification task for the
deep learning system. The experimental results demon-
strate that it is more robust than the traditional classifi-
cation task.

2. Interval-label Classification
2.1. Definition

The traditional image classification task can be defined as
follows: ∀x ∈ RC×W×H ,T : x 7→ Rd, where x is an
image example, and C, W and H are the number of the
channels, the width and height of x, respectively. T is
the classification task. k is the number of categories. In
this paper, we investigate the vulnerability of the classi-
fication task by defining the interval-label classification
task. The interval-label classification task can defined as:
∀x ∈ RC×W×H ,T : x 7→ R1. The output of the interval-
label classifier, i.e. the deep model to implement the interval-
label classification task, is a real number, and the label of x is
the predefined interval into which the output falls. The labels
of the interval-label classification are some non-overlapping
intervals.

2.2. An Instance of the Interval-label Classification
Task

In this subsection, we introduce an instance of interval-label
classification. As introduced in Section 2.1, the interval-
label classification maps the example as a real number. So
we set the output dimension of the last fully connected
layer of the DNN classifier as one. The detailed workflow
of the interval-label classification system is shown in Fig.
1. The interval-label classification system consists of three
modules, namely label encoding, label decoding module
and an interval-label classifier. As mentioned above, the
target model is a deep neural network with one-dimension
output. The label encoding module turns the hard labels of
the existing dataset into predefined interval labels, and the
label decoding module projects the interval label as a hard
label. When the output of interval-label classifier o does
not fall into any label label, Label Decoding module marks
corresponding input as ‘None’.

Label encoding is vital for the interval-label classifi-
cation system, which determines the length of each interval
label and the gap between two adjacent interval labels.
Label Decoding module translates the interval label as
a hard label or ground-truth label name, interpreting the
classification result to the human. The details of label
encoding and label decoding modules will be introduced in
the following paragraphs.

Label encoding module transforms the hard label
into an interval label. The map function can be formulated
as follows,

ML(y) = s0 + y · (α+ β)

MU (y) =ML(y) + β
(1)

where s0 is the smallest lower bound of interval labels.
α is the length of the gap between two adjacent interval
labels, while β is the length of the interval label. ML(·)
and MU (·) are lower bound and upper bound map function,
respectively. According to Equation (1), for the hard label
‘3’, when s0 = 0, α = 1, and β = 3, the corresponding
interval-label is [12, 15].

If the output of the interval-label classifier falls into
an interval label, the label decoding function can be
formulated as follows.

ỹ = bI(x)− s0
α+ β

c (2)

where x is the input example. I(·) is the interval-label
classifier. b·c is the rounded down function. If I(x) does
not belong to any interval label, the corresponding input
example will viewed as an abnormal example. Actually, we
can assign variant α and β for different interval labels.
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The loss function of the interval-label classification
task can be formulated as follows,

L(B(X,Y
′
); θ) = ‖r(ML(Y )− I(X))+

r(I(X)−MU (Y )‖22
(3)

where θ is the parameter set of the classifier I . B(X,Y
′
) is

a mini batch. X and Y is the examples set and hard label
set, and Y

′
= [ML(Y ),MU (Y )] is the interval labels set.

ML(Y ) and MU (Y ) is the lower bound set and upper
bound set, respectively. r(·) is the ReLU activation function
(Nair & Hinton, 2010).

2.3. Characteristics of Interval-label Classification

The traditional classification model more easily overfits
compared to the interval-label classification model. The
reason is that even an example has been correctly classified
by the model, the loss, such as the cross-entropy loss and
negative log-likelihood loss, is still not 0 for the traditional
classification task. When the probability of the ground-truth
class exceeding 0.5, the example certainly is correctly
classified. However, only if the target class probability
is one that the loss is zero for the cross-entropy loss. As
to the interval-label classification task, if an example
has been correctly classified, the corresponding loss will
be 0, according to Equation (3). According to (Tsipras
et al., 2019), overconfidence may cause the adversarial
vulnerability of the deep learning system. Moreover, when
s0 = 0, α = 1, and β = 0, the interval-label classification
degrades to the traditional classification.

The interval-label classification is immune to exist-
ing optimization-based attacks that cannot attack the
interval-label classification tasks, such as CW (Carlini &
Wagner, 2017), EAD (Chen et al., 2018), and Deepfool
(Moosavi-Dezfooli et al., 2016) since the adversary needs
to redefine the distance between the output and target label.

3. Experiments
3.1. Experiment Settings

In this paper, two data sets are applied to evaluate the
effectiveness of our method, namely MNIST (Lecun et al.,
1998) and a subset of ImageNet (Russakovsky et al., 2015).
The training set of MNIST consists of 60,000 grayscale
hand-written digit images, while the testing set of MNIST
includes 10,000 images. Imagenet is a color image data set,
consisting of 1000 fine-grained categories. Considering the
task’s complexity, we select the first 10 categories of the
training set and validation set as the training set and testing
set.

On MNIST, three deep neural networks, NN, AlexNet
(Krizhevsky et al., 2017) and ResNet18 (He et al., 2016)
are employed to implement classification tasks. NN is a
neural network consists of two convolution layers and five
fully connected layers, and the first two fully connected
layers adopt the sigmoid activation function. On subset of
ImageNet, AlexNet, DenseNet121 (Huang et al., 2017) and
ResNet18 are adopted to implement classification tasks.

3.2. Feature Visualization

(a) Traditional Classification (b) Interval-label Classification

Figure 2. t-SNE visualization results of the penultimate hidden
features of traditional and interval-label classification classifiers
on MNIST.

We also experiment to visualize the penultimate layer fea-
tures for both traditional classification task and interval-label
classification on MNIST with t-SNE (Maaten & Geoffrey,
2008). As shown in Fig. 2, for the interval-label classifi-
cation task, the examples of the same category aggregate
more tightly than the traditional classification task. There
is no intersection between different clusters, which means
that the interval-label classification can learn a better fea-
ture representation than the traditional classification. We
speculate that the intersection of features of different cat-
egories for traditional classification tasks is that when the
traditional classification task minimizes the empirical risk,
it also pays attention to the non-semantic features, while the
values of non-semantic features are all the same for MNIST.
Furthermore, non-semantic (non-robust) features cause the
vulnerability of the deep learning system (Ilyas et al., 2019).

3.3. Robustness Analysis

In this section, we experiment to explore the robustness
of the interval-label classification task on both white-box
and black-box scenarios. We implement the traditional and
interval-label classification tasks on the same deep neural
network, only the last fully-connected layer being different.
The corresponding experimental results are shown in Tables
1 and 2. For all scenarios, the interval length β is set as 16,
while the length of the gap between two adjacent interval
labels α is set as 4. TRA, HIN, and INT represent the
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Table 1. Comparison of attack success rates between traditional
and interval-label classification tasks in the white-box attack sce-
nario with different attack intensities on MNIST.

Model Task FGSM PGD LEG
0.1 0.2 0.3 0.1 0.2 0.3

NN TRA 0.598 0.792 0.858 0.666 0.971 0.998 0.983
HIN 0.275 0.349 0.378 0.290 0.491 0.597 0.984
INT 0.000 0.000 0.001 0.001 0.005 0.015 0.985

AlexNet TRA 0.866 0.972 0.984 0.937 0.998 1.000 0.982
HIN 0.959 0.998 0.999 0.953 0.997 0.998 0.981
INT 0.003 0.002 0.003 0.003 0.005 0.016 0.978

ResNet TRA 0.660 0.861 0.912 0.991 1.000 1.000 0.985
HIN 0.108 0.161 0.237 0.210 0.351 0.534 0.984
INT 0.010 0.009 0.010 0.009 0.013 0.010 0.990

Table 2. Comparison of attack success rates between traditional
and interval-label classification tasks in the white-box attack sce-
nario with different attack intensities on ImageNet.

Model Task FGSM PGD LEG
3/255 6/255 9/255 3/255 6/255 9/255

AlexNet TRA 0.405 0.550 0.663 0.921 0.989 0.997 0.747
HIN 0.223 0.405 0.562 0.984 0.987 0.996 0.747
INT 0.127 0.134 0.134 0.763 0.771 0.782 0.782

DenseNet TRA 0.318 0.460 0.577 0.991 0.999 1.000 0.795
HIN 0.508 0.810 0.920 0.989 0.995 0.998 0.793
INT 0.064 0.063 0.058 0.648 0.657 0.646 0.769

ResNet TRA 0.290 0.446 0.624 0.824 0.957 0.994 0.777
HIN 0.248 0.480 0.613 0.821 0.937 0.988 0.775
INT 0.049 0.047 0.047 0.659 0.663 0.673 0.768

traditional classification task, traditional classification task
with hinge loss, and the interval-label classification task,
respectively. LEG represents the accuracy on the test set.

The experimental results demonstrate that the interval-label
classification task is much more robust than the traditional
classification task in most cases. In the traditional classi-
fication task, the robustness is at odds with the accuracy
(Tsipras et al., 2019). However, according to Tables 1 and
2, it is noted that, as to the interval-label classification task,
the higher test accuracy, the more robust it is. The reason is
that when an example is correctly classified, its loss will be
0. So it is difficult for the adversary to explore an efficient
gradient to craft adversarial examples. So we conclude that
interval-label classification can alleviate the competition
between robustness and accuracy.

3.4. Adversarial Transferability between Interval-label
Classification Tasks with Different α and β

In this subsection, we experiment to investigate the
adversarial transferability of PGD adversarial examples
among interval-label classification tasks with different α
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Figure 3. Adversarial transferability between different interval-
label classification tasks under PGD attack, and the attack in-
tensity is set as 0.01. The transferability of adversarial examples
is asymmetry for different tasks. So the confusion matrix is not
symmetrical. The row task is the threat task, while the column task
is the victim task.

and β on ImageNet. η is the attack intensity of the PGD
attack. All the interval-label classification tasks are defined
on the ResNet18. In Fig. 3, the lighter color represents
a higher attack success rate. We consider two scenarios,
namely, the length of the interval label is fixed, and the
length of the gap between two adjacent interval label is
fixed.

According to Fig. 3, we know that bigger α and β
will increase the robustness of interval-label classification.
Moreover, we also note that even though the white-box
attack success rate is high in some cases, the adversarial
example is a little hard to transfer between the interval-label
tasks with different α and β. The reason is that when α and
β are small, the interval-label classification is approximate
to the traditional classification. In a real-world application,
a deep neural network may be deployed in variant devices.
So if an adversary has successfully attacked a device, the
crated adversarial example may have a chance to attack the
rest devices. The interval-label classification task promises
to address the issue mentioned above since the defender can
adopt a different combination of α and β.

4. Conclusion
In this paper, we extend the definition of the adversarial ro-
bustness of DNNs to the deep learning system. Furthermore,
we first investigate the learning task robustness of the deep
learning system. The experimental results show that the
interval-label classification task can alleviate the competi-
tion between accuracy and robustness for the deep learning
system. Moreover, the traditional classification task is easily
transformed into the interval-label classification task. How-
ever, the interval-label classification task converges slower
than the traditional classification task. In the future, a more
efficient interval-label classification deep learning system
will be explored.
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