
Optimizing Large Language Model Training Using FP4 Quantization

Ruizhe Wang 1 2 † Yeyun Gong 3 2 Xiao Liu 3 2 Guoshuai Zhao 3 2 Ziyue Yang 3 2

Baining Guo 3 Zhengjun Zha 1 Peng Cheng 3 2

Abstract
The growing computational demands of training
large language models (LLMs) necessitate more
efficient methods. Quantized training presents a
promising solution by enabling low-bit arithmetic
operations to reduce these costs. While FP8 preci-
sion has demonstrated feasibility, leveraging FP4
remains a challenge due to significant quantiza-
tion errors and limited representational capacity.
This work introduces the first FP4 training frame-
work for LLMs, addressing these challenges with
two key innovations: a differentiable quantization
estimator for precise weight updates and an out-
lier clamping and compensation strategy to pre-
vent activation collapse. To ensure stability, the
framework integrates a mixed-precision training
scheme and vector-wise quantization. Experimen-
tal results demonstrate that our FP4 framework
achieves accuracy comparable to BF16 and FP8,
with minimal degradation, scaling effectively to
13B-parameter LLMs trained on up to 100B to-
kens. With the emergence of next-generation hard-
ware supporting FP4, our framework sets a foun-
dation for efficient ultra-low precision training.

1. Introduction
In the past two years, the rapid development of large lan-
guage models (LLMs) has significantly reshaped both re-
search priorities and industrial practices. Theoretical anal-
yses and empirical evidence consistently demonstrate that
scaling up model size leads to substantial performance im-
provements (Kaplan et al., 2020; Bi et al., 2024). However,
training such large-scale models poses considerable chal-

†Work done during internship in MSRA 1University
of Science and Technology of China 2Microsoft SIGMA
Team 3Microsoft Research Asia. Correspondence to:
Yeyun Gong <yegong@microsoft.com>, Peng Cheng
<pengc@microsoft.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0 1 2 3
Tokens/Billion

3

4

5

6

Lo
ss

FP4(Direct Cast)
FP4(Ours)
BF16 Baseline

Figure 1. Directly casting to FP4 results in significantly higher
training loss, whereas our proposed FP4 method achieves accuracy
comparable to the BF16 baseline. These results are based on
experiments with a 400M LLaMA2 model.

lenges, demanding extensive time, energy, and financial
resources. For example, Llama 3 (Dubey et al., 2024) 405B
is trained on up to 16K H100 GPUs for 54 days. Similarly,
GPT-4 (Achiam et al., 2023), with an estimated 1T param-
eters, required an extraordinary amount of computational
power. These examples highlight the urgent need for more
efficient training methods to keep up with the increasing
demands of LLM development.

Model quantization has proven to be an effective technique
for reducing training costs, as low-bit arithmetic kernels
can save memory and accelerate computations when used
appropriately. Most LLM training systems traditionally
rely on FP32 (full precision) or FP16/BF16 (half precision)
data formats, but quantization enables these formats to be
reduced to lower precision, such as 8-bit or even 4-bit.

Recent advancements in computational hardware, such as
NVIDIA’s H100 GPUs (Nvidia, 2023) and the upcoming
B200 GPUs (Nvidia, 2024), have introduced support for
low-bit arithmetic kernels, enabling more efficient compu-
tation. The Hopper series GPUs feature high-performance
FP8 tensor cores, delivering a 2x speed-up compared to
FP16 tensor cores. Meanwhile, the Blackwell series GPUs
extend this capability by supporting FP6 and FP4 formats,
with FP4 offering the potential to double computational
throughput over FP8. Studies like FP8-LM (Peng et al.,

1

Optimizing Large Language Model Training Using FP4 Quantization

2023) and NVIDIA’s Transformer Engine (Nvidia, 2022)
have demonstrated the feasibility of FP8 tensor cores for
model training. But the application of FP4 tensor cores in
model training remains an open research question.

However, leveraging 4-bit data formats for neural network
training presents significant challenges due to the extremely
limited bit width. Directly quantizing LLMs to such a low-
bit format often results in substantial accuracy degradation,
as shown in Figure 1. This is primarily because low-bit
formats are constrained by a limited dynamic range, which
increases the risk of overflow and underflow. Even existing
methods for 8-bit quantization experience some degree of
accuracy loss, underscoring the difficulties of employing a
4-bit format, which provides only 16 distinct representable
values.

In this study, we pioneeringly propose a framework for
training language models using the FP4 format, providing a
validation of the feasibility of this ultra-low precision rep-
resentation. To tackle the significant quantization errors
associated with weights and activations during model train-
ing, we present a series of optimization techniques: (1) For
weights, we present a differentiable quantization estimator
to improve gradient updates in FP4 computations. By ana-
lyzing the impact of quantization on neural network forward
and backward passes, we derive a function with correction
terms for accurate gradient estimation; (2) For activations,
we develop an outlier clamping and compensation strategy
to address the issue of outlier values commonly observed
during LLM training. By analyzing activation distributions
in LLMs, we introduce a clamping method and a sparse aux-
iliary matrix to preserve quantization accuracy and maintain
model performance.

We conduct comprehensive experiments to demonstrate that
our FP4 training framework achieves accuracy compara-
ble to models trained in BF16 or FP8 formats with the
same hyperparameters. Leveraging the FP8 tensor cores
of NVIDIA H100 GPUs to emulate FP4 computations, we
train LLMs with up to 13B parameters and 100B training
tokens, with minor training loss gap. For zero-shot evalu-
ation on downstream tasks, model trained with FP4 show
competitive results against BF16 models. We anticipate
better speed performance gains with the availability of next-
generation hardware like NVIDIA’s B-series GPUs. Our
training framework can be found at aka.ms/MS.AMP.

2. Preliminaries
According to the IEEE 754 standard (Kahan, 1996), a binary
floating-point number consists of three components: a 1-bit
sign (S), exponent bits (E), and mantissa bits (M). This is
commonly represented as ExMy, where x and y denote the
number of bits for the exponent and mantissa, respectively.

For example, FP16 uses E5M10 and BF16 uses E8M7. FP8
typically has two variants: E4M3 and E5M2. In our work,
we adopt the E2M1 format for 4-bit floating-point represen-
tation, as defined in prior studies (Rouhani et al., 2023b;a),
with 2 bits for the exponent and 1 bit for the mantissa.

Unlike integer (INT) quantization, floating-point (FP) quan-
tization features uneven quantization intervals and a larger
dynamic range. To quantize a high-precision tensor like
FP16 to FP4, we employ the commonly used absmax
method (Dettmers et al., 2022; Peng et al., 2023):

xfp4 = Q(xfp16 · γ), γ =
MAXfp4

max(|xfp16|)
(1)

Here, MAXfp4 represents the maximum absolute value in
the FP4 format, and γ serves as the scaling factor. For the
E2M1 configuration, MAXfp4 is calculated to be 6.0. The
quantization function Q() is implemented using a look-up
table for quantization in a custom CUDA kernel since the
FP4 format supports only 24 = 16 distinct values. Detailed
format regulations and quantization implementation can be
found in Appendix A.

3. Methodology
In a typical linear layer of a Transformer architecture, the
computation can be expressed as Y = A ·W , where A is
the activation tensor and W is the weight tensor. To fully
leverage the capabilities of FP4 tensor cores, both A and W
need to be quantized to FP4, as shown in Figure 2. How-
ever, directly quantizing these tensors into FP4 introduces
significant quantization errors. To address this challenge,
we propose the differentiable gradient estimator method for
weight tensors (Section 3.1) and the outlier clampping and
compensation method for activation tensors (Section 3.2) to
mitigate these issues.

3.1. Differentiable Gradient Estimator

Quantization functions are inherently non-differentiable,
preventing the reverse flow of the gradient during back-
propagation. The widely used Straight-Through Estimator
(STE) (Bengio et al., 2013) bypasses this issue by assum-
ing that the gradient of the quantized tensor is equivalent
to that of the original tensor. However, this simplification
introduces inaccuracies in low-bit settings, as noted in prior
studies (Yin et al., 2019; Gong et al., 2019).

To overcome these limitations, we propose a Differentiable
Gradient Estimator (DGE) that reduces estimation errors.
DGE maintains direct quantization for forward computation
to preserve hardware efficiency while introducing a gradient
correction term derived from a differentiable approximation
of the quantization function.

2

https://github.com/Azure/MS-AMP

Optimizing Large Language Model Training Using FP4 Quantization

Output-0.53 -1.39 -1.06 0.86

-1.13 1.25 -0.24 0.17

-0.80 0.70 0.29 0.57

-0.50 0.06 1.06 -1.28

-2 -6 -4 4

4 6 -1 0.5

-3 3 1.5 2

-2 0.5 4 -6

BF16 tensor

1111 1110 1101 1100 1011 1010 1001 1000/
0000

0001 0010 0011 0100 0101 0110 0111

-6 -4 -3 -2 -1.5 -1 -0.5 ±0 0.5 1 1.5 2 3 4 6

FP4 look-up table

4.31

Q

FP4
Tensor
Core

Input

Weight

Q

Q

Si

Sw

FP4 tensor

quantize function

+ scaling factor

Figure 2. The structure of the proposed FP4 training scheme during the forward pass of a linear layer. A high-precision tensor, such as
BF16, is quantized into the FP4 format using look-up table quantization. During the GeMM computation, both weight and activation
tensors are quantized into FP4 to leverage the FP4 tensor cores. Two scaling factors are then applied to the final result to ensure
computational correctness.

Suppose we quantize the model weight W with a non-
differentiable quantization function f : Wq = f(W). Con-
sidering the backward gradient computation for a linear
function with quantized weight, the forward pass can be
expressed as:

Y = AWq = Af(W) (2)

During backpropagation, the loss gradient with respect to
the weight ∂L/∂W and the activation ∂L/∂A are computed
using the gradient propagated from the subsequent layer
∂L/∂Y . For the weight gradient, the chain rule gives:

∂L

∂W
=

∂L

∂Wq

∂Wq

∂W
= (AT ∂L

∂Y
)
∂Wq

∂W
(3)

Where ∂Wq/∂W represents the derivative of the quantiza-
tion function f . since f is an element-wise function, its
derivative f ′ is also element-wise. Thus we have:

∂Wq[i, j]

∂W [k, l]
=

{
f ′(W [i, j]), if (i, j) = (k, l),

0, otherwise.
(4)

Therefore ∂Wq/∂W is a diagonal matrix. When applied to
the chain rule Equation (3), this diagonal structure allows
simplification of the gradient computation, reducing it to an
element-wise multiplication between the two items:

∂L

∂W
[i, j] =

∂L

∂Wq
[i, j] · f ′(W [i, j]) (5)

or to be simplified:

∂L

∂W
=

∂L

∂Wq
⊙ f ′(W), (6)

Where ⊙ denotes the element-wise (Hadamard) product.

Since f is a non-differentiable quantization function, its
derivative f ′ is almost everywhere zero, leading to van-
ishing gradients and causing the weight gradient compu-
tation to fail, as shown in Equation (6). The Straight-
Through Estimator (STE) addresses this issue by assuming
f ′(W) ≡ 1, thereby bypassing gradient vanishing. In other
words, it directly assumes that ∂L/∂W ≡ ∂L/∂Wq .

To achieve more accurate gradient computation, we propose
an alternative approach: approximating the quantization
function with a well-chosen differentiable function, com-
puting its derivative, and incorporating it into Equation (6).
Specifically, we use the following function to simulate the
quantization behavior:

f(x) =
δ

2
·
(
1 + sign(

2x

δ
− 1) · |2x

δ
− 1| 1k

)
(7)

Figure 3(a) illustrates this function under k = 5 for the range
[0, 0.5], which represents the first positive quantization in-
terval in the E2M1 quantization scheme. This figure also
shows that under the assumption of STE, forward quantiza-
tion function is equivalent to f(x) = x because f ′(x) ≡ 1.
In Equation (7), δ represents the quantization interval, and
k is a parameter that controls the degree of approximation.
As k increases, the function curve becomes sharper and
more closely resembles the behavior of the original hard
quantization function. For details on how Equation (7) is
specified and derived, please refer to Appendix C.

The derivative of Equation (7) can be expressed as:

f ′(x) =
1

k
· |2x

δ
− 1| 1k−1 (8)

Figure 3(b) and Figure 3(c) show the complete quantization
curve f(x) and its derivative f ′(x) under k = 5 within

3

Optimizing Large Language Model Training Using FP4 Quantization

0.0 0.1 0.2 0.3 0.4 0.5
input x

0.0

0.1

0.2

0.3

0.4

0.5
Q

ua
nt

iz
ed

 x

(a) single interval quantization

Hard
DGE
STE

6 4 2 0 2 4 6
input x

6
4
2
0
2
4
6

Q
ua

nt
iz

ed
 x

(b) full quantization

Hard
DGE
STE

6 4 2 0 2 4 6
input x

0.0
0.5
1.0
1.5
2.0
2.5
3.0

dy
/d

x

(c) full quantization derivative

Hard
DGE
STE

Figure 3. Visualization of the Differentiable Gradient Estimator (DGE). (a) Comparison of three quantization methods: hard quantization,
differentiable quantization, and STE quantization, demonstrated on a single quantization step. (b) The full quantization curve for E2M1
quantization within its dynamic range [−6.0, 6.0]. (c) The derivative curves for the three methods, highlighting that hard quantization has
a gradient of f ′(x) ≡ 0 , while STE assumes a constant gradient of f ′(x) ≡ 1.

the full E2M1 quantization framework. This framework
consists of 14 distinct quantization intervals. In practice,
the magnitude of f ′(x) is capped at 3.0 to prevent infinite
gradient spikes at δ/2 point, impacting only a very small
subset of elements. For the mathematical soundness of this
operation, as well as the supplementary integration process
and proof for the DGE method in actual training process,
please refer to Appendix C.

In practical model training, the Differentiable Gradient
Estimator (DGE) is seamlessly integrated into the process.
During the forward pass, we retain the hard quantization
function for computational efficiency. For the backward
pass, a correction term derived from Equation (8) is applied
to the weight gradient calculation following Equation (6).

3.2. Outlier Clamping and Compensation

During LLM training, activation tensors are significantly
more challenging to quantize than weight tensors. This dif-
ficulty arises from the complex distribution of activation
tensor values, often dominated by outliers—specific values
that are substantially larger than the rest. Outliers pose a
significant challenge to tensor quantization by dispropor-
tionately expanding the dynamic range of the target tensor,
causing most values to underflow to zero after quantization.

To address this issue, we propose the Outlier Clamping and
Compensation method (OCC) to restrict the range of acti-
vation tensors and mitigate the underflow problem. Specif-
ically, we identify outliers—values with the largest abso-
lute magnitudes—through quantile identification and clamp
them to a predefined threshold. Given a pre-defined quantile
α, the clamping function can be expressed as:

Yc = clamp(Y,max = α,min = 1− α) (9)

Figure 4 illustrates the impact of quantization with and

75 50 25 0 25 50 75
Activation Value

100

101

102

103

104

105

106

107

C
ou

nt

BF16
FP4

75 50 25 0 25 50 75
Activation Value

100

101

102

103

104

105

106

107

C
ou

nt

clamp
BF16
FP4

Figure 4. Visualization of the outlier clamping method, based on
the first transformer layer’s output of the LLaMA 1.3B model after
30,000 training iterations. Up: Quantization performed without
outlier clamping, leading to severe loss of information. Down:
Quantization after applying outlier clamping, effectively preserv-
ing tensor structure.

without outlier clamping, based on a real activation tensor
extracted from the first transformer layer’s output of the
LLaMA 1.3B model after 30,000 training iterations, where
α = 0.999. This approach significantly reduces the mean
squared error (MSE) between the original and quantized
tensors, enhancing quantization quality and maintaining
training stability.

We also observed that while clamping effectively reduces
quantization error, it inherently introduces some error by

4

Optimizing Large Language Model Training Using FP4 Quantization

Table 1. Quantitative analysis of mathematical accuracy between
original and quantized activation tensors. Results represent the
average values obtained across all activation tensors on the 30,000
training iterations of the LLaMA 1.3B model.

CLAMP COMP QUANTILE SIM ↑ MSE ↓ SNR ↑

× — — 92.19% 0.1055 8.31√
× 99.9 98.83% 0.0366 14.25√ √

99.9 99.61% 0.0245 15.31√ √
99 100% 0.0099 18.38√ √
97 100% 0.0068 20.88

disregarding the outlier values. To further preserve accu-
racy, we propose compensating for this error using a sparse
outlier matrix. In our experiments, the quantile clamping
threshold α is set relatively high (around 0.99 ∼ 0.999),
making the residual matrix ∆Y = Y − Yc highly sparse,
with only about 0.2% ∼ 2% non-zero elements. During
computation, the clamped matrix Yc is processed using FP4
GeMM, while ∆Y is handled with high-precision sparse
matrix multiplication.

Table 1 provides a quantitative analysis of cosine similarity
(SIM), mean squared error (MSE), and signal-to-noise ratio
(SNR) between the original activation tensors and quantized
tensors. These results represent average values obtained
across all activation tensors on the 30,000 training iterations
of the LLaMA 1.3B model, demonstrating the impact of
outlier clamping and compensation on preserving tensor fi-
delity during real model training. The data shows that outlier
clamping significantly improves both cosine similarity and
SNR. Moreover, incorporating outlier compensation further
reduces quantization loss. Notably, lowering the quantile
threshold increases the compensation scale, further reduc-
ing quantization loss. However, this introduces a trade-off
between computational efficiency and numerical accuracy
that must be carefully considered.

4. Experiment
In this section, we evaluate the proposed FP4 training frame-
work across language models of various sizes. Section 4.1
details the implementation of our FP4 training framework,
including the model architecture and hyperparameters. Sec-
tion 4.2 presents the main results, showcasing training
curves and zero-shot performance on downstream tasks.
Finally, Section 4.3 provides ablation studies to further vali-
date the effectiveness.

4.1. Experiment Setup

During LLM training, General Matrix Multiplication
(GeMM) accounts for over 95% of the computational work-

load, with this proportion increasing for larger models. Con-
sistent with prior works (Xi et al., 2023; Yang et al., 2020;
Dettmers et al., 2022), we focus on 4-bit quantization for
GeMM operations, a core feature of FP4 tensor cores. In a
GeMM computation Y = AW , where A (sequence length
× input channels) is the activation tensor and W (input chan-
nels × output channels) is the weight tensor, quantization
is applied along distinct dimensions to align with matrix
multiplication logic: A is quantized token-wise (sequence
length dimension), while W is quantized channel-wise (out-
put channels dimension). The aforementioned accuracy-
preserving techniques are integrated to minimize quanti-
zation error. Since FP4 Tensor Cores are unavailable, we
validate FP4 performance using Nvidia H-series GPUs’ FP8
Tensor Cores, which encompass FP4’s dynamic range and
enable accurate simulation.

In mixed-precision training (Micikevicius et al., 2017), non-
GeMM operations, which account for a minor computa-
tional fraction, are performed at higher precision to preserve
accuracy. Following the framework in (Peng et al., 2023),
we perform gradient communication in FP8 format to reduce
bandwidth usage and adopt their mixed-precision Adam op-
timizer to conserve GPU memory. Gradients and first-order
moments are stored in FP8, while second-order moments are
stored in FP16. Remaining operations, comprising a smaller
computational portion, are executed in FP16 or BF16 for
stability and precision.

We adopt the widely recognized LLaMA 2 model (Tou-
vron et al., 2023) as the primary model architecture. The
training is conducted from scratch using the DCLM dataset
(Li et al., 2024), a comprehensive dataset well-suited for
language model pretraining. Hyperparameters remain con-
sistent across precision settings for fair comparison. The
learning rate follows a warm-up and cosine decay schedule,
with the warm-up phase spanning 5% of total steps and the
learning rate gradually decreasing to 10% of its peak over
the remaining 90%. The peak learning rate is 3 × 10−4,
with a weight decay of 0.1. For the Adam optimizer, we
use β1 = 0.9, β2 = 0.95, and ϵ = 1 × 10−8. For spe-
cial hyperparameters used in FP4 method, we use k = 5
for differentiable gradient estimator and select α = 0.99
as the activation clamp and compensation quantile. Input
sequences are fixed at 2048 tokens, and the batch size is
2048, comprising approximately 4M tokens.

4.2. Main Results

We validate the effectiveness of our proposed FP4 training
framework by comparing it against the widely adopted BF16
mixed-precision training scheme. Figure 5 presents the
training loss curves for LLaMA models (1.3B, 7B, and
13B) trained with BF16 and FP4 precision. All models are
trained on 100B tokens using the same dataset and identical

5

Optimizing Large Language Model Training Using FP4 Quantization

Table 2. Zero-shot evaluation for downstream tasks between BF16 models and FP4 models under different model sizes.

Model Size Precision Average PiQA Hellaswag ObQA Arc-C Arc-E BoolQ LogiQA SciQ Lambada

1.3B
BF16 53.23 71.11 50.80 36.60 36.69 68.60 57.83 30.26 83.30 43.84

FP4(Ours) 53.13 70.89 50.82 36.20 36.86 67.47 58.23 29.49 83.90 44.30

7B
BF16 53.87 71.22 52.03 37.40 38.99 67.47 60.55 27.65 85.00 44.56

FP4(Ours) 54.42 71.87 52.97 38.40 39.85 67.97 62.20 27.96 84.70 43.88

13B
BF16 54.44 72.80 53.56 38.60 38.82 67.97 57.40 29.65 86.30 44.87

FP4(Ours) 54.95 73.78 54.12 39.60 39.68 67.89 55.90 30.88 85.80 46.89

0 20 40 60 80 100
Billion tokens

2
3
4
5
6
7
8

Lo
ss

BF16
FP4(Ours)

0 20 40 60 80 100
Billion tokens

2
3
4
5
6
7
8

Lo
ss

BF16
FP4(Ours)

0 20 40 60 80 100
Billion tokens

2
3
4
5
6
7
8

Lo
ss

BF16
FP4(Ours)

(a) LLaMA-1.3B (b) LLaMA-7B (c) LLaMA-13B

Figure 5. Training curves for BF16 models and FP4 models under different model sizes. (a) Training curves for 1.3B LLaMA model. (b)
Training curves for 7B LLaMA model. (c) Training curves for 13B LLaMA model.

hyperparameters. The curves for BF16 and FP4 largely
overlap across different model sizes, with the FP4 curve
exhibiting a slightly higher training loss compared to the
BF16 curve. Specifically, after training on 100B tokens, the
training losses are as follows: 2.55 (FP4) vs. 2.49 (BF16)
for the 1.3B model, 2.17 (FP4) vs. 2.07 (BF16) for the 7B
model, and 1.97 (FP4) vs. 1.88 (BF16) for the 13B model.

In addition to training loss, we evaluate the models on a di-
verse set of downstream tasks datasets in a zero-shot manner,
including Arc (Clark et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), LogiQA (Liu et al., 2021),
PiQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), Open-
bookQA (ObQA) (Mihaylov et al., 2018), and Lambada
(Paperno et al., 2016). These results are obtained through
the widely used lm-evaluation-harness library1 (Gao et al.,
2024). As presented in Table 2, models pre-trained with
FP4 demonstrate competitive performance in intrinsic in-
context learning capabilities. Under the same model size,
the average accuracy of FP4-trained models is comparable
to, or even slightly exceeds, that of BF16-trained models.
Additionally, the results follow the general trend: larger
models achieve higher accuracy under the same number of
training tokens.

1https://github.com/EleutherAI/lm-
evaluation-harness

Table 3. Perplexity evaluation for downstream tasks between BF16
models and FP4 models under different model sizes.

Size Precision Average Lbd.OAI Lbd.std Pile10k Wikitext

1.3B
BF16 37.38 14.98 25.10 82.77 26.65

FP4(Ours) 36.86 15.33 23.07 82.52 26.51

7B
BF16 35.06 14.34 23.33 77.72 24.86

FP4(Ours) 35.62 14.29 24.42 78.42 25.36

13B
BF16 33.69 12.42 22.45 75.06 24.81

FP4(Ours) 33.99 13.67 21.62 75.84 24.83

Table 3 further presents the perplexity (PPL) evaluation
results for several downstream datasets including Lambada
OpenAI (Lbd.OAI), Lambada standard (Lbd.std) (Paperno
et al., 2016), the Pile 10k (Gao et al., 2020) and Wikitext
(Merity et al., 2017). The results demonstrate that FP4
models achieve comparable or even slightly lower PPL than
BF16 models. As expected, larger models achieve lower
perplexity under the same training token budget.

These results highlight that despite the reduced precision,
FP4 training achieves nearly equivalent performance to
BF16 both in terms of training loss and downstream task ac-
curacy, making it a promising approach for efficient training
of large language models.

6

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

Optimizing Large Language Model Training Using FP4 Quantization

0 2 4 6 8 10
Billion tokens

3

4

5

6

7

8
Lo

ss

W4A4
W4A4+DGE+OCC
MSAMP FP8
TE FP8
BF16

0 2 4 6 8 10
Billion tokens

3.0

3.5

4.0

4.5

5.0

Lo
ss

W4A8
W4A8+DGE(k=3)
W4A8+DGE(k=5)
W4A8+DGE(k=10)
BF16

0 2 4 6 8 10
Billion tokens

3

4

5

6

7

8

9

10

Lo
ss

NaNW8A4
W8A4+OCC(=0.999)
W8A4+OCC(=0.99)
W8A4+OCC(=0.97)
BF16

0 2 4 6 8 10
Billion tokens

3

4

5

6

7

8

9

10

Lo
ss

W:coarse A:coarse
W:fine A:coarse
W:coarse A:fine
W:fine A:fine
BF16

2.70

2.75

2.80

2.85

2.90

2.75

2.80

2.85

2.72

2.74

2.76

2.78

2.80

2.82

2.70

2.75

2.80

2.85

2.90

2.95

(a) Ablation on precision (b) Ablation on weight

(c) Ablation on activation (d) Ablation on granularity

Figure 6. Ablation studies. (a) Training curves under different precision frameworks. (b) The effect of proposed Differentiable Gradient
Estimator (DGE). (c) The effect of proposed Outlier Clamping and Compensation method (OCC). Note that directly casting activation into
4-bit leads to divergence, and the loss value turn into NaN (Not a Number). (d) Training curves under different quantization granularities
of FP4.

4.3. Ablation Study

We divide our ablation study into smaller parts to better
highlight the findings of FP4 training. All experiments are
conducted on the LLaMA 1.3B model, trained with 10B
tokens from a subset of the DCLM dataset. To acceler-
ate convergence for this smaller model, the batch size is
reduced from 2048 to 256, while other hyperparameters
remain consistent with the main experiments.

Precision. Figure 6(a) presents training curves across
various precisions, including BF16 (baseline), MS-AMP
FP8 (Peng et al., 2023), Transformer-Engine FP8 (Nvidia,
2022), directly-casted FP4, and our FP4 method. We
use W4A4 to denote direct quantization, meaning that
quantizing both weight and activation to fp4. Meanwhile,
W4A4+DGE+OCC denotes our fp4 quantization method
that incorporates the Differentiable Gradient Estimator
(DGE) and Outlier Clamp and Compensation (OCC) meth-
ods introduced in Section 3. The loss curves show that two
FP8 methods and our FP4 approach maintain pretraining ac-
curacy, while directly-casted FP4 has a significant training
loss gap.

Weights. For weight-only 4-bit quantization (W4A8),
we evaluate our Differentiable Gradient Estimator (DGE)
method alone against direct quantization. As shown in
Figure 6(b), the DGE method significantly improve conver-
gence. Notably, direct quantizing weight into 4-bit doesn’t
introduce a substantial training loss gap, suggesting that
weights are easier to quantize than activations. For the hy-
perparameter k in this method, a larger k can better model
the quantization function, but it can also lead to a more
unstable correction term for the gradient. It can also be
seen in the figure that a moderate k = 5 gives better final
performance.

Activation. For activation-only 4-bit quantization (W8A4),
we evaluate our Outlier Clamp and Compensation (OCC)
method alone against direct quantization. Figure 6(c) re-
veals that directly quantizing activations in FP4 results in
curve divergence, where the loss values turn into NaN (Not
a Number) after certain training steps. Outlier clamping
and compensation effectively reduces this loss gap, ensur-
ing a good convergence. This experiment re-emphasizes
the importance of appropriate treatment of outliers in the
absmax quantization framework. For the hyperparameter α

7

Optimizing Large Language Model Training Using FP4 Quantization

in this method, a smaller α implies a stronger compensation,
but at an increased computational cost. Figure 6(c) shows
the model loss under three settings α = 0.999, 0.99, 0.97,
corresponding to the non-zero elements of the sparse com-
pensation matrix of 0.2%,2% and 6%, respectively. Al-
though experiments show that a smaller α leads to better
model accuracy, which is consistent with the conclusion
of Table 1, we believe that α = 0.99 is a better choice for
comprehensive computational performance considerations.

Granularity. We also observe that the granularity of
FP4 quantization plays a critical role. While FP8 training
schemes (Peng et al., 2023; Nvidia, 2022) achieve sufficient
accuracy with coarse-grained tensor-wise quantization, Fig-
ure 6(d) shows that tensor-wise scaling in FP4 introduces
significant errors. To address this, we adopt vector-wise
scaling, with token-wise quantization for activations and
channel-wise quantization for weights, aligning with GeMM
computation rules as discussed in Section 4.1. Notably,
applying coarse-grained quantization to activations alone
result in more severe accuracy degradation than applying
it to weights alone, revealing that activations are harder to
quantize than weights, consistent with the activation outlier
issue described in Section 3.2.

5. Related Work
Quantized Training and Inference.When discussing the
quantization of large language models (LLMs) for train-
ing, we typically refer to Fully Quantized Training (FQT).
Related research efforts have generally used Mixed Preci-
sion Training (Micikevicius et al., 2017; Mellempudi et al.,
2019) frameworks to accelerate model training while main-
taining model accuracy. While previous research has mainly
concentrated on CNNs or DNNs(Sun et al., 2019; Wang
et al., 2018; Banner et al., 2018; Yang et al., 2020), recent
studies have demonstrated the feasibility of low-bit mixed
precision training for LLMs (Peng et al., 2023; Nvidia, 2022;
Fishman et al., 2025; Xi et al., 2024). In contrast to the
FQT scheme, research on low-bit computation for infer-
ence has focused on Post-Training Quantization (PTQ) and
Quantization Aware Training (QAT). While PTQ directly
quantizes pre-trained models for inference (Dettmers et al.,
2022; Frantar et al., 2023; Lin et al., 2024a; Xiao et al.,
2023; Yao et al., 2022; Liu et al., 2024), QAT involves fine-
tuning or pre-training the model for better low-bit inference
performance (Liu et al., 2023b; Cheng et al., 2023; Wang
et al., 2023; Dettmers et al., 2023). Our method differs from
QAT, as we aim to accelerate the training process while
maintaining performance, rather than solely focusing on
improving inference efficiency without consideration for the
training speed.

4-bit Quantization. Recent works in PTQ and QAT have
successfully applied 4-bit, 2-bit or even 1-bit quantization to

LLM inference (Dettmers & Zettlemoyer, 2023; Wu et al.,
2023). However, these methods focused on LLM infer-
ence, requiring additional computation like calibration set
fine-tuning (Wang et al., 2024), rotary matrix and low-rank
compensation (Lin et al., 2024b; Ashkboos et al., 2024; Li
et al., 2025), quantization parameters searching (Liu et al.,
2023a), or even retraining the whole network (Ma et al.,
2024). In the field of FQT, an early study (Sun et al., 2020)
applied a 4-bit radix-4 FP4 format to convolutional neural
networks (CNNs). MXFP (Rouhani et al., 2023b) intro-
duced a novel quantization data for GPT-style models, but
lacked feasibility validation on full FP4 settings. (Xi et al.,
2023) proposed an INT4 training framework, but their focus
was on fine-tuning tasks with limited applicability to LLM
pretraining. In contrast, our work is the first to propose
an FP4 training framework tailored for LLMs, validated
from scratch, and designed to align with next-generation
hardware like Nvidia’s B-series GPUs.

Differentiable Quantization. Unlike previous methods
focusing on differentiable quantization (Gong et al., 2019;
Uhlich et al., 2019; Chen et al., 2019; Li et al., 2022; Huang
et al., 2022), which rely on learnable quantization param-
eters updated through backpropagation, our differentiable
gradient estimator method uses a fixed quantization func-
tion. We directly change the gradient estimator from STE
to DGE during the backward pass, avoiding the need for
continuous updates to the quantization function, which is
not friendly to specialized hardware designs. Our approach
is more efficient and more suitable for hardware acceleration
in large-scale training.

Handling Outliers. Our method for handling activation out-
liers in LLMs differs significantly from existing approaches,
which mainly target model inference (Liu et al., 2023a; Li
et al., 2025; Ashkboos et al., 2024; Liu et al., 2024). Activa-
tion outliers in LLMs are typically channel-specific (Xiao
et al., 2023; Wei et al., 2022). Channel-wise quantization
would reduce quantization loss but conflicts with the compu-
tation structure of matrix multiplication in linear layers (Xi
et al., 2024; Lee et al., 2024). Previous strategies to solve
this problem like smoothing outliers (Xiao et al., 2023) or us-
ing rotary matrices (Ashkboos et al., 2024; Liu et al., 2024)
rely on offline pre-processing, making them incompatible
with pretraining tasks. In contrast, our method addresses
outliers dynamically during real-time training without re-
quiring separate calibration datasets, which is critical for
maintaining efficiency in pretraining large models.

6. Limitation
One primary limitation of this work lies in the absence of
dedicated FP4 Tensor Cores in existing hardware. Conse-
quently, we are unable to directly measure the potential
speedup and energy efficiency gains achievable with native

8

Optimizing Large Language Model Training Using FP4 Quantization

FP4 support. All current experiments rely on FP4 simula-
tions, which introduce additional computational overhead
due to extra precision casting and significantly prolong run-
time. Additionally, due to constraints on computational
resources, we have not yet extended our experiments to
extremely large-scale models or to datasets comprising tril-
lions of tokens. Investigating such scalability remain as
critical directions for future research.

7. Conclusion
We propose the first FP4 pretraining framework for mod-
ern Large Language Models (LLMs), overcoming the chal-
lenges of limited dynamic range and quantization precision
in 4-bit formats. By proposing a differentiable gradient
estimator and an outlier compensation mechanism, we ef-
fectively reduce the accuracy gap between FP4 and higher-
precision baselines like FP8 or FP16, achieving compara-
ble performance across diverse model scales. Our findings
demonstrate the feasibility of FP4-based training, provid-
ing insights into improving quantization methods for ultra-
low-precision computing, and may also serve as a call for
next-generation hardware designs to enable efficient 4-bit
computation kernels.

Impact Statement
This work demonstrates the feasibility of using ultra-low
precision formats like FP4 for training large language mod-
els, offering a pathway toward energy conservation and
reduced carbon emissions in AI development. By signifi-
cantly lowering computational demand, FP4-based methods
can democratize access to advanced AI systems while pro-
moting environmental sustainability.

Additionally, this research calls for next-generation AI accel-
erators optimized for 4-bit computations, potentially shap-
ing future hardware innovations. However, broader societal
implications must be considered, including the risks of mis-
use and the amplification of biases inherent in large-scale AI
models. Addressing these challenges is essential to ensure
responsible and equitable adoption of this technology.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. GPT-4 Technical Report. arXiv
preprint arXiv:2303.08774, 2023.

Ashkboos, S., Mohtashami, A., Croci, M., Li, B., Cameron,
P., Jaggi, M., Alistarh, D., Hoefler, T., and Hensman, J.
QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs.
Advances in Neural Information Processing Systems, 37:
100213–100240, 2024.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scalable
Methods for 8-bit Training of Neural Networks. Advances
in Neural Information Processing Systems, 31, 2018.

Bengio, Y., Léonard, N., and Courville, A. Estimat-
ing or Propagating Gradients Through Stochastic Neu-
rons for Conditional Computation. arXiv preprint
arXiv:1308.3432, 2013.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek LLM:
Scaling Open-Source Language Models with Longter-
mism. arXiv preprint arXiv:2401.02954, 2024.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. PIQA: Reason-
ing about Physical Commonsense in Natural Language.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 34, pp. 7432–7439, 2020.

Chen, S., Wang, W., and Pan, S. J. MetaQuant: Learning
to Quantize by Learning to Penetrate Non-differentiable
Quantization. Advances in Neural Information Process-
ing Systems, 32, 2019.

Cheng, W., Zhang, W., Shen, H., Cai, Y., He, X., Lv, K., and
Liu, Y. Optimize Weight Rounding via Signed Gradient
Descent for the Quantization of LLMs. arXiv preprint
arXiv:2309.05516, 2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the Surprising
Difficulty of Natural Yes/No Questions. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pp. 2924–2936, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have Solved
Question Answering? Try ARC, the AI2 Reasoning Chal-
lenge. arXiv preprint arXiv:1803.05457, 2018.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit preci-
sion: k-bit Inference Scaling Laws. In International Con-
ference on Machine Learning, pp. 7750–7774. PMLR,
2023.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
GPT3.int8(): 8-bit Matrix Multiplication for Transform-
ers at Scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. QLoRA: Efficient Finetuning of Quantized LLMs.
Advances in Neural Information Processing Systems, 36:
10088–10115, 2023.

9

Optimizing Large Language Model Training Using FP4 Quantization

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The Llama 3 Herd of Models. arXiv preprint
arXiv:2407.21783, 2024.

Fishman, M., Chmiel, B., Banner, R., and Soudry, D. Scal-
ing FP8 training to trillion-token LLMs. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=E1EHO0imOb.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
GPTQ: Accurate quantization for generative pre-trained
transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tcbBPnfwxS.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The Pile: An 800GB Dataset of Diverse Text for
Language Modeling. arXiv preprint arXiv:2101.00027,
2020.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., and
Yan, J. Differentiable Soft Quantization: Bridging Full-
Precision and Low-Bit Neural Networks. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 4852–4861, 2019.

Huang, X., Shen, Z., Li, S., Liu, Z., Xianghong, H., Wicak-
sana, J., Xing, E., and Cheng, K.-T. SDQ: Stochastic
Differentiable Quantization with Mixed Precision. In In-
ternational Conference on Machine Learning, pp. 9295–
9309. PMLR, 2022.

Kahan, W. IEEE standard 754 for binary floating-point
arithmetic. Lecture Notes on the Status of IEEE, 754
(94720-1776):11, 1996.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling Laws for Neural Language Models.
arXiv preprint arXiv:2001.08361, 2020.

Lee, C., Jin, J., Kim, T., Kim, H., and Park, E. OWQ:
Outlier-Aware Weight Quantization for Efficient Fine-
Tuning and Inference of Large Language Models. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 13355–13364, 2024.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre,
S. Y., Bansal, H., Guha, E., Keh, S. S., Arora, K., et al.
DataComp-LM: In search of the next generation of train-
ing sets for language models. Advances in Neural Infor-
mation Processing Systems, 37:14200–14282, 2024.

Li, M., Lin, Y., Zhang, Z., Cai, T., Guo, J., Li, X., Xie,
E., Meng, C., Zhu, J.-Y., and Han, S. SVDQuant: Ab-
sorbing Outliers by Low-Rank Component for 4-Bit Dif-
fusion Models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=vWR3KuiQur.

Li, Y., Xu, S., Zhang, B., Cao, X., Gao, P., and Guo, G.
Q-ViT: Accurate and Fully Quantized Low-bit Vision
Transformer. Advances in Neural Information Processing
Systems, 35:34451–34463, 2022.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. AWQ:
Activation-aware Weight Quantization for On-Device
LLM Compression and Acceleration. Proceedings of
Machine Learning and Systems, 6:87–100, 2024a.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C., and
Han, S. QServe: W4A8KV4 Quantization and System
Co-design for Efficient LLM Serving. arXiv preprint
arXiv:2405.04532, 2024b.

Liu, J., Cui, L., Liu, H., Huang, D., Wang, Y., and Zhang,
Y. LogiQA: A Challenge Dataset for Machine Reading
Comprehension with Logical Reasoning. In Proceedings
of the Twenty-Ninth International Conference on Inter-
national Joint Conferences on Artificial Intelligence, pp.
3622–3628, 2021.

Liu, S., Liu, Z., Huang, X., Dong, P., and Cheng, K.-T.
LLM-FP4: 4-Bit Floating-Point Quantized Transform-
ers. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023a. URL https:
//openreview.net/forum?id=wiI8ycNfgJ.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. LLM-
QAT: Data-Free Quantization Aware Training for Large
Language Models. arXiv preprint arXiv:2305.17888,
2023b.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. SpinQuant: LLM quantization with learned rotations.
arXiv preprint arXiv:2405.16406, 2024.

Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang,
S., Dong, L., Wang, R., Xue, J., and Wei, F. The Era of
1-bit LLMs: All Large Language Models are in 1.58 Bits.
arXiv preprint arXiv:2402.17764, 2024.

10

https://openreview.net/forum?id=E1EHO0imOb
https://openreview.net/forum?id=E1EHO0imOb
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=vWR3KuiQur
https://openreview.net/forum?id=vWR3KuiQur
https://openreview.net/forum?id=wiI8ycNfgJ
https://openreview.net/forum?id=wiI8ycNfgJ

Optimizing Large Language Model Training Using FP4 Quantization

Mellempudi, N., Srinivasan, S., Das, D., and Kaul, B.
Mixed Precision Training With 8-bit Floating Point. arXiv
preprint arXiv:1905.12334, 2019.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
Sentinel Mixture Models. In International Conference
on Learning Representations, 2017.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., et al. Mixed Precision Training. arXiv
preprint arXiv:1710.03740, 2017.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a Suit of Armor Conduct Electricity? A New Dataset
for Open Book Question Answering. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2381–2391, 2018.

Nvidia. Using FP8 with Transformer Engine,
2022. URL https://docs.nvidia.com/
deeplearning/transformer-engine/user-
guide/examples/fp8_primer.html.

Nvidia. NVIDIA H100 Tensor Core GPU Architecture,
2023. URL https://resources.nvidia.com/
en-us-tensor-core.

Nvidia. NVIDIA Blackwell Architecture Technical Brief,
2024. URL https://resources.nvidia.com/
en-us-blackwell-architecture.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N.-Q.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The LAMBADA dataset: Word predic-
tion requiring a broad discourse context. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
1525–1534, 2016.

Peng, H., Wu, K., Wei, Y., Zhao, G., Yang, Y., Liu, Z.,
Xiong, Y., Yang, Z., Ni, B., Hu, J., et al. FP8-LM:
Training FP8 Large Language Models. arXiv preprint
arXiv:2310.18313, 2023.

Rouhani, B. D., Garegrat, N., Savell, T., More, A., Han,
K.-N., Zhao, R., Hall, M., Klar, J., Chung, E., Yu, Y.,
et al. OCP Microscaling Formats (MX) Specification,
2023a. URL https://www.opencompute.org/
documents/ocp-microscaling-formats-
mx-v1-0-spec-final-pdf.

Rouhani, B. D., Zhao, R., More, A., Hall, M., Khodamoradi,
A., Deng, S., Choudhary, D., Cornea, M., Dellinger, E.,
Denolf, K., et al. Microscaling Data Formats for Deep
Learning. arXiv preprint arXiv:2310.10537, 2023b.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani,
S., Srinivasan, V. V., Cui, X., Zhang, W., and Gopalakr-
ishnan, K. Hybrid 8-bit Floating Point (HFP8) Training
and Inference for Deep Neural Networks. Advances in
Neural Information Processing Systems, 32, 2019.

Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A., Cui,
X., Venkataramani, S., El Maghraoui, K., Srinivasan,
V. V., and Gopalakrishnan, K. Ultra-Low Precision 4-bit
Training of Deep Neural Networks. Advances in Neural
Information Processing Systems, 33:1796–1807, 2020.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open Foundation and Fine-
Tuned Chat Models. arXiv preprint arXiv:2307.09288,
2023.

Uhlich, S., Mauch, L., Yoshiyama, K., Cardinaux, F., Gar-
cia, J. A., Tiedemann, S., Kemp, T., and Nakamura, A.
Differentiable Quantization of Deep Neural Networks.
arXiv preprint arXiv:1905.11452, 2(8), 2019.

Wang, H., Ma, S., Dong, L., Huang, S., Wang, H., Ma, L.,
Yang, F., Wang, R., Wu, Y., and Wei, F. BitNet: Scaling
1-bit Transformers for Large Language Models. arXiv
preprint arXiv:2310.11453, 2023.

Wang, J., Liu, H., Feng, D., Ding, J., and Ding, B. FP4-
Quantization: Lossless 4bit Quantization for Large Lan-
guage Models. In 2024 IEEE International Conference
on Joint Cloud Computing (JCC), pp. 61–67. IEEE, 2024.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakr-
ishnan, K. Training Deep Neural Networks with 8-bit
Floating Point Numbers. Advances in Neural Information
Processing Systems, 31, 2018.

Wei, X., Zhang, Y., Zhang, X., Gong, R., Zhang, S., Zhang,
Q., Yu, F., and Liu, X. Outlier Suppression: Pushing
the Limit of Low-bit Transformer Language Models. Ad-
vances in Neural Information Processing Systems, 35:
17402–17414, 2022.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourcing
Multiple Choice Science Questions. In Proceedings of
the 3rd Workshop on Noisy User-generated Text, pp. 94–
106, 2017.

Wu, X., Li, C., Aminabadi, R. Y., Yao, Z., and He, Y. Un-
derstanding Int4 Quantization for Language Models: La-
tency Speedup, Composability, and Failure Cases. In In-
ternational Conference on Machine Learning, pp. 37524–
37539. PMLR, 2023.

Xi, H., Li, C., Chen, J., and Zhu, J. Training Transform-
ers with 4-bit Integers. Advances in Neural Information
Processing Systems, 36:49146–49168, 2023.

11

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf

Optimizing Large Language Model Training Using FP4 Quantization

Xi, H., Chen, Y., Zhao, K., Teh, K. J., Chen, J., and Zhu,
J. Jetfire: Efficient and accurate transformer pretraining
with int8 data flow and per-block quantization. In Inter-
national Conference on Machine Learning, pp. 54049–
54063. PMLR, 2024.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and
Han, S. SmoothQuant: Accurate and Efficient Post-
Training Quantization for Large Language Models. In In-
ternational Conference on Machine Learning, pp. 38087–
38099. PMLR, 2023.

Yang, Y., Deng, L., Wu, S., Yan, T., Xie, Y., and Li, G.
Training High-Performance and Large-Scale Deep Neural
Networks with Full 8-bit Integers. Neural Networks, 125:
70–82, 2020.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. ZeroQuant: Efficient and Affordable
Post-Training Quantization for Large-Scale Transformers.
Advances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., and Xin, J.
Understanding Straight-Through Estimator in Training
Activation Quantized Neural Nets. In International Con-
ference on Learning Representations, 2019.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a Machine Really Finish Your Sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791–4800,
2019.

12

Optimizing Large Language Model Training Using FP4 Quantization

A. Implementation of FP4 Quantizaiton
Floating-point numbers in a computer are represented using a binary format defined by the IEEE 754 standard (Kahan, 1996).
Each number is divided into three components: the sign bit (S), the exponent (E), and the mantissa (or significand, M). This
is commonly represented as ExMy, where x and y denote the number of bits for the exponent and mantissa, respectively.
The sign bit determines whether the number is positive (S = 0) or negative (S = 1). The exponent, stored in a biased
format, encodes the power of two that scales the number, enabling the representation of a wide range of values. The mantissa
contains the significant digits of the number, capturing its precision. A normalized floating-point number is decoded as:

Value = (−1)S × (1.M)× 2E−bias

Where 1.M represents the normalized mantissa with an implicit leading 1, and the bias (e.g., 127 for single precision or
1023 for double precision) adjusts the exponent to account for its encoding. Subnormal numbers, where the exponent is all
zeros, are handled separately with no implicit leading 1. This representation allows for efficient computation but introduces
rounding errors due to the limited number of bits in the mantissa.

The IEEE 754 standard does not define rules for floating-point formats with precision below 16 bits, such as FP8 and FP4.
For 4-bit floating-point representation, we adopt the E2M1 format as defined in prior studies (Rouhani et al., 2023b;a).
According to the IEEE definition, an exponent field (E) filled with ones does not correspond to a valid numeric value;
instead, it represents infinity (Inf) when the mantissa (M) is all zeros or an invalid number (NaN, Not a Number) when the
mantissa contains nonzero bits. However, this rule is often disregarded in FP8 and FP4 formats due to their limited bit width,
as the priority is to maximize the representation of meaningful numerical values. For example, FP8-E4M3 format doesn’t
define Inf, FP6 and FP4 formats don’t define both Inf and NaN.

Based on the distribution of exponent and mantissa bits, all representable numbers in the FP4 format are listed in Table 4.

Table 4. FP4 Quantization Table under different FP4 formats.

BINARY SEQUENCE

FORMAT 1111 1110 1101 1100 1011 1010 1101 1000/0000 0001 0010 0011 0100 0101 0110 0111

E1M2 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 ±0 0.5 1 1.5 2 2.5 3 3.5
E2M1 -6 -4 -3 -2 -1.5 -1 -0.5 ±0 0.5 1 1.5 2 3 4 6
E3M0 -16 -8 -4 -2 -1 -0.5 -0.25 ±0 0.25 0.5 1 2 4 8 16

E1M2
1.50.5-0.5-1.5

-1-2 0 1 2-3 3

2.5 3.5-2.5-3.5

-6 -4 -3 -1-2 0 1 2

-1.5 -0.5 0.5 1.5

3 4 6

E2M1

-0.5
0

-16 -8 -4 -2 2

-0.25

-1 1
0.5

0.25

E3M0

4 8 16

Figure 7. Visualization of all representable numbers in different FP4 formats.

The ”E0M3” format is not included here because it is equivalent to the INT4 format, as it doesn’t have any exponent bits.
From Table 4 and Figure 7, we observe that increasing the number of exponent bits expands the dynamic range, while
increasing the number of mantissa bits improves the precision of quantization intervals. We select the E2M1 format in our
main experiments as it offers a balanced trade-off between dynamic range and quantization precision.

Since the FP4 format supports only 24 = 16 distinct values, we implement a look-up table for FP4 quantization in a custom
CUDA kernel. Quantization functions typically involve element-by-element operations on large amounts of data, which can

13

Optimizing Large Language Model Training Using FP4 Quantization

be parallelized to take advantage of the highly parallel computing power of GPUs. The following code paragraph shows the
implementation of the quantization kernel.

1 __global__ void quantize_kernel(const float* x, float* output, int x_size) {
2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idx < x_size) {
4 float value = x[idx];
5 float closest;
6
7 closest = (value < -5.0f) ? -6.0f :
8 (value < -3.5f) ? -4.0f :
9 (value < -2.5f) ? -3.0f :

10 (value < -1.75f) ? -2.0f :
11 (value < -1.25f) ? -1.5f :
12 (value < -0.75f) ? -1.0f :
13 (value < -0.25f) ? -0.5f :
14 (value < 0.25f) ? 0.0f :
15 (value < 0.75f) ? 0.5f :
16 (value < 1.25f) ? 1.0f :
17 (value < 1.75f) ? 1.5f :
18 (value < 2.5f) ? 2.0f :
19 (value < 3.5f) ? 3.0f :
20 (value < 5.0f) ? 4.0f : 6.0f;
21
22 output[idx] = closest;
23 }
24 }
25
26 void quantize(at::Tensor input, at::Tensor output, int size) {
27 const float* input_data = input.data_ptr<float>();
28 float* output_data = output.data_ptr<float>();
29
30 const int threadsPerBlock = 256;
31 const int blocks = (size + threadsPerBlock - 1) / threadsPerBlock;
32 cudaStream_t stream = at::cuda::getCurrentCUDAStream();
33
34 quantize_kernel<<<blocks, threadsPerBlock, 0, stream>>>(input_data, output_data, size)

;
35 }

B. Theoretical Analysis on Speed Performance and Overhead
To assess the theoretical performance benefit of FP4 acceleration in our mixed-precision training framework, we analyze the
theoretical speedup at the level of individual Transformer layer components. Specifically, we compute the floating-point
operations (FLOPs) required for each subcomponent in both FP32 and FP4 precision. Let the hidden size be h, batch size b,
and sequence length s. The FLOP breakdown per Transformer layer is summarized in Table 5.

Given that the backward pass typically incurs approximately twice the FLOPs of the forward pass, the total computational
cost for both forward and backward passes is three times that of the forward pass alone. Thus, the theoretical speedup factor
from FP4 acceleration (excluding any overhead) can be expressed as:

3× (24bsh2 + 5bs2h+ 36bsh)

3× (6bsh2 + 5bs2h+ 36bsh)
=

24h+ 5s+ 36

6h+ 5s+ 36

For a representative case of a 7B model with hidden size h = 4096 and sequence length s = 2048, the resulting theoretical

speedup is approximately
24× 4096 + 5× 2048 + 36

6× 4096 + 5× 2048 + 36
= 3.12.

In addition to the theoretical speedup from FP4 compute, we also account for two primary sources of computational overhead
introduced by our proposed methodologies: Differentiable Gradient Estimator (DGE) and Outlier Clamp and Compensation
(OCC).

14

Optimizing Large Language Model Training Using FP4 Quantization

Table 5. FLOP breakdown of a standard Transformer layer under FP4 acceleration.

Component Subcomponent FLOPs (FP32) FLOPs (FP4) Speedup Factor

Input LayerNorm — 4bsh 4bsh 1×

Multi-Head Attention

Query, Key, Value Projections 6bsh2 1.5bsh2 4×

Attention Scores Computation 4bs2h 4bs2h 1×

Softmax Computation bs2h bs2h 1×

Output Projection 2bsh2 0.5bsh2 4×

Post-Attention LayerNorm — 4bsh 4bsh 1×

Feed-Forward Network (FFN)

Up Projection 8bsh2 2bsh2 4×

GeLU Activation 28bsh 28bsh 1×

Down Projection 8bsh2 2bsh2 4×

Total — 24bsh2 + 5bs2h+ 36bsh 6bsh2 + 5bs2h+ 36bsh —

DGE Overhead. DGE introduces an additional nonlinear function in the backward pass of GEMM operations used for
weight updates. As shown in Equation (8), this adds approximately 8 FLOPs per input element. Accumulating over all
relevant GEMM operations—including attention query/key/value projections, attention output projection, and MLP up and
down projections—the total FLOP overhead per iteration is:

8× (3bsh+ bsh+ 4bsh+ 4bsh) = 96bsh

This overhead occurs only once per forward-backward iteration.

OCC Overhead. OCC introduces extra FP8 sparse matrix multiplications during outlier compensation. Given an activation
outlier matrix sparsity of 2(1− α), these sparse GEMMs are applied to each of the four primary GEMM computations in a
Transformer block, resulting in an additional 2(1− α)× (12bsh2) FLOPs per iteration. In our setup, we choose α = 0.99
to maintain high sparsity in the ∆Y matrix. While the computational FLOP overhead remains small due to high sparsity,
hardware inefficiencies in sparse GEMMs make a high value of α essential for runtime performance.

Adjusted Speedup Estimate. Taking both DGE and OCC overheads into account, the revised theoretical speedup becomes:

3× (24bsh2 + 5bs2h+ 36bsh)

3× (6bsh2 + 5bs2h+ 36bsh+ 2(1− α)(12bsh2)) + 96bsh
=

24h+ 5s+ 36

6h+ 24(1− α)h+ 5s+ 68

Substituting h = 4096, s = 2048, and α = 0.99, we obtain
24× 4096 + 5× 2048 + 36

6× 4096 + 24× 0.01× 4096 + 5× 2048 + 68
= 2.95

Overhead Impact. The DGE overhead accounts for 32/(6h+ 5s+ 36) = 0.1% and the OCC overhead contributes:
24(1− α)h/(6h+ 5s+ 36) = 5.6% of the total computation. These result in a modest reduction of the ideal FP4 speedup
from 3.12 to 2.95, which we consider an acceptable trade-off between computational efficiency and model accuracy.

C. Supplementary Proof for Differentiable Quantization Estimator
C.1. The Derivation of Differentiable Quantization Function

In Section 3.1, we introduce a differentiable function to simulate the quantization funciton in Equation (7). Here we describe
in detail how this formula is derived step by step.

To construct a smooth and differentiable approximation to the quantization function, we begin with the power function
f(x) = xa, where 0 < a < 1. This function is particularly suitable due to its saturating behavior: it approaches 1 as
x → 1, and rapidly decays toward 0 as x → 0. These properties align well with the behavior of the right half of a typical

15

Optimizing Large Language Model Training Using FP4 Quantization

quantization function. To extend the function to the entire real line while maintaining central symmetry around the origin,
we first symmetrize it by applying the sign function. This gives:

f(x) = sign(x) · |x|a (10)

This symmetrized function now resembles a ”soft step” centered at the origin, increasing smoothly from −1 to +1. We first
scale the x-axis adjust the quantization interval from [−1, 1] to [−δ/2, δ/2], which we need to scale x by δ/2, resulting in:

f(x) = sign(
2x

δ
) · |2x

δ
|a (11)

To shift the center of this function from the origin to the midpoint of the quantization interval [0, δ], we perform a horizontal
(x-axis) translation. Specifically, we translate the input by δ/2, which centers the function at x = δ/2. This gives:

f(x) = sign

(
2(x− δ

2)

δ

)
·

∣∣∣∣∣2(x− δ
2)

δ

∣∣∣∣∣
a

= sign
(
2x

δ
− 1

)
·
∣∣∣∣2xδ − 1

∣∣∣∣a (12)

This modified function now transitions smoothly from negative to positive around the midpoint of the quantization interval,
rather than around zero. Similarly, to ensure the output(y) range of the function maps to the desired quantization interval
[0, δ], we apply a vertical (y-axis) translation and scaling. Specifically, we shift the function upward by 1 and then scale it by
δ/2, resulting in:

f(x) =
δ

2
·
(
1 + sign

(
2x

δ
− 1

)
·
∣∣∣∣2xδ − 1

∣∣∣∣a) (13)

This transformation maps the function output to the interval [0, δ], with a steep but smooth transition occurring around
x = δ/2.

Finally, to make the steepness of the approximation more intuitively controllable, we reparameterize the exponent a as the
reciprocal of a positive constant k > 1, i.e., a = 1/k. Larger values of k lead to steeper transitions, making the function
better approximate a hard quantization step, while smaller values of k result in smoother transitions.

C.2. Proof of DGE with Vector-wise Scaling Factors

Here we present the complementary proof procedure for the Differentiable Gradient Estimator (DGE) method under
actual quantization with vector-wise scaling factors. In the GeMM operation Y = AW , where A is the activation tensor
with dimensions (s × ci, sequence length × input channels) and W is the weight tensor with dimensions (ci × co, input
channels × output channels), quantization is applied along distinct dimensions to adhere to the mathematical logic of matrix
multiplication. For the weight tensor with dimensions (ci × co), channel-wise quantization is performed as follows:

Wscaled = W ⊙ sf (14)

W scaled
q = Q(Wscaled) (15)

Wq = W scaled
q ⊙ 1

sf
(16)

Here, sf is the scaling factor, and ⊙ represents the element-wise (Hadamard) product. In tensor-wise quantization, sf is
a scalar. For channel-wise quantization, sf is a vector with dimensions (1 × co). In this case, the ⊙ operation involves
broadcasting sf to each column of the matrix W (ci × co), followed by element-wise multiplication.

For Equation (16), it is crucial to note that multiplying by 1/sf ensures mathematical correctness. Practically, however, this
step is performed after the GeMM kernel execution. In other words, the quantized weight tensor provided to the GeMM

16

Optimizing Large Language Model Training Using FP4 Quantization

kernel is the scaled quantized weight tensor W scaled
q from Equation (15). Nevertheless, for mathematical analysis, the

quantized weight tensor Wq must be re-scaled.

In the backward computation, the loss gradient with respect to W is derived from the forward operation Y = AWq.
According to the matrix multiplication rules for differentiation, the gradient ∂L/∂Wq is computed using the activation
gradient ∂L/∂Y from the subsequent layer.

Fwd: Y = AWq Bwd:
∂L

∂Wq
= AT ∂L

∂Y
(17)

By applying the chain rule and referring to Equations (14) to (16), the relationship between ∂L/∂Wq and the actual weight
gradient ∂L/∂W is established. According to Equation (16), the gradient ∂L/∂W scaled

q can be expressed in terms of
∂L/∂Wq using the scaling factor sf :

∂L

∂W scaled
q

=
∂L

∂Wq
⊙ 1

sf
(18)

Subsequently, the differentiable gradient estimator correction term Q′(x) is applied to compute ∂L/∂Wscaled:

∂L

∂Wscaled
=

∂L

∂W scaled
q

⊙ Q′(Wscaled) (19)

Where Q′(x) is the differentiable gradient estimator correction item introduced in Equation (8). Finally, the relationship
between ∂L/∂Wscaled and ∂L/∂W is derived by incorporating sf :

∂L

∂W
=

∂L

∂Wscaled
⊙ sf (20)

By combining all these steps, the formula for calculating the true weight gradient ∂L/∂W is obtained:

∂L

∂W
=

(
∂L

∂Wq
⊙ 1

sf
⊙ Q′(Wscaled)

)
⊙ sf (21)

=
∂L

∂Wq
⊙ Q′(Wscaled) (22)

Importantly, the scaling and un-scaling steps cancel each other due to the element-wise nature of the operations, resulting
in a simplified expression. This final formula matches the previously demonstrated Equation (6) in the main body of the
paper, with the only difference being that the variables within the DGE correction term must account for scaled weights. No
changes are required for the Q and Q′ functions.

C.3. Mathematical Soundness of DGE Clipping

As introduced in Section 3.1, the differentiable quantization scheme includes a DGE correction term whose derivative
can become unbounded near the midpoint of the quantization interval. Specifically, the derivative f ′(x) is clipped to a
maximum value of 3.0 in practice to prevent instability during training. In this appendix, we provide a detailed mathematical
justification for this clipping operation and explain how a smoothing technique can be used to ensure continuity and
numerical stability.

The derivative of the DGE approximation is given by:

f ′(x) =
1

k
·
∣∣∣∣2xδ − 1

∣∣∣∣ 1k−1

(23)

17

Optimizing Large Language Model Training Using FP4 Quantization

as also stated in Equation (8). This expression arises from differentiating the power-based approximation of the quantization
function centered at x = δ/2, where δ is the quantization range, and k > 1 is a hyperparameter that controls the steepness
of the transition.

The critical issue lies in the exponent 1
k − 1, which is negative for all k > 1. Negative exponents in the form |x|α with

α < 0 are known to diverge as x → 0, due to the reciprocal relationship. For instance, when k = 3, the exponent becomes
− 2

3 , leading to:

f ′(x) =
1

3
·
∣∣∣∣2xδ − 1

∣∣∣∣− 2
3

=
1

3 ·
(∣∣ 2x

δ − 1
∣∣2/3) (24)

which becomes singular as x → δ/2. In this limit, the term
∣∣ 2x
δ − 1

∣∣ → 0, causing the denominator to vanish and
f ′(x) → ∞. This unbounded growth can lead to gradient explosions during optimization, especially when many input
values are near δ/2.

To eliminate the singularity at x = δ/2, we redefine the absolute value function in a differentiable and bounded manner.
Instead of using the sharp absolute value |x|, we adopt a smooth approximation defined as:

|x| ≈
√
x2 + ϵ2 (25)

where ϵ is a small positive constant. Substituting this into the derivative expression yields a smoothed version:

f ′
smooth(x) =

1

k
·

√(2x

δ
− 1

)2

+ ϵ2

 1
k−1

(26)

This formulation ensures that the denominator never reaches zero, as
√

(·)2 + ϵ2 ≥ ϵ > 0, and therefore f ′
smooth(x) remains

bounded for all x ∈ R. In effect, the singularity is replaced with a smooth transition that asymptotically approximates the
original function as ϵ → 0, while maintaining differentiability and numerical stability during training.

We observe from the smoothed derivative expression presented in Equation (26) that the DGE correction term becomes
bounded due to the regularization introduced by the epsilon term. Specifically:

lim
x→δ/2

f ′
smooth(x) = lim

x→δ/2

1

k
·

√(2x

δ
− 1

)2

+ ϵ2

 1
k−1

(27)

=
1

k
·
(√

0 + ϵ2
) 1

k−1

=
1

k
· ϵ 1

k−1 (28)

In practice, the DGE correction item is clipped with a predefined value, which is proved in Equation (28) to be mathematically
equivalent since k and ϵ are all constents. This approach is aligned with the simplicity principle in algorithm design: it
avoids the need to modify the functional form while still achieving equivalent mathematical behavior around the singular
point. As demonstrated above, both the smoothed and clipped versions share the key property of bounding the gradient
magnitude in the vicinity of x = δ/2, thereby ensuring stability during backpropagation.

D. Analyzing Quantization Difficulty Through Tensor Distribution
Section 3 highlights the necessity of quantizing both weight and activation tensors to fully leverage the FP4 tensor core. It
also points out that activation tensors are significantly more challenging to quantize compared to weight tensors. To further
support this observation, we provide the actual distributions of weight and activation tensors during model training.

Figures 8 to 10 illustrate the distribution of weight tensors, while Figures 11 to 13 show the distribution of activation tensors.
These results are derived from training the LLaMA 1.3B model over 30,000 iterations. The y-axis is set to a logarithmic

18

Optimizing Large Language Model Training Using FP4 Quantization

0.1 0.0 0.1

101

103

105
Mean: -0.0000

Std: 0.0062

layers.0.self_attention.dense

0.5 0.0 0.5

101

103

105
Mean: -0.0000

Std: 0.0148

layers.2.self_attention.dense

0.1 0.0 0.1

101

103

105 Mean: -0.0000
Std: 0.0170

layers.4.self_attention.dense

0.25 0.00 0.25

101

103

105
Mean: -0.0000

Std: 0.0192

layers.6.self_attention.dense

0.25 0.00 0.25

101

103

105
Mean: 0.0000

Std: 0.0188

layers.8.self_attention.dense

0.2 0.0

101

103

105 Mean: 0.0000
Std: 0.0207

layers.10.self_attention.dense

0.1 0.0 0.1

101

103

105 Mean: -0.0000
Std: 0.0220

layers.12.self_attention.dense

0.0 0.2

101

103

105 Mean: 0.0000
Std: 0.0260

layers.14.self_attention.dense

0.2 0.0 0.2

101

103

105 Mean: -0.0000
Std: 0.0209

layers.16.self_attention.dense

0.5 0.0

101

103

105
Mean: -0.0000

Std: 0.0204

layers.18.self_attention.dense

0.5 0.0 0.5

101

103

105
Mean: 0.0000

Std: 0.0217

layers.20.self_attention.dense

0.5 0.0 0.5

101

103

105
Mean: -0.0000

Std: 0.0200

layers.22.self_attention.dense

Values

Fr
eq

ue
nc

y

Figure 8. Visualization of the weight tensors in the dense projection layers of the self-attention module.

0.25 0.00 0.25

101

103

105

Mean: 0.0000
Std: 0.0234

layers.0.mlp.up_projection

0.2 0.0 0.2

102

104

106 Mean: -0.0000
Std: 0.0169

layers.2.mlp.up_projection

0.1 0.0 0.1

102

104

106 Mean: 0.0000
Std: 0.0147

layers.4.mlp.up_projection

0.2 0.0

101

103

105

Mean: -0.0000
Std: 0.0204

layers.6.mlp.up_projection

0.1 0.0 0.1

102

104

106
Mean: -0.0001

Std: 0.0227

layers.8.mlp.up_projection

0.25 0.00 0.25

101

103

105

Mean: -0.0001
Std: 0.0201

layers.10.mlp.up_projection

0.2 0.0 0.2

101

103

105

Mean: -0.0001
Std: 0.0260

layers.12.mlp.up_projection

0.0 0.2

101

103

105

Mean: -0.0001
Std: 0.0270

layers.14.mlp.up_projection

0.2 0.0 0.2

101

103

105

Mean: -0.0000
Std: 0.0273

layers.16.mlp.up_projection

0.1 0.0 0.1

102

104

106

Mean: -0.0000
Std: 0.0277

layers.18.mlp.up_projection

0.25 0.00 0.25

101

103

105

Mean: 0.0000
Std: 0.0281

layers.20.mlp.up_projection

0.25 0.00 0.25

101

103

105

Mean: 0.0001
Std: 0.0282

layers.22.mlp.up_projection

Values

Fr
eq

ue
nc

y

Figure 9. Visualization of the weight tensors in the up-projection linear layers of the MLP module.

0.5 0.0 0.5

101

103

105

Mean: 0.0000
Std: 0.0205

layers.0.mlp.down_projection

0.5 0.0 0.5

101

103

105

Mean: -0.0000
Std: 0.0115

layers.2.mlp.down_projection

0.2 0.0 0.2

101

103

105

Mean: 0.0000
Std: 0.0094

layers.4.mlp.down_projection

0.5 0.0 0.5

101

103

105

Mean: 0.0000
Std: 0.0157

layers.6.mlp.down_projection

0.25 0.00 0.25

102

104

106 Mean: 0.0000
Std: 0.0193

layers.8.mlp.down_projection

1 0

101

103

105

Mean: 0.0000
Std: 0.0165

layers.10.mlp.down_projection

0.5 0.0 0.5

101

103

105

Mean: -0.0000
Std: 0.0215

layers.12.mlp.down_projection

0.0 0.5

101

103

105

Mean: -0.0000
Std: 0.0249

layers.14.mlp.down_projection

0.5 0.0 0.5

101

103

105

Mean: -0.0000
Std: 0.0263

layers.16.mlp.down_projection

0.25 0.00 0.25

102

104

106 Mean: 0.0000
Std: 0.0273

layers.18.mlp.down_projection

0.5 0.0 0.5

101

103

105

Mean: 0.0000
Std: 0.0280

layers.20.mlp.down_projection

0.5 0.0 0.5

101

103

105

Mean: -0.0000
Std: 0.0272

layers.22.mlp.down_projection

Values

Fr
eq

ue
nc

y

Figure 10. Visualization of the weight tensors in the down-projection linear layers of the MLP module.

19

Optimizing Large Language Model Training Using FP4 Quantization

0.5 0.0 0.5

101

103

105

107
Mean: 0.0003

Std: 0.0137

layers.0.self_attention.core_attention

2 0 2

101

103

105

107

Mean: -0.0013
Std: 0.1078

layers.2.self_attention.core_attention

2.5 0.0 2.5

102

104

106
Mean: -0.0004

Std: 0.1377

layers.4.self_attention.core_attention

2.5 0.0 2.5

102

104

106 Mean: 0.0000
Std: 0.2601

layers.6.self_attention.core_attention

2.5 0.0 2.5

101

103

105

107

Mean: 0.0031
Std: 0.2618

layers.8.self_attention.core_attention

2.5 0.0 2.5

101

103

105

Mean: 0.0021
Std: 0.3746

layers.10.self_attention.core_attention

0 5

101

103

105

Mean: 0.0026
Std: 0.3494

layers.12.self_attention.core_attention

5 0 5

101

103

105

Mean: 0.0044
Std: 0.3915

layers.14.self_attention.core_attention

2.5 0.0 2.5

101

103

105

107

Mean: -0.0019
Std: 0.3007

layers.16.self_attention.core_attention

0 5

102

104

106
Mean: 0.0000

Std: 0.3013

layers.18.self_attention.core_attention

5 0 5

101

103

105

107

Mean: 0.0032
Std: 0.3308

layers.20.self_attention.core_attention

5 0 5

102

104

106
Mean: -0.0018

Std: 0.2893

layers.22.self_attention.core_attention

Values

Fr
eq

ue
nc

y

Figure 11. Visualization of the activation tensors from the core attention output.

5 0 5

101

103

105

Mean: -0.0016
Std: 1.0014

layers.0.post_attention_layernorm

20 0 20

103

105

107

Mean: -0.0051
Std: 0.8788

layers.2.post_attention_layernorm

10 0 10

103

105

107

Mean: -0.0039
Std: 0.6730

layers.4.post_attention_layernorm

10 0 10

103

105

107

Mean: 0.0017
Std: 0.8224

layers.6.post_attention_layernorm

20 0

103

105

107

Mean: 0.0030
Std: 0.9404

layers.8.post_attention_layernorm

20 0

102

104

106
Mean: 0.0024

Std: 0.8763

layers.10.post_attention_layernorm

20 0

101

103

105

107

Mean: 0.0015
Std: 0.9890

layers.12.post_attention_layernorm

20 0

102

104

106 Mean: 0.0059
Std: 1.0990

layers.14.post_attention_layernorm

20 0

101

103

105

Mean: 0.0063
Std: 1.1716

layers.16.post_attention_layernorm

20 0

101

103

105

Mean: 0.0037
Std: 1.2356

layers.18.post_attention_layernorm

20 0 20

102

104

106 Mean: 0.0004
Std: 1.2848

layers.20.post_attention_layernorm

20 0 20

102

104

106 Mean: -0.0026
Std: 1.2266

layers.22.post_attention_layernorm

Values

Fr
eq

ue
nc

y

Figure 12. Visualization of the activation tensors from the post-attention layer normalization output.

25 0 25

101

103

105

107
Mean: -0.0109

Std: 0.9682

layers.0.mlp.down_projection

20 0

101

103

105

107

Mean: -0.0006
Std: 0.1411

layers.2.mlp.down_projection

1 0

101

103

105

Mean: -0.0001
Std: 0.0826

layers.4.mlp.down_projection

10 0

101

103

105

107
Mean: -0.0012

Std: 0.2082

layers.6.mlp.down_projection

10 0

101

103

105

107

Mean: -0.0013
Std: 0.2753

layers.8.mlp.down_projection

20 0

101

103

105

107
Mean: -0.0015

Std: 0.2360

layers.10.mlp.down_projection

25 0 25

101

103

105

107
Mean: 0.0003

Std: 0.3162

layers.12.mlp.down_projection

10 0

101

103

105

107

Mean: 0.0015
Std: 0.4243

layers.14.mlp.down_projection

10 0

101

103

105

Mean: 0.0026
Std: 0.5098

layers.16.mlp.down_projection

0 20

101

103

105

Mean: 0.0038
Std: 0.6162

layers.18.mlp.down_projection

25 0 25

101

103

105

107

Mean: 0.0056
Std: 0.7205

layers.20.mlp.down_projection

0 50

101

103

105

107
Mean: 0.0014

Std: 0.7513

layers.22.mlp.down_projection

Values

Fr
eq

ue
nc

y

Figure 13. Visualization of the activation tensors from the MLP down-projection layer output.

20

Optimizing Large Language Model Training Using FP4 Quantization

scale to enhance visualization. From these figures, it is evident that weight tensors generally exhibit a smaller dynamic
range, while activation tensors have a significantly larger dynamic range, making them more challenging to quantize.

Regarding distribution characteristics, weight tensors typically follow a normal distribution, with certain tensors exhibiting
small outliers. In contrast, activation tensors vary widely in their distributions. For example, core attention outputs often
follow a regular distribution with minimal outliers. However, many activation tensors, such as layer-norm outputs and
transformer layer outputs, display irregular distributions with numerous outliers, making them particularly difficult to
quantize.

Notably, the outliers in activation tensors during LLM training tend to appear in specific channels. This observation is
further validated through heatmap analysis in Figure 14. The result is obtained through the activation function (GeLU)
output from the first transformer layer.

These analyses underscore the critical importance of effectively addressing activation tensors during quantization, especially
their outliers. Future research could gain valuable insights by exploring the complex distributions and outlier behavior of
activation tensor values.

Figure 14. Heatmap visualization of the activation function (GeLU) output from the first transformer layer on the 30,000 training iteration
of the LLaMA 1.3B model. The vertical light lines in the heatmap correspond to specific channel dimensions in the activation tensor,
highlighting the channel-wise distribution of outliers.

21

