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ABSTRACT

Anticipating future actions in videos is challenging, as the observed frames pro-
vide only evidence of past activities, requiring the inference of latent intentions
to predict upcoming actions. Existing transformer-based approaches, which rely
on dot-product attention over pixel representations, often lack the high-level se-
mantics necessary to model video sequences for effective action anticipation. As
a result, these methods tend to overfit to explicit visual cues present in the past
frames, limiting their ability to capture underlying intentions and degrading gen-
eralization to unseen samples. To address this, we propose Action-Guided At-
tention (AGA), an attention mechanism that explicitly leverages predicted action
sequences as queries and keys to guide sequence modeling. Our approach fosters
the attention module to emphasize relevant moments from the past based on the
upcoming activity and combine this information with the current frame embed-
ding via a dedicated gating function. The design of AGA enables post-training
analysis of the knowledge discovered from the training set. Experiments on the
widely adopted EPIC-Kitchens-100 benchmark demonstrate that AGA general-
izes well from validation to unseen test sets. Post-training analysis can further
examine the action dependencies captured by the model and the counterfactual
evidence it has internalized, offering transparent and interpretable insights into its
anticipative predictions.

1 INTRODUCTION

Anticipating future actions in videos is challenging in computer vision, with broad implications for
assistive systems, robotics, autonomous vehicles, and interactive entertainment. The core difficulty
stems from the need to predict upcoming actions based solely on observed video frames, which
provide only indirect evidence of subtle human intentions. Unlike action recognition, where its an-
notations are present and synchronized with observed frames, action anticipation, on the other hand,
requires inferring future action labels from up-to-current observations. The observed frames often
contain merely partially revealed and ambiguous visual cues, and the fact that the same past obser-
vations could lead to multiple possible future outcomes further makes the task inherently uncertain.

The emergence of the vision transformer has appeared as a dominant paradigm in video action antic-
ipation modeling. However, existing vision transformer approaches typically rely on conventional
self-attention over the token representation transformed from the video pixels. This design principle
could have advantages in the action recognition task, as self-attention can effectively construct the vi-
sual patterns and match their synchronized annotations. Nonetheless, the inherent non-deterministic
nature of the future makes action anticipation a more complex task than pattern recognition. Con-
ventional self-attention can therefore be misled by visual clutter, potentially leading to overfitting.

To address this problem, we propose leveraging action predictions to sequentially guide the focus
of attention. We call our method Action-Guided Attention (AGA), where both queries and keys are
represented by action probabilities. The design builds upon the fundamentals of dot-product atten-
tion, which attends to values through correlations between query and key representations. Instead of
relying on pixel-level features, AGA uses predicted actions as high-level semantic guidance. This
formulation explicitly models the idea of predicting the next action conditioned on previously pre-
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dicted actions, learning dependencies among actions to improve the anticipation of future events.
The output of the AGA aggregates relevant past moments and further adaptively mixes the informa-
tion derived from the current frame inputs through a dedicated gating function to balance between
history context and current evidence.

On EPIC-Kitchens-100, AGA generalizes effectively from validation to unseen test sets, with a
consistently narrow gap that suggests resistance to overfitting on partially observed video inputs. Its
robustness is further validated on EPIC-Kitchens-55 and the sparsely annotated EGTEA Gaze+.

Moreover, the design of AGA also enables post-training analysis to uncover the knowledge learned
during training. Through forward analysis and backward analysis, we can examine the action de-
pendencies captured by the model and the counterfactual evidence it has internalized, offering trans-
parent and interpretable insights into its anticipative predictions.

2 RELATED WORK

A broad spectrum of anticipation methods have been proposed over the past five years. Sequence
modeling approaches, primarily based on recurrent networks (e.g., RNN, GRU, LSTM), were ini-
tially explored to map observed features to future actions. RULSTM (Furnari & Farinella, 2020)
employs two LSTMs, the first summarizes the observed video sequence, while the second unrolls
predictions according to the temporal distance to the start of the future action. By explicitly in-
corporating the anticipation interval and unrolling toward the end of the interval, this architecture
established a strong baseline on large-scale video action anticipation benchmarks such as EPIC-
Kitchens-55 (Damen et al., 2018) and EPIC-Kitchens-100 (Damen et al., 2022). However, sequential
recurrent models are prone to error accumulation as time progresses. To address this, SRL (Qi et al.,
2021) introduces a regulation mechanism that emphasizes novel information at each timestamp, con-
trasting it with previously observed content and modeling its correlation with past frames, thereby
improving upon the RULSTM baseline. Building on this line, ImagineRNN (Wu et al., 2020) further
enhances unrolling by learning to explicitly predict frame-wise differences within the anticipation
interval in a contrastive manner.

More recently, transformer-based architectures have emerged, delivering significant improvements
in action recognition and anticipation. The Anticipative Visual Transformer (AVT) (Girdhar &
Grauman, 2021) introduced a causal attention decoder on top of the standard Vision Transformer
framework for action anticipation, achieving state-of-the-art performance at its time of publication.
MemViT (Wu et al., 2022) extended AVT by storing longer historical context within the attention
keys and values through token compression techniques. Later, RaftFormer (Girase et al., 2023) ad-
dressed the high computational cost of attention by optimizing the model design for efficiency and
faster inference.

Besides, several works have explored multi-modal integration to enhance prediction accuracy.
S-GEAR (Diko et al., 2024) emphasized semantic representations by jointly supervising visual and
language branches. AFFT (Zhong et al., 2023) adapted the GPT-2 architecture and proposed an
efficient fusion mechanism capable of incorporating additional modalities such as audio and optical
flow. InAViT (Roy et al., 2024) leveraged prior information in the form of hand masks to disentangle
human interactions from environmental clutter. More recent directions investigate the use of vision-
language models and large language models for anticipation (Zhang et al., 2023; Mittal et al., 2024;
Wang et al., 2025). Other extensions include semantic action augmentation (Qiu & Rajan, 2025)
and long-term anticipation (Zhao et al., 2023; Zatsarynna et al., 2025), further broadening the scope
of multi-modal anticipation research.

Prior work also explores the semantic label space in anticipation, but unlike AGA they do not feed
predictions back into the attention mechanism to reweight the visual representation. Abu Farha
et al. (2018) use RNN/CNN predictors to decode future actions in the label space. Ke et al. (2019)
refine predictions by injecting temporal features into an attention module. Zhao & Wilde (2020)
condition the initial visual observation on an action-time sequence through a conditional GAN to
generate diverse futures. However, in all these methods the predictions remain separate from feature
extraction, they do not guide the attention over visual tokens. AGA is distinct in that it uses the
model’s own evolving action predictions to dynamically focus attention on semantically meaningful
visual cues.
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Figure 1: Architecture overview. The model consists of two modules. The Action-Guided Attention
uses the most recent S action predictions as keys, the exponential moving average (EMA) of all
predicted actions as the query, and S frame embeddings as values to generate a history context h̃t.
The Adaptive Gating then integrates this history context with the current frame embedding et to
produce a fused representation, which is mapped to the new prediction ŷt.

In this work, we focus on a fundamental challenge in video action anticipation, which causes overfit-
ting due to incomplete and uncertain observations associated with the future action. We propose an
alternative attention design, AGA, that incorporates high-level, task-guided action representations as
queries and keys, thereby mitigating attention to over-reliance on unreliable visual cues from partial
video evidence. Our study considers explicitly anticipation methods that use RGB video frames as
input, excluding those that integrate multi-modal or auxiliary knowledge sources such as text.

3 METHOD

Let (xt)t≥0 be a sequence of video frames sampled every ∆t > 0 seconds, where xt ∈ RC×H×W .
For indices r ≤ s, we write xr:s to denote the subsequence (xmax(0,r), . . . , xs), that is, values with
r < 0 are clipped at zero; if s exceeds the total sequence length then set it to the last index, and
s ≥ 0. Here, t denotes the discrete frame index, corresponding to real time t · ∆t. Given the
observed frames x0:T , the goal is to predict the future action yT+ta ∈ RNc , represented as a one-hot
vector over Nc classes, which occurs ta ·∆t seconds after the last observed frame. For each index
0 < t < T , the model outputs a probability distribution ŷt ∈ [0, 1]Nc as an estimate of the true
future action yt+ta .

3.1 ACTION-GUIDED ATTENTION

We introduce a conditional attention mechanism that extends the standard formulation of Vaswani
et al. (2017) by conditioning queries (Q) and keys (K) on semantic-level action predictions, while
using frame-encoded video features as values (V ). Ideally, the ground-truth action label yt would
provide the most reliable signal for guiding the estimation of future actions. However, because the
ground-truth is unavailable at inference time, we instead rely on the self-predicted distribution ŷt as
an approximate guide. In dot-product attention, correlations between query and key yield weights
that select relevant values. Our design represents the features of a video frame by its corresponding
action prediction, and then utilizes the dot-product between prediction embeddings to aggregate rel-
evant frame features to forecast the anticipated action. The overall architecture is shown in Figure 1.

At each timestep t, the input video frame xt is first processed by a frame-based backbone fbackbone(·),
followed by an trainable encoder fx(·) that extracts the frame features et:

et = fx(fbackbone(xt)).
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The trainable function fx(.) finetunes features from a frozen backbone, keeping the backbone mod-
ular and interchangeable for any image architecture.

These features are subsequently stored in a first-in, first-out (FIFO) queue of size S, a hyperparame-
ter that determines the temporal window over which the model can reference past information. The
number of the keys and values is thus dependent on S.

At each timestep, the frame features stored in the queue serve as the values, while the predictions
from the same time, which can be viewed as semantic tags summarizing the information up to
the current moment, are used to construct the keys. Specifically, instead of using the perceptual
features e, we employ the past predictions ŷ to represent high-level semantics in the attention mech-
anism. Formally, we define:

Kt = EK(ŷt−S:t−1) Vt = EV (et−S:t−1), (1)

where EK(·) and EV (·) are implemented as multilayer perceptrons (MLP).

Correspondingly, the query also leverages the sequence of action predictions to match the semantic
level with the keys. To effectively incorporate longer temporal dependencies, we apply an exponen-
tial moving average (EMA) over the past action predictions to form the query:

ȳt = αŷt−1 + (1− α)ȳt−1 Qt = EQ(ȳt), (2)

where ȳ0 is initialized as the zero vector and α is empirically set to 0.8 (see Section 4.3 and Ap-
pendix B.1.2 for experiments on the choice of α). The function EQ(·) consists of an MLP. Note that
K0 and V0 are undefined and are never used for attention. When the queue is empty, the first input
frame, the attention is bypassed and its output is initialized to a zero vector. Starting from the second
frame, the queue contains at least one timestep for both Q and K, allowing the attention mechanism
to begin processing information even if the queue is not yet full.

Then, with Qt, Kt, and Vt defined, the multi-head dot-product attention is applied:

ht = MultiHead(Qt,Kt, Vt) = (head1 ∥ · · · ∥ headh)W o,

where

headi = Softmax

(
(QtW

Q
i ) (KtW

K
i )⊤√

d

)
(VtW

V
i ). (3)

Here, h0 is initially set to a zero-vector, WQ
i ,WK

i ,WV
i are the trainable parameters for multi-heads,

and W o is the output weight for aggregating the multi-head attention outputs.

As usual, the output of the attention module is further transformed by a feedforward network (FFN),
implemented as an MLP, with a residual connection. The FFN complements the attention mecha-
nism by introducing non-linear transformations, while the learnable parameters within the attention
are confined to the input and output embedding projections:

h̃t = ht + FFN(ht).

For both multi-head attention and FFN the normalization is performed in PreNorm style (Xiong
et al., 2020) using the RMSNorm layer (Zhang & Sennrich, 2019). The outputs of the multi-head
attention and the FFN are then fused with et through the Adaptive Gating.

3.2 ADAPTIVE GATING

The relevance of the history context and the current visual evidence vary over time. Therefore, we
componentwise fuse the history h̃t and evidence et using a gating vector gt ∈ [0, 1]d that has the
same dimension as h̃t and et, resulting in the output

ot = gt ⊙ h̃t + (1− gt)⊙ et,

where ⊙ denotes componentwise multiplication. The gating vector itself is computed as gt =
σ(MLP(h̃t ∥ et)), where the MLP is composed of two linear layers and a ReLU activation func-
tion while σ(·) denotes the sigmoid function. Adaptive Gating is illustrated in Figure 1.

Entries of gt close to 1 emphasize the history in those components, while entries near 0 favor the
current visual evidence. This adaptive mixing lets the model rely on past or presence as needed.
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Finally, the new prediction ŷt is obtained from the Adaptive Gating output ot as

ŷt = Softmax(MLP(ot)),

by applying an MLP, consisting of two linear layers with a ReLU activation to produce the logits,
followed by a Softmax.

3.3 FORWARD ANALYSIS

The design of AGA gives us insights into how a trained model works. Specifically, we can answer
questions of the kind: Given a currently observed action, which past actions does the model consider
as relevant for predicting the next action? We refer to this as forward analysis.

For example consider the actions oc = open cupboard and cc = close cupboard. Suppose that in
the current frame the cupboard is opened and the history contains both, frames where the cupboard
is opened and where it is being closed. Which of those are more relevant? To find out we create
a query for the current observation, a key for each candidate action, and then compute the weights
that the attention mechanism gives to each candidate with regard to the query.

More precisely, for each action a, let ya be the one-hot distribution with ya(a) = 1 and ya(c) = 0
for all action classes c ̸= a. In our example, we create for oc the query embedding Qoc = EQ(yoc)
and for oc and cc together the key embedding Koc,cc = EK(yoc∥ycc). Using the Softmax expression
in Equation 3, we compute for each head i a vector w(i) = (w

(i)
oc , w

(i)
cc ) of attention weights and

then take the average w̄ = 1/h
∑h

i=1 w
(i) of these vectors. The component w̄oc reflects the average

relevance given to frames where the cupboard is opened and w̄cc where it is closed. Figure 2 shows
actual weights for this example obtained from an AGA model trained on EPIC-Kitchens-100 dataset.

3.4 BACKWARD ANALYSIS

While forward analysis explains which past predictions the model actually relies on when producing
its output, backward analysis instead asks a counterfactual question: If the next action were a, what
changes in the past predictions would make the model assign a high probability to a?

Let Y = (ŷt−S , . . . , ŷt−1) be the sequence of past predictions and let ŷt = fθ(Y,X) denote the
predicted distribution at time t given the sequence of frames X = Xt−S:t. During training, each ŷi
is a probability distribution, but as a function fθ is defined for arbitrary real vectors Y . Hence, for
fixed X , the following expressions are well defined for any Y .

Suppose the model has produced the prediction ŷt, while the correct next action is a, represented
by the one-hot distribution ya. The discrepancy between prediction and target is measured by the
cross-entropy

H(ya, ŷt) = −
∑

c
ya(c) log ŷt(c) = − log ŷt(a),

where the sum is taken over all class labels c. Since ŷt depends on the past predictions Y , we can
ask how Y can be changed so that the resulting prediction comes close to ya. To capture this, we
define

L(Y ) = H
(
ya, fθ(Y,X)

)
= − log

(
fθ(Y, X)(a)

)
.

Minimizing L(Y ) amounts to finding past predictions that make the target action a more probable
for the given model. We can find an approximate local minimum by gradient descent, choosing a
step size η and starting from the original predictions Y (0), iterating through

Y (j+1) = Y (j) − η∇Y L(Y
(j)),

until the loss function plateaus, that is,

|L(Y j+1)− L(Y j)| < ϵ

for a threshold ϵ, or when the maximum number of iteration steps iter has been exceeded, that is,
j ≥ iter.

The resulting Y ∗ need not be itself a valid sequence of probability distributions, but it can still be
decomposed into vectors as long as distributions and we can compare it with the actual distributions

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Methods Modality Overall Classes Unseen Classes Tail Classes
Action Verb Noun Action Verb Noun Action Verb Noun

RULSTM (Furnari & Farinella, 2020) RGB, Flow, Obj 11.2 25.3 26.7 9.7 19.4 26.9 7.9 17.6 16.0
AVT+ (Girdhar & Grauman, 2021) RGB, Obj 12.6 25.6 28.8 8.8 20.9 22.3 10.1 19.0 22.0
AVT++ (Girdhar & Grauman, 2021) RGB, Flow, Obj 16.7 26.7 32.3 12.9 21.0 27.6 13.8 19.3 24.0
AFFT-TSN+ (Zhong et al., 2023) RGB, Flow, Obj, Audio 13.4 19.4 28.3 9.9 14.0 24.2 10.9 12.0 19.5
AFFT-Swin+ (Zhong et al., 2023) RGB, Flow, Obj, Audio 14.9 20.7 31.8 12.1 16.2 27.7 11.8 13.4 23.8
RAFTformer (Girase et al., 2023) RGB 14.7 27.4 34.0 - - - - - -
RAFTformer-2B (Girase et al., 2023) RGB 15.4 30.1 34.1 - - - - - -
S-GEAR (Diko et al., 2024) RGB, Obj 14.7 32.0 25.9 - - - - - -
S-GEAR-2B (Diko et al., 2024) RGB, Obj 15.3 25.5 31.7 - - - - - -
S-GEAR-4B (Diko et al., 2024) RGB, Obj 15.5 26.6 32.6 - - - - - -
AGA (Ours, Swin-B) RGB 16.9 30.8 36.4 13.5 22.3 30.0 14.9 25.8 30.0

Table 1: EK100 Test Results. Evaluation on a unseen test set via the official challenge server.

in Y (0). In the difference ∆Y = Y ∗−Y (0) positive entries indicate supportive changes and negative
entries indicate blocking changes for the target action a. This provides a counterfactual perspective
on the dependencies captured by the model, complementary to forward analysis.

Qualitative results of both forward and backward analyses are presented in the experiments section,
where they provide concrete insights into the model decision-making process and the knowledge
that our model can explore in the training dataset.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

We evaluated our proposed method using the TSN (Wang et al., 2016)vand Swin-B (Liu et al., 2021)
backbones, with AGA applied on frozen features as a single attention layer with hidden size 2048
and 16 heads. The queue size S is set to 16 (see Appendix B.1.1 for experiments on the choice of S).
Models were trained for 50 epochs with a batch size of 128, using AdamW with a learning rate of
2× 10−4, weight decay of 0.01, and a cosine schedule. All input frames were resized to 224×224.
Performance was measured using Mean Top-5 Recall (MT5R), which averages recall across classes
to mitigate the dominance of frequent actions. Following the training protocol of (Girdhar & Grau-
man, 2021), we compute class-reweighting factors with the inverted class frequency, and apply these
weights when supervising the anticipation predictions with the ground-truth annotations. Results
were reported at the dataset-specific anticipation interval τa. We converted τa (provided in seconds)
into the corresponding anticipation index ta (used by our method) as the number of time units ∆t to
reach τa, that is, τa = ta ·∆t.

Experiments were conducted on three benchmarks. EPIC-Kitchens-100 (EK100) (Damen et al.,
2022) contains 100 hours of video with 3,806 actions, including 67,217 training and 9,668 validation
segments, and was evaluated at τa = 1s and ∆t = 1s. EPIC-Kitchens-55 (EK55) (Damen et al.,
2018) contains 55 hours of video with 2,513 actions, including 23,492 training and 4,979 validation
segments, and was evaluated using Top-1 and Top-5 accuracy as well as MT5R at τa = 1s and
∆t = 1s. EGTEA Gaze+ (Li et al., 2018) comprises 28 hours of egocentric video with 106 actions,
including 8,299 training and 2,022 validation clips, where we followed the protocol in (Girdhar &
Grauman, 2021) and reported Top-1 accuracy and mean Top-1 recall at τa = 0.5s and ∆t = 0.5s.

All the benchmark scores are evaluated on the time point T · ∆t + τa, where T is the sequence
length.

4.2 RESULTS

Tables 1 and 2 present the performance of the proposed AGA in comparison with prior methods
on EPIC-Kitchens-100 for the unseen test set and the validation set, respectively. On the validation
set, all methods are evaluated using the RGB modality only, and approaches that exploit additional
modalities or external knowledge are excluded to ensure fair comparison. With the TSN backbone
(highlighted in gray background colors), AGA achieves 17.5% accuracy, outperforming AFFT at
16.4%, S-GEAR at 14.9%, and other baselines. Replacing TSN with the stronger Swin-B backbone
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Methods Backbone Overall Classes Unseen Classes Tail Classes
Action Verb Noun Action Verb Noun Action Verb Noun

RULSTM (Furnari & Farinella, 2020) TSN 13.3 27.5 29.0 - - - - - -
AVT-h (Girdhar & Grauman, 2021) TSN 13.6 27.2 30.7 - - - - - -
AVT-h (Girdhar & Grauman, 2021) irCSN152 12.8 25.5 28.1 - - - - - -
AVT-h (Girdhar & Grauman, 2021) AVT-b 14.9 30.2 31.7 - - - - - -
AFFT (Zhong et al., 2023) TSN 16.4 21.3 32.7 13.6 24.1 25.5 14.3 13.2 25.8
AFFT (Zhong et al., 2023) Swin-B 17.6 23.4 33.7 15.2 24.5 25.4 15.3 15.6 26.5
MeMViT 16x4 (Wu et al., 2022) MViTv2-16 15.1 32.8 33.2 9.8 27.5 21.7 13.2 26.3 27.4
MeMViT 32x3 (Wu et al., 2022) MViTv2-24 17.7 32.2 37.0 15.2 28.6 27.4 15.5 25.3 31.0
RAFTformer (Girase et al., 2023) MViTv2-16 17.6 33.3 35.5 - - - - - -
RAFTformer-2B (Girase et al., 2023) MViTv2-16 + 24 19.1 33.8 37.9 - - - - - -
S-GEAR (Diko et al., 2024) TSN 14.9 25.8 29.8 - - - - - -
S-GEAR (Diko et al., 2024) ViT-B 18.3 31.1 37.3 - - - - - -
S-GEAR-2B (Diko et al., 2024) ViT-B x2 19.6 32.7 37.9 - - - - - -
AGA (Ours) TSN 17.5 32.2 35.7 11.9 31.4 24.9 16.8 26.9 31.8
AGA (Ours) Swin-B 18.8 32.5 38.7 16.3 34.4 28.5 18.4 27.4 35.0

Table 2: EK100 Validation Results. Comparison of methods on the validation set using only RGB
input. Methods highlighted in gray use the same TSN backbone weights.

Methods Backbone Top-1 Top-5 MT5RAcc Acc

RULSTM (Furnari & Farinella, 2020) TSN 13.1 30.8 12.5
TempAgg (Sener et al., 2020) TSN 12.3 28.5 13.1
ImagineRNN (Wu et al., 2020) TSN 13.7 31.6 -
SRL (Qi et al., 2021) TSN - 31.7 13.2
AVT-h (Girdhar & Grauman, 2021) TSN 13.1 28.1 13.5
AVT-h (Girdhar & Grauman, 2021) AVT-b 12.5 30.1 13.6
AVT-h (Girdhar & Grauman, 2021) irCSN152 14.4 31.7 13.2
DCR (Xu et al., 2022) TSN 13.6 30.8 -
DCR (Xu et al., 2022) irCSN152 15.1 34.0 -
DCR (Xu et al., 2022) TSM 16.1 33.1 -
RAFTformer (Girase et al., 2023) TSN 13.8 - -
S-GEAR (Diko et al., 2024) TSN 15.6 32.8 -
S-GEAR (Diko et al., 2024) irCSN152 16.2 33.1 -
S-GEAR (Diko et al., 2024) ViT-B 15.8 34.5 -
AGA (Ours) TSN 13.5 32.1 14.3
AGA (Ours) Swin-B 16.3 37.4 16.6

Table 3: EK55 Validation Results. Top-1/Top-5 action accuracy and MT5R at τa = 1s.Methods
highlighted in gray use the same TSN backbone weights.

further improves performance from 17.5% to 18.8%, with noticeable gains observed on unseen and
tail classes. Methods that ensemble features from multiple backbones are highlighted in gray.

On the unseen test set, evaluated through the official challenge server, AGA maintains consistent
performance, demonstrating strong generalization ability. Many methods listed in Table 1 are pri-
marily competition submissions that rely on multi-modal inputs or ensemble strategies, whereas
AGA achieves competitive scores without such enhancements. The gap between validation and test
is consistently small, indicating that AGA generalizes effectively beyond the validation set com-
pared with other methods. Leveraging action predictions to guide attention prevents the model from
over-emphasizing the visual clutters, which is especially important in action anticipation where un-
certainty is high and observations are less reliable than in other video recognition tasks.

Tables 3 and 4 compare the performance of AGA on two smaller-scale datasets, EK55 and EGTEA
Gaze+. EGTEA Gaze+ provides sparse annotations only for the target action, without detailed
labels for the preceding frames in the pre-action observation window. Accordingly, our model must
rely entirely on its own predictions of prior activities without supervision. Nevertheless, empirical
results show that AGA maintains strong performance, even under constrained annotation availability
and sparse supervision. On EK55, S-GEAR reports higher accuracy than AGA under the same
TSN backbone, likely due to its use of higher-resolution inputs (384×384 compared to 224×224).
Moreover, EK55 evaluation is majorly reported in overall accuracy rather than in class-mean recall,
which biases results toward common classes and obscures performance on rare actions.
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Methods Top-1 Acc Mean Top-1 Recall
Action Verb Noun Action Verb Noun

I3D-Res50 (Carreira & Zisserman, 2017) 34.8 48.0 42.1 23.2 31.3 30.0
FHOI (Liu et al., 2020) 36.6 49.0 45.5 32.5 32.7 25.3
TSN-AVT-h (Girdhar & Grauman, 2021) 39.8 51.7 50.3 28.3 41.2 41.4
AVT (Girdhar & Grauman, 2021) 43.0 54.9 52.2 35.2 49.9 48.3
TSN-AFFT (Zhong et al., 2023) 42.5 53.4 50.4 35.2 42.4 44.5
AGA (Ours, TSN) 43.5 54.3 52.2 35.5 43.8 46.6
AGA (Ours, Swin-B) 45.4 55.9 54.3 37.4 46.5 49.3

Table 4: EGTEA Gaze+ Validation Results.Top-1 accuracies and Mean Top-1 Recall at τa = 0.5s.
Methods highlighted in gray use the same TSN backbone weights.

Configuration MT5R
Reference (LSTM) 14.5
Baseline (Causal Attention) 15.9
Action-Guided Attention 18.2
Action-Guided Attention + Adaptive Gating 18.8

Table 5: Ablation study of proposed Action-Guided Attention.

EMA α MT5R
α = 0.0 17.4
α = 0.2 18.7
α = 0.4 18.4
α = 0.6 18.5
α = 0.8 18.8
α = 1.0 18.2

Table 6: Selection of EMA α for Q.

4.3 ABLATION STUDY

Table 5 presents the ablation study of the proposed model. The analysis begins with a baseline
model, causal attention (e.g., AVT). Replacing the standard dot-product attention with queries and
keys defined by action predictions yields a substantial improvement, raising accuracy from 15.9%
to 18.2%. In this setting, adaptive gating is disabled, so the attention output is directly added to
the current frame input without weighting past and current features. Incorporating adaptive gating
provides additional gains, further increasing accuracy from 18.2% to 18.8%. For reference, an
LSTM baseline trained under the same conditions is also reported.

Table 6 examines the impact of different α values in the exponential moving average used to form
the query. Larger values of α make the query depend more heavily on the most recent prediction.
When α = 0, the query collapses to a constant (projected from the zero vector) across all timesteps,
leaving attention unconditioned and driven solely by the keys, which results in poor anticipation
accuracy. For 0.2 ≤ α ≤ 0.8, the query aggregates action dynamics over time, providing a coherent
action-guided signal and improving performance. When α = 1, performance again drops because
the query depends only on the latest prediction. Based on empirical results, we adopt α = 0.8 in our
model. All ablations reported here were conducted on the EK100 validation set and evaluated using
MT5R. Appendix B.1.2 informs about studies on the other two datasets used in the experiments.

Figure 2: Forward Analysis identifies which past actions the model attends to when predicting its
next action in response to a query. This analysis was conducted on the model trained with EK100.
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Figure 3: Backward Analysis. The figure compares the top-5 original predicted actions with the
counterfactual supportive actions optimized toward the target action take pan. Each column repre-
sents a timestep; the final column shows the anticipated output. Suppressed actions are highlighted
in red and promoted actions appear in green. This example is drawn from the EK100 validation set.

4.4 FORWARD ANALYSIS

Figure 2 illustrates the attention focus on past actions given different queries. Since AGA treats past
actions (keys) as an unordered set, the order shown along the x-axis is not indicative. Four examples
are analyzed using open/close cupboard and open/close fridge as queries to examine how the model
allocates attention across past actions.

In the first two examples, where the queries are open cupboard and close cupboard, the model con-
sistently attends more on earlier open cupboard rather than close cupboard. This behavior suggests
that the model learns to revisit earlier events and search for evidence that indicates the duration of an
open cupboard state, which may not be visible when the cupboard is closed. Moreover, the attention
distribution conditioned on open cupboard is more uniform, implying that the next action following
an open event is less certain and can be supported by multiple cues. By contrast, conditioning on
close cupboard produces a relatively sharper distribution, reflecting more substantial confidence that
the next action is linked to objects accessed during the preceding open period.

In the third and fourth examples, where the queries are open fridge and close fridge, the model
shows a similar pattern. Conditioning on open fridge yields a more uniform attention across past
actions, though food-related interactions receive higher weights. When conditioned on close fridge,
the attention becomes more concentrated, focusing primarily on take food, indicating that the model
leverages this evidence to predict subsequent actions involving the food that has been taken before.
Overall, these examples suggest that AGA captured plausible dependencies and learnt meaningful
associations between actions to focus on scenes in the past relevant for the immediate future.

Figure 4: Visualization of Adaptive Gating ratio. The gating values, displayed alongside the ac-
tion sequence, demonstrate context-aware behavior. In background regions (black), the gate retains
historical context; in action regions (colored), it prioritizes current visual evidence.
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4.5 BACKWARD ANALYSIS

Figure 3 presents the backward analysis of the model trained on the EK100 dataset.

The example is taken from the EK100 validation set. The original top-5 predicted actions are shown
along with the counterfactual top-5 supportive actions via proposed backward analysis optimized
toward the target action take pan (which originally ranked 5th). Each column corresponds to a
timestep, with the final column (gray background) representing the anticipated output of the video
clip. Actions marked in red indicate those suppressed by backward analysis, while those in green
indicate promoted actions.

In the original top-5 predictions, the model prioritized actions such as eat squash, dry ladle, and
close cupboard, with take pan largely absent. This pattern reveals a tendency to favor immediate,
contextually dominant actions, as reflected in the diversity of verbs and nouns. Backward analysis
conditioned on the counterfactual target take pan discovers an alternative reasoning path. Supportive
actions involving containers and utensils, such as take spatula, put pan, insert pan, and take ladle,
forming a semantically coherent trajectory toward the target. These results, obtained with model
weights frozen, suggest that the model has already encoded multiple plausible futures. However,
when faced with broad uncertainty, it originally distributed focus across diverse environmental cues.
Backward analysis highlights a counterfactual path that converges on utensils, offering insights into
both the model inference process and the latent knowledge it has acquired.

Backward analysis in the paper was conducted using a stopping criterion of ϵ = 1e-6, a step size of
η = 1e2, and a maximum of iter = 5000. Under this configuration, the optimization consistently
identified counterfactual actions within the top-10 predictions as the new top-1 choice, validated
across 30 validation samples drawn from EK100. When further varying the step size from 1e-1 to
1e5, we found that the same behavior remained stable for step sizes in the range 1e1 to 1e4, using
the same stopping criterion.

4.6 ADAPTIVE GATING

Figure 4 shows two action sequences together with their average gating ratios, retrieved from the
adaptive gating module during inference. Each sequence contains colored segments representing
actions and black segments representing background or non-action content. The adaptive gate bal-
ances historical and current information: higher values emphasize past context, while lower values
prioritize present input. Empirical observations reveal that fluctuations in the gating value often
correlate with action transitions. For instance, the gate tends to rise during background segments
to preserve past information, and then shifts attention to the current input when an action occurs.
Importantly, the adaptive gate is not explicitly supervised by action boundaries; its context-aware
behavior emerges naturally from training on the anticipation task.

5 CONCLUSION

We present AGA, Action-Guided Attention for video action anticipation, which leverages past pre-
dictions to create semantic representations that guide the model’s attention to parts of the history
relevant for anticipating the immediate future. In addition, AGA dynamically mixes past and present
visual information with its adaptive gating mechanism. Experiments show resistance to overfitting
on top of overall competitive performance. Furthermore, AGA enables post-training forward and
backward analysis, offering insight into the learned action dependencies and the reasoning process
behind anticipation.

6 REPRODUCIBILITY STATEMENT

Implementation details are presented in Sections 3, 4.1, and Appendix B; links to the code imple-
mentation, video-processing scripts, and the preprocessed dataset will be released upon acceptance.
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fx EQ, EK EV FFN MLP in Adaptive Gating MLP in classifier

LayerNorm LayerNorm LayerNorm Linaer (2048, 1024) Linear (4096, 512) LayerNorm
ReLU ReLU ReLU GELU ReLU ReLU
Dropout Dropout Dropout Dropout Dropout Dropout
Linear (dbackbone, 2048) Linear (2048, 512) Linear (2048, 2048) Linear (1024, 2048) Linear (512, 2048) Linear(2048, Nc)
ScaleNorm

Table 7: Modeling components in AGA.

Queue Size AGA (MT5R)

S=4 18.4
S=16 18.8
S=30 18.0

Table 8: Ablation study with different queue sizes on EK100.

A IMPLEMENTATION DETAILS

For the TSN baseline, we utilized a BN-Inception backbone with pre-extracted features provided
by the official EPIC-Kitchens action anticipation repository1. For the Swin-B Transformer, we used
open-source implementations with pre-trained weights from the timm library2. Input frames for both
architectures were resized to 224× 224 with pixel values rescaled to the range [−1, 1].

The EK100 dataset was sampled at 1 fps over 30-frame sequences, the EK55 dataset at 1 fps over
10-frame sequences, and the EGTEA Gaze+ dataset at 0.5 fps over 10-frame sequences. These
sampling configurations align with the anticipation intervals described in the main manuscript.

Figure 7 details the architectures of fx, EQ, EK , EV , the FFN, and the MLPs. We applied a dropout
rate of 0.6 on EK100 and 0.4 on both EK55 and EGTEA Gaze+ datasets.

B ADDITIONAL EXPERIMENTS

We carried out experiments to determine optimal hyperparameters for AGA and identify its compu-
tational cost. With another experiment, we investigated how errors in the predictions ŷ impact model
accuracy. Finally, we examined how representing prediction uncertainty improves the accuracy of
the AGA model.

B.1 SELECTION OF HYPERPARAMETERS

Two important hyperparameters for AGA are the length S of the queue from which the model
can reference past information (Equation 1) and the smoothing factor α in the exponential moving
average that determines the temporal window of the query (Equation 2).

B.1.1 QUEUE LENGTH

The experiments with EK100 reported in the paper were conducted with a queue length of S = 16.
We also ran experiments for queue lengths 4 and 30. The mean top-5 recall for the different queue
lengths is shown in Table 8.

B.1.2 SMOOTHING FACTOR

Intuitively, EMA injects temporal context into the query and smooths out model prediction jitter.
The optimal smoothing constant α depends on factors such as the video sampling rate and the target
action duration. As reported in Table 6 of the paper, we found in the EK100 experiment that the
MT5R was between 18.4 and 18.8 for 0.2 ≤ α ≤ 0.8. This suggests that the accuracy is relatively
stable for α in that range.

1https://github.com/epic-kitchens/C3-Action-Anticipation
2https://github.com/huggingface/pytorch-image-models, v0.5.4
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EMA α Top-1 Top-5 MT5R

0.0 15.0 34.5 15.5
0.2 15.5 35.8 15.9
0.4 16.1 37.4 16.4
0.6 16.3 37.2 16.3
0.8 16.3 37.4 16.6
1.0 15.7 36.1 15.9

Table 9: Accuracy differences resulting from
varying α on EK55.

EMA α Top-1 Recall

0.0 41.8 34.7
0.2 43.9 36.2
0.4 44.9 37.3
0.6 45.2 37.1
0.8 45.4 37.4
1.0 43.8 36.0

Table 10: Accuracy differences resulting from
varying α on EGTEA Gaze+.

Sequence Length AVT (GFLOPs) AGA (GFLOPs)

8 137.28 123.91
16 274.56 248.29
32 549.12 497.57

Table 11: Computational cost comparison.

Sequence Length AVT (ms) AGA (ms)

8 14.97 11.4737
16 20.57 23.4944
32 33.93 47.3397

Table 12: Inference time comparison.

We conducted the same study for the other two datasets used in the experiments. Tables 9 and 10
report the results of sweeping the smoothing factor α over [0, 1]. We observe that the optimal scores
result from a value of α = 0.8, which is consistent with the findings on EK100, while even across
datasets a choice of α within the range 0.2 ≤ α ≤ 0.8 leads to relatively stable accuracy.

B.2 COMPUTATIONAL COST OF AGA

To evaluate the inference-time computational cost of AGA, we compared it against the AVT base-
line. We created random tensors to mimic how sequences of frames are processed in a real inference
setting. At each inference iteration we passed the random input to the model and let it do its process-
ing: AVT in one go, due to its transformer architecture, AGA frame by frame, due to its sequential
nature.

In Table 11, we show the total number of floating-point operations (FLOPs) computed for both
models. AGA required slightly fewer FLOPs, despite using the heavier Swin-B backbone, versus
AVT’s ViT-B

In Table 12, we show the inference times for AVT and AGA (with backbone Swin-B) measured on
a single A100 GPU. The differences can be explained by the way in which the two models process
the input. While AGA processes the sequence progressively, AVT handles the entire sequence in
parallel.

B.3 PROPAGATION OF ERRORS

We wanted to understand how robust our model is with respect to errors in the predictions. We
set up an experiment where AGA is subjected to inaccurate or noisy predictions that disrupt its
action-guidance signal. As input, AGA received 30 frames from a 30-second clip from the EK100
validation set, with 1 second intervals in between. It had to predict the action in the last frame based
on the preceding 29. For each sequence, we randomly created a permutation π of the 30 numbers
i = 0, . . . , 29 and performed 30 runs. In run i, the predictions ŷπ(j), where 0 ≤ j < i, were forcibly
reset to a uniform distribution, that is, each action was assigned the probability 1

Nc
. In this manner

an increasing random subset of the predictions was made meaningless. In the table below, the first
column contains the number of frames for which the the classifier output (i.e., ŷ) has been reset and
the second column shows the resulting mean Top-5 recall (MT5R).

The experiment was run over the entire validation set of EK100. Figure 5 shows that the accuracy
steadily decreases from 18.8% to 16.3%.
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Figure 5: Robustness analysis of AGA against the error occurred in frame prediction.

Methods Train On Inference On Overall Classes Unseen Classes Tail Classes
Action Verb Noun Action Verb Noun Action Verb Noun

GT GT GT 16.9 30.6 36.7 14.6 34.4 26.5 16.1 25.3 32.8
GT Self-Pred GT 17.1 31.9 36.0 14.1 32.9 26.3 16.6 26.8 32.2
Self-Pred
(Top-1 One-Hot)

Self-Pred
(Top-1 One-Hot)

Self-Pred
(Top-1 One-Hot) 17.2 31.8 37.7 14.5 35.6 27.7 16.3 26.6 34.2

Self-Pred
(Top-1 One-Hot) Self-Pred Self-Pred

(Top-1 One-Hot) 17.5 33.4 36.4 16.3 32.6 27.7 16.5 28.4 32.5

AGA Self-Pred Self-Pred 18.8 32.5 38.7 16.3 34.4 28.5 18.4 27.4 35.0

Table 13: Comparison between different action-guidance signals for Q and K.

B.4 SELF-PREDICTION VS. GROUND TRUTH ACTIONS

AGA learns predictions ŷ that are probability distributions over the set of all action classes with a
loss function that measures the difference to a one-hot distributions ya for a specific action class a
as the target.

Intuitively, during its training, AGA strives to generate predictions that are ever closer to the one-hot
ground truth. It is therefore natural to ask whether and how the performance of a model changes if
the predictions, which are generated to resemble the ground truth, are replaced with actual ground
truth distributions. Whether or not this is the case should give us more insight into how AGA works.

We created an experiment where we compared the use of the ground truth as opposed to the self-
predicted ŷ in query and keys. For frames with an action label a, we represented the ground truth
with a one-hot ya. For frames without label, occurring in background our transition segments, we
used one-hot vectors representing a generic background class.

For additional insight, we included experiments where we simplified the self-predicted distributions
to one-hot vectors ŷ⊤1, carrying a 1 for the action with the highest probability in ŷ, thus indicating
the Top-1 predicted action, and in this way aligning the representation to the ground truth format.

For both formats, ground truth and one-hot self-prediction, we ran two versions of the experiment:
one where we used the revised format for both training and inference, and another one where we
used it only for the inference.

We ran the experiments on the EK100 validation set. The results are shown in the Table 13. Here,
“GT” stands for Ground Truth, that is, usage of the one-hot ya, “Self-Pred” for Self-Predication, that
is, usage of the ŷ, and “Self-Pred (Top-1 One-Hot)” for the usage of the vectors ŷ⊤1. The figures
refer to the accuracy on EK100 and the columns are identical to those in Tables 1 and 2 of the paper.

The results show that AGA, which leverages the full self-prediction distribution, achieves the highest
accuracy. This can be intuitively explained by three factors:
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• The full self-prediction carries richer intrinsic information than a one-hot ground truth label
(as further evidenced by the accuracy drop when binarizing the self-prediction into one-
hot);

• Self-prediction still provides meaningful signals when no action is annotated during the
observation window (for instance, background or transition segments);

• Although GT provides the correct Top-1 future label, it lacks information about alterna-
tive plausible futures, whereas the (imperfect but semantically informative) self-prediction
distribution better reflects the uncertainty and structure of the observations.

C MORE QUALITATIVE EXAMPLES

We provide additional qualitative examples from the EK100, EK55, and EGTEA Gaze+ datasets
in Figures 6-11, where clips (a)–(d) illustrate successful predictions, with the ground-truth action
revealed at the latest timestep, and clips (e)–(h) highlight failure cases in which the top-5 prediction
of the model omit the target action. Figures are best viewed at full width and zoom in for full detail.

C.1 EPIC-KITCHENS-100 (EK100)

Figure 6 presents successful cases from the EK100 dataset. In video (a), the scene evolves slowly
and the washing activity is clear. The noun plate is also unambiguous, which allows the model to
converge on wash plate, while alternative verbs such as hold, insert, and put are gradually ruled out.
In video (b), the target action throw bin occurs between the third and seventh frames and is correctly
identified by the model. Video (c) shows a case with little movement, where the verb prediction
narrows to a small set of consistent options over time, and the model ultimately selects the correct
object. Video (d) is more challenging because the subject intent is unclear. The model nonetheless
predicts a coherent sequence: throw food followed by close bin, while assigning lower probability
to open bin once the hand interaction with the bin becomes visible.

Figure 7 illustrates failure cases. In video (e), the verb is predicted correctly but the noun is mis-
classified as pizza. In videos (f)–(h), errors result either from insufficient visual detail ((f)) or from
ambiguity introduced by multiple plausible object candidates ((g) and (h)).

The EK100 examples demonstrate that the model can handle everyday kitchen activities with gradual
scene changes, but performance degrades when object categories are visually similar or when frames
lack sufficient detail.

C.2 EPIC-KITCHENS-55 (EK55)

Figure 8 highlights successful cases from the EK55 dataset, including challenging scenarios. In
videos (a) and (b), the target objects (container and board:cutting, respectively) are not visible in
the frames. Nevertheless, the model anticipates the actions take container and take board:cutting
by leveraging contextual cues. Video (c) demonstrates the capacity to distinguish between similar
actions, predicting put plate rather than take plate, based on the subject intention inferred from
earlier frames. Accurate prediction requires retention of long-term evidence, which is supported by
the adaptive gating mechanism and the AGA design. In video (d), the ongoing activity of cooking
pasta is anticipated, with the model predicting put-down spoon as the next action in the final frame.

Figure 9 presents failure cases where the model encounters ambiguity or insufficient context. In
video (e), the object tofu is occluded, leading to a misprediction as container because the opaque
surface prevents visibility of the contents. Video (f) illustrates noun misclassification caused by
visual similarity, with olive confused for celery. In video (g), the verb is misclassified because
the hand interaction with oil is only partially visible. In video (h), the model confuses chilli with
visually similar objects such as tomato and pepper.

The EK55 examples highlight the advantage of AGA and adaptive gating for leveraging long-term
context, while also revealing difficulties when objects are occluded or visually confusable.
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C.3 EGTEA GAZE+

Figure 10 provides qualitative examples from the EGTEA Gaze+ dataset, covering both successful
and challenging scenarios. In video (a), the model captures subtle visual cues, such as the sponge
disappearing from the bottom edge of the frame, which leads to the correct prediction of put sponge.
In video (b), the model predicts put container and links the container to the tomato by recalling in-
formation from the initial frames, demonstrating the use of long-term memory to form object–action
associations. Video (c) shows a case where observed movement suggests the verb take instead of the
ground-truth verb put for the bread:container. Although direct evidence for returning the bread to
the refrigerator is absent, the correct action still appears as the second-ranked prediction, reflecting
the model strategy of coupling related verbs such as put and take. In video (d), the model addresses
a sequential scenario involving take cheese:container, where one action is visible and the other re-
mains hidden. Accurate recognition requires identifying the container holding the cheese, which
can only be inferred from the presence of its cover.

Figure 11 presents failure cases caused by insufficient evidence or excessive ambiguity. In videos
(e) and (f), the absence of salient details leads to incorrect predictions. Video (g) demonstrates noun
ambiguity: the model predicts verbs confidently but assigns nearly equal probability to multiple
visible objects. In video (h), the observation provides minimal context, leaving the model unable to
determine the correct action.

The EGTEA Gaze+ examples highlight the model capacity to connect subtle visual cues with long-
term memory, while also revealing the difficulty of disambiguating actions in situations with limited
observations or an excessive number of potential object candidates.
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Figure 6: Four video clips from the EPIC-Kitchens-100 validation set, illustrating correct pre-
dictions. Each clip demonstrates the last eight frames along with the top-5 action anticipations at
τa = 1s, with the ground truth highlighted in bold green.
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Figure 7: Four video clips from the EPIC-Kitchens-100 validation set, showcasing incorrect pre-
dictions. Each clip demonstrates the last eight frames and the top-5 action anticipations at τa = 1s,
with the ground truth revealed in the final frame. The correct verb and noun are highlighted in bold
green.
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Figure 8: Four video clips from the EPIC-Kitchens-55 validation set, illustrating correct predic-
tions. Each clip displays the last eight frames and the top-5 action predictions. The ground truth is
highlighted in bold green in the latest frame, occurring at τa = 1s.
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Figure 9: Four video clips from the EPIC-Kitchens-55 validation set, showcasing incorrect pre-
dictions. Each clip displays the last eight frames and the top-5 action predictions. The ground truth
is highlighted in bold green in the latest frame, occurring at τa = 1s.
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Figure 10: Four video clips from the EGTEA Gaze+ validation set, highlighting correct predic-
tions. Each clip displays the last eight frames and the top-5 action predictions. The ground truth is
highlighted in bold green in the latest frame, occurring at τa = 0.5s.
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Figure 11: Four video clips from the EGTEA Gaze+ validation set, showcasing incorrect predic-
tions. Each clip displays the last eight frames and the top-5 action predictions. The ground truth is
highlighted in bold green in the latest frame, occurring at τa = 0.5s.
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D LLMS USAGE

The authors utilized LLM powered AI tools (GPT-5 and Grammarly) to proofread sentences and
identify grammatical errors.
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