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Abstract001

Multi-agent techniques such as role playing or002
multi-turn debates have been shown to be ef-003
fective in improving the performance of large004
language models (LLMs) in downstream tasks.005
Despite their differences in workflows, exist-006
ing LLM-based multi-agent systems mostly007
use natural language for agent communication.008
While this is appealing for its simplicity and009
interpretability, it also introduces inevitable in-010
formation loss as one model must down sample011
its continuous state vectors to concrete tokens012
before transferring them to the other model.013
Such losses are particularly significant when014
the information to transfer is not simple facts,015
but reasoning logics or abstractive thoughts. To016
tackle this problem, we propose a new com-017
munication protocol that transfers both natural018
language tokens and token-wise state transition019
trajectory from one agent to another. Partic-020
ularly, compared to the actual state value, we021
find that the sequence of state changes in LLMs022
after generating each token can better reflect023
the information hidden behind the inference024
process, so we propose a State Delta Encoding025
(SDE) method to represent state transition tra-026
jectories. The experimental results show that027
multi-agent systems with SDE achieve SOTA028
performance compared to other communica-029
tion protocols, particularly in tasks that involve030
complex reasoning. This shows the potential of031
communication augmentation for LLM-based032
multi-agent systems.1033

1 Introduction034

Multi-agent systems based on Large Language035

Models (LLMs) have demonstrated remarkable per-036

formance in solving complex tasks (Taicheng Guo,037

2024; Dong et al., 2024; Du et al., 2024). While038

it is not surprising that combining outputs from039

different LLMs could improve the system per-040

formance (Xu et al., 2023; Chu et al., 2024; Xu041

1We have open-sourced all the code and data in https:
//anonymous.4open.science/r/StateDeltaEncoding/.

et al., 2024), studies have shown that building a 042

multi-agent system with a single base LLM can 043

also boost the LLM’s performance (Chi-Min Chan, 044

2024; Hong et al., 2024; Du et al., 2024). These 045

systems construct multiple agents from the same 046

LLM, varying their profiles or access to informa- 047

tion, which can be seen as another form of the in- 048

ference scaling law (Chen et al., 2024; Qian et al., 049

2025). Therefore, how to build effective multi- 050

agent frameworks or workflows to improve LLMs 051

in downstream tasks have been widely studied in 052

recent literature. 053

Despite their differences in motivation and 054

methodology, the majority of existing multi- 055

agent frameworks rely on natural language to- 056

kens to build the communication protocol between 057

agents (Wu et al., 2024; Li et al., 2023a; Qian et al., 058

2024; Xie et al., 2024), which may not be the op- 059

timal solution for agent communication. Natural 060

language is appealing for its generalizability and 061

interpretability, but it down samples the model’s in- 062

ternal states to concrete tokens before transferring 063

information, which could lead to information loss 064

in many cases. For example, in inference, an LLM 065

may consider multiple reasoning paths, in both cor- 066

rect and incorrect ones could appear. However, 067

only one path is ultimately sampled and presented 068

to other agents (Yu et al., 2024; Zhou et al., 2024), 069

and if the sampled one is incorrect, there is no 070

way for other agents to recover what is lost in this 071

sampling process. 072

Intuitively, when agents are built from a single 073

base LLM (i.e., a single-LLM-based multi-agent 074

system), information loss from natural language 075

seems unnecessary because all agents are sharing 076

the same semantic and parametric space created by 077

the base LLM. For example, a straightforward solu- 078

tion to mitigate the information loss problem above 079

is to transfer not just the final tokens, but also the 080

token probabilities and weighted token embeddings 081

to the other agents (Pham et al., 2024). Yet, these 082
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methods produce marginal improvements over nat-083

ural language methods empirically, which indicates084

that simply modeling output probability distribu-085

tions is not enough to convey important information086

hidden in the inference process of an LLM-based087

agent. Thus, finding the best way to convey internal088

reasoning information from one agent to another089

has become a key research question for the studies090

of multi-agent communication protocols.091

In this paper, we propose to augment single-092

LLM-based multi-agent communication directly093

with the model’s internal states. Particularly, as dif-094

ferent agents often have different initial prompts or095

local context in existing multi-agent frameworks,096

we believe that directly transferring the internal097

state sequence, which we refer to as the state transi-098

tion trajectory, from one agent to another may not099

be feasible. Instead, inspired by the idea of delta en-100

coding (Mogul et al., 1997; Burns and Long, 1997),101

we propose to transfer information between agents102

based on both natural language tokens and the se-103

quence of changes in the agent’s internal states,104

which we refer to as the State Delta Encoding105

(SDE). When one agent is generating output tokens,106

SDE records the differences between the hidden107

states of adjacent tokens. Then, when another agent108

is encoding these output tokens, SDE adds the tra-109

jectory of these differences (i.e., state deltas) to the110

corresponding tokens in order to recover the infor-111

mation lost in token sampling. Our experiments112

on information asymmetry tasks (e.g., QA with un-113

shared resources (Dhingra et al., 2017; Geva et al.,114

2021; Talmor and Berant, 2018)) and information115

symmetry tasks (e.g., debates (Du et al., 2024) and116

agent workflows (Yao et al., 2023)) show that SDE117

can significantly improve the performance of multi-118

agent systems. The advantages of SDE are particu-119

larly strong on tasks that involve complicated logic120

reasoning rather than simple fact communication.121

This demonstrates the potential of multi-agent com-122

munication protocols beyond natural language and123

could lead to multiple research directions in future124

studies.125

In summary, the contributions of our paper are126

as follows:127

• We propose SDE, a novel multi-agent communi-128

cation protocol that augments natural language129

with LLM’s hidden states, bridging the gap be-130

tween surface-level communication and latent131

reasoning.132

• We introduce the concept of state delta, which133

captures the reasoning process hidden behind out- 134

put tokens and can serve as an effective medium 135

to transfer information among single-LLM-based 136

agents. 137

• We evaluate existing communication protocols 138

and SDE on both information asymmetry and 139

symmetry tasks. The results show that SDE 140

achieves state-of-the-art performance and out- 141

performs prior methods by up to 17.3% in tasks 142

that require complex reasoning. 143

2 Related Work 144

2.1 LLM based Multi-Agent System 145

Recent advances have shown that coordinating mul- 146

tiple LLM-based agents allows stronger perfor- 147

mance in tasks such as software development (Qian 148

et al., 2024), world simulations (Park et al., 2023; 149

Li et al., 2024), and embodied problem solv- 150

ing (Zhang et al., 2024). 151

While some systems employ diverse LLMs to 152

combine their strengths and mitigate individual bi- 153

ases (Chu et al., 2024; Xu et al., 2023), many works 154

adopt a single LLM to construct all agents, vary- 155

ing their behavior through different profiles or ac- 156

cess to distinct information (Qian et al., 2024; Li 157

et al., 2023a). We refer to these as single-LLM- 158

based multi-agent systems. Such systems have 159

demonstrated effectiveness through structured in- 160

teractions like debates (Du et al., 2024) and task- 161

specific workflows (Wu et al., 2024; Qian et al., 162

2024), benefiting from the scale of the inference 163

process (Chen et al., 2024; Qian et al., 2025). Our 164

work focuses on optimizing this type of systems 165

and aims to make better use of each inference step 166

during inter-agent communication. 167

2.2 Multi-agent Communication 168

Most LLM-based agent systems use natural lan- 169

guage for communication (Li et al., 2023a; Wu 170

et al., 2024; Chi-Min Chan, 2024). While natural 171

language offers flexibility, it may also introduce 172

potential information loss. 173

A recent attempt to address this issue, CI- 174

PHER (Pham et al., 2024), replaces natural lan- 175

guage tokens with probability-weighted token em- 176

beddings during agent communication, showing 177

potential in multi-agent debate settings. However, 178

this approach only leverages surface-level token 179

probability distributions from the final output layer, 180

overlooking deeper, more informative, and more 181

valuable hidden representations. 182
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Another approach (Ramesh and Li, 2025) at-183

tempts to directly transfer hidden states between184

agents, but is restricted to a unidirectional transfer,185

where hidden states from a text-reading agent are186

transferred to an output-generating agent. It does187

not support dynamic, interactive exchanges typical188

in multi-agent systems.189

Building upon these insights, our method utilizes190

the dynamics of hidden states during inference and191

supports any inter-agent communication.192

2.3 Latent Space Arithmetic193

Recent studies have explored controlling the out-194

puts of frozen LLMs by manipulating their hidden195

states during inference (Li et al., 2023b; Subra-196

mani et al., 2022). Several approaches have pro-197

posed extracting steering vectors to manipulate the198

quality (Li et al., 2023b; Subramani et al., 2022;199

Rimsky et al., 2024) or semantic direction (Turner200

et al., 2024) of model outputs. For example, Ac-201

tAdd (Turner et al., 2024) derives steering vec-202

tors by computing hidden state differences under203

prompts with or without a special keyword, and204

adds these vectors during inference to guide gener-205

ations to a desired direction.206

Inspired by these works, we also manipulate207

intermediate representations at inference time.208

Rather than operating within a single model, we ex-209

tract internal states from one agent and inject them210

into another. This cross-agent state sharing aims to211

enhance mutual understanding and coordination in212

multi-agent systems.213

3 Methodology214

We present a novel communication protocol for215

single-LLM-based multi-agent systems, which is216

constructed using a method we call State Delta217

Encoding (SDE). Rather than replacing natural218

language, SDE augments it by transferring token-219

wise changes of hidden states, providing richer220

reasoning traces. This section introduces SDE as a221

state representation mechanism and describes how222

we use it to build a new communication protocol.223

The protocol with SDE is illustrated in Figure 1.224

We focus on the multi-agent systems in which all225

agents are constructed from the same transformer-226

based language model. Consider two agents, Al-227

ice and Bob. Alice receives an input and gener-228

ates a response outputA, which is a sequence of229

natural language tokens t1, t2, t3, · · · , tn. In natu-230

ral language communication, outputA is inserted231

directly into the input prompt of Bob. Formally, 232

the prompt received by Bob, denoted as promptB , 233

takes the form {X outputAY}, where X and Y 234

are additional contexts such as task instructions, 235

environmental information, and responses from 236

other agents. Bob then generates conditioned on 237

promptB . However, due to sampling, the token 238

sequence outputA reflects only a single reasoning 239

path chosen by Alice, making it difficult for Bob to 240

understand Alice’s full intentions. 241

The inference process in causal LLMs is re- 242

peatedly performing forward propagation based 243

on the input prompt and previously generated to- 244

kens t1, t2, · · · , ti−1 to predict the next token ti. 245

When Alice generates token ti in outputA, let 246

the hidden states hlA,i denote the output of the lth 247

transformer layer in the language model. Each hlA,i 248

is a vector representing the contextualized embed- 249

ding of ti, conditioned on the input prompt and 250

previously generated tokens. We define the state 251

trajectory at layer l during Alice’s generation as the 252

ordered sequence of hidden states: 253

Hl
A = {hlA,0, h

l
A,1, · · · , hlA,n} (1) 254

Here, hlA,0 refers to the hidden states corresponding 255

to the last token of Alice’s input prompt, serving as 256

the initial states before generation. 257

As discussed in Section 1, to prevent Bob’s gen- 258

eration from being interfered with Alice’s profile 259

or local contexts, we avoid directly transferring 260

the original states trajectory Hl
A. Instead, inspired 261

by the idea of delta encoding (Mogul et al., 1997; 262

Burns and Long, 1997), we compute the differences 263

between successive hidden states for each gener- 264

ated token, and define the state delta trajectory as 265

follows: 266

Sl
A = {sl1, sl2, · · · , sln}, where sli = hlA,i − hlA,i−1 (2) 267

Each sli, referred to as a state delta, represents the 268

internal change associated with the generation of to- 269

ken ti. The state delta trajectory serves as a context- 270

agnostic trace of the reasoning dynamics within the 271

LLM. This process is called State Delta Encoding 272

(SDE). 273

During communication, the state deltas serve 274

as auxiliary information to improve Bob’s under- 275

standing of the natural language response outputA. 276

Inspired by the use of steering vectors (Turner 277

et al., 2024), we treat each state delta as a steer- 278

ing vector and add it directly to the corresponding 279

hidden states. Formally, recall that promptB = 280
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Figure 1: Comparison of different communication protocols in single-LLM-based multi-agent systems. Top-left:
Natural language communication may introduce information loss due to sampling, thereby leading to incorrect
claims being transferred. Top-right: CIPHER (Pham et al., 2024) improves by transferring probability-weighted
embeddings instead of tokens, but still lacks deeper reasoning representations. Bottom: Our protocol (SDE)
augments natural language tokens with the difference between hidden states of two adjacent tokens (state delta),
bridging the gap between surface-level communication and latent reasoning.

{X outputA Y} = {X, t1, t2, · · · , tn,Y}. When281

Bob processes outputA for generation, we inject282

the corresponding state deltas trajectory S l
A into283

the hidden states at layer l before passing them to284

the next layer, in order to augment each natural lan-285

guage token. The hidden states hlB,j of the token286

at position j in promptB are updated as follows:287

hlB,j
′ =

{
hlB,j + sli the position of ti is j
hlB,j otherwise

(3)288

The modified hidden states hlB
′ are passed to the289

layer l + 1 for continued inference. In this way,290

Bob not only receives the tokens, but also accesses291

the latent trace of Alice’s internal decision-making292

process. This communication protocol avoids over-293

writing Bob’s own reasoning while guiding it to294

better understand Alice’s generation trajectory.295

Layer selection. To minimize the impact on the 296

model’s generation capabilities, we apply SDE to 297

only a few carefully selected layers. The optimal 298

layers for injection depend on the model’s architec- 299

ture and scale, but once selected, they work well 300

across various downstream tasks, which indicates 301

that the selection is largely task-agnostic. Layer 302

selection is performed via a simple preliminary ex- 303

periment and remains fixed for each model through- 304

out all subsequent tasks. Details of our selection 305

process are provided in Section 4.5. 306

4 Experimental Setup 307

We evaluate our approach in two settings: (1) the 308

information asymmetry (IA) setting, where agents 309

have access to different sets of knowledge and 310

must collaborate to answer a question; and (2) 311
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the information symmetry (IS) setting, including312

multi-agent debates and agent workflows, where313

all agents share the same information. More imple-314

mentation details are provided in Appendix B.315

4.1 Information Asymmetry (IA) Tasks316

To simulate the cooperation process of multi-agent317

systems with information gaps, we propose to con-318

struct a set of information asymmetry (IA) tasks319

where each agent possess a unique set of infor-320

mation (i.e., documents) and the target task can321

be finished better through the collaboration of all322

agents.323

Specifically, we build such tasks on several fac-324

tual QA benchmarks that require the system to325

retrieve multiple relevant documents to answer a326

question. We retrieve 6 relevant documents for327

each question (using BM25 as a retriever) and328

evenly distribute them to 2 agents as private cor-329

pora. To answer a target question, the agents must330

ask questions and respond to the questions asked by331

other agents based on their private corpus in order332

to gather the necessary information to generate the333

final answer. The agents are allowed to discuss for334

up to 5 rounds, and the discussion ends when either335

agent generates a formatted answer.336

Datasets. We evaluate our approach on three337

benchmarks of varied difficulty. (i) Quasar-338

T (Dhingra et al., 2017) consists of simple knowl-339

edge questions collected from various sources340

on the Internet. (ii) ComplexWebQuestions341

(CWQ) (Talmor and Berant, 2018) involves multi-342

hop, web-based questions, which tests the model’s343

reasoning ability over web content. (iii) Strate-344

gyQA (Geva et al., 2021) contains yes / no ques-345

tions that requires multi-step strategic reasoning.346

We use the first 300 questions of each dataset to347

build tasks. Each question is scored by averaging348

over all formatted answers. We report the average349

exact match (EM) scores and F1 scores in Quasar-T350

and ComplexWebQuestions tasks and the average351

accuracy in StrategyQA tasks.352

4.2 Information Symmetry (IS) Tasks353

To evaluate how effectively agents can communi-354

cate and refine their reasoning with full information355

sharing, we design a set of tasks in the information356

symmetry (IS) setting. We construct two types of357

IS tasks: multi-agent debate and agent workflows.358

In both types, all agents have access to the same359

information and are required to interact by passing360

and refining intermediate thoughts through differ- 361

ent structured communication frameworks. 362

4.2.1 Multi-agent Debates 363

Inspired by Du et al., we build multi-agent debate 364

tasks on several mathematical or logical reason- 365

ing datasets. At the beginning of a debate, each 366

agent independently generates an initial answer to 367

the same question. Then, in subsequent rounds, 368

they repeatedly revise their response after observ- 369

ing the previous round responses of their peers. We 370

simulate a 3-round debate involving 2 agents. 371

Datasets. We evaluate our approach on four 372

datasets. (i) GSM8K (Cobbe et al., 2021) con- 373

tains high quality grade school math problems. 374

(ii) MMLU (Hendrycks et al., 2021) is a multi- 375

ple choice benchmark covering a wide range of 376

subjects. we use three datasets of different cate- 377

gories in this benchmark: mathematical datasets 378

Abstract Algebra, College Mathematics and log- 379

ical reasoning dataset Formal Logic. We use the 380

first 300 questions from GSM8K and the full sets 381

of the three subsets of MMLU to build tasks. The 382

reported score for each question is the average ac- 383

curacy of all agents’ responses in the last round. 384

4.2.2 Agent Workflows 385

We adapt the ReAct (Yao et al., 2023) framework to 386

construct multi-agent workflow tasks, where agents 387

collaborate sequentially to solve a problem by pass- 388

ing along thoughts and actions. At each step, an 389

agent produces a thought and an action based on all 390

previous generations, and the environment returns 391

an observation based on the action, which becomes 392

a part of the input for the next agent. Each question 393

is solved by up to 7 agents taking turns in sequence. 394

Datasets. We evaluate our approach on factual 395

QA benchmarks and a fact verification benchmark. 396

For question answering, we use two multi-hop 397

question datasets: HotpotQA (Yang et al., 2018), 398

StrategyQA (Geva et al., 2021). For fact verifi- 399

cation, we use the FEVER (Thorne et al., 2018) 400

dataset. We build tasks using the first 300 questions 401

from each dataset. For evaluation, we report accu- 402

racy for the StrategyQA and FEVER tasks, and 403

both EM and F1 scores for the HotpotQA task. 404

4.3 Baselines 405

We compare our proposed approach with the fol- 406

lowing three baselines: 407

• Single. The responses are generated by a single 408

agent and are in natural language. 409
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• Natural Language (NL). For communication410

from Alice to Bob, the natural language tokens411

generated by Alice are inserted into Bob’s input412

prompt.413

• CIPHER (Pham et al., 2024). CIPHER extracts414

the probability distribution of each token of the415

corresponding forward pass, and uses this distri-416

bution to weight all tokens’ embeddings, result-417

ing in a CIPHER embedding. For communica-418

tion from Alice to Bob, the CIPHER embedding419

sequences generated by Alice are inserted into420

Bob’s input prompt in embedding form.421

NL and CIPHER use the same implementation422

across all tasks, while Single is implemented dif-423

ferently in each setting to accommodate tasks. We424

provide scenario-specific details in Appendix B.425

4.4 LLM Selection and Generation Settings426

We conducted experiments on several open-source427

instruction-tuned LLMs. To validate the broad428

effectiveness of SDE, we conducted experiments429

with LLMs of different series on various scales,430

including Qwen2.5-7B-Instruct (Yang et al., 2024),431

Llama3.1-8B-Instruct (Meta, 2024), and Qwen2.5-432

14B-Instruct (Yang et al., 2024).433

To ensure the reproducibility of our results in434

IA tasks and agent workflow tasks, both NL and435

SDE generate responses using greedy decoding.436

Since CIPHER does not involve sampling but is437

affected by temperature, we set the temperature to438

0 for consistency. In multi-agent debate tasks, to439

promote diversity in the initial responses of differ-440

ent agents, we use the model’s default sampling441

and temperature settings for generation, and all re-442

ported results are averaged over three independent443

runs. More detailed settings and prompts can be444

found in Appendix B and Appendix D.445

4.5 Layer Selection446

We identify suitable injection layers through a sim-447

ple preliminary experiment. Specifically, we con-448

struct an IA task using the 2WikiMultihopQA (Ho449

et al., 2020) dataset, following the settings de-450

scribed in Section 4.1. For each model, we evaluate451

SDE’s performance when modifying each layer on452

the first 300 questions. Considering model scales,453

we select 1, 2, or 3 layers for 7B, 8B, and 14B mod-454

els, respectively. These selected layers are then455

used consistently across all experiments. Notably,456

2WikiMultihopQA is used only for this selection457

procedure and not in any main evaluation. Our458

main results show that optimal layers depend pri- 459

marily on the model itself, rather than the down- 460

stream task. Further analysis on the impact of dif- 461

ferent layer selections and layer counts is provided 462

in Section 5.2. 463

Detailed results and specific layer selections are 464

reported in Appendix A. 465

5 Results 466

5.1 Main Experiments 467

In this section, we present the main experimental 468

results and an analysis of our proposed SDE with 469

other baselines in the above three tasks. In the 470

following, we provide a detailed analysis of our 471

results. 472

Overall analysis. Multi-agent systems perform 473

better than single agents directly answering in most 474

cases. In particular, SDE outperforms existing com- 475

munication protocols (NL and CIPHER) almost all 476

tasks. These improvements suggest that enriching 477

communication with hidden states can indeed en- 478

hance the final collaboration performance of multi- 479

agent systems. 480

Specifically, Table 1 shows the results of IA 481

tasks. SDE achieves a performance improvement 482

of 0.3% to 8.9% compared to the best-performing 483

baseline in most tasks, with particular notable im- 484

provements on the Llama-8B-Instruct model. The 485

improvements are generally more significant on 486

multi-hop datasets CWQ and StrategyQA com- 487

pared to the simple question dataset Quasar-T, indi- 488

cating that SDE is more effective in tasks requiring 489

complex, multi-step reasoning. 490

For the IS setting, Table 2 shows the results of 491

multi-agent debate tasks, where SDE enhances per- 492

formance ranging from 0.3% to 13.67% compared 493

to the best-performing baseline. In particular, there 494

are significant improvements in complex mathe- 495

matical and logical reasoning datasets of MMLU, 496

where SDE consistently shows a great improve- 497

ment across all evaluated models. Furthermore, 498

our experiments with Qwen2.5-7B-Instruct in the 499

agent workflow tasks (Table 3) reveal that SDE can 500

also enhance multi-agent workflow architectures, 501

with improvements up to 17.3%. 502

Analysis among different tasks. Results on the 503

IA tasks demonstrate that SDE meets the fundamen- 504

tal requirements of communication — accurately 505

and effectively delivering information. Although 506

SDE and NL performed similarly, the superior per- 507

formance of SDE compared to CIPHER also in- 508
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Table 1: The experimental results in the information asymmetry tasks of SDE and other baselines on three
benchmarks. The best results are in bold.

Model Method
Quasar-T CWQ StrategyQA

EM F1 EM F1 Accuracy

Qwen2.5-7B-Instruct

Single 0.2367 0.2791 0.2967 0.3631 0.1700
NL 0.3050 0.3748 0.3117 0.4304 0.4433

CIPHER 0.2817 0.3567 0.2967 0.4040 0.3733
SDE(ours) 0.3150 0.3772 0.3167 0.4444 0.4550

Llama3.1-8B-Instruct

Single 0.2333 0.2809 0.2467 0.3239 0.1500
NL 0.2850 0.3496 0.3250 0.4288 0.4967

CIPHER 0.2767 0.3488 0.3417 0.4526 0.5033
SDE(ours) 0.3050 0.3665 0.3517 0.4640 0.5483

Qwen2.5-14B-Instruct

Single 0.3267 0.3845 0.3467 0.4258 0.4533
NL 0.3717 0.4451 0.3750 0.4967 0.6733

CIPHER 0.3517 0.4208 0.3500 0.4837 0.6433
SDE(ours) 0.3717 0.4437 0.3817 0.4980 0.6817

Table 2: The experimental results in the multi-agent debate tasks of SDE and other baselines on four benchmarks.
Each reported result is the average of three independent runs. The best results are in bold.

Model Method GSM8K Abstract Algebra College Math Formal Logic

Qwen2.5-7B-Instruct

Single 0.8789 0.4767 0.3900 0.4497
NL 0.9061 0.4583 0.3617 0.4762

CIPHER 0.8933 0.4850 0.3700 0.4881
SDE(ours) 0.9178 0.5167 0.4433 0.5198

Llama3.1-8B-Instruct

Single 0.7867 0.2267 0.2167 0.3571
NL 0.8328 0.2833 0.2267 0.3889

CIPHER 0.8167 0.2150 0.1950 0.3532
SDE(ours) 0.8450 0.3017 0.2417 0.4220

Qwen2.5-14B-Instruct

Single 0.9111 0.5667 0.5067 0.5661
NL 0.9311 0.7100 0.6350 0.6085

CIPHER 0.9300 0.6500 0.6350 0.5675
SDE(ours) 0.9339 0.7533 0.6950 0.6574

Table 3: The experimental results in the agent workflow
tasks of SDE and other baselines using Qwen2.5-7B-
Instruct. The best results are in bold.

Method
FEVER HotpotQA StrategyQA

Accuracy EM F1 Accuracy

Single 0.0067 0.1567 0.2192 0.1567
NL 0.2300 0.2100 0.3153 0.3167

CIPHER 0.1800 0.2000 0.2879 0.3267
SDE(ours) 0.2667 0.2267 0.3196 0.3833

dicates that SDE is better equipped to handle sce-509

narios demanding higher precision in information510

delivery.511

The more significant improvements in IS tasks512

indicate that SDE not only supports information513

delivery but also enhances agents’ understanding514

of the reasoning processes behind the generated515

contents. This deeper comprehension boosts the516

overall performance of multi-agent collaboration.517

Moreover, we compare our method on Strate- 518

gyQA using the same model Qwen2.5-7B-Instruct, 519

under two different settings: information asymme- 520

try and agent workflows. Our results show that 521

the agent workflow tasks — which requires more 522

complex reasoning — benefits more significantly 523

from our approach. This also suggests that SDE 524

is particularly effective in tasks that involve more 525

complex reasoning processes. 526

5.2 Different Layer Selections 527

In this section, we investigate the impact of differ- 528

ent layer selection strategies. Following the layer 529

selection procedure proposed in Section 4.5, we 530

compare three strategies: a combination of top-k 531

layers, all layers, and only the top-ranking layer. 532

As the experiments using Qwen2.5-14B-Instruct 533

shown in Figure 2, modifying the combined top-k 534

layers (where k ≤ 4) results in little performance 535
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Figure 2: Ablation results for different layer selection
strategies on StrategyQA (information asymmetry) and
Formal Logic (multi-agent debate) tasks using Qwen2.5-
14B-Instruct. We compare modifying the combined top-
k layers, all layers, and only the top-k layer.

differences compared to modifying only the top-1536

layer. At the same time, it offers greater stability537

than modifying a single layer. However, modify-538

ing all layers leads to a significant performance539

drop, likely due to the major interference with the540

model’s generation capabilities. Therefore, to pre-541

serve the model’s generation ability and ensure sta-542

ble performance of SDE, we recommend applying543

the proposed layer selection procedure to the target544

model and modifying only a small number of top-545

ranking layers (e.g., 1-3). Additional experiments546

on other models are provided in Appendix C.547

5.3 Ablation Study on State Delta548

To evaluate the effectiveness of the proposed state549

delta, we conducted an ablation study comparing550

the performance of the full SDE with a variant that551

uses the original hidden states of each token instead552

of their differences.553

As shown in Table 4, removing state deltas con-554

sistently leads to performance drops in all settings.555

Moreover, in some cases, the performance of the556

variant even falls below that of using natural lan-557

guage alone. This indicates that directly augment-558

ing with unprocessed hidden states may introduce559

noise, thereby impairing the agent’s reasoning.560

Table 4: Ablation results on the impact of state deltas
in information asymmetry tasks (Quasar-T and CWQ
datasets, EM scores) and multi-agent debate tasks (Col-
lege Mathematics and Formal Logic datasets). "w/o
delta" denotes the variant using original hidden states.
The method with better performance is bold.

Quasar-T CWQ CM FL

Q-7B
NL 0.3050 0.3117 0.3617 0.4762

w/o delta 0.2950 0.3133 0.4033 0.4616
SDE 0.3150 0.3167 0.4433 0.5198

L-8B
NL 0.2850 0.3250 0.2450 0.3889

w/o delta 0.2750 0.2967 0.2467 0.3942
SDE 0.3050 0.3517 0.2967 0.4220

Table 5: Ablation study on the Formal Logic dataset
using Qwen2.5-7B-Instruct, comparing different num-
bers of agents (top) and different numbers of rounds
(bottom) in multi-agent debate tasks.

Rounds Agents NL CIPHER SDE(ours)

3 2 0.4762 0.4881 0.5198
3 3 0.4489 0.4312 0.5150
3 4 0.4530 0.4365 0.5179
3 5 0.4947 0.4317 0.5138

2 2 0.4524 0.4881 0.5132
3 2 0.4762 0.4881 0.5198
4 2 0.4537 0.4881 0.5225
5 2 0.4603 0.4881 0.5212

5.4 Multi-agent Debate in Different Settings 561

To investigate how the number of agents and rounds 562

affects the performance in the multi-agent debate 563

tasks, we conduct an ablation study. As shown 564

in Table 5, SDE consistently outperforms NL and 565

CIPHER across different numbers of agents and 566

rounds, suggesting that SDE is robust to variations 567

in these configurations. 568

6 Conclusions 569

In this work, we propose State Delta Encoding 570

(SDE) and use it to build a new single-LLM-based 571

multi-agent communication protocol. By encoding 572

token-wise hidden state changes, SDE captures the 573

dynamic reasoning process during generation and 574

reduces interference from irrelevant agent context. 575

The protocol with SDE augments natural language 576

messages with token-wise state delta trajectory, en- 577

abling richer agent communication. Experiments 578

in both information asymmetry and symmetry tasks 579

show that SDE outperforms existing communica- 580

tion protocols, especially in complex reasoning 581

tasks. Our findings highlight the potential to im- 582

prove communication beyond natural language and 583

open new directions. 584
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7 Limitations585

While SDE shows promising improvements in586

multi-agent performance, it also has several limi-587

tations. First, SDE assumes that the hidden states588

of the generating agent can be easily extracted and589

injected into the receiving agent. However, this re-590

quirement may not be feasible for agents based on591

black-box models without internal access. Second,592

incorporating hidden states increases the commu-593

nication bandwidth between agents, particularly594

for long context communication or large models.595

Although SDE modifies only a small number of596

layers, this overhead may still require compression597

or optimization. Future work can explore selective598

transmission of important states or apply compres-599

sion to reduce the cost of state deltas.600

References601

Randal C. Burns and Darrell D. E. Long. 1997. Effi-602
cient distributed backup with delta compression. In603
Proceedings of the Fifth Workshop on I/O in Parallel604
and Distributed Systems, IOPADS ’97, page 27–36,605
New York, NY, USA. Association for Computing606
Machinery.607

Lingjiao Chen, Jared Davis, Boris Hanin, Peter Bailis,608
Ion Stoica, Matei Zaharia, and James Zou. 2024. Are609
more llm calls all you need? towards the scaling610
properties of compound ai systems. In Advances in611
Neural Information Processing Systems, volume 37,612
pages 45767–45790. Curran Associates, Inc.613

Yusheng Su Jianxuan Yu Wei Xue Shanghang Zhang614
Jie Fu Zhiyuan Liu Chi-Min Chan, Weize Chen.615
2024. Chateval: Towards better llm-based evaluators616
through multi-agent debate. In The Twelfth Interna-617
tional Conference on Learning Representations.618

Zhumin Chu, Qingyao Ai, Yiteng Tu, Haitao Li, and619
Yiqun Liu. 2024. Automatic large language model620
evaluation via peer review. In Proceedings of the621
33rd ACM International Conference on Informa-622
tion and Knowledge Management, CIKM ’24, page623
384–393, New York, NY, USA. Association for Com-624
puting Machinery.625

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,626
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias627
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro628
Nakano, Christopher Hesse, and John Schulman.629
2021. Training verifiers to solve math word prob-630
lems. arXiv preprint arXiv:2110.14168.631

Bhuwan Dhingra, Kathryn Mazaitis, and William W632
Cohen. 2017. Quasar: Datasets for question an-633
swering by search and reading. arXiv preprint634
arXiv:1707.03904.635

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. 636
Self-collaboration code generation via chatgpt. ACM 637
Trans. Softw. Eng. Methodol., 33(7). 638

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. 639
Tenenbaum, and Igor Mordatch. 2024. Improving 640
factuality and reasoning in language models through 641
multiagent debate. In Proceedings of the 41st Inter- 642
national Conference on Machine Learning, ICML’24. 643
JMLR.org. 644

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 645
Dan Roth, and Jonathan Berant. 2021. Did aristotle 646
use a laptop? a question answering benchmark with 647
implicit reasoning strategies. Transactions of the 648
Association for Computational Linguistics, 9:346– 649
361. 650

Dan Hendrycks, Collin Burns, Steven Basart, Andy 651
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 652
hardt. 2021. Measuring massive multitask language 653
understanding. Proceedings of the International Con- 654
ference on Learning Representations (ICLR). 655

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, 656
and Akiko Aizawa. 2020. Constructing a multi- 657
hop QA dataset for comprehensive evaluation of 658
reasoning steps. In Proceedings of the 28th Inter- 659
national Conference on Computational Linguistics, 660
pages 6609–6625, Barcelona, Spain (Online). Inter- 661
national Committee on Computational Linguistics. 662

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 663
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 664
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, and 665
1 others. 2024. Metagpt: Meta programming for a 666
multi-agent collaborative framework. In The Twelfth 667
International Conference on Learning Representa- 668
tions. 669

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 670
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 671
Wen-tau Yih. 2020. Dense passage retrieval for open- 672
domain question answering. In Proceedings of the 673
2020 Conference on Empirical Methods in Natural 674
Language Processing (EMNLP), pages 6769–6781, 675
Online. Association for Computational Linguistics. 676

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 677
Khizbullin, and Bernard Ghanem. 2023a. Camel: 678
Communicative agents for "mind" exploration of 679
large language model society. In Advances in Neural 680
Information Processing Systems, volume 36, pages 681
51991–52008. Curran Associates, Inc. 682

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter 683
Pfister, and Martin Wattenberg. 2023b. Inference- 684
time intervention: eliciting truthful answers from a 685
language model. In Proceedings of the 37th Interna- 686
tional Conference on Neural Information Processing 687
Systems, NIPS ’23, Red Hook, NY, USA. Curran 688
Associates Inc. 689

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qing- 690
min Liao. 2024. EconAgent: Large language model- 691
empowered agents for simulating macroeconomic ac- 692
tivities. In Proceedings of the 62nd Annual Meeting 693

9

https://doi.org/10.1145/266220.266223
https://doi.org/10.1145/266220.266223
https://doi.org/10.1145/266220.266223
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://doi.org/10.1145/3627673.3679677
https://doi.org/10.1145/3627673.3679677
https://doi.org/10.1145/3627673.3679677
https://doi.org/10.1145/3672459
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3621ee907def47c1b952ade25c67698-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829
https://doi.org/10.18653/v1/2024.acl-long.829


of the Association for Computational Linguistics (Vol-694
ume 1: Long Papers), pages 15523–15536, Bangkok,695
Thailand. Association for Computational Linguistics.696

Meta. 2024. Llama 3.1-8b-instruct. https:697
//huggingface.co/meta-llama/Llama-3.698
1-8B-Instruct. Accessed: July 23, 2024.699

Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and700
Balachander Krishnamurthy. 1997. Potential bene-701
fits of delta encoding and data compression for http.702
SIGCOMM Comput. Commun. Rev., 27(4):181–194.703

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-704
ith Ringel Morris, Percy Liang, and Michael S. Bern-705
stein. 2023. Generative agents: Interactive simulacra706
of human behavior. In Proceedings of the 36th An-707
nual ACM Symposium on User Interface Software708
and Technology, UIST ’23, New York, NY, USA.709
Association for Computing Machinery.710

Chau Pham, Boyi Liu, Yingxiang Yang, Zhengyu Chen,711
Tianyi Liu, Jianbo Yuan, Bryan A Plummer, Zhaoran712
Wang, and Hongxia Yang. 2024. Let models speak713
ciphers: Multiagent debate through embeddings. In714
The Twelfth International Conference on Learning715
Representations.716

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan717
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng718
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,719
and Maosong Sun. 2024. ChatDev: Communicative720
agents for software development. In Proceedings721
of the 62nd Annual Meeting of the Association for722
Computational Linguistics (Volume 1: Long Papers),723
pages 15174–15186, Bangkok, Thailand. Association724
for Computational Linguistics.725

Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun726
Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du, Weize727
Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun.728
2025. Scaling large language model-based multi-729
agent collaboration. Preprint, arXiv:2406.07155.730

Vignav Ramesh and Kenneth Li. 2025. Communicating731
activations between language model agents. Preprint,732
arXiv:2501.14082.733

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong,734
Evan Hubinger, and Alexander Turner. 2024. Steer-735
ing llama 2 via contrastive activation addition. In736
Proceedings of the 62nd Annual Meeting of the As-737
sociation for Computational Linguistics (Volume 1:738
Long Papers), pages 15504–15522, Bangkok, Thai-739
land. Association for Computational Linguistics.740

Nishant Subramani, Nivedita Suresh, and Matthew Pe-741
ters. 2022. Extracting latent steering vectors from742
pretrained language models. In Findings of the Asso-743
ciation for Computational Linguistics: ACL 2022,744
pages 566–581, Dublin, Ireland. Association for745
Computational Linguistics.746

Yaqi Wang Ruidi Chang Shichao Pei Nitesh V. Chawla747
Olaf Wiest Xiangliang Zhang Taicheng Guo, Xiuy-748
ing Chen. 2024. Large language model based multi-749
agents: A survey of progress and challenges. In750

Proceedings of the Thirty-Third International Joint 751
Conference on Artificial Intelligence. 752

Alon Talmor and Jonathan Berant. 2018. The web as 753
a knowledge-base for answering complex questions. 754
In Proceedings of the 2018 Conference of the North 755
American Chapter of the Association for Computa- 756
tional Linguistics: Human Language Technologies, 757
Volume 1 (Long Papers), pages 641–651, New Or- 758
leans, Louisiana. Association for Computational Lin- 759
guistics. 760

James Thorne, Andreas Vlachos, Christos 761
Christodoulopoulos, and Arpit Mittal. 2018. 762
FEVER: a large-scale dataset for fact extraction 763
and VERification. In Proceedings of the 2018 764
Conference of the North American Chapter of 765
the Association for Computational Linguistics: 766
Human Language Technologies, Volume 1 (Long 767
Papers), pages 809–819, New Orleans, Louisiana. 768
Association for Computational Linguistics. 769

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, 770
David Udell, Juan J. Vazquez, Ulisse Mini, and 771
Monte MacDiarmid. 2024. Steering language 772
models with activation engineering. Preprint, 773
arXiv:2308.10248. 774

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 775
Beibin Li, Erkang (Eric) Zhu, Li Jiang, Xiaoyun 776
Zhang, Shaokun Zhang, Ahmed Awadallah, Ryen W. 777
White, Doug Burger, and Chi Wang. 2024. Autogen: 778
Enabling next-gen llm applications via multi-agent 779
conversation. In COLM 2024. 780

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu- 781
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao, 782
Qian Liu, Che Liu, and 1 others. 2024. Openagents: 783
An open platform for language agents in the wild. In 784
First Conference on Language Modeling. 785

Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen 786
Dong, Kurt Keutzer, See-Kiong Ng, and Jiashi Feng. 787
2024. MAgIC: Investigation of large language model 788
powered multi-agent in cognition, adaptability, ratio- 789
nality and collaboration. In Proceedings of the 2024 790
Conference on Empirical Methods in Natural Lan- 791
guage Processing, pages 7315–7332, Miami, Florida, 792
USA. Association for Computational Linguistics. 793

Zhenran Xu, Senbao Shi, Baotian Hu, Jindi Yu, 794
Dongfang Li, Min Zhang, and Yuxiang Wu. 2023. 795
Towards reasoning in large language models via 796
multi-agent peer review collaboration. Preprint, 797
arXiv:2311.08152. 798

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 799
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 800
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian- 801
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, 802
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth- 803
ers. 2024. Qwen2.5 technical report. arXiv preprint 804
arXiv:2412.15115. 805

10

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://doi.org/10.1145/263109.263162
https://doi.org/10.1145/263109.263162
https://doi.org/10.1145/263109.263162
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://openreview.net/forum?id=sehRvaIPQQ
https://openreview.net/forum?id=sehRvaIPQQ
https://openreview.net/forum?id=sehRvaIPQQ
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2501.14082
https://arxiv.org/abs/2501.14082
https://arxiv.org/abs/2501.14082
https://doi.org/10.18653/v1/2024.acl-long.828
https://doi.org/10.18653/v1/2024.acl-long.828
https://doi.org/10.18653/v1/2024.acl-long.828
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://www.ijcai.org/proceedings/2024/0890.pdf
https://www.ijcai.org/proceedings/2024/0890.pdf
https://www.ijcai.org/proceedings/2024/0890.pdf
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://openreview.net/forum?id=sKATR2O1Y0
https://openreview.net/forum?id=sKATR2O1Y0
https://openreview.net/forum?id=sKATR2O1Y0
https://doi.org/10.18653/v1/2024.emnlp-main.416
https://doi.org/10.18653/v1/2024.emnlp-main.416
https://doi.org/10.18653/v1/2024.emnlp-main.416
https://doi.org/10.18653/v1/2024.emnlp-main.416
https://doi.org/10.18653/v1/2024.emnlp-main.416
https://arxiv.org/abs/2311.08152
https://arxiv.org/abs/2311.08152
https://arxiv.org/abs/2311.08152


Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,806
William Cohen, Ruslan Salakhutdinov, and Christo-807
pher D. Manning. 2018. HotpotQA: A dataset for808
diverse, explainable multi-hop question answering.809
In Proceedings of the 2018 Conference on Empiri-810
cal Methods in Natural Language Processing, pages811
2369–2380, Brussels, Belgium. Association for Com-812
putational Linguistics.813

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak814
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.815
ReAct: Synergizing reasoning and acting in language816
models. In International Conference on Learning817
Representations.818

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou819
Wang. 2024. Natural language reasoning, a survey.820
ACM Comput. Surv., 56(12).821

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong822
Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu,823
and Chuang Gan. 2024. Building cooperative em-824
bodied agents modularly with large language models.825
In The Twelfth International Conference on Learning826
Representations.827

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zeng-828
mao Wang, and Bo Han. 2024. Can language models829
perform robust reasoning in chain-of-thought prompt-830
ing with noisy rationales? In Advances in Neural831
Information Processing Systems, volume 37, pages832
123846–123910. Curran Associates, Inc.833

A Layer Selection834

To minimize the impact on the model’s generation835

capabilities, we perform layer selection to identify836

a small number of key transformer layers, where837

state deltas are captured and injected. We con-838

struct a preliminary experiment on an information839

asymmetric (IA) task using the 2WikiMultihopQA840

dataset (Ho et al., 2020). The first 300 questions841

are used to evaluate each layer individually. All842

settings follow those of the IA tasks, except for the843

dataset. Both exact match (EM) and F1 score are844

used jointly as evaluation metrics.845

This procedure is applied to three models:846

Qwen2.5-7B-Instruct (28 layers), Llama3.1-8B-847

Instruct (32 layers), and Qwen2.5-14B-Instruct (48848

layers). Layers are numbered from 0.849

Table 6 lists the top-5 layers for each model ac-850

cording to their combined EM and F1 scores. Lay-851

ers marked with an underline are those ultimately852

selected for all subsequent experiments. The result853

shows that many of the top-5 layers have closely854

matched scores, and some even outperform the855

selected ones on individual metrics. Despite vari-856

ation in the exact layer rankings, we observe that857

the most effective layers across all models tend858

to be in the middle-to-late positions, for example, 859

Layer 22 in Qwen2.5-7B-Instruct and Layer 17 in 860

Llama3.1-8B-Instruct. However, some earlier lay- 861

ers (e.g., Layers 5 and 8 in Llama3.1-8B-Instruct) 862

also perform well, indicating potential flexibility in 863

layer choice. 864

Based on this preliminary experiment, we fix 865

the selected layers for all further experiments as 866

follows: 867

• Qwen2.5-7B-Instruct: Layer 22 868

• Llama3.1-8B-Instruct: Layers 17 and 20 869

• Qwen2.5-14B-Instruct: Layers 21, 23, and 33 870

During generation, the sender agent records state 871

deltas from these selected layers, which are then 872

injected into the same layers on the receiver agent’s 873

side during the forward pass. These layers remain 874

fixed across all experiments to validate the general- 875

ity of the selection. 876

It is important to note that the 2WikiMultihopQA 877

dataset is used only in this layer selection proce- 878

dure and is excluded from all evaluations. Our 879

main experimental results suggest that optimal in- 880

jection layers are primarily determined by model 881

architecture and are relatively robust to specific 882

task settings. 883

B Experimental Details 884

All experiments were conducted using PyTorch on 885

NVIDIA A100 GPUs with 40GB of memory. The 886

specific task settings are as follows. 887

B.1 Information Asymmetry (IA) Tasks 888

Multi-agent settings. Given a factual question, 889

two agents engage in up to five rounds of discus- 890

sion to collaboratively find the answer. We use the 891

corpus split by DPR (Karpukhin et al., 2020), in- 892

cluding 21 million Wikipedia passages. For each 893

question, we retrieve the top 6 relevant passages 894

using BM25. Odd-ranked passages (1st, 3rd, and 895

5th) are assigned to one agent, and even-ranked pas- 896

sages (2nd, 4th, and 6th) to another agent. These 897

private passages and task instructions are placed in 898

the system prompt for each agent. 899

In the first round, each agent reasons based on its 900

private knowledge and asks questions to the other 901

agent to fill in missing information. In subsequent 902

rounds, each agent receives the full responses from 903

all agents in the previous round and is expected to 904

respond to questions, continue reasoning, or ask 905

new questions. The discussion ends as soon as any 906
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Table 6: The experimental results of the preliminary experiment constructed using the 2WikiMultihopQA dataset.
Here are the Top-5 layers for SDE in each model, ranked by their combined exact match (EM) and F1 scores.
Underlined layers are selected for use in all subsequent experiments.

Model Top 1 Top 2 Top 3 Top 4 Top 5

Qwen2.5-7B-Instruct
Layer ID 22 24 9 20 12

EM 0.3000 0.2950 0.3067 0.2900 0.2950
F1 0.3686 0.3692 0.3631 0.3703 0.3632

Llama3.1-8B-Instruct
Layer ID 17 20 5 8 30

EM 0.2383 0.2533 0.2550 0.2417 0.2383
F1 0.3391 0.3231 0.3165 0.3168 0.3085

Qwen2.5-14B-Instruct
Layer ID 33 21 23 19 36

EM 0.3833 0.3800 0.3817 0.3767 0.3767
F1 0.4636 0.4644 0.4585 0.4590 0.4574

agent produces a response containing an answer in907

the format \boxed{answer}. For each response in908

the final round, if it has such a formatted answer,909

we extract the answer and evaluate it. The score of910

this question is calculated as the average score of911

all formatted answers.912

Prompt 1 is used for multi-agent systems, in-913

cluding private passages embedded in the system914

prompt, the first-round response, and the second-915

round input that incorporates other agent’s re-916

sponses.917

Single agent baseline. Since each agent has dif-918

ferent private information, we implement a single919

agent answering baseline in which each agent inde-920

pendently performs retrieval-augmented generation921

based solely on its own private passages. We re-922

port the higher of the two agents’ total scores as923

the baseline performance. Prompt 2 is used in the924

single agent baseline.925

Generation settings. To ensure reproducibility,926

we use greedy decoding for Single, Natural Lan-927

guage (NL), and SDE methods, and set the temper-928

ature to 0 for CIPHER for fair comparison. Each929

generation is limited to at most 256 tokens.930

B.2 Information Symmetry (IS) Tasks931

B.2.1 Multi-agent Debate932

Multi-agent settings. Given a reasoning prob-933

lem, two agents engage in a three-round debate.934

In the first round, each agent independently thinks935

through the problem and produces its initial re-936

sponse. In subsequent rounds, each agent receives937

all other agents’ responses from the previous round938

and is expected to revise or refine its own response939

based on others’. For each question, we consider all940

agents’ final-round responses and calculate the task941

score as the proportion of correct answers among942

them. 943

Prompt 3 and Prompt 4 shows an example used 944

in the debate setting, including the first-round 945

prompt and response, as well as the second-round 946

prompt that incorporates the previous reply from 947

the other agent. 948

Single agent baseline. We construct a single- 949

agent baseline by providing the first-round user 950

prompt to a single agent. The agent generates a 951

single, direct response without receiving any addi- 952

tional inputs. This response is then used for evalua- 953

tion. The prompt used in this single-agent setting 954

is shown in Prompt 5 and Prompt 6. 955

Generation settings. To encourage diverse ini- 956

tial responses under the same first-round prompt, 957

we use randomization during generation. For the 958

Single, Natural Language (NL), and SDE methods, 959

we adopt the model’s default generation settings. 960

For CIPHER, we adjust agent’s temperatures based 961

on the number of agents: in an n-agent system, the 962

i-th agent use a temperature of i
n× the model’s 963

default temperature. Specifically, in our 2-agent 964

setting, one agent uses half the default temperature 965

and the other uses the default temperature. The de- 966

fault generation settings for each model are listed 967

below: 968

• Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct: 969

repetition_penalty = 1.05, temperature = 970

0.7, top_p = 0.8, top_k = 20 971

• Llama3.1-8B-Instruct: temperature = 0.6, 972

top_p = 0.9 973

To mitigate the randomness introduced by sam- 974

pling, each setting is run three times and the final 975

score is averaged between runs. Each generation is 976

limited to at most 512 tokens. 977
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B.2.2 Agent Workflow978

Multi-agent settings. In these tasks, agents se-979

quentially generate responses in a fixed order. Each980

agent receives a prompt that contains in-context981

examples, the current question, the complete work-982

flow history (i.e., previous agents’ responses), and983

the full environmental feedback. The agent then984

produces a response in a format similar to the ex-985

amples, consisting of a reasoning trace (Thought)986

and a proposed action (Action), such as searching987

for documents or reporting a final answer. The envi-988

ronment module validates the action and generates989

an observation (Observation), such as a retrieved990

document in response to a search action. This ob-991

servation is incorporated into the input prompt for992

the next agent. We use BM25 as the retriever and993

Wikipedia corpus split by DPR (Karpukhin et al.,994

2020) for environment feedback in search actions.995

Following the ReAct framework, each question996

proceeds through up to 7 iterations, with at most997

7 agents contributing to the workflow. Each agent998

must integrate previous reasoning and observations999

to refine its understanding and approach the cor-1000

rect answer. The model is expected to output an1001

answer in the format Finish[answer]; the value1002

of answer is extracted for evaluation. If no agent1003

produces an answer in the expected format within1004

7 turns, the system is considered to have failed on1005

that task.1006

Prompt 7 and Prompt 8 show examples of the1007

input prompt used for multi-agent systems, includ-1008

ing in-context examples, the first agent’s reasoning1009

and action, and the observation, all of which are1010

provided as input to the second agent. We adopt1011

the examples from ReAct designed for complex1012

reasoning (HotpotQA and StrategyQA) and fact1013

verification (FEVER). Due to space limitations,1014

not all examples can be presented here. For more1015

details, please refer to our code repository.1016

Single agent baseline. We construct a single-1017

agent baseline where one agent directly answers1018

the question by generating a chain of thought. For1019

the HotpotQA dataset and the StrategyQA dataset,1020

we do not provide any retrieved documents. For1021

the FEVER dataset, the agent is given all possi-1022

ble candidate answers to choose from. Prompt 91023

and Prompt 10 show the prompts used for the Hot-1024

potQA / StrategyQA and FEVER datasets, respec-1025

tively.1026

Generation settings. To ensure reproducibility,1027

we use greedy decoding for the Single, Natural1028

Language (NL), and SDE methods, and set the 1029

temperature to 0 for CIPHER. For the single-agent 1030

baseline, the model’s generation is limited to 256 1031

tokens. For the others, we follow ReAct and limit 1032

to 100 tokens per generation. 1033

C Different Layer Selections 1034

In addition to the Qwen2.5-14B-Instruct results pre- 1035

sented in Section 5.2, we conduct further ablation 1036

studies on Qwen2.5-7B-Instruct and Llama3.1-8B- 1037

Instruct to examine different layer selection strate- 1038

gies. 1039

Following the same evaluation settings as in the 1040

main experiments, we compare three strategies: (1) 1041

modifying the top-k layers jointly (Combine Top- 1042

k), (2) modifying all layers (All Combine), and (3) 1043

modifying only the k-th top-ranking layer (Only 1044

Top-k). The top-k layers are selected based on the 1045

preliminary experiment described in Section 4.5 1046

and Appendix A. We evaluate these strategies on 1047

two representative tasks: an information asymme- 1048

try task based on the StrategyQA dataset and a 1049

multi-agent debate task based on the Formal Logic 1050

dataset. 1051

Figure 3, Figure 4, and Figure 5 show the results 1052

on Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, 1053

and Qwen2.5-14B-Instruct, respectively. Our key 1054

findings are as follows: 1055

• Single-layer modification (Only Top-k) shows 1056

inconsistent performance across different layer 1057

ranks and tasks. For example, on Qwen2.5-7B- 1058

Instruct with the Formal Logic task, performance 1059

decreases from rank-1 to rank-4 but unexpectedly 1060

increases at rank-5. This suggests that single- 1061

layer modifications are sensitive to task-specific 1062

factors. 1063

• Combined-layer modification (Combine Top- 1064

k yields more stable performance across differ- 1065

ent values of k. While in some isolated cases, 1066

a single-layer modification may outperform the 1067

combined version, the latter demonstrates better 1068

robustness and generality across tasks. 1069

• Modifying all layers (All Combine) consistently 1070

leads to degraded performance across all models 1071

and tasks. This is likely due to excessive dis- 1072

ruption of the model’s internal representations, 1073

which negatively impacts its reasoning abilities. 1074

In summary, these results further support our 1075

recommendation to apply the proposed layer se- 1076

lection procedure and choose a small number of 1077
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combined top-ranking layers (e.g., top 1–3), avoid-1078

ing the instability of single-layer selection and the1079

performance degradation of modifying all layers.1080

D Prompts1081

Here are the prompts used in our experiments.1082

Some complete prompts can be found in our repos-1083

itory.1084

14



0.35

0.40

0.45

0.50

0.55

0.60

Top-1 Top-2 Top-3 Top-4 Top-5
0.10

0.15

0.20

All Combine

Layer Selection for Qwen2.5-7B-Instruct

Ac
cu

ra
cy

StrategyQA
Combine Only

0.450

0.475

0.500

0.525

0.550

0.575

Top-1 Top-2 Top-3 Top-4 Top-5

0.200

0.225

All Combine

Layer Selection for Qwen2.5-7B-Instruct

Ac
cu

ra
cy

Formal Logic
Combine Only

Figure 3: Ablation results for different layer selection strategies on StrategyQA (information asymmetry) and
Formal Logic (multi-agent debate) tasks using Qwen2.5-7B-Instruct. We compare modifying a combination of
top-k layers, all layers, and only the top-k layer.
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Figure 4: Ablation results for different layer selection strategies on StrategyQA (information asymmetry) and
Formal Logic (multi-agent debate) tasks using Llama3.1-8B-Instruct. We compare modifying a combination of
top-k layers, all layers, and only the top-k layer.
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Figure 5: Ablation results for different layer selection strategies on StrategyQA (information asymmetry) and
Formal Logic (multi-agent debate) tasks using Qwen2.5-14B-Instruct. We compare modifying a combination of
top-k layers, all layers, and only the top-k layer.
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Prompt 1: Prompt for multi-agent systems in information asymmetry tasks

<system>
You are a reasoning agent in a multi-hop problem solving task. Collaborate with other agents using
these rules:
1. **Knowledge Management**
Your private segments:
Document 1: {Passage 1}
Document 2: {Passage 2}
Document 3: {Passage 3}
DO NOT verbatim share!!!
2. **Communication Protocol**
You can ask other agents several questions based on your needs.
If your private segments contain information that can answer the question from other agents, you
you need to give appropriate answers.
- When asking questions:

- First conduct reasoning based on your private segments and dialogue history
- Identify what crucial information is missing that prevents you from progressing
- Only ask about information you CANNOT infer from existing knowledge
- Ask one sub-question per message
- Never ask questions that can be answered by your own segments

- When answering:
- Check if the question can be answered by combining your segment with previous dialogue
- Answer them based on your private segments

Your communication with other agents must follow the following format:
```#Q: [Your question]```
```#A: [Your answer]```
3. **Final Output**
When you get the final answer, response in the form \boxed{answer} at the end of your response.
</system>

<user>
The multi-hop problem you need to solve collaboratively is: {question}
Please communicate with other agents as required to resolve the problem.
</user>

<assistant>
{Agent A’s response}
</assistant>

<user>
Other agents responded as follows:
From one agent:
{Agent B’s response}
You need to answer the questions from other agents based on your private segments.
The original problem is: {question}
Please continue to think and discuss to solve this problem.
When you get the final answer, response in the form \boxed{answer} at the end of your response.
</user>
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Prompt 2: Prompt for single-agent baseline in information asymmetry tasks

<user>
Here is some relevant information:
Document 1: {Passage 1}
Document 2: {Passage 2}
Document 3: {Passage 2}
Please answer the following multihop question by thinking step-by-step:
{question}
When you get the final answer, response in the form \boxed{answer} at the end of your response.
</user>

Prompt 3: Prompt for multi-agent systems used in multi-agent debate tasks constructed from the
GSM8K dataset

<user>
Can you solve the following math problem? {question}
Explain your reasoning. Your final answer should be a single numerical number, in the form
\boxed{answer} at the end of your response.
</user>

<assistant>
{Agent A’s response}
</assistant>

<user>
These are the solutions to the problem from other agents:
One agent solution:
```{Agent B’s response} ```
Using the solutions from other agents as additional information, can you provide your answer to
the math problem?
The original math problem is {question}.
Your final answer should be a single numerical number, in the form \boxed{answer}, at the end
of your response. </user>
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Prompt 4: Prompt for multi-agent systems used in multi-agent debate tasks constructed from the
MMLU dataset

<user>
Can you answer the following question as accurately as possible?
{question}
Explain your answer, putting the answer in the form (X) at the end of your response.
</user>

<assistant>
{Agent A’s response}
</assistant>

<user>
These are the solutions to the problem from other agents:
One agent solution:
```{Agent B’s response} ```
Using the reasoning from other agents as additional advice, can you give an updated answer?
Examine your solution and that other agents step by step. The origin question is question Put your
answer in the form (X) at the end of your response.
</user>

Prompt 5: Prompt for single-agent baseline used in multi-agent debate tasks constructed from the
GSM8K dataset

<user>
Can you solve the following math problem? {question}
Explain your reasoning. Your final answer should be a single numerical number, in the form
\boxed{answer}, at the end of your response.
</user>

Prompt 6: Prompt for single-agent baseline used in multi-agent debate tasks constructed from the
MMLU dataset

<user>
Can you answer the following question as accurately as possible?
{question}
Explain your answer, putting the answer in the form (X) at the end of your response.
</user>
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Prompt 7: Prompt example for multi-agent systems used in agent workflow tasks constructed from
the HotpotQA dataset and the StrategyQA dataset

<user>
Solve a question answering task with interleaving Thought, Action, Observation steps. Thought
can reason about the current situation, and Action can be three types:
(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it
exists. If not, it will return some similar entities to search.
(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the task.
Here are some examples.
Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny
extends into?
Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado
orogeny extends into, then find the elevation range of the area.
Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in
Colorado and surrounding areas.
Thought 2: It does not mention the eastern sector. So I need to look up eastern sector.
Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to
search High Plains and find its elevation range.
Action 3: Search[High Plains]
Observation 3: High Plains refers to one of two distinct land regions:
Thought 4: I need to instead search High Plains (United States).
Action 4: Search[High Plains (United States)]
Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the High
Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]
Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to
7,000 ft.
Action 5: Finish[1,800 to 7,000 ft]
......(five examples omitted)......
Question: Were Scott Derrickson and Ed Wood of the same nationality?
Thought 1: I need to determine the nationalities of Scott Derrickson and Ed Wood to see if they
are the same. I’ll start by searching for Scott Derrickson.
Action 1: Search[Scott Derrickson]
Observation 1: Scott Derrickson is an American director, screenwriter and producer. He lives
in Los Angeles, California. Derrickson is best known for directing numerous horror films, such
as T̈he Exorcism of Emily Rose(̈2005), S̈inister(̈2012), and D̈eliver Us From Evil(̈2014), as well
as the Marvel Cinematic Universe superhero film D̈octor Strange(̈2016). He was born on July
16, 1966 in Denver, Colorado, United States. He is married to actress and producer Jennifer
Derrickson, with whom he has two children.
</user>

<assistant>
Thought 2:
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Prompt 8: Prompt example for multi-agent systems used in agent workflow tasks constructed from
the FEVER dataset

<user>
Determine if there is Observation that SUPPORTS or REFUTES a Claim, or if there is NOT
ENOUGH INFORMATION.
Claim: Nikolaj Coster-Waldau worked with the Fox Broadcasting Company.
Action 1: Search[Nikolaj Coster-Waldau]
Observation 1: Nikolaj William Coster-Waldau (born 27 July 1970) is a Danish actor and producer.
He graduated from the Danish National School of Performing Arts in Copenhagen in 1993,[1]
and had his breakthrough role in Denmark with the film Nightwatch (1994). He played Jaime
Lannister in the HBO fantasy drama series Game of Thrones, for which he received two Primetime
Emmy Award nominations for Outstanding Supporting Actor in a Drama Series.. Coster-Waldau
has appeared in numerous films in his native Denmark and Scandinavia, including Headhunters
(2011) and A Thousand Times Good Night (2013). In the U.S, his debut film role was in the war
film Black Hawk Down (2001), playing Medal of Honor recipient Gary Gordon.[2] He then played
a detective in the short-lived Fox television series New Amsterdam (2008), and appeared in the
2009 Fox television film Virtuality, originally intended as a pilot.
Action 2: Finish[SUPPORTS]
Claim: Stranger Things is set in Bloomington, Indiana.
Action 1: Search[Stranger Things]
Observation 1: Stranger Things is an American science fiction horror drama television series
created by the Duffer Brothers. Set in the 1980s, primarily in the fictional town of Hawkins,
Indiana, the series centers on a number of mysteries and supernatural events occurring around the
town and their impact on an ensemble of child and adult characters.
Action 2: Finish[REFUTES]
Claim: Beautiful reached number two on the Billboard Hot 100 in 2003.?
Action 1: Search[Beautiful]
Observation 1: Could not find [Beautiful]. Similar: [’Beautiful’, ’Beautiful, Beautiful’, ’A
Beautiful Mind (film)’, ’Beautiful (Christina Aguilera song)’, ’Life Is Beautiful’].
Action 2: Search[Beautiful (Christina Aguilera song)]
Observation 2: "Beautiful" is a song recorded by American singer Christina Aguilera for her fourth
studio album, Stripped (2002).
Action 3: Lookup[Billboard Hot 100]
Observation 3: (Result 1 / 3) The song peaked at number two on the Billboard Hot 100 in the
United States, where it was certified Gold for 500,000 units shipped.
Action 4: Finish[NOT ENOUGH INFO]
Claim: There is a convicted statutory rapist called Chinatown’s writer.
Thought 1: To determine if this claim is supported, refuted, or if there is not enough information, I
need to search for information about a convicted statutory rapist named "Chinatown’s writer."
Action 1: Search["Chinatown’s writer" convicted statutory rapist]
Observation 1: bed linens. Those investigating serial rapes often identify the rapist with a
’nickname’ before an arrest is made by characterizing the tactics or patterns of the rapes. Serial
rapists are more likely to be convicted than a rapist who is known by the victim. Unlike those
convicted for a single case of rape, serial rapists often go unrecognized due to the slow process of
analyzing the backlog of rape kits. It may take many years for a past rape to be identified as being
committed by one person.
</user>

<assistant>
Thought 2:
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Prompt 9: Prompt for single agent baseline used in agent workflow tasks constructed from the
HotpotQA dataset and the StrategyQA dataset

<user>
Please answer the following multihop question by thinking step-by-step:
{question}
When you get the final answer, response in the form \boxed{answer} at the end of your response.
</user>

Prompt 10: Prompt for single agent baseline used in agent workflow tasks constructed from the
FEVER dataset

<user>
Please answer the following multihop question by thinking step-by-step:
There is a convicted statutory rapist called Chinatown’s writer.
When you get the final answer, response in the form \boxed{answer} at the end of your response.
All final answers can only be one of "NOT ENOUGH INFO", "SUPPORTS", "REFUTES".
</user>
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