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Abstract

Inspired by the success of large language models, there is a trend toward developing
graph foundation models to conduct diverse downstream tasks in various domains.
However, current models often require extra fine-tuning to apply their learned
structural and semantic representations to new graphs, which limits their versatility.
Recent breakthroughs in zero-shot inductive reasoning on knowledge graphs (KGs),
offer us a new perspective on extending KG reasoning to general graph applications.
In this paper, we introduce SCR, a unified graph reasoning framework designed
to train on knowledge graphs and effectively generalize across a wide range of
graph tasks and domains. We begin by designing the task-specific KG structures to
establish a unified topology for different task formats. Then we propose semantic-
conditioned message passing, a novel mechanism addressing the inherent semantic
isolation in traditional KG reasoning, by jointly modeling structural and semantic
invariance patterns in graph representations. Evaluated on 38 diverse datasets
spanning node-, link-, and graph-level tasks, SCR achieves substantial performance
gains over existing foundation models and supervised baselines, demonstrating
its remarkable efficacy and adaptability. Our source code is available on https:
//github.com/KyneWang/SCR.

1 Introduction

In pursuit of artificial general intelligence, graph foundation models (GFMs) are designed to pretrain
on large-scale graph data, learn generalizable representations, and adapt them to a wide range of
downstream tasks [39, 36]. However, most GFMs still face challenges, including format mismatches
between pretraining objectives and downstream tasks, and semantic discrepancies between source
and target datasets. As a result, extensive fine-tuning is often required.

In contrast to homogeneous or heterophilic graphs, which define a single relation among nodes,
knowledge graphs capture complex, multi-relational connections among entities. The most common
task is KG reasoning, which involves learning embeddings of entities and relations to infer missing
components in triples (head entity, relation, tail entity) [1, 54]. Moving beyond traditional transductive
knowledge graph (KG) reasoning, recent work [17, 8] explores zero-shot inductive reasoning. This
paradigm learns relation and entity representations conditioned on the graph structure, enabling
generalization to unseen KGs and the inference of entirely new entities and relations without any
fine-tuning. [66].

Inspired by these breakthroughs, we improve the topological transferability of GFMs from a novel
perspective: pre-training on knowledge graphs using inductive reasoning as the training objective,
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and then transferring to other graph domains, such as citation and molecular graphs, to perform
downstream tasks like node and graph classification. Nevertheless, developing such a GFM faces two
significant problems. (1) Cross-Task Transferability: It is challenging to generalize the KG reasoning
format across diverse graph tasks and transfer learned representations to general graphs effectively.
(2) Semantic Transferability: Semantic features in graphs, such as node features and textual attributes,
capture domain-specific knowledge beyond the graph’s topology. Integrating semantic features into
the inductive reasoning process remains largely unexplored.

To tackle the cross-task transferability, we first design task-specific KG structures to transform general
graphs and their tasks into KG formats. As shown in Figure 1, we introduce two new entities, “label
□”, and “super graph △”, and define three new relations, “node ⃝ is attributed with label □”, “node
⃝ belongs to super graph △”, “super graph △ is attributed with label □”. These definitions allow us
to reframe classification tasks as KG reasoning, predicting the tail entity based on a given relation
and head entity. For example, in a citation network, performing node classification is analogous to
reasoning edges between papers and labels.

The semantic transferability problem in inductive KG reasoning manifests as a semantic isolation
issue. Existing models prioritize graph structure at the expense of domain semantics, and attempts
to integrate semantics (e.g., via feature initialization) often compromise topological generalization.
To resolve this dilemma, we propose a novel Semantic Conditional Message Passing (SCMP)
framework. SCMP moves beyond simple feature injection by explicitly conditioning the message-
passing mechanism on both local semantic neighbors and global semantic contexts. By leveraging
knowledge pretrained from diverse sources (e.g., textual descriptions and ontological axioms), our
framework enhances reasoning performance while simultaneously preserving robust generalization
across both semantic and topological dimensions.

In summary, we propose the Semantic Conditional Reasoner (SCR), a novel graph reasoning frame-
work that leverages inductive KG reasoning to advance graph foundation models. To the best of
our knowledge, this is the first work to employ KG reasoning as a pretraining objective for graph
foundation models. We conducted extensive experiments on link prediction, node classification,
and graph classification tasks across 38 datasets from diverse domains. The results demonstrate
performance improvement over existing foundation models and supervised baselines, underscoring
the transferability of our approach.

2 Related Works

Transferability is key to the success of graph foundation models. Here we describe current studies
by clarifying how they address differences between source and target datasets and bridge gaps
across task formats [29, 85, 37, 51]. OFA [33] and ZeroG [29] leveraged pre-trained language
models to encode node/class features as text, creating a unified feature space across diverse datasets.
Meanwhile, OpenGraph [74] adopted masked autoencoding, and AnyGraph [73] used link prediction
loss during pretraining on multiple graphs, enabling direct application to conduct node classification
and link prediction tasks on new graphs. GraphAny [85] designed a novel architecture to tune model
parameters through an analytical solution, allowing it to fit unseen graphs for node classification
tasks. All these methods claim to work on both in-domain and cross-domain datasets.

Beyond designing model architectures and pretraining objectives, graph prompt learning is also
popular to employ lightweight prompts, aiming to align pre-training with downstream tasks [89].
Depending on different unsupervised pre-training and prompt learning strategies employed, current
notable approaches include GPPT [52], All-in-one [53], GPrompt [22], and GPF-plus [15]. Typically,
their source and target datasets are the same graph dataset.

The existing foundation models in KGs study the transferability across different KGs [8, 66, 84].
For example, ULTRA [17] learned transferable graph representations by conditioning on relational
interactions, enabling generalization to unseen KGs.

We provide a detailed version of related works in Appendix N. Unlike all the prior studies, our
method SCR explores a novel scenario, training solely on common-sense KG datasets while achieving
transferability across a wide range of general graphs and tasks without the need for extra fine-tuning.

2



3 Background

Let a knowledge graph be represented as G = {E ,R, T }, where E is the set of entities and R is the
set of relations. The factual triples in the KG are denoted by T = {(eh, r, et) | eh, et ∈ E , r ∈ R},
where each triple consists of a head entity eh, a relation r, and a tail entity et. Given a query (eq, rq),
where eq ∈ E is the query entity and rq ∈ R is the query relation, the goal of KG Reasoning is to
identify the correct entity ev ∈ E , such that either (eq, rq, ev) or (ev, rq, eq) forms a valid triple in G.
In addition, we define a feature matrix X ∈ R|E|×d0 , where each row represents a feature vector of
dimension d0 for the corresponding entity in the set E . Now, consider a model trained on a knowledge
graph Gtr = {Etr,Rtr, Ttr}. The task of zero-shot inductive reasoning on knowledge graphs is to test
the model on a new inference graph Ginf = {Einf,Rinf, Tinf}, where both entities and relations are
completely unseen during training. The whole notation used are listed in Appendix A.

CMP-based Backbone Model: For inductive KG reasoning, recent studies utilize graph neural
networks based on Conditional Message Passing (CMP) to represent KG triples [87, 82, 83, 88, 67].
Traditional message passing neural networks, such as GCN [26], GAT [61], and GraphSAGE [23],
compute unary node representations and lack the ability to model interactions in a node set (such
as edges) [81]. Differently, for a KG G and trainable relation embeddings R, a CMP-based model
Mθ = CMP(q,G,R) calculates the triple representations hv for each entity ev conditioned on the
query q = (eq, rq):

h(0)
v = INIT(eq, ev, rq) = 1eq=ev ∗ rq, (1)

h̃(l)
v = AGG({{MSG(h(l)

w , r)| ew ∈ Nr(ev), r ∈ R}}), (2)

h(l+1)
v = UPD(h(l)

v , h̃(l)
v ). (3)

At initialization of INIT() function, only the query entity eq carries information: its hidden state
h
(0)
q is set to a non-zero vector determined by rq = R[rq], while all other entities are zeroed out.

During message passing, this signal propagates outward, and each target entity ev ultimately learns an
embedding hv that reflects how it is viewed from the perspective of (eq, rq). MSG() is a differentiable
message function that integrates two types of information: the aggregated paths between eq and ew as
h
(l)
w , and the edge connecting ew to ev as r = R[r]. The representations are iteratively updated over

L layers through AGG() and UPD() functions. The final representation h
(L)
v is then used to predict

the plausibility of triples (eq, rq, ev) in KG reasoning.

These conditional representations are theoretically expressive [25] and practically effective [17].
Using a specific initialization function INIT(), CMP-based models rely solely on KG structures and
relation embeddings, enabling inductive reasoning on new KGs. Moreover, CMP supports parallel
learning of hv for all ev ∈ E , reducing computational costs.

4 Methodology

We propose SCR, a novel graph learning framework, to achieve zero-shot reasoning across general
graph tasks (node/link/graph-level) and diverse domains beyond Knowledge Graphs. The framework
is structured around three core contributions:

• Unified Reasoning Format (Section 4.1): We define a format that reformulates standard node
classification and graph classification into inductive KG reasoning tasks, enabling cross-task
transferability.

• Semantic Conditional Message Passing (SCMP) (Section 4.2): We introduce SCMP to enhance
the utilization of semantic features while preserving topological expressive power.

• Inductive Training and Reasoning (Section 4.3): This section details the complete workflow
for handling unseen KGs with arbitrary types. While we focus on node features in this work, the
framework is readily extendable to explicit edge features using SCMP.

As present in Figure 1, the training workflow operates via a query-conditional reasoning process.
After preprocessing graph features and constructing the relation graph, SCR uses a base CMP module
to derive relation representations. Our proposed SCMP module then leverages this information to
compute triple representations, which are ultimately scored for training. In the inference phase,
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Figure 1: The proposed framework SCR transforms diverse graph tasks into inductive reasoning on
knowledge graphs with semantic features.

SCR adapts to general classification tasks by transforming the graph into a KG format. This unified
approach enables the learned reasoning patterns to be directly transferred for entity labeling without
fine-tuning, demonstrating strong inductive generalization.

4.1 Unified Graph Reasoning Format

Here we aim to develop a unified framework that addresses node-level, edge-level, and graph-level
tasks simultaneously. First, KG reasoning can be considered a specialized form of link prediction
focused on a specific relation, making it straightforward to apply. Because node and graph classifica-
tion tasks draw labels from a finite set, we reformulate them using the following task-specific KG
structure (Definition 4.1), thereby transforming labeling tasks into KG reasoning.
Definition 4.1. (Task-specific KG Structure) For a given graph task on a dataset D = (X,Y ), the
task-specific knowledge graph G̃ is constructed as follows:

G̃ = {(xi, is_attributed_with, yi)|(xi, yi) ∈ D} ∪ TX ,

where TX includes all original edges present within X .

The examples are illustrated in Figure 1. In node classification tasks, a unique “label □” entity is
introduced for each label type, with a defined relation “node ⃝ is attributed with label □” connecting
nodes to their corresponding labels. The original node connections are preserved, and the input node
features are also retained as semantic features for entities. For graph classification, we integrate
individual graphs into a KG structure by adding “super graph △” entities linked to their nodes via the
relation “node ⃝ belongs to super graph △”. We then aggregate semantic features for each graph
entity and add "semantically-nearest" edges between super graph nodes. The detailed procedures for
task-specific KGs are given in Appendix E.

Therefore, an ideal, fully trained CMP-based graph model that generalizes across various knowledge
graphs can simultaneously handle node and graph classification tasks. Knowledge graphs often
contain numerous “n-to-1” relations, such as “person-to-gender” or “movie-to-genre,” which are
closely related to labeling tasks [9]. This relationship enables KG reasoning models to achieve strong
performance in the new relation “is_attributed_with”. Furthermore, this unified KG reasoning format
eliminates the need to learn separate parameters for each label class, enabling support for unseen
labels during inference.

4.2 Semantic Conditional Message Passing (SCMP)

Semantic Isolation Issue: Due to the specific design for topological generalization, CMP-based
models cannot effectively utilize node semantic features in general graph tasks, named as the semantic
isolation issue.
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Figure 2: Preliminary results of the baseline ULTRA. “+Bert”
denotes using BERT-encoded features as initialization. We
also fine-tune the BERT-encoded ULTRA (“+BertTune”),
followed by reasoning with features from the other source
(“+OtherTune”). Higher MRR is better.

Some simple attempts even worsen
performance. In the first attempt,
we directly apply node semantic fea-
tures into the INIT() function (Eq. 1)
to initialize node representation h

(0)
v ,

similar to standard GNNs. How-
ever, as shown in Figure 2(a), the
performance degrades after inject-
ing features (“+Bert”) and even af-
ter fine-tuning with such initialization
(“+BertTune”). This is because the
core target node distinguishability as-
sumption of CMP is violated [25],
which requires, for all rq ∈ R
and ev ̸= eq ∈ E , the condition
INIT(eq, eq, rq) ̸= INIT(eq, ev, rq) must hold [81]. Similar declines are observed when embeddings
from other language models are used (“+OtherTune”).

The second attempt is to introduce semantic feature similarity into the graph structure. We construct a
k-nearest neighbor (KNN) graph based on the similarity of node features, and add new triples with the
relation "is_semantic_similar_to" into the knowledge graph. As illustrated in Figure 2(b), increasing
k reduces the performance of ULTRA. This is due to the added edges diluting local information
and causing distant nodes to lose their distinctiveness. The resulting dense topology either amplifies
or compresses embeddings unevenly, leading to over-smoothing and a decline in link prediction
performance.

Although these attempts fail, they offer insights for improving CMP from three aspects. First, we
adapt a semantic unifier to preprocess node features. We then design the new semantic-injected INIT
function satisfying the assumption of target node distinguishability. Finally, we use the parameter-
frozen CMP to embed the semantic node features directly.

Semantic Feature Unifier: To handle semantic diversity across domains, the semantic unifier
is employed to preprocess node features without additional training. Given the feature matrix
X ∈ R|E|×d0 , we utilize singular value decomposition (SVD) in extracting important latent features:

X̃ = LayerNorm(U
√
Λ), (U ,Λ,V ) = SVD(X , d) (4)

where LayerNorm(·) represents the layer normalization function, ensuring numerical stability. If
min(d0, |E|) is smaller than d, SVD will use a reduced rank to decompose X , with the remaining
dimensions zero-padded to reach d. Such that, the unified features X̃ ∈ R|E|×d maintain consistent
dimensionality d across different graph data. Besides, the relative spatial distances between nodes are
preserved in the unified features due to the nature of SVD. For scalability, we employ randomized
truncated SVD to ensure linear complexity.

Semantic-injected INIT Function: Given a query q = (eq, rq), we first recall the initialization
function in CMP: INIT(eq, ev, rq) = 1eq=ev ∗ rq . Instead of using the original semantic features, we
inject the semantic neighbor labels into the entity initialization. The improved initialization function
is defined as follows:

INIT2(eq, ev, rq) = 1eq=ev ∗ rq + 1ev∈Seq
∗ va, (5)

where Seq represents the semantic neighbors of eq . These neighbors are determined by selecting the
top k spatially nearest entities in the semantic space based on pairwise similarities, while excluding
direct topological neighbors. In addition, va denotes a trainable vector, randomly initialized and
shared for all semantic neighbors in Seq . In this schema, the initial representations of these neighbor
entities are not all-zero vectors, enabling them to propagate effective high-order messages at the
beginning of the CMP process. Note that, according to the theoretical study of CMP [25], if we
assume rq ̸= va and neither of them contains zero entries (Appendix H shows the assumption
generally holds.), INIT2 function satisfies the target node distinguishability assumption. Specifically,
for all rq ∈ R and for any ev ̸= eq ∈ E , it holds that INIT2(eq, eq, rq) ̸= INIT2(eq, ev, rq).

Non-parametric Semantic Representation: Although the new initialization function captures
high-level semantic relationships among entities, the original semantic features remain excluded
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from the computation process. To address this, we still use semantic features to initialize all the
entities, but keep CMP parameters frozen. This setup is similar to SGC [72], a non-parametric
adaptation of traditional GNNs that relies on repeated graph propagation for representation learning.
Finally, an MLP is employed to merge the semantic representation Hg with the original CMP-based
representations based on the specific query.

Hg = CMPθ(∅,G,Rg) where H(0)
g = X̃ (6)

H = CMPθ(q,G,Rq) + MLP(Hg), (7)

where the parameters of both CMP instances are shared. The empty set used in Eq. 6 means that this
CMP is query-independent, and we do not need to input the query. Besides, Rq and Rg are two parts
of relation representations, which will be described in Sec. 4.3. Notably, Hg can be precomputed
and seamlessly integrated into the computation process of query-specific CMP, enabling SCMP to
preserve time and space complexities compared to CMP.

4.3 The Whole Process of SCR

Here we describe the entire process of training SCR on multiple KG datasets. As illustrated in
the lower part of Figure 1, the first step is to preprocess the graph data. For each KG G, we apply
the semantic feature unifier to process node features, followed by the construction of the relation
graph Gr . The second step is query-conditional reasoning. Given a query q = (eq, rq) on G, we first
apply CMP to learn the relation representation Rq via the relation graph Gr . Based on the relation
representations Rq, we further use our proposed SCMP to learn the triple representation hv for
(eq, rq, ev). These representations are passed through an MLP to compute the scores for the existence
of triples. We use cross-entropy loss to train the model for classifying positive and negative triples.

As for the inference phase, SCR unifies classification tasks as KG inductive reasoning by transforming
a general graph into a KG. Thereby, the learned reasoning patterns in SCR can be adapted to label
the entity without fine-tuning corresponding samples.

Build the Relation Graph Gr : Given a KG G, a relation graph Gr is constructed following UL-
TRA [17], to connect unseen relation types in G with four types of relation-level interactions (i.e.,
"head-to-head", "tail-to-tail", "head-to-tail", and "tail-to-head"). Please refer to Appendix C for
further details.

Learn the Relation Representation Rq: We then learn the relation embeddings via Gr . Specifically,
given a query q = (eq, rq), the calculation process is as follows:

Rg = CMPϕ(∅,Gr,P) where R(0)
g = 1 (8)

Rq = CMPϕ(q,Gr ,P) (9)

where P denotes the learnable embeddings corresponding to four types of interactions in the relation
graph Gr . For the query q, the query-conditional relation representations Rq are generated using
CMP on Gr . Alternatively, when no query is provided and the initialized embedding R

(0)
g is set as an

all-ones vector, the query-independent representations Rg are computed and utilized in Eq. 6.

Query Conditional Reasoning: Based on Rq and Rg, we utilize our proposed SCMP model to
learn the entity representation given the query q = (eq, rq):

H = SCMPθ(q,G, X̃ ,Rq,Rg), (10)

p(q, ev) = MLP(hv) (11)

where hv ∈ H denotes the final entity representation of the entity ev. To evaluate the plausibility
of the triple (eq, rq, ev), an MLP is employed to compute a score, where a higher value indicates a
greater likelihood of the triple being valid in G.

Model Training: KG inductive reasoning models are typically trained by minimizing the binary
cross-entropy loss over positive and negative triples. To handle semantic features across domains, we
train one SCR model with multiple types of semantic features on diverse KG datasets. Specifically, we
employ the BERT [10] sentence encoder to generate semantic features. We also incorporate ontology
features and explore a non-feature scenario during model training, as presented in Appendix D.
Note that, we focus on node semantics in this work, edge semantics can be supported with trivial
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Table 1: Performance on KG inductive reasoning datasets. “(3g)” means training with three KGs,
and “SCR-X” refers to results obtained using different types of semantic features (e.g., “One” means
all-ones features). The best results are in bold.

Methods IndE(FB) IndE(WN) IndE(NL) IndER(FB) IndER(WK) IndER(NL) Total AVG
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

Supervised SOTA 0.477 0.636 0.640 0.734 0.464 0.654 0.166 0.296 0.152 0.244 0.296 0.481 0.366 0.507

ULTRA(3g) 0.486 0.667 0.517 0.678 0.561 0.742 0.386 0.599 0.254 0.403 0.393 0.561 0.433 0.608
ULTRA(4g) 0.491 0.670 0.567 0.689 0.616 0.803 0.387 0.598 0.251 0.415 0.398 0.588 0.451 0.627
ULTRA(50g) 0.493 0.664 0.558 0.664 0.590 0.777 0.382 0.585 0.251 0.406 0.397 0.582 0.445 0.613
ProLINK(3g) 0.494 0.684 0.553 0.690 0.546 0.759 0.372 0.591 0.234 0.393 0.400 0.590 0.433 0.618

SCR (3g) 0.495 0.688 0.576 0.703 0.592 0.791 0.392 0.611 0.251 0.407 0.403 0.599 0.451 0.633

SCR-One 0.491 0.678 0.569 0.688 0.581 0.773 0.390 0.604 0.250 0.399 0.388 0.578 0.445 0.620
SCR-MPNet 0.495 0.688 0.578 0.704 0.589 0.788 0.392 0.611 0.250 0.406 0.403 0.601 0.451 0.633
SCR-MiniLM 0.496 0.687 0.576 0.702 0.585 0.788 0.392 0.611 0.250 0.406 0.405 0.604 0.451 0.633
SCR-DistilBert 0.495 0.688 0.576 0.706 0.584 0.788 0.392 0.610 0.250 0.407 0.401 0.601 0.450 0.633
SCR-Ontology 0.489 0.684 0.570 0.679 0.575 0.772 0.387 0.605 0.230 0.395 0.391 0.584 0.440 0.620

modifications to our framework. At predefined mini-batch intervals, the feature type is reselected
to help the model adapt to diverse input features and improve its generalization ability. The total
pretraining loss is computed as follows:

L =
∑
X∈F

(
− log p(q, ea|X )− 1

n

n∑
i=1

log(1− p(q, ei|X ))

)

Here, p(q, ea|X ) is the score for a positive triple in KG G with the node features X , while
{(q, ei)|X}ni=1 contains negative samples created by corrupting the target entity.

Although the training objective is link prediction, it learns the neighborhood connectivity and
therefore captures local neighborhoods and community structures. Global semantics are retained via
our non-parametric semantic representation, which aggregates all original node features in the CMP
process. Together, these components enable representations learned during KG training to transfer to
downstream node- and graph-level tasks that rely on local structures and semantic cues.

We analyze the expressive power of our proposed SCR in Appendix F, and discuss the computational
complexity and scalability in Appendix I.

5 Experiments

We evaluate our method on 38 diverse datasets across three-level tasks. In particular, we wish to
answer the following research questions: RQ1: How effective is SCR in inductive reasoning across
distinct knowledge graphs? RQ2: To what extent does SCR generalize across diverse feature spaces
on the same KG? RQ3: How well does SCR generalize across a variety of graph-related tasks?
RQ4: What is the impact of the main components on the performance of SCR? RQ5: How does the
reasoning performance change when adjusting the key hyperparameters? Due to the space limitation,
discussions about RQ5 are detailed in Appendix G.

5.1 Experimental Setup

We pre-train SCR on three commonly-used KG datasets, WN18RR [2], FB15k237 [59], and
CodexM [46].The CMP follows NBFNet with a non-parametric DistMult [78] message function
and a simplified PNA aggregation function [67]. For semantic features, we employ the BERT [10]
sentence encoder to generate pre-training features. Hyperparameters are selected through grid search
based on the metrics from the validation set without fine-tuning for each dataset. Implementation
details and hyperparameter configurations are provided in Appendix D. Three graph learning tasks are
used to evaluate: link-level KG inductive reasoning and node-/graph-level classification on general
graphs, across 38 real-world datasets. The details of tasks and datasets are described in Appendix B.
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Table 2: The accuracy results on node classification datasets. GraphAny(X) or AnyGraph(X) indicates
pertaining on the X dataset. SCR-20% uses 20% of the “node-label” edges from the training set,
while SCR-5 includes five edges per class. The best results are bolded.

Learning Paradigm Methods Cora Citeseer Pubmed Wisconsin Texas Actor Avg.Rank

Full-Shot Training
MLP 48.42±0.63 44.40±0.44 69.50±1.79 66.67±3.51 48.65±4.01 33.95±0.80 8.83
GCN 81.40±0.70 63.40±0.63 76.60±0.32 37.25±1.64 51.35±2.71 28.55±0.68 7.33
GAT 81.70±1.43 69.10±1.59 77.30±0.60 52.94±3.10 54.05±2.41 27.30±0.22 5.67

Graph Pre-Training
Full-Shot Analytical

Tuning

GraphAny(Products) 79.36±0.23 67.94±0.29 76.54±0.34 65.89±2.23 73.52±2.96 28.99±0.61 5.00
GraphAny(Arxiv) 79.38±0.16 68.34±0.23 76.36±0.17 65.10±3.22 72.97±2.71 28.60±0.21 5.50
GraphAny(Wisconsin) 77.82±1.15 67.50±0.44 77.46±0.30 71.77±5.98 73.51±1.21 29.51±0.55 4.33
GraphAny(Cora) 80.18±0.13 68.90±0.07 76.60±0.31 61.18±5.08 71.89±1.48 27.91±0.16 5.17

Graph Pre-Training
No Tuning

OpenGraph 80.65±0.69 69.99±0.83 80.15±1.28 24.42±5.64 21.78±6.32 16.74±5.68 7.33
AnyGraph(Link1) 58.57±7.82 51.93±6.04 62.75±2.55 1.51±0.37 0.57±0.19 5.49±0.31 12.83
AnyGraph(Link2) 69.05±4.71 45.52±4.26 78.02±1.46 1.29±0.24 0.81±0.60 5.56±0.21 11.00

KG Pre-Training
No Tuning

ULTRA(3g) 79.40±0.00 67.40±0.00 77.90±0.00 49.02±0.00 56.76±0.00 22.61±0.00 7.50
SCR (3g) 81.80±1.02 71.33±0.27 82.93±0.55 54.91±1.51 67.64±0.44 23.26±0.56 3.67

Few-Shot Labeling SCR-20% 73.62±2.78 56.50±3.53 71.94±0.23 50.59±3.14 64.32±3.59 22.78±0.49 9.00
SCR-5 54.48±1.96 32.38±3.58 50.38±6.17 28.63±8.82 58.38±4.39 19.00±1.22 11.67

Table 3: The accuracy results on graph classification datasets. SCR-20% and SCR-5 are two few-shot
labeling variants of SCR. The best results are bolded.

Learning Paradigm Methods IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR DD Avg.Rank

Full-Shot Training GIN 67.75±2.50 58.20±10.22 64.72±0.84 75.50±5.74 21.88±0.55 77.90±1.57 81.79±2.94 70.59±0.81 3.13

One-Shot Training GCN 57.30±0.98 47.23±0.61 56.36±7.97 65.20±6.70 20.58±2.00 27.08±1.95 25.80±6.53 55.33±6.22 10.25
Pretrain&Finetune 57.75±1.22 48.10±0.23 63.44±3.64 65.47±5.89 22.21±2.79 76.19±5.41 34.69±8.50 57.15±4.32 7.25

Graph Pre-Training
One-Shot Tuning

GPPT 50.15±0.75 47.18±5.93 60.92±2.47 60.40±15.43 21.29±3.79 78.23±1.38 59.32±11.22 57.69±6.89 8.50
All-in-one 60.07±4.81 51.66±0.26 66.49±6.26 79.87±5.34 23.96±1.45 76.14±5.51 79.20±1.65 59.72±1.52 3.75
GPrompt 54.75±12.43 48.25±13.64 59.17±11.26 73.60±4.76 22.29±3.50 54.64±9.94 55.43±13.69 57.81±2.68 7.50
GPF 59.65±5.06 47.42±11.22 63.91±3.26 68.40±5.09 22.00±1.25 65.79±17.72 71.67±14.71 59.36±1.18 6.25
GPF-plus 57.93±1.62 47.24±0.29 62.92±2.78 65.20±6.04 22.92±1.64 33.78±1.52 71.17±14.92 57.62±2.42 7.25

KG Pre-Training
No Tuning

ULTRA(3g) 49.25±0.00 51.80±0.00 58.09±0.00 63.33±0.00 15.21±0.00 77.75±0.00 79.32±0.00 43.52±0.00 8.50
SCR (3g) 61.83±1.60 65.45±1.05 68.54±1.47 85.33±2.11 22.92±2.03 78.08±1.33 79.32±0.06 69.96±0.74 1.75

Few-Shot Labeling SCR-20% 53.45±3.46 60.72±1.07 66.13±4.08 52.93±14.37 17.25±1.29 75.5±5.06 79.51±0.37 69.75±3.19 6.13
SCR-5 53.37±2.83 46.25±8.93 61.69±8.57 80.27±5.82 22.58±1.15 58.12±2.11 46.05±12.11 62.14±4.5 7.38

5.2 Main Experimental Results (RQ1)

All 24 inductive KG reasoning datasets are used in RQ1: the first 12 datasets from GraIL [58] with
test graphs containing only unseen entities (termed as “IndE”), and the remaining 12 datasets from
InGram [28] featuring both unseen entities and relations (termed as “IndER”). Notably, eight datasets
in IndE/IndER(NL) come from NELL-995 (excluded from training), introducing new semantic
features for each method. This setting prevents data leakage by dynamically generating entity
representations based on the unique structure of each KG during training and inference. Even if
a triple appears in both the pre-training and test datasets, the different structures around it ensure
distinct representations, thereby mitigating memorization.

We compare SCR with two KG reasoning baselines (ULTRA and ProLINK pre-trained on different
sizes of KGs) and one supervised SOTA. Two evaluation metrics are used: Mean Reciprocal Rank
(MRR) and Hits@N, where higher scores indicate better performance [1, 58]. For semantic fea-
tures, we generate entity-level embeddings from available textual descriptions using BERT sentence
encoders.

We report the average performance for each benchmark and the results are summarized in Table 1.
A comprehensive evaluation on more than 50 transductive and inductive KG datasets is provided
in Appendix M. Overall, SCR outperforms all existing zero-shot models as well as the supervised
model in the total average metrics, demonstrating its effectiveness. For individual benchmarks, we
observe that SCR surpasses ULTRA(3g), ProLINK, and supervised results in most metrics. Although
ULTRA(4g) and ULTRA(50g) achieve better performance on some metrics, they are pre-trained on
more diverse KGs (including NELL-995) and still show poorer performance on the IndER(FB) and
IndE(WN) benchmarks. Furthermore, compared to IndER(X) benchmarks, SCR shows substantial
performance gains on IndE(X) benchmarks beneficial from node semantic features.
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5.3 Generalizing Across Semantic Spaces (RQ2)

To address the cross-domain challenge, we explore the generalizability of SCR across different
semantic feature spaces, and verify that SCR is not restricted to graphs with textual features. Specifi-
cally, we select five types of semantic features as input to the pre-trained SCR (within BERT-encoded
semantic space). In Table 1, “MPNet”, “MiniLM”, and “DistilBERT” refer to three popular sentence
encoders based on language models, while “One” and “Ontology” utilize all-ones features and
ontology features derived from relation type counting, respectively. The results show that SCR
variants using different sentence encoders achieve performance nearly identical to the original SCR,
despite the encoders producing embeddings with varying dimensions. This consistency underscores
the effectiveness of our unified semantic space. Although SCR (One) and SCR (Ontology) perform
slightly worse than SCR on some metrics, they still outperform baselines such as ULTRA(3g).
It indicates that SCR is not constrained by access to textual features and exhibits generalization
capabilities across diverse feature sources, even all-ones features. The semantic content of IndE(NL)
and IndER(NL) was not included in the pre-training KGs. Despite this, the performance improvement
still demonstrates the robustness of SCR to unseen domains or semantic inputs. The key lies in the
pre-training design of SCR: it systematically trains the model to handle diverse scenarios—from
KGs with rich semantics (text/ontology) to those with no input features. SCR learns to reason over
KGs with diverse semantics rather than depending on auxiliary textual data.

5.4 Generalizing Across Graph Tasks (RQ3)

In this section, we verify the performance of SCR on classification tasks across diverse general graphs.
Following prior studies [89], we employ six node classification datasets, including homophilic graphs
(Cora, Citeseer, PubMed) [49, 41] and heterophilic graphs (Wisconsin, Texas, Actor) [42, 56]. We
utilize eight graph classification datasets from various domains, covering social networks (IMDB-B,
COLLAB) [77], biological (ENZYMES, PROTEINS, DD) [11, 3, 69], and small molecule datasets
(MUTAG, COX2, BZR) [27, 44]. The experimental results of prediction accuracy are shown in Table
2 and Table 3. Comprehensive results can be found in Appendix O.

For node-level tasks, SCR significantly outperforms existing foundation models on three homophilic
graphs, and shows superior performance over ULTRA, OpenGraph, and AnyGraph on three het-
erophilic graphs. However, SCR lags behind GraphAny on heterophilic graphs, as GraphAny utilizes
training labels to tune the model parameters through an analytical solution. Such task-specific tuning
in GraphAny and graph prompt methods is powerful but limits their versatility as graph foundation
models. To improve robustness on heterophilic graphs, several promising strategies can be explored,
such as pre-training or fine-tuning on heterophilic structures, or replacing standard aggregation
functions with operators more suitable for heterophilic settings. Enhancing SCR on heterophilic
graphs will be our future work.

Table 3 shows the experimental results for graph-level tasks. Following the experimental setup from
ProG [89], 80% of graph samples are divided into the test set and only a few labeled graphs are
transformed into the task-specific KG. We observe that SCR outperforms existing graph models using
one-shot training or prompt tuning. Further, SCR is competitive with the fully-trained GIN using the
same training set, while GIN requires extra training time and SCR directly infers on the task-specific
KG. Existing zero-shot foundation models such as OpenGraph, AnyGraph, and GraphAny are not
suitable for graph classification tasks. This limitation underscores the value of SCR across diverse
graph tasks. In addition, the fact that performance gains are achieved on IMDB-B and COLLAB,
which lack node features, demonstrates that the improvement beyond ULTRA is not exclusively
dependent on semantic features.

5.5 Ablation Studies (RQ4)

To assess the impact of the key techniques, we conduct ablation experiments for multiple pre-trained
variants. The results are illustrated in Figure 3.

(1) Semantic Neighbors: The two variants, excluding Semantic-Augmented Relation Graph (“w/o
SARG”) and Semantic-Injected Entity Initialization (‘w/o INIT2”), utilize the original relation graph
and initialization function of ULTRA(3g) to omit semantic neighbor information. Across three tasks,
the observed performance declines underscore the effectiveness of our semantic-injection techniques.
The new INIT2 function has a relatively larger contribution, especially in graph-level tasks.
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Figure 3: The ablation study results of SCR vari-
ants. “w/o SARG” denotes using the relation graph
without semantic neighbors, the latter two have no
semantic-injected initialization and global seman-
tic encoding, respectively. “w/o RelDiff” denotes
using identical relation embeddings in SCMP.

(2) Non-parametric Semantic Representa-
tion: The non-parametric semantic encoding in
SCMP directly handles semantic features, with
the reduced performance of “w/o NPSR” empha-
sizing its essential role in leveraging semantic
diversity. However, except for IndE datasets, the
observation that “w/o NPSR” outperforms the
original ULTRA in most tasks suggests that the
post-merging approach effectively preserves the
functionality of CMP.

(3) Relational Condition: The variant “w/o
RelDiff” utilizes the average vector of Rq as
a substitute for each individual vector in Rq,
effectively removing the influence of relation
type differences on entity-level inference. Despite the presence of only a few relation types in
node/graph-level graph structures, the observed performance decline highlights the essential role of
relational information. Notably, in graph-level tasks, relation-specific embeddings play a vital role in
distinguishing rare graph-label relations from semantic and topological edges.

(4) Few-Shot Labeling: We evaluate the performance of SCR in scenarios where the ’node/graph-
label’ edges are sparse within the graph. “SCR-20%” uses 20% of the “node-label” edges from the
training set, while “SCR-5” includes five edges per class. Both variants have no fine-tuning process,
but utilize different scopes of “label information” when inference on the pre-trained model. As shown
in Table 2 and Table 3, reducing the number of labels in the task-specific KG leads to a decline in
reasoning performance. However, “SCR-20%” and “SCR-5” still obtain better accuracy than some
baselines, which highlights the effectiveness of our method. In a few small-scale datasets, such as
MUTAG and ENZYMES, the performance of “SCR-20%” is lower than “SCR-5” due to the former
having fewer accessible label edges.

6 Conclusion

In this paper, we take the first successful step toward generalizing inductive KG reasoning in graph
foundation models. The proposed method, SCR, conducts semantic conditional message passing on
multi-relational graphs, effectively integrating semantic features with structural information while
addressing node-level, edge-level, and graph-level tasks simultaneously. Extensive experiments
demonstrate that SCR achieves strong generalizability across diverse graph domains and tasks. We
further discuss the limitations of our work in Appendix L. Our future research agenda will prioritize
two key objectives: (1) extending the applicability of this approach to broader graph-based tasks
across diverse domains, and (2) systematically validating the scaling principles that govern large-scale
model architectures.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To the best of our knowledge, the abstract and introduction clearly state the
claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and point out the assumption in Appendix H and L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We propose a novel KG reasoning foundation model in Section 5. We provide
more details of the model architecture and implementation in Appendix B-E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code is accessible via the link provided in the Abstract. All datasets
used in this study are publicly available, and their corresponding sources are appropriately
cited within the manuscript.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided experimental settings and implementation details in the
main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We reported error bars of the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the information on compute resources in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we have reviewed the NeurIPS Code of Ethics and ensured full compliance
throughout our research process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we discuss the potential positive societal impacts and negative societal
impacts in Section L.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets are properly credited with original sources, and their
licenses/terms are explicitly stated and adhered to in the paper and code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we communicate the details of the code as part of our submission. Our
source code is anonymous.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not utilize crowdsourcing experiments and research with human
subjects in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs in Section L.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Notations and Definitions

The notations used in this paper and their descriptions are summarized in Table 4.

Table 4: Summary of the major notations in this paper.
Symbol Description
G A knowledge graph (KG)
T The set of triples in a KG
E ,R The entity set and relation set in a KG
|T |, |E|, |R| The item number in a specific set
e, r An entity (e) or a relation (r) in a KG
q = (eq, rq) A query with an entity eq and a relation rq

ea The ground-truth entity of a query
X node/entity feature matrix

d0, d Dimension of features and embeddings
Gtr,Ginf The training KG and inference KG
CMP() A conditional message passing module
hv The representation of ev conditioned on q

P Relation-level interaction representations
Rg Query-independent relation representations
Rq Relation representations conditioned on q

Hg Query-independent entity representations
Hq Entity representations conditioned on q

INIT(q, ev) The initialization function of CMP
MSG() The message passing function of CMP
AGG(), UPD() The aggretation and update functions
Nr(ev) The direct neighbors of ev connecting via r

p(q, ev) The plausibility score for the triple

X̃ The unified feature matrix
Gr The relation graph corresponding to G
Rfund The interaction types in the relation graph
Tr The triples in the relation graph
Sev The semantic neighbors of ev
1(q = v) The indicator function
L The loss function of SCR
F The set of diverse features for training

B Tasks and Datasets

B.1 Task-Specific Datasets

Link-level KG Reasoning: We conduct inductive KG reasoning experiments on 24 datasets. Half
of them are derived from the GraIL work [58], which are constructed from commonly-used KG
benchmarks, including WN18RR [2], FB15k237 [59] and NELL-995 [75]. In these datasets, the train
graphs and the test graphs share the same relation types. To evaluate performance in the full context
of inductive reasoning, we also employ 12 datasets used in the InGram work [28]. The InGram
datasets were derived from three real-world KG benchmarks: FB15k237 [59], Wikidata68K [21],
and NELL-995 [75]. There are four datasets in each series with different proportions of triplets
with new relations as 100%, 75%, 50%, and 25%. Note that, there are other KG datasets where
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textual descriptions are not easily accessible; we leave the evaluation of such datasets for future work.
Structural statistics for these datasets can be found in Table 10.

Node/Graph-level Classification: To evaluate the adaptability of our method across various
types/domains of graph tasks, we conduct experiments on 14 datasets involving both node-level
and graph-level classification tasks. Following prior studies [89], we employ six commonly-used
node classification datasets, including homophilic graph datasets (Cora, Citeseer, PubMed) [49, 41],
and heterophilic graph datasets (Wisconsin, Texas, Actor) [42, 56]. Furthermore, we considered
eight graph classification datasets from various domains, such as social networks (IMDB-B, COL-
LAB) [77], biological datasets (ENZYMES, PROTEINS, DD) [11, 3, 69], and small molecule
datasets (MUTAG, COX2, BZR) [27, 44]. More detailed information on these datasets can be found
in Table 11.

Table 5: Statistics of pre-training KG datasets.

Dataset |Etr| |Rtr| |Ttr|
#Train #Validation #Test

WN18RR 40.9k 11 86.8k 3.0k 3.1k
FB15k-237 14.5k 237 272.1k 17.5k 20.4k
CodexMedium 17.0k 51 185.5k 10.3k 10.3k

Table 6: Statistics of Bert-based text encoder.
Method Dim Model Name
Bert 768 bert-base-nli-mean-tokens
MPNet 768 all-mpnet-base-v2
MiniLM 384 paraphrase-MiniLM-L6-v2
DistilBert 512 distiluse-base-multilingual-cased-v1

B.2 Task-Specific Data Preparation

To evaluate the generalizability of SCR as a foundational graph reasoning engine, we reformulate
various task data into a unified KG reasoning format, which includes a multi-relational graph structure
and semantic node features. We illustrate the task-specific data forms in Figure 1.

Link-level KG Reasoning: For graph structure, KG triples can be directly represented as a multi-
relational graph structure. For semantic features, we generate entity-level embeddings from available
textual descriptions using BERT-based sentence encoders. To simulate different feature spaces, we
employ four classical language models as sentence encoders, including BERT [10], MPNet [50],
MiniLM [70], and DistilBERT [47]. MiniLM and DistilBERT have different embedding dimensions
compared to BERT and MPNet. Details of textual encoders are provided in Table 6 in the Appendix.

Node-level Classification: For semantic features, we directly utilize the provided input node features.
In terms of graph structure, we augment the original homogeneous graph by introducing “label
classes” as distinct nodes. Edges with a “labeling” relation type are added to connect nodes with
training labels to their corresponding class nodes. Consequently, the augmented graph contains two
relation types and two entity types (nodes and labels). This approach eliminates the need to learn
specific parameters for each class, enabling support for new nodes or labels through a zero-shot
classification paradigm. Prior work [73, 74] adopted a similar format but in a homogeneous graph,
lacking the relation distinguishability between original edges and labeling edges.

Graph-level Classification: Unlike node-level classification, graph classification tasks aim to predict
the category of an entire graph. The graphs in the training set have no direct connections to the test
graphs, which presents a challenge to the CMP reasoning process. To address task requirements, both
the graph structure and the semantic feature format are specifically designed. First, we integrate all
individual graphs into a single disconnected large graph, adding a “graph” node representing each
graph, which connects to its corresponding nodes via a new relation type. Next, we perform global
semantic encoding of SCR on this large graph to obtain the global representations of each graph
node, and then capture semantically similar edges among graph nodes. This allows us to convert the
task into a node-level task, where the global representations serve as semantic features and reasoning
occurs on an augmented graph encompassing all graph nodes and labels.
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C Semantic-Augmented Relation Graph

CMP-based models eliminate the necessity for learning unique embeddings for each entity. Instead,
they depend on trainable relational representations to facilitate relation-specific message functions.
To accommodate varied relational vocabularies in new KGs, recent research [20, 86, 18] emphasizes
the importance of identifying the “invariance” present in the KG relational structure, thereby enabling
any new relation type to be represented using a predefined set of parameters.

Drawing from insights in prior research [17], we construct a relation graph Gr = {R,Rfund , Tr},
where the nodes represent the relations in G, and the edges Rfund capture four types of interactions
between relations: "head-to-head", "tail-to-tail", "head-to-tail", and "tail-to-head". For instance, if
two triples (e1, r1, e2) and (e2, r2, e3) are linked tail-to-head, an edge (r1, “t-h”, r2) would be added
to Tr . Since these four interaction types are inherently derived from the triple structure in knowledge
graphs, the pre-trained embeddings of these interaction types can be universally shared across KGs,
allowing for the parameterization of any unseen relations.

In our SCR framework, we refine the relation graph by supplementing the original triple data T
with additional edges obtained through semantic augmentation. Specifically, we derive semantic
interactions among entities from the unified features X̃ . For each entity ev, we identify the top k
spatially nearest entities in the unified feature space via pairwise similarities, while excluding its
direct topological neighbors. The set of semantic neighbors Sev is defined as follows:

Sev = {ei ∈ E | ei ∈ fs(X̃ , ev, k, δ) ∧ ei /∈ Nev}, (12)

Here, fs(·) represents the similarity function, Nev = {ei ∈ E | (ev, r, ei) ∈ T , r ∈ R} refers to the
topological neighbor set of ev . The hyperparameters k and δ refer to the number of neighbors and the
similarity threshold, respectively. The semantic interaction between ev and each element in Sev is
regraded as an additional relation type rs. Finally, the construction rules for the relation graph Gr can
be formalized as follows:

∃ev ∈ E , r1, r2 ∈ R :

∃ e ∈ Ñ l1
r1 ∩ Ñ l2

r2 ⇒ (r1, l1-l2, r2), (r2, l2-l1, r1) ∈ Tr ,

∃ e ∈ Sev ∩ Ñ l1
r1 ⇒ (r1, l1-‘t’, rs), (rs, ‘t’-l1, r1) ∈ Tr ,

Sev ̸= ∅ ∧ ev ∈ Ñ l1
r1 ⇒ (r1, l1-‘h’, rs), (rs, ‘h’-l1, r1) ∈ Tr ,

where li ∈ {‘h’, ‘t’} denotes the side of the relation (head or tail), Ñ li
ri ⊂ E represents the set of

entities connected to relation ri on the li side. rs is a newly introduced relation in the semantic space,
and the final node set of Gr is equal to (R∪ {rs}).
In classification tasks, although there are a few relation types in the relation graph, it still follows
strict topological rules. For example, label edges only link from nodes to their labels, while original
edges connect among nodes. This creates meaningful asymmetric constraints, i.e. there are no “t-h”
and “t-t” interactions from the label edge type to the original edge type. By learning how different
relation interactions interact topologically across the graph, our model derives transferable reasoning
capabilities that generalize beyond explicit relation semantics.

D Implementation Details

We introduce the statistics of pre-training KGs in Table 5. Following previous work [82, 87], we
augment the triples in each G with reverse and identity relations. The augmented triple set T + is
defined as: T + = T ∪ {(et, r−1, eh)|(eh, r, et) ∈ T } ∪ {(e, ri, e)|e ∈ E}, where the relation r−1 is
the reverse relation of a relation r, the relation ri refers to the identity relation, and the number of
augmented triples is |T +| = 2|T |+ |E|.
We employ the ULTRA(3g) [17] model as the major baseline, utilizing the released checkpoint
pre-trained on three knoglwedge graphs. We evaluate OpenGraph [74] and AnyGraph [73] across
diverse node-level datasets using their publicly released pre-trained model weights. The metric results
of GraphAny are referred to its official paper [85], and some node-level and graph-level results for
graph prompt learning models are from the ProG work [89]. Although there are some previous KG
reasoning baselines [16, 45, 58] with no semantic features involving in, we ignore them in our more
challenging generalized reasoning tasks.
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We train SCR with three commonly-used KG datasets, WN18RR [2], FB15k237 [59], and
CodexM [46], following the hyperparameter settings of ULTRA(3g). Concerns about potential rela-
tion leakage during pre-training can be ignored because neither our method nor ULTRA learns relation-
specific parameters. Specifically, the CMP module follows NBFNet [87] with a non-parametric
DistMult [78] message function and a simplified PNA aggregation funcition [7], which leverages only
two sub-aggregations: MEAN and STD. The number of layers L for both CMP and SCMP is set to 6,
with the hidden dimension configured at 64. The relation encoder utilizes randomly initialized edge
embeddings for Rfund . In contrast, SCMP(·) initializes the embeddings of edge types using the
relative relation embeddings Rq . We suggest consulting the ULTRA paper [17] for further details.

We introduce two common types of node semantic features in knowledge graphs for model training.

• Textual Embeddings are vector representations of textual information associated with entities in
a KG, typically generated using models like BERT [10] or Word2Vec [40]. Textual embeddings
are broadly applicable across different KGs, as most KGs contain some form of textual metadata.
However, the richness and variety of text data across KGs—such as short labels or multilingual
content—can introduce diversity in how these embeddings are utilized, requiring models to
generalize across various linguistic and domain-specific contexts.

• Ontology Features refer to structured representations of entities within a formalized schema, such
as a |R|-length vector that counts the relation types associated with each entity. These features offer
a global understanding of an entity’s role in the graph by capturing its relational context. Common
across various domains, they provide a simplified view of an entity’s interactions. However, the
diversity of relation types and their distribution can vary significantly across KGs, which affects
how well these features generalize.

Hyperparameters are selected through grid search based on the metrics from the validation set. The
similarity threshold δ and the number of neighbors k were not fine-tuned for individual datasets.
Specifically, we set δ=0.9 for all node/graph-level datasets. For the neighbor number k, all six node-
level datasets share k=2, while graph-level datasets use either k=1 or k=3, depending on their domain.
SCR maintains robust performance across datasets with a single task-level configuration, preserving
its zero-shot capability. All experiments are performed on Intel Xeon Gold 6238R CPU @ 2.20GHz
and NVIDIA RTX A30 GPUs (four for pretraining and one for evaluation), and are implemented in
Python using the PyTorch framework. Our source code is implemented based on ULTRA2, which is
available under the MIT License. All employed KG datasets are open and commonly used.

E Task-specific KG Structure

Node Classification Task: We first define the unified reasoning format from the view of node
classification. Suppose G = (V,E) is a graph in D whose nodes in V must be classified by labels in
a finite label set L. We construct the new, heterogeneous graph G̃ = (Ṽ , Ẽ) as follows.

Let Ṽ = V ∪ L be the set of all nodes in the new graph, where each ℓ ∈ L is viewed as a distinct
“label node”. Retain every original edge from E in G̃, so that if (v, u) ∈ E in the original graph G,
the same (possibly typed) edge is preserved in G̃. Furthermore, introduce a designated relation type
rlabel connecting nodes v ∈ V to label nodes ℓ ∈ L, i.e.:

Elabel =
{
(v, rlabel, ℓ) | v ∈ V, ℓ ∈ L,
and v is assigned training label ℓ in D

}
. (13)

Then let the edge set Ẽ = E ∪ Elabel. This completes the construction of the heterogeneous graph
G̃ = (Ṽ , Ẽ).

Node classification in G bijectively map to link prediction in G̃, observe that assigning a label ℓ to
a node v in the original problem becomes the presence of an edge (v, rlabel, ℓ) in G̃. First, assume
a labeling function f : V → 2L is given. Each instance v 7→ ℓ that appears in f corresponds to
including (v, rlabel, ℓ) ∈ Elabel. Hence the labeling of G completely specifies the set of label-links in
G̃. Conversely, given a link (v, rlabel, ℓ) ∈ Ẽ, one uniquely recovers the statement that v is labeled

2https://github.com/DeepGraphLearning/ULTRA
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by ℓ in the original classification problem. This one-to-one correspondence implies that any function
assigning labels to nodes in G bijectively maps to a set of label-links in G̃.

Graph Classification Task: Let D = {G1, G2, . . . , GM} be a collection of graphs, where each Gi

is to be assigned one or more labels from a finite label set L = {ℓ1, . . . , ℓK}. Suppose each graph
Gi in D has node set Vi and edge set Ei. We aim to label each Gi with one or more labels from L.
An extended graph G̃ is constructed as follows.

Step 1: Introduce a new graph node si for each graph Gi, which will represent the entire graph Gi as
a single entity in G̃.

Step 2: Include in G̃ all original nodes from each Gi. That is, take Vall =
⋃M

i=1 Vi, and add these
re-indexed nodes to G̃ along with their internal edges Eall =

⋃M
i=1 Ei.

Step 3: For each v ∈ Vi, add an edge (si, rnode-graph, v) to indicate that v is a member of the graph
Gi. The relation rnode-graph is a designated edge type (e.g., “belongsToGraph”).

Step 4: For labeling, add a node for each label ℓ ∈ L. Let these form the set of label nodes in G̃. To
encode the classification of Gi with label ℓ, add an edge (si, rlabel, ℓ) whenever Gi is assigned label
ℓ. Let Elabel be the set of all such edges.

Step 5: For edges between graph nodes, add an edge
(
si, rsimilar, sj) whenever the graph embedding

vector of Gi is close to that of Gj . Let Esimilar be the set of all such edges.

Hence, the heterogeneous graph is merged as follows:

G̃ =
(
Vall ∪ {s1, . . . , sM} ∪ L,

Eall ∪ Enode−graph ∪ Elabel ∪ Esimilar

)
. (14)

Similar to the claims about node classification, labeling Gi with ℓ in the original problem is exactly
equivalent to the statement that

(
si, rlabel, ℓ

)
is an edge in G̃. Because every valid assignment Gi 7→ ℓ

corresponds bijectively to an edge
(
si, rlabel, ℓ

)
.

F Expressive Power

We formally analyze the expressive power of SCR by comparing it with ULTRA [17]. Following the
theory of the Weisfeiler-Leman test, we measure expressivity via a method’s ability to distinguish
non-isomorphic subgraphs in knowledge graphs.

Firstly, we show that SCR is at least as expressive as ULTRA. For any non-isomorphic graphs
distinguishable by ULTRA, there exists a parameter configuration of SCR that achieves identical
distinguishability.

We establish this through architectural reduction. Let θ = (k,WMLP) denote SCR’s key hyperparam-
eters where k controls semantic neighborhood size and WMLP the MLP weights from Eq. (7). When
θ0 = (0,0), SCR reduces to ULTRA through three key simplifications:

1. The augmented relation graph Gr collapses to ULTRA’s original structure by removing the
semantic relation type rs;

2. The INIT function (Eq. (5)) reduces to ULTRA’s initialization by eliminating the va term;
3. The representation fusion becomes identity because MLP(Hg) = 0;

Under θ0, the message passing dynamics of both architectures become isomorphic. Therefore,
ULTRA constitutes a proper subspace of SCR’s parameter space.

Secondly, we indicate that there exists a class of non-isomorphic triples distinguishable by SCR but
not by ULTRA, provided that semantic features contain discriminative information beyond graph
topology.

Consider two candidate entities e1, e2 ∈ E with identical topological signatures relative to query
entity eq:

∀p ∈ Πpath : fULTRA(eq, p, e1) = fULTRA(eq, p, e2) (15)

where Πpath denotes relational paths and f the path encoding function.
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Figure 4: Comparison of performance metrics under different hyperparameter settings (k and δ) for
semantic neighbor selection. (a) Average MRR results. (b) Hits@10 results. Darker colors indicate
higher values.

ULTRA cannot distinguish (eq, rq, e1) from (eq, rq, e2) since their topological embeddings coincide.
However, if the semantic features satisfy:

min
v∈Nrq (eq)

∥x̃e1 − x̃v∥2 ≪ min
v∈Nrq (eq)

∥x̃e2 − x̃v∥2 (16)

where Nrq (eq) are rq-neighbors of eq, then SCR’s semantic proximity measure induces divergent
embeddings:

∥h(L)
e1 − h(L)

e2 ∥2 ≥ γ > 0 (17)

The separation constant γ persists through MLP fusion (Eq. (7)) by the Lipschitz continuity of neural
networks. Thus, SCR distinguishes the triplets while ULTRA cannot.

This analysis reveals SCR’s enhanced expressiveness stems from its semantic-topological fusion
mechanism. By jointly optimizing structural and semantic proximity measures during pre-training, the
model learns disentangled yet complementary representations that strictly subsume purely topological
approaches like ULTRA.

G Hyperparameter Sensitivity (RQ5)

Furthermore, we evaluate the impact of hyperparameters k and δ on the selection of semantic
neighbors. Here, k specifies the number of neighbors, while δ determines the minimum similarity
threshold. As illustrated in Figure 4, variations in these hyperparameters slightly affect prediction
performance. Different choices of k show similar performance across the IndE benchmarks, but
for IndER datasets, k = 10 clearly outperforms other values. When k > 10, the influence of δ
becomes more pronounced, as a lower δ includes more dissimilar neighbors, negatively affecting
model performance.

H Assumption in SCR

In Section 4.2, we claim that the target node distinguishability assumption holds for the INIT 2()
function, if rq ̸= va and neither of them contains zero entries. This assumption usually holds because
of the distinction between rq (relation representations outputted by CMPϕ) and va (trainable vector
parameters) is inherently preserved through their distinct initialization and optimization mechanisms.
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Empirically, we conducted parameter analysis on our pre-trained SCR model and observed that: All
va parameters maintained non-zero magnitudes (> 0.5511); rq outputs on six datasets showed no
exact zero entries or equality to va. While theoretical equality is possible, it would require exact
parameter convergence to zero or identical gradient updates—statistically implausible in practice.

I Complexity and Scalability Analysis

Given a knowledge graph G = (E ,R, T ), we have that |E|, |R|, |T | represent the size of entities,
relation types, and triples, respectively. Gr = (R,Rfund, Tr) denotes the relation graph of G. X ∈
R|E|×d0 is the input feature matrix, d is the hidden dimension of the model, and L is the number of
layers in the model. In the preprocessing stage, unifying semantic features requires a time complexity
of O(|E|dd0) for the SVD low-rank approximation. Our adoption of “torch.svd_lowrank(X, q=d,
niter=2)” leverages randomized truncated SVD, avoiding the O(|E|3) complexity of the full SVD.
Constructing relation graphs involves extracting the top K most similar neighbors for each entity, with
a time complexity of O(|E|2(d+ logK)), which simplifies to O(|E|2d) as d ≫ logK. Therefore,
the overall complexity is O((d0 + |E|)|E|d).
In terms of the CMP module, as shown in Zhu et al. [87], the time complexity for a forward pass
on G is O(L(|T |d + |E|d2)) to compute one query reasoning. The runtimes of CMP and SCMP
are comparable because SCMP’s global encoding is shared across all queries, resulting in only a
linear overhead. Combining the CMP calculations on Gr, the total complexity is O((|T |+ |Tr|)Ld+
(|E|+ |R|)Ld2). Because one CMP-based reasoning calculates |E| candidate triples at the same time,
resulting in an amortized complexity is better than traditional relational message-passing models,
such as RGCN [48], CompGCN [60], and GraIL [58].

Regarding scalability, SCR exhibits comparable scalability and running time to ULTRA. To ease
the concern, we conducted additional experiments in Appendix M on all transductive KG datasets
mentioned in ULTRA, including large-scale datasets with over 100k triples, such as YAGO310. We
acknowledge that both methods face practical limitations when applied to KGs with millions or
billions of triples. Specifically, the time cost of subgraph extraction and message passing becomes
non-trivial compared to traditional embedding-based models. This limitation is inherent to subgraph-
based inductive frameworks but does not preclude SCR ’s applicability to typical large-scale KGs.
We will prioritize this in future work. For large-scale KGs, recent acceleration techniques like
TIGER [65] (enabling efficient subgraph extraction for inductive reasoning on Freebase) are critical.
While SCR ’s current implementation does not yet integrate these optimizations, its framework is
compatible with such methods.

J Impact of Feature Dimension

In terms of the impact of the dimension gap between semantic features and node features, we
conduct additional experiments with 50-dimensional Glove Features (with zero-padding), Clipped
64-dimensional Bert features, random features, and all-ones features. The results in Table 7 indicate
that using node features with closer dimensions still invokes the performance drop. Additionally, we
test the variant using the semantic features of the query node in INIT 3() in Huang et al. [25]. There
still exists a performance drop compared with the original ULTRA on most datasets. These results
indicate that the semantic isolation issue still holds when setting the dimension of the node features
closer to the dimension of the semantic features and using INIT 3 fusion.

K Impact of Long-range Dependency

It is worth noting that unlike conventional GNNs, Graph Foundation Models are still in their early
stages, and many associated challenges remain open. Over-smoothing and over-squashing are known
issues in message-passing-based models, especially in long-range dependency tasks.

Over-smoothing typically occurs in deep architectures, where repeated message passing leads to
uniform node embeddings. In our model, however, message propagation occurs over relatively
shallow subgraphs (3-6 layers), which mitigates this risk. Furthermore, our message passing is source-
conditioned: only the source node eq is initialized with a non-zero embedding, and information
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Table 7: Performance of ULTRA with different semantic features.
FB_v1 WN_v1 NE_v1

ULTRA 0.486 0.593 0.716
+Bert 0.163 0.014 0.580
+All One(64d) 0.227 0.024 0.684
+Random(64d) 0.218 0.015 0.658
+Bert(Clip64) 0.200 0.013 0.593
+Glove(50d) 0.160 0.007 0.609
+Bert+INIT3 0.483 0.549 0.648
+Glove+INIT3 0.483 0.524 0.720

Table 8: Performance on the long-range PascalVOC-SP dataset.
Method Macro F1
ULTRA (full labeling) 0.039
SCR (full labeling) 0.053
GCN (full training) 0.101
GraphTransformer(full training) 0.121
SCR (20% labeling) 0.051
GCN (20% training) 0.046
GraphTransformer(20% training) 0.052

flows outward. Thus, each node’s embedding is a view from eq , not a globally shared representation,
preserving diversity. Over-squashing, caused by bottlenecks in aggregating long-range messages
into fixed-size vectors, may arise due to dense multi-hop paths. To address this, we employ the
expressive PNA aggregator and set the hidden dimension to 64, balancing representational capacity
with computational efficiency, while also accommodating both BERT-based textual features and
common graph-domain features.

To further validate SCR’s performance on deep or extreme-range tasks, we employed a subset of
PascalVOC-SP (685K nodes, 5M edges) in the LRGB benchmark [13]. While LRGB assumes fully-
supervised training on very large graphs, our proposed SCR was designed for zero-shot generalization.
SCR only saw the label information during inference but no any fine-tuning on them. As shown
in Table 8, SCR delivers a substantial gain over ULTRA, but under full supervision, it still trails
GCN and GraphTransformer. We believe that large-scale training enhances the performance of GCN
and GraphTransformer. To mitigate the effect of training, we use a few-shot setting. GCN and
GraphTransformer are trained on 20% samples, while SCR remains strictly zero-shot, merely seeing
those labels at inference. Under this setting, SCR matches GraphTransformer and outperforms GCN,
demonstrating that it retains long-range ability even without task-specific training.

While these are well-known challenges, our current focus is to investigate the semantic and structural
transferability of KG pre-training to diverse graph tasks—a core goal in the emerging Graph Foun-
dation Model paradigm. Our work takes a step forward by focusing on cross-task and cross-graph
transferability, which we believe is largely orthogonal to the over-smoothing, over-squashing, and
long-range issues. We consider these important directions for future work.

L Limitations

Here, we discuss two limitations of this work. First, the training data for SCR is confined to three
popular KGs. There is room for improvement by training with more diverse graphs, particularly on
challenging tasks like those involving heterophilic graphs. Second, the scalability of SCR on larger-
scale graphs remains to be verified in future work. The expectation is positive, given the recent efforts
focused on accelerating KG reasoning through system and algorithmic optimizations [83, 88, 65].
Third, this paper presents work whose goal is to advance the field of Machine Learning. There
are many potential societal consequences of our work, none of which we feel must be specifically
highlighted here. In this work, the LLM is used only for writing and editing.
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Table 9: Per-dataset and average performance of ULTRA and SCR on 54 KG datasets.

KG Datasets ULTRA(3g) SCR(3g)
MRR Hits@10 MRR Hits@10

WikiTopicsMT1:tax 0.242 0.305 0.182 0.312
WikiTopicsMT1:health 0.279 0.332 0.265 0.410
WikiTopicsMT2:org 0.083 0.145 0.078 0.139
WikiTopicsMT2:sci 0.258 0.348 0.245 0.354
WikiTopicsMT3:art 0.251 0.414 0.244 0.407
WikiTopicsMT3:infra 0.622 0.779 0.635 0.781
WikiTopicsMT4:sci 0.293 0.455 0.256 0.461
WikiTopicsMT4:health 0.557 0.707 0.615 0.753
Metafam 0.330 0.821 0.246 0.560
FBNELL 0.473 0.653 0.480 0.676
ILPC2022:small 0.296 0.441 0.285 0.443
ILPC2022:large 0.297 0.423 0.285 0.419
HM:1k 0.079 0.150 0.055 0.097
HM:3k 0.063 0.120 0.047 0.083
HM:5k 0.055 0.101 0.041 0.072
HM:indigo 0.436 0.649 0.425 0.631
YAGO310 0.480 0.658 0.488 0.666
NELL995 0.437 0.575 0.456 0.608
CoDExSmall 0.472 0.668 0.436 0.653
CoDExLarge 0.333 0.461 0.329 0.458
Hetionet 0.261 0.382 0.289 0.402
ConceptNet100k 0.061 0.117 0.115 0.218
DBpedia100k 0.397 0.565 0.401 0.573
AristoV4 0.183 0.262 0.227 0.349
WDsinger 0.370 0.488 0.371 0.498
NELL23k 0.241 0.406 0.234 0.402
FB15k237_10 0.159 0.272 0.155 0.265
FB15k237_20 0.183 0.309 0.179 0.305
FB15k237_50 0.230 0.396 0.222 0.389
FB15k237 0.369 0.562 0.344 0.533
WN18RR 0.369 0.533 0.444 0.571
CoDExMedium 0.374 0.527 0.350 0.498
Inductive e,r (23 graphs) 0.342 0.510 0.338 0.516
Inductive e (18 graphs) 0.416 0.568 0.433 0.582
Transductive (13 graphs) 0.293 0.428 0.300 0.445
Total AVG (54 graphs) 0.355 0.510 0.361 0.521
Pretraining (3 graphs) 0.371 0.541 0.379 0.534

M Evaluation on More KG Datasets

We rigorously test on all 54 datasets and the 3 pre-training graphs referenced in ULTRA’s frame-
work [17]. The results shown in Table 9 confirm that SCR outperforms ULTRA across the majority
of metrics when evaluated under identical conditions (PyG-based implementation and pre-training
data).

N Related Work

N.1 Knowledge Graph Reasoning

Traditional transductive KG reasoning models, such as TransE [1], DistMult [78], RotatE [54],
RGCN [48], and CompGCN [60], represent entities and relations within a knowledge graph using
continuous vector embeddings [68, 64]. These models, however, assume that all entities and relations
in the KG are known beforehand, which limits their ability to generalize to unseen entities within
the same graph or across different KGs [63, 4]. In contrast, inductive KG reasoning approaches [87]
address this limitation by enabling generalization to KGs with previously unseen entities or relations.
Most existing inductive methods [76, 62, 32, 5] employ query-conditional MPNNs to generate
“relative” entity embeddings by extracting local structural features from a subgraph induced by the
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Table 10: Inductive KG datasets used in the experiments. "Triples" refers to the number of edges in
the graph used for training, validation, or testing. "Valid" and "Test" refer to the triples that need to
be predicted in the validation and test sets, respectively, within the corresponding graphs.

Group Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples Entities Rels Triples Valid Entities Rels Triples Test

IndE(FB)

FB:v1 [58] 1594 180 4245 1594 180 4245 489 1093 180 1993 411
FB:v2 [58] 2608 200 9739 2608 200 9739 1166 1660 200 4145 947
FB:v3 [58] 3668 215 17986 3668 215 17986 2194 2501 215 7406 1731
FB:v4 [58] 4707 219 27203 4707 219 27203 3352 3051 219 11714 2840

IndE(WN)

WN:v1 [58] 2746 9 5410 2746 9 5410 630 922 9 1618 373
WN:v2 [58] 6954 10 15262 6954 10 15262 1838 2757 10 4011 852
WN:v3 [58] 12078 11 25901 12078 11 25901 3097 5084 11 6327 1143
WN:v4 [58] 3861 9 7940 3861 9 7940 934 7084 9 12334 2823

IndE(NL)

NL:v1 [58] 3103 14 4687 3103 14 4687 414 225 14 833 201
NL:v2 [58] 2564 88 8219 2564 88 8219 922 2086 88 4586 935
NL:v3 [58] 4647 142 16393 4647 142 16393 1851 3566 142 8048 1620
NL:v4 [58] 2092 76 7546 2092 76 7546 876 2795 76 7073 1447

IndER(FB)

FB-25 [28] 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 [28] 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 [28] 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 [28] 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329

IndER(WK)

WK-25 [28] 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 [28] 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 [28] 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 [28] 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496

IndER(NL)

NL-25 [28] 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 [28] 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 [28] 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 [28] 1258 55 7832 1709 53 2378 793 1709 53 2378 793

Table 11: Statistics of node/graph classification datasets.

Dataset Graphs Nodes Edges Feature Dims Classes Node-level Task

Cora 1 2,708 5,429 1,433 7 Homophilic Node Classification
CiteSeer 1 3,327 9,104 3,703 6 Homophilic Node Classification
Pubmed 1 19,717 88,648 500 3 Homophilic Node Classification

Actor 1 7600 30,019 932 5 Heterophilic Node Classification
Wisconsin 1 251 515 1,703 5 Heterophilic Node Classification

Texas 1 183 325 1703 5 Heterophilic Node Classification

Dataset Graphs Avg.nodes Avg.edges Feature Dims Classes Graph-level Task

IMDB-BINARY 1,000 19.8 96.53 0 2 Social Network Classification
COLLAB 5,000 74.5 2457.8 0 3 Social Network Classification

PROTEINS 1,113 39.1 72.8 3 2 Protein Graph Classification
ENZYMES 600 32.6 62.1 3 6 Protein Graph Classification

DD 1,178 284.1 715.7 89 2 Protein Graph Classification
MUTAG 188 17.9 19.8 7 2 Small Molecule Classification
COX2 467 41.2 43.5 3 2 Small Molecule Classification
BZR 405 35.8 38.4 3 2 Small Molecule Classification

query entity. GraIL [58], for example, extracts an enclosing subgraph between the query entity and
each candidate entity, but this approach suffers from high computational costs. Other models, such
as NBFNet [87] and RED-GNN [82], propagate query features through the L-hop neighborhood
subgraph of the query entity. To improve computational efficiency, recent works have focused on
optimizing algorithms, including path-pruning techniques during the GNN propagation process [83,
88, 67]. In the direction of building a foundation model for KG reasoning, ULTRA [17] utilizes four
basic interaction types of the KG relational structure to perform inductive reasoning on entirely novel
KGs. Building on ULTRA, ProLINK [66] harnesses the power of large language models (LLMs) to
enhance reasoning performance for few-shot relation types on low-resource KGs. Nevertheless, these
inductive methods face challenges in generalizing to a wide variety of graph tasks and feature spaces,
as their reasoning capabilities remain primarily confined to topological structures.

N.2 Graph Foundation Models

Graph foundation models are increasingly recognized for their ability to manage diverse graph-
structured data across various tasks. Traditionally, model fine-tuning offers a simple method to adapt
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these models to downstream tasks [80, 31, 30]. However, significant discrepancies between tasks can
lead to negative transfer and catastrophic forgetting [43]. An alternative to fine-tuning is graph prompt
learning, which reformulates input graph data to better align with the pretext task [6, 55, 22]. In this
context, GPF utilizes a prompt token by adding supplementary features to the base graph. Building
on this, GPF-plus [15] trains multiple independent basis vectors and integrates them through attentive
aggregation facilitated by several learnable linear projections. GPPT [52] introduces graph prompts
as additional tokens comprising task-specific and structural elements, aiding in node tasks and link
prediction pretext alignment. Gprompt [38] incorporates prompt vectors into graph pooling through
element-wise multiplication. Other research considers graph prompts as additional graphs [19, 24].
The All-in-one model [53], for instance, integrates token graphs as prompts within the original graph,
linking tokens directly with the original graph elements. Although these graph prompt learning
methods achieve good performance in various graph tasks, they require an additional learning phase
for task-specific parameters.

Recently, several foundational models for specific graph tasks have been proposed to adapt to diverse
unseen data without model tuning. ULTRA [17] and KG-ICL [8] are pre-trained on multiple KGs
to obtain the capability of reasoning on new KGs. ProLINK [66] and TRIX [84] further expand
on ULTRA with prompt graphs from LLMs and iterative updates of relation/entity embeddings.
GraphAny [85] addresses inductive node classification by formulating inference as an analytical
solution to a linear GNN architecture, while an attention module fuses predictions from multiple
models, ensuring scalability. Models like InstructGLM [79] and HiGPT [57] leverage large language
models (LLMs), using natural language prompts to guide graph learning and handling heterogeneous
graphs without downstream fine-tuning, broadening the applicability of foundation models to diverse
graph tasks. Building a general graph foundation model is not trivial; the major challenges to
overcome are related to structural and feature heterogeneity. OpenGraph [74] proposes a zero-shot
graph learning framework with a unified graph tokenizer and a scalable graph transformer, allowing
the model to handle unseen graph data, aided by LLM-based data augmentation. AnyGraph [73]
extends this by addressing structural and feature heterogeneity through a Graph Mixture-of-Experts
architecture, supporting fast adaptation and scaling efficiently. RiemannGFM [51] incorporates
diverse vocabulary geometries via a novel product bundle and learns structural representations in
Riemannian manifolds through stacked Riemannian layers, enabling cross-domain transferability.
OMOG [37] trains dataset-specific expert models and dynamically integrates them via adaptive
gating functions for unseen graphs, optimizing prior knowledge transfer while suppressing negative
interference. Research on Graph Foundation Models is still in its early stages, and current methods
often struggle to match the competitive performance of task-specific supervised methods [71, 36, 14,
34].

Several recent methods also incorporate semantic features into the graph reasoning framework. The
initializer INIT 3() in Huang et al. [25] incorporates the semantic feature of the query node u,
but ignores the semantics of other nodes in the neighborhood. As a result, using INIT 3() would
not significantly drop the performance of ULTRA, because it still cannot exploit the full range of
node semantics. This is also one of the motivations we propose the semantic isolation issue. Liu
[35] employs PLM-based textual embeddings as the input node feature of GNN, and alternates
the training of GNN and PLM within a single dataset. This method cannot handle our zero-shot
GFM settings, especially for non-textual semantic features in general graphs. Additionally, the
performance drop reported in their experiments when directly using pre-trained PLM embeddings
indicates the necessity of re-training a PLM for enhanced text representation. A contemporaneous
work [12] achieves semantic injection for KG foundational reasoning, but it focuses solely on text
embeddings derived from a single semantic space (i.e., an LLM). Consequently, their pretraining
approach cannot process zero-shot features originating from different semantic spaces. We note
that their late fusion between query-conditioned structural encoding and global structural semantic
encoding is similar to our proposed strategy, indirectly confirming the feasibility and rationale of our
design choice. In summary, these recent methods cannot effectively integrate multi-source zero-shot
features. Consequently, none of these approaches provides a viable alternative to our method within
GFM.

O Additional Experimental Results
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Table 12: Accuracy results on node classification datasets where 90% samples are divided into the
test set.

Learning Paradigm Methods Cora* Citeseer* Pubmed* Wisconsin* Texas* Actor*

One-Shot Training GCN 26.56±5.55 21.78±7.32 39.37±16.34 41.60±3.10 37.97±5.80 20.57±4.47
Pre-train & Fine-Tune 40.40±4.66 35.05±4.37 46.74±14.09 40.69±4.13 47.66±2.37 20.74±4.12

Graph Pre-Training
One-Shot Tuning

GPPT 43.15±9.44 37.26±6.17 48.31±17.72 30.40±6.81 31.81±15.33 22.58±1.97
All-in-one 52.39±10.17 40.41±2.80 45.17±6.45 78.24±16.68 65.49±7.06 24.61±2.80
Gprompt 56.66±11.22 53.21±10.94 39.74±15.35 83.80±2.44 33.25±40.11 25.26±1.10
GPF 38.57±5.41 31.16±8.05 49.99±8.86 88.67±5.78 87.40±3.40 28.70±3.35
GPF-plus 55.77±10.30 59.67±11.87 46.64±18.97 91.03±4.11 95.83±4.19 29.32±8.56

KG Pre-Training
No Tuning

SCR (3g) 76.18±0.09 50.40±0.08 72.76±0.14 46.67±0.28 54.15±0.24 23.52±0.14
SCR-20% 58.81±2.74 36.62±1.62 67.94±0.56 45.42±1.47 52.68±0.83 21.81±0.96
SCR-5 56.80±3.55 32.16±3.85 51.63±5.46 45.60±2.06 56.59±0.71 20.68±1.09

Table 13: F1 results on node classification datasets where 90% samples are divided into the test set.

Learning Paradigm Methods Cora* Citeseer* Pubmed* Wisconsin* Texas* Actor*

One-Shot Training GCN 16.60±2.54 10.81±4.90 37.23±15.48 26.34±4.01 24.05±5.12 11.56±3.08
Pre-train & Fine-Tune 35.92±4.06 30.78±3.91 41.03±13.36 27.43±4.47 29.53±6.44 15.91±0.98

Graph Pre-Training
One-Shot Tuning

GPPT 38.99±8.32 33.00±6.49 46.43±16.73 23.74±5.95 25.64±8.12 19.62±0.56
All-in-one 46.58±8.42 30.20±4.44 38.05±6.24 67.68±10.36 43.37±16.01 16.05±3.88
GPrompt 46.28±8.46 49.65±11.42 39.46±15.97 77.03±6.40 29.20±35.62 22.00±1.74
GPF 23.79±5.49 18.63±7.34 45.36±15.88 82.97±6.10 78.43±9.49 31.69±5.47
GPF-plus 53.28±11.46 56.22±13.99 42.38±19.01 85.24±5.45 86.22±10.29 24.56±8.79

KG Pre-Training
No Tuning

SCR (3g) 73.06±0.12 50.02±0.05 70.79±0.18 17.82±0.05 17.51±0.49 19.64±0.15
SCR-20% 55.81±3.87 36.27±3.43 64.92±0.90 17.14±4.06 16.05±2.91 19.14±0.52
SCR-5 55.56±2.29 28.10±3.12 47.19±6.23 27.41±2.26 23.73±0.37 18.74±0.64

Table 14: F1 performance on node classification datasets.

Methods Cora Citeseer Pubmed Wisconsin Texas Actor

One-shot Training GCN 16.60±2.54 10.81±4.90 37.23±15.48 26.34±4.01 24.05±5.12 11.56±3.08
Pre-train & Fine-tune 35.92±4.06 30.78±3.91 41.03±13.36 26.74±3.28 29.53±6.44 15.91±0.98

Graph Pre-Training
No Tuning

OpenGraph 79.85±0.71 67.52±0.75 77.74±1.65 15.45±3.00 17.78±5.07 9.84±2.66
AnyGraph (Link1) 60.5±5.28 49.81±5.18 58.44±4.28 1.33±0.34 0.40±0.19 4.98±0.27
AnyGraph (Link2) 68.5±3.16 43.47±3.34 75.91±1.54 1.27±0.22 0.68±0.47 4.93±0.31

KG Pre-Training
No Tuning

ULTRA(3g) 78.40±0.00 64.68±0.00 76.15±0.00 25.71±0.00 19.81±0.00 14.62±0.00
SCR (3g) 80.92±0.61 69.24±1.10 77.91±1.31 29.03±3.66 28.73±1.59 20.29±0.41

Few-Shot Labeling SCR-20% 71.98±2.95 53.48±2.34 69.09±0.34 23.62±1.30 26.74±7.10 19.45±0.57
SCR-5 54.08±1.90 32.35±2.71 47.19±4.45 19.76±2.84 37.29±6.94 18.19±0.91

Table 15: F1 performance on graph classification datasets.

Methods IMDB-B COLLAB PROTEINS MUTAG ENZYMES COX2 BZR DD

One-Shot Training GCN 54.62±1.12 41.10±0.39 46.69±10.82 63.47±6.36 15.25±3.96 22.78±10.69 23.71±8.23 44.74±4.23
Pre-train & Fine-tune 55.24±1.07 41.71±0.17 59.73±1.34 63.70±5.32 19.17±3.42 45.06±1.93 33.12±7.45 48.68±6.42

Graph Pre-Training
One-Shot Tuning

GPPT 44.16±6.70 42.87±7.70 47.07±11.95 53.15±16.82 19.87±2.99 44.68±1.17 49.40±8.41 51.50±6.54
All-in-one 56.88±0.80 47.78±0.10 64.68±5.35 78.57±4.92 19.66±3.11 49.62±10.42 62.11±7.06 56.70±1.89
GPrompt 52.10±13.61 43.35±10.75 58.30±10.88 71.38±3.64 19.52±3.36 46.26±5.14 44.81±6.73 52.80±3.60
GPF 56.22±6.17 38.14±0.44 57.01±5.79 63.90±4.05 17.34±2.45 43.08±4.88 48.83±5.30 48.52±7.11
GPF-plus 55.55±2.03 41.24±0.31 57.58±7.28 63.20±5.31 18.39±2.76 30.90±11.56 46.57±4.62 46.24±4.86

KG Pre-Training
No Tuning

ULTRA(3g) 38.87±0.00 23.04±0.00 37.48±0.00 38.78±0.00 5.84±0.00 43.74±0.00 44.23±0.00 37.05±0.00
SCR 60.91±2.18 57.71±1.82 65.23±1.37 84.23±1.90 21.77±2.17 49.24±3.55 51.09±8.61 69.85±0.51

Few-Shot Labeling SCR-20% 49.04±7.20 46.35±4.28 57.48±11.12 34.01±6.45 9.38±1.49 45.80±3.41 45.39±2.31 68.85±2.62
SCR-5 51.29±4.41 46.67±8.78 57.92±12.11 79.33±5.38 21.56±1.18 51.06±0.86 40.2±6.46 70.27±4.51
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Table 16: Per-dataset results of performance on zero-shot KG inductive reasoning.

Datasets Supervised SOTA ULTRA(3g) SCR SCR (One) SCR (MPNet) SCR (Ontology) SCR (4g)
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

FB:v1 0.457 0.589 0.486 0.657 0.496 0.684 0.489 0.670 0.496 0.684 0.493 0.681 0.499 0.657
FB:v2 0.51 0.672 0.501 0.694 0.511 0.720 0.507 0.709 0.509 0.718 0.498 0.713 0.509 0.713
FB:v3 0.476 0.637 0.482 0.644 0.490 0.666 0.485 0.656 0.491 0.667 0.485 0.663 0.494 0.663
FB:v4 0.466 0.645 0.477 0.671 0.485 0.683 0.481 0.678 0.485 0.682 0.481 0.679 0.489 0.676
WN:v1 0.741 0.826 0.593 0.779 0.661 0.795 0.641 0.772 0.663 0.799 0.658 0.780 0.640 0.796
WN:v2 0.704 0.798 0.620 0.752 0.650 0.785 0.657 0.765 0.650 0.783 0.653 0.755 0.645 0.788
WN:v3 0.452 0.568 0.371 0.494 0.399 0.529 0.387 0.517 0.400 0.532 0.373 0.492 0.388 0.520
WN:v4 0.661 0.743 0.484 0.687 0.594 0.704 0.592 0.699 0.598 0.704 0.598 0.688 0.590 0.714
NL:v1 0.637 0.866 0.716 0.861 0.783 0.913 0.743 0.861 0.771 0.908 0.764 0.898 0.745 0.888
NL:v2 0.419 0.601 0.525 0.719 0.538 0.761 0.533 0.750 0.540 0.760 0.516 0.739 0.552 0.753
NL:v3 0.436 0.594 0.511 0.687 0.554 0.750 0.553 0.750 0.552 0.751 0.544 0.740 0.556 0.753
NL:v4 0.363 0.556 0.490 0.701 0.493 0.740 0.494 0.732 0.493 0.734 0.475 0.712 0.499 0.739

FB:25 0.133 0.271 0.383 0.633 0.389 0.645 0.388 0.641 0.389 0.645 0.386 0.640 0.387 0.640
FB:50 0.117 0.218 0.330 0.536 0.341 0.548 0.335 0.537 0.341 0.549 0.336 0.541 0.340 0.543
FB:75 0.189 0.325 0.391 0.594 0.400 0.611 0.399 0.603 0.400 0.610 0.395 0.603 0.397 0.603
FB:100 0.223 0.371 0.438 0.631 0.437 0.642 0.438 0.636 0.438 0.640 0.431 0.637 0.439 0.642
WK:25 0.186 0.309 0.307 0.507 0.292 0.497 0.297 0.495 0.290 0.491 0.289 0.483 0.301 0.518
WK:50 0.068 0.135 0.158 0.296 0.160 0.299 0.159 0.295 0.159 0.299 0.146 0.293 0.173 0.318
WK:75 0.247 0.362 0.373 0.519 0.365 0.532 0.368 0.522 0.365 0.531 0.342 0.514 0.375 0.536
WK:100 0.107 0.169 0.178 0.289 0.186 0.302 0.176 0.283 0.186 0.302 0.142 0.289 0.188 0.309
NL:25 0.334 0.501 0.387 0.538 0.392 0.601 0.359 0.562 0.394 0.604 0.376 0.566 0.404 0.612
NL:50 0.281 0.453 0.398 0.549 0.394 0.565 0.375 0.540 0.394 0.567 0.381 0.557 0.406 0.589
NL:75 0.261 0.464 0.348 0.527 0.349 0.535 0.350 0.519 0.350 0.540 0.341 0.535 0.360 0.562
NL:100 0.309 0.506 0.442 0.631 0.475 0.695 0.468 0.692 0.473 0.693 0.464 0.678 0.476 0.687
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