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Abstract

Deep neural networks are becoming increasingly popular in approximating arbitrary1

functions from noisy data. But wider adoption is being hindered by the need to2

explain such models and to impose additional constraints on them. Monotonicity3

constraint is one of the most requested properties in real-world scenarios and is the4

focus of this paper. One of the oldest ways to construct a monotonic fully connected5

neural network is to constrain its weights to be non-negative while employing a6

monotonic activation function. Unfortunately, this construction does not work7

with popular non-saturated activation functions such as ReLU, ELU, SELU etc,8

as it can only approximate convex functions. We show this shortcoming can be9

fixed by employing the original activation function for a part of the neurons in10

the layer, and employing its point reflection for the other part. Our experiments11

show this approach of building monotonic deep neural networks have matching12

or better accuracy when compared to other state-of-the-art methods such as deep13

lattice networks or monotonic networks obtained by heuristic regularization. This14

method is the simplest one in the sense of having the least number of parameters,15

not requiring any modifications to the learning procedure or post-learning steps.16

Finally, we give a proof it can approximate any continuous monotone function on a17

compact subset of Rn.18

1 Introduction19

Deep Learning has witnessed widespread adoption in many critical real-world domains such as20

finance, healthcare, etc [21]. Predictive models built using deep neural networks have been shown to21

have high accuracy. Incorporating prior knowledge such as monotonicity in trained models help in22

improving the performance and generalization ability of the trained models [25, 9]. The introduction23

of structural biases such as monotonicity makes models also more data-efficient, enabling a leap in24

predictive power on smaller datasets [42]. Apart from the requirements of having models with high25

accuracy, there is also a need for transparency and interpretability, and monotonicity helps in partially26

achieving the above requirements [14]. Due to legal, ethical and/or safety concerns, monotonicity27

of predictive models with respect to some input or all the inputs is required in numerous domains28

such as financial (house pricing, credit scoring, insurance risk), healthcare (medical diagnosis, patient29

medication) and legal (criminal sentencing) to list just a few. All other things being equal, a larger30

house should be deemed more valuable, a bank’s clients with higher income should be eligible for a31

larger loan [36], and an offender with a longer crime history should be predicted as more likely to32

commit another crime [32], etc. A model without such a monotonic property would not, and certainly33

should not, be trusted by society to provide a basis for such important decisions. However, the34

monotonicity of deep learning models is not a guaranteed property even when trained on monotonic35

data, let alone when training on noisy data typically used in practice.36

Although monotonicity is an important and increasingly often even required property, there is no37

simple or easy method to enforce it. It has been an active area of research and the existing methods38

on the subject can be broadly categorized into two types:39

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



1. Monotonic architectures by construction: This line of research focuses on neural architec-40

tures guaranteeing monotonicity by construction [2, 37, 8, 24, 43].41

2. Monotonicity by regularization: This line of research focuses on enforcing monotonicity42

in neural networks during training by employing a modified loss function or a heuristic43

regularization term [38, 13].44

We give a more detailed account of the existing methods in the next section.45

The simplest method to achieve monotonicity by construction is to constrain the weights of the fully46

connected neural network to have only non-negative (for non-decreasing variables) or only non-47

positive values (for non-ascending) variables when used in conjunction with a monotonic activation48

function, a technique known for almost 30 years [2]. However, this method does not work well in49

practice. When used in conjunction with saturated (bounded) activation functions such as the sigmoid50

and hyperbolic tangent, these models are difficult to train, i.e. they do not converge to a good solution.51

On the other hand, when used with non-saturated (unbounded) convex activation functions such as52

ReLU [26], the resulting models are always convex [22], severely limiting the applicability of the53

method in practice.54

The main contribution of this paper is a simple modification of the method above which, in conjunction55

with non-saturated activation functions, is capable of approximating non-convex functions as well: if56

both concave and convex monotone activation functions are used in a neural network with constrained57

weights, it regains the ability to approximate monotone continuous functions that are either convex,58

concave or nothing of the above.59

There are several possible ways to satisfy this condition, with the simplest one using both an activation
function ρ̆ and its point reflection with respect to point (0, 0) defined as:

ρ̂(x) = −ρ̆(−x)

Assuming the original activation function ρ̆ is both monotonic and convex, the properties holding for60

ReLU, ELU, SELU, and Softplus, the proposed modification uses the original activation function ρ̆61

on a part of the neurons in the network and its point reflection ρ̂ on the rest of the neurons.62

The resulting model is guaranteed to be monotonic, can be used in conjunction with any convex63

monotonic non-saturated activation function, doesn’t have any additional parameters compared to a64

non-monotonic fully-connected network for the same task, and can be trained without any additional65

requirements on the learning procedure. Experimental results show it is exceeding the performance66

of all other state-of-the-art methods, all while being both simpler (in the number of parameters) and67

easier to train.68

Our contributions can be summarized as follows:69

1. We propose a modification to an existing constricted neural network layer enabling it to70

model non-convex functions when used with non-saturated monotone convex activation71

functions such as ReLU, ELU, SELU, and alike.72

2. We perform comparisons with other recent works and show that our proposed novel neural73

network block can yield comparable and in some cases better results than the previous74

state-of-the-art and with significantly fewer parameters.75

3. We prove the universal approximation property for the ReLU activation function, showing76

that the proposed architecture can approximate any monotone continuous function on a77

compact subset of Rn.78

2 Related work79

Before dwelling on the methods employed to build monotonic models, we give an overview of80

activation functions as they form a crucial part of our work.81

2.1 Activation functions82

Right from its inception in perceptron [31], non-linear activation functions have historically been83

one of the most important components of neural networks. Previously, the saturated functions such84
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as the sigmoid [33], the hyperbolic tangent [27], and its variants were the most common choice85

of activation functions. Currently, one of the most important factors for state-of-the-art results86

accomplished by modern neural networks is the use of non-saturated activation functions. The use87

of Rectified Linear Unit (ReLU) [26, 12] as activation function was instrumental in achieving good88

performance in newer architectures. The ReLU has since become a defacto choice of activation in89

most practical implementations and continues to be widely used because of its advantages such as90

simple computation, representational sparsity, and linearity. Later, a number of activation functions91

were proposed to deal with solving problems of dead neurons and aid in faster convergence [23], [6]92

[15], [45], [16], [30], [20].93

The idea of using both the original activation function and its point reflection in the same layer has94

been proposed in [35] where both outputs of ReLU and the negative value of its point reflection95

were used in the construction of concatenated ReLU (CReLU) activation function. The proposed96

modification outputs two values instead of one and therefore increases the number of parameters. In97

[44], the authors propose negative concatenated ReLU (NCReLU) flip the sign and use the point98

reflection directly. Notice that the proposed architectural change could be applied to other non-99

saturated, monotonic activation functions as well, but with an unknown impact on their performance.100

In [10], the authors propose bipolar ReLU which consists of using ReLU on the half of the neurons101

in the layer and the point reflection of ReLU on the other half. The same construction could be102

used with other ReLU family activation functions as well. However, the focus of their work was to103

alleviate the need of normalizing layers and improve the performance of deep vanilla recurrent neural104

networks (RNNs) by using bipolar ReLU.105

Both NCReLU and bipolar ReLU could have been used in the construction of a constrained neural106

network capable of representing non-convex functions, but to the best of our knowledge, they have107

not been so far.108

2.2 Monotonicity by construction109

Apart from the approaches mentioned in the introduction (section 1), another approach to building110

monotonic neural architecture is Min-Max networks where monotonic linear embedding and max-111

min-pooling are used [37]. In [8], authors generalized this approach to handle functions that are112

partially monotonic and proved that the resulting networks have the universal approximation property.113

However, such networks are very difficult to train and not used in practice. Their construction does114

not allow for replacement with other activation functions.115

Deep lattice networks (DLN) [43] use a combination of linear calibrators and lattices [24] for learning116

monotonic functions. This is the most widely used method in practice today, but not without its117

limits. Lattices are structurally rigid thereby restricting the hypothesis space significantly. Also, DLN118

requires a very large number of parameters to obtain good performance.119

Given a model with a convex output function, it is possible to use backpropagation [34] to make a120

monotonic model by computing the derivation of the output function. One simple way to construct a121

convex function is to use an unsaturated monotonic activation function in a fully connected layer as122

mentioned above, but we could also use a more elaborate architecture such as the input convex neural123

networks [1]. Although possible, these kinds of constructions are computationally more complex124

than the simple solution proposed here.125

2.3 Monotonicity by regularization126

In the second category, the research works focus on enforcing monotonicity during the training127

process by modifying the loss function or by adding a regularization term.128

In [38], the authors propose a modified loss function that penalizes the non-monotonicity of the129

model. The algorithm models the input distribution as a joint Gaussian estimated from the training130

data and samples random pairs of monotonic points that are added to the training data. In [13], the131

authors propose a point-wise loss function that acts as a soft monotonicity constraint. These methods132

are straightforward to implement and can be used with any neural network architecture. However,133

these methods do not guarantee the monotonicity of the trained model.134
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(c) Constrained bipolar ReLU

Figure 1: Approximations of the cubic function f(x) = x3

Recently, there is an increasing number of proposed methods to certify or verify monotonicity135

obtained by regularization methods. In [22], the authors propose an optimization-based technique136

for mathematically verifying, or rejecting, the monotonicity of an arbitrary piece-wise linear (e.g.,137

ReLU) neural network. The method consists of transforming the monotonicity verification problem138

into a mixed integer linear programming (MILP) problem that can be solved using an off-the-shelf139

MILP solver.140

In [39], the authors propose an approach that finds counterexamples (defined as the pair of points141

where the monotonicity constraint is violated) by employing satisfiability modulo theories (SMT)142

solver [3]. To satisfy the monotonicity constraints, these counterexamples are included in the training143

data with adjustments to their target values to enforce the next iterations of the model to be monotonic.144

Both methods [22, 39] have been shown to support ReLU as the activation function only and there145

is no obvious way how to extend them to other activation functions. More precisely, they rely on146

piece-wise linearity of ReLU to work, the property not satisfied by other variants such as ELU, SELU,147

GELU, etc. Last but not least, the procedure for certifying/verifying using MILP or SMT solvers is148

computationally very costly. These approaches also require multiple reruns or iterations to arrive at149

certified/verified monotonic networks.150

3 Constrained neural networks151

Most of the commonly used activation functions such as ReLU, ELU, SELU, etc. are monotonically152

increasing, convex, non-polynomial functions. When used in a fully-connected, feed-forward neural153

network with at least one hidden layer and with unconstrained weights, they can approximate154

any continuous function on a compact subset. The simplest way to construct a monotonic neural155

network is to constrain its weights when used in conjunction with a monotone activation function.156

However, when the activation function is convex as well, the constrained neural network is not able157

to approximate non-convex functions.158

To better illustrate this, and to propose a simple solution in this particular example, we refer the159

readers to Figure 1 where the goal is to approximate a simple cubic function x3 using a neural network160

with a single hidden layer with either 2 or 32 neurons and with ReLU activation. A cubic function is161

apt for our illustration since it is concave in the considered interval [−1, 0] and convex in the interval162

[0,−1]:163

Fig. 1a. An unconstrained ReLU network with n neurons can approximate both concave and convex164

segments of the cubic function using at most n+ 1 piecewise linear segments. Increasing165

the number of neurons will provide a better fit with the function being approximated. Notice166

that even though the cubic function is monotone, there is no guarantee that the trained model167

will be monotone as well.168

Fig. 1b. If we constrain the weights of the network to be non-negative while still employing ReLU169

activation, the resulting model is monotone and convex. We can no longer approximate170

non-convex segments such as the cubic function on [−1, 0] in the figure, and increasing171

the number of neurons from 2 to 32 does not yield any significant improvement in the172

approximation.173
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Figure 2: Proposed Monotonic Dense Unit or Constrained Monotone Fully Connected Layer

Fig. 1c. The proposed solution uses both convex and concave activation functions in the hidden layer,174

in this case, bipolar ReLU, to gain the ability to model non-convex, monotone continuous175

functions. Notice that increasing the number of neurons increases the number of piecewise176

linear segments to approximate the cubic function. The resulting network is monotone by177

construction even when trained on noisy data.178

The schematic block diagram of our proposed solution (which we refer to as Constrained Monotone179

Fully Connected Layer or Monotonic Dense Unit interchangeably) is shown in the figure Fig. 2.180

The individual components of the proposed solution are defined and described in the subsequent181

subsection.182

3.1 Constrained monotone fully connected layer183

A function f is partially monotone with respect to its parameter xi if
∂f

∂xi
(x1, . . . , xn) is non-negative184

or non-negative for all x1, . . . , xn. A set S ⊆ R is called compact if every sequence in S has a185

subsequence that converges to a point in S. One can easily show that closed intervals [a, b] are186

compact, and compact sets can be thought of as generalizations of such closed bounded intervals.187

Our construction is preconditioned on a priori knowledge of (partial) monotonicity of a multivariate,188

multidimensional function f . Let f : K 7→ Rm be defined on a compact segment K ⊆ Rn. Then we189

define its n-dimensional monotonicity indicator vector t element wise as follows:190

ti =


1 if

∂f(x)j

∂xi
≥ 0 for each j ∈ {1, . . . ,m}

−1 if
∂f(x)j

∂xi
≤ 0 for each j ∈ {1, . . . ,m}

0 otherwise

(1)

Given an (n×m)-dimensional matrix W and n-dimensional monotonicity indicator vector t, we191

define the operation |.|t assigning an (n×m)-dimensional matrix W′ = |W|t to W as follows:192

w′
i,j =


|wi,j | if ti = 1

−|wi,j | if ti = −1

wi,j otherwise
(2)

Definition 1 (Constrained linear layer). Let W ∈ Rn×m, t ∈ Rn, x ∈ Rn and b ∈ Rn. The output193

h ∈ Rm of the constrained linear layer with monotonicity indicator vector t, weights W, biases b194

and input x is:195

h = |W|t · x+ b (3)

5



Lemma 1. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} we have:196

• if ti = 1, then
∂hj

∂xi
≥ 0, and197

• if ti = −1, then
∂hj

∂xi
≤ 0.198

Let ρ̆ be a monotonically increasing convex function such as ReLU, ELU, etc. Then its point reflection199

ρ̂ around the origin is:200

ρ̂(x) = −ρ̆(−x) (4)
Notice that ρ̂ is a monotonically increasing concave function.201

Definition 2 (Combined activation function). Given a monotonically increasing convex function202

ρ̆, its point reflection ρ̂ and m-dimensional activation selector vector s ∈ [0, 1]m, the output of the203

combined activation function ρs is a weighted sum of ρ̆ and ρ̂:204

ρs(h) = s⊙ ρ̆(h) + (1− s)⊙ ρ̂(h) (5)

where ⊙ is the element-wise (Hadamard) product and 1 is m-dimensional vector with all elements205

equal to 1.206

Lemma 2. Let y = ρs(h). Then for each j ∈ {1, . . . ,m} we have
∂yj

∂hj
≥ 0. Moreover207

• if s = 1, then ρsj is convex; and208

• if s = 0, then ρsj is concave.209

Definition 3 (Monotone constrained fully connected layer). Let n and m be positive natural numbers,210

ρ̆ a monotonically increasing convex function, t an n-dimensional monotonicity selector vector and211

s an m-dimensional activation selector vector. Then the monotone constrained fully connected layer212

with m neurons is a tuple (ρ̆, t, s), denoted MFCρ̆,s,t.213

Moreover, let weights W be an (n×m)-dimensional matrix, biases b an m-dimensional vector and214

input x an n-dimensional vector. The output function of the monotone constrained fully connected215

layer, denoted MFCW,b
ρ̆,s,t (x), assigns an m-dimensional vector y to (W,b,x) as follows:216

y = MFCW,b
ρ̆,s,t (x) = ρs (|W|t · x+ b) (6)

Notice that MFCρ̆,s,t determines an architecture of the layer, while MFCW,b
ρ̆,s,t is a fully instantiated217

layer with all of its internal parameters W and b defining a function from input to output values.218

From Lemma 1 and 2 directly follows:219

Corollary 3. For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m} we have:220

if ti = 1, then
∂yj

∂xi
≥ 0; if s = 1, then yj is convex;

if ti = −1, then
∂yj

∂xi
≤ 0; if s = 0, then yj is concave.

221

On the layer level, we can control both monotonicity, convexity and concavity of the output with222

respect to chosen input variables. The following section discuss how we can use such layers to build223

practical neural networks with the same properties.224

3.2 Composing monotonic constrained dense layers225

As mentioned before, the main advantage of our proposed monotonic dense unit is its simplicity. We226

can build deep neural nets with different architectures by plugging in our monotonic dense blocks.227

The figures Fig 3 and 4 show two examples of neural architectures that can be built using the proposed228

monotonic dense block.229

The first example shown in the figure Fig 3, corresponds to the standard MLP type of neural network230

architecture used in general, where each of the input features is concatenated to form one single input231
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Figure 3: Neural architecture type 1

feature vector x and fed into the network, with the only difference being that instead of standard fully232

connected or dense layers, we employ monotonic dense units thorughout. For the first (or input layer)233

layer, the indicator vector t, is used to identify the monotonicity property of the input feature with234

respect to the output. Specifically, t is set to 1 for those components in the input feature vector that235

are monotonically increasing and is set to −1 for those components that are monotonically decreasing236

and set to 0 if the feature is non-monotonic. For the subsequent hidden layers, monotonic dense units237

with the indicator vector t always being set to 1 are used in order to preserve monotonicity. Finally,238

depending on whether the problem at hand is a regression problem or a classification problem (or239

even a multi-task problem), an appropriate activation function (such as linear activation or sigmoid or240

softmax) to obtain the final output.241

Figure Fig. 4 shows another example of a neural network architecture that can be built employing242

proposed monotonic dense blocks. The difference when compared to the architecture described above243

lies in the way input features are fed into the hidden layers of neural network architecture. Instead244

of concatenating the features directly, this architecture provides flexibility to employ any form of245

complex feature extractors for the non-monotonic features and use the extracted feature vectors as246

inputs. Another difference is that each monotonic input is passed through separate monotonic dense247

units. This provides an advantage since depending on whether the input is completely concave or248

convex or both, we can adjust the activation selection vector s appropriately along with an appropriate249

value for the indicator vector t. Thus, each of the monotonic input features has a separate monotonic250

dense layer associated with it. Thus as the major difference to the above-mentioned architecture, we251

concatenate the feature vectors instead of concatenating the inputs directly. The subsequent parts252

of the network are similar to the architecture described above wherein for the rest of the hidden253

monotonic dense units, the indicator vector t is always set to 1 to preserve monotonicity.254

3.3 Universal approximation255

The classical Universal Approximation Theorem [7, 17, 28] states that any continuous function on a256

closed interval can be approximated with a feed-forward neural network with one hidden layer if and257

only if its activation function is nonpolynomial. In [19], authors prove the approximation property258

holds for arbitrary deep neural networks with bounded number of neurons in each layer holds if the259

activation function is nonaffine and differential at at least one point.260

In [8], authors shows the universal approximation property for constrained multivariate neural261

networks using sigmoid as the activation functions: any multivariate continuous monotone function262

on a compact subset of Rk can be approximated with a constrained neural network with the sigmoid263

activation function of at most k layers (Theorem 3.1). However, the proof of the theorem uses only264

the fact that the Heavyside function H defined as265

H(x) =

{
1 if x ≥ 0
0 otherwise

can be approximated with the sigmoid function on a closed interval. It is important to note that this266

provides an upper bound on the number of monotonic layers in the general case and the number of267

layers for a particular function should be determined experimentally in practice (in our experiments268

in Section 4, we got the best performing networks using 2-3 layers).269
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Figure 4: Neural architecture type 2

We provide a simple condition for an arbitrary activation function for the universal approximation270

property to hold:271

Theorem 4. Let ρ̆ be a monotone activation function. If a constrained neural network using ρ̆272

with a single hidden layer can approximate the Heavyside function on a closed interval, then any273

multivariate continuous monotone function on a compact subset of Rk can be approximated with a274

constrained neural network of at most k layers using activation functions ρ̆.275

Since we can approximate any continuous monotonic function with monotonic piecewise linear276

segments, we have:277

Corollary 5. A constrained neural network of at most k layers using ReLU as the activation function278

can approximate any multivariate continuous monotone function on a compact subset of Rk.279

The same property can be shown using in the same way for activation functions other than ReLU.280

4 Experiments281

In order to analyze the practical utility of the proposed method, we experiment with various datasets282

and compare them with the recent state-of-the-art. For the first set of experiments, we use the datasets283

employed by authors in [22] and use the exact train and test split for proper comparison. We perform284

experiments on 3 datasets: COMPAS [18], which is a classification dataset with 13 features of which285

4 are monotonic; Blog Feedback Regression [4], which is a regression dataset with 276 features of286

which 8 are monotonic; Loan Defaulter1, which is a classification dataset with 28 features of which 5287

are monotonic. The dataset contains half a million data points. For comparison with other methods,288

we compare with Certified monotonic networks (Certified) [22] and other methods described in it.289

For the second set of experiments, we use 2 datasets: Auto MPG (which is a regression dataset with 3290

monotonic features) and Heart Disease (which is a classification dataset with 2 monotonic features)291

as employed in the work [39] and once again use the exact train and test split for proper comparison.292

We compare with the method COMET described in [39] along with Min-Max Net [8] and Deep293

Lattice Network (DLN) [43] as described in [39].294

For the classification tasks, we use cross-entropy and for the regression tasks, we use mean-squared-295

error as loss functions. We employ gridsearch to find the optimal number of neurons, network depth296

or layers, batch size, activation function and the number of epochs. For training, we first find the297

optimal learning rate using learning rate finder [40] and then train with one cycle policy [41].298

4.1 Results299

The results on the dataset above are summarized in Tables 1, 2. It shows that our method tends either300

match or surpass the other methods in terms of test accuracy for classification tasks and root mean301

1https://www.kaggle.com/wendykan/lending-club-loan-data
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squared error (RMSE) for regression tasks. For each of the datasets, we run the experiments ten times302

after finding the optimal hyperparameters and report the mean and standard deviation of the best five303

results. Experiment results show that networks learned by our method can achieve better results with304

fewer parameters, than the best-known algorithms for monotonic neural networks, such as Min-Max305

Network [8] and Deep Lattice Network [43]. It should be noted that the recent state-of-the-art works-306

Certified [22] and COMET [39] require multiple runs in order to even satisfy monotonic constraints307

whereas monotonicity is guaranteed by simply employing the proposed monotonic dense units.308

The most important advantage of our solution is simplicity and computational complexity. Our309

models have slightly better performance (accuracy or RMSE) on all datasets we tested them on, but it310

is important to note they have significantly fewer parameters and the simplest training procedure. As311

such, they reduce the carbon footprint when used in data centers and also aid in the easier adoption of312

edge computing applications.313

Method
COMPAS [18] Blog Feedback [4] Loan Defaulter

Parameters Test Acc ↑ Parameters RMSE ↓ Parameters Test Acc ↑
Isotonic N.A. 67.6% N.A. 0.203 N.A. 62.1%
XGBoost [5] N.A. 68.5% ± 0.1% N.A. 0.176 ± 0.005 N.A. 63.7% ± 0.1%
Crystal [24] 25840 66.3% ± 0.1% 15840 0.164 ± 0.002 16940 65.0% ± 0.1%
DLN [43] 31403 67.9% ± 0.3% 27903 0.161 ± 0.001 29949 65.1% ± 0.2%
Min-Max Net [8] 42000 67.8% ± 0.1% 27700 0.163 ± 0.001 29000 64.9% ± 0.1%
Non-Neg-DNN 23112 67.3% ± 0.9% 8492 0.168 ± 0.001 8502 65.1% ± 0.1%
Certified [22] 23112 68.8% ± 0.2% 8492 0.158 ± 0.001 8502 65.2% ± 0.1%
Ours 101 68.9% ± 0.5% 1101 0.156 ± 0.001 177 65.3% ± 0.001%

Table 1: Comparison of our method with other methods described in [22]

Method Auto MPG Heart Disease
RMSE ↓ Test Acc ↑

Min-Max Net [8] 10.14 ± 1.54 0.75 ± 0.04
DLN [43] 13.34 ± 2.42 0.86 ± 0.02
COMET [39] 8.81 ± 1.81 0.86 ± 0.03
Ours 3.04 ± 0.13 0.86 ± 0.02

Table 2: Comparison of our method with other methods described in [39]

5 Conclusion314

In this paper, we proposed a simple and elegant solution to build constrained monotonic networks315

which can approximate convex as well as concave functions. Specifically, we introduced a constrained316

monotone fully connected layer which can be used as a drop-in replacement for a fully connected317

layer to enforce monotonicity. We then employed our constrained monotone fully connected layer318

to build neural network models and showed that we can achieve either similar or better results to319

the recent state-of-the-art ([39, 22] in addition to the well-known works such as Min-Max networks320

[8] and DLNs [43]. However, the main advantage of the proposed solution is not higher accuracy321

but its computational and memory complexity: we use orders of magnitude fewer parameters and322

computation which makes the resulting neural networks more energy efficient.323

One drawback of our proposed method is that we are restricted by the choice of activation functions324

i.e., we can only employ monotonic activation functions. In the future, we would like to build325

simple monotonic counterparts for other standard neural layers such as convolutional neural networks,326

recurrent neural networks and their variants, and attention models. Last but not least, we proved such327

networks can approximate any multivariate monotonic function.328
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how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or441

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing442

the appropriate section of your paper or providing a brief inline description. For example:443

• Did you include the license to the code and datasets? [Yes] See Section ??.444

• Did you include the license to the code and datasets? [No] The code and the data are445

proprietary.446

• Did you include the license to the code and datasets? [N/A]447

Please do not modify the questions and only use the provided macros for your answers. Note that the448

Checklist section does not count towards the page limit. In your paper, please delete this instructions449

block and only keep the Checklist section heading above along with the questions/answers below.450

1. For all authors...451
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contributions and scope? [Yes]453

(b) Did you describe the limitations of your work? [Yes]454

(c) Did you discuss any potential negative societal impacts of your work? [N/A]455

(d) Have you read the ethics review guidelines and ensured that your paper conforms to456

them? [Yes]457

2. If you are including theoretical results...458

(a) Did you state the full set of assumptions of all theoretical results? [Yes]459

(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix460

3. If you ran experiments...461

(a) Did you include the code, data, and instructions needed to reproduce the main exper-462

imental results (either in the supplemental material or as a URL)? [Yes] Provided in463

supplementary464

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they465

were chosen)? [Yes] Provided as part of code in supplementary. Also, it should be466

noted that we build our experiments based on two previous state-of-the-arts - Certified467

Monotonic Network [22] and COMET [39], therefore for fair comparison, we employ468

the exact splits the authors employed in their repective works469

(c) Did you report error bars (e.g., with respect to the random seed after running experi-470

ments multiple times)? [Yes] See 1, 2471

(d) Did you include the total amount of compute and the type of resources used (e.g., type472

of GPUs, internal cluster, or cloud provider)? [Yes] Our code can be run on Google’s473

Collaboratory and with default settings. A GPU instance uses a NVIDIA Tesla T4474

GPU with 16GB RAM475

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...476

(a) If your work uses existing assets, did you cite the creators? [Yes]477

(b) Did you mention the license of the assets? [No] Our work has also been applied as478

patent.479

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]480

The code is included in the supplemental material and will be released on github481

(d) Did you discuss whether and how consent was obtained from people whose data you’re482

using/curating? [N/A]483

(e) Did you discuss whether the data you are using/curating contains personally identifiable484

information or offensive content? [N/A]485
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Board (IRB) approvals, if applicable? [N/A]490
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spent on participant compensation? [N/A]492
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A Detailed proofs493

We restate all lemmas from the main text here are give detailed proofs of them.494

The following is well known result, proved here for completeness only:495

Lemma 1. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} we have:496

• if ti = 1, then
∂hj

∂xi
≥ 0, and497

• if ti = −1, then
∂hj

∂xi
≤ 0.498

Proof. From h = |W|t · x + b we get hj =
∑

i w
′
i,jxi + bj . Hence

∂hj

∂xi
= w′

i,j . Finally, from499

equation 2 we have500

∂hj

∂xi
=

{|wi,j | ≥ 0 if ti = 1

−|wi,j | ≤ 0 if ti = −1

501

Lemma 2. Let y = ρs(h). Then for each j ∈ {1, . . . ,m} we have
∂yj

∂hj
≥ 0. Moreover502

• if s = 1, then ρsj is convex; and503

• if s = 0, then ρsj is concave.504

Proof. From equation 5
ρs(h) = s⊙ ρ̆(h) + (1− s)⊙ ρ̂(h)

we have:505

yj = sj ρ̆(hj) + (1− sj)ρ̂(hj)

∂yj

∂hj
= sj ρ̆(hj) + (1− sj)ρ̂(hj)

= sj
∂ρ̆(hj)

∂hj
+ (1− sj)

∂ρ̂(hj)

∂hj

Since both ρ̆ and ρ̂ are monotonically increasing and sj ∈ [0, 1] we have:

∂yj

∂hj
≥ 0

if s = 1 or s = 0, we have ρs(h) = ρ̆(h) or ρs(h) = ρ̂(h), which is a convex or a concave function506

in all components of the output, respectively.507

For completeness, we repeat the Theorem 3.1 from [8] and its proof here:508

Theorem 3.1 For any continuous monotone nondecreasing function f : K −→ R, where K is a509

compact subset of Rk, there exists a feedforward neural network with at most k hidden layers, positive510

weights, and output O such that |Ox − f(x) < ϵ, for any x ∈ K and ϵ > 0.511

Proof. The proof is derived by induction on the number of input variables k. Without loss of512

generality, we may assume that f > 0 (otherwise, we add a constant C and approximate f + C with513

the network output O, then modify O with a negative bias at the output node). First, we assume that514

f is strictly increasing and C∞. In case of k = 1, we write515

f(x) =

∫ ∞

0

H (f(x)− u) du (7)
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where H is the Heavyside function:

H(x) =

{
1 if x ≥ 0
0 otherwise

Since f is continuous and increasing, it is invertible and therefore the right-hand side of 7 can be516

written as517

f(x) =

∫ ∞

0

H
(
x− f−1(v)

)
dv (8)

The integral can be approximated arbitrarily well by a Riemann sum518

N∑
i=1

(vi+1 − vi)H
(
x− f−1(vi)

)
(9)

where [vi]
N
i=1 is a partition of the interval [f(a), f(b)]. This expression corresponds to a neural519

network with input x, one hidden layer with N neurons all connected to the input with weight of 1,520

bias term in the hidden neurons f−1(vi), and the weights connecting the hidden layer with the output521

vi+1 − vi > 0. Note that the Heavyside function H can be replaced by a sigmoid activation function522

using a standard approximation argument.523

Assume that Theorem 3.1 holds for k−1 input variables. We now combine the integral representation
in 7 with the induction assumption. For a given v, we may solve the equation of the level set
corresponding to to v for xk

f(x1, . . . , xk) = v.

By the implicit function theorem, there exists a function gv such that524

f(x1, . . . , gv(x1, . . . , xk−1)) = v. (10)

Note that gv is decreasing in all arguments xi. This can be seen by taking the partial derivative of 10
with respect to xi. We will now show that

H (f(x)− v) = H (xk − gv(x1, . . . , xk−1))

analogously to 8 for the 1-D case. Note that it is sufficient to show that

f(x) < v if and only if xk < gv(x1, . . . , xk−1)

and
f(x) > v if and only if xk > gv(x1, . . . , xk−1).

But this follows easily from 10 and the fact that f is increasing in all its arguments. We now525

approximate the integral in 7 with a Riemann sum, leading to the following equation analogously to526

9:527

R =

N∑
i=1

(vi−1 − vi)H (xk − gvi (x1, . . . , xk−1)) (11)

Since gvi is decreasing in all its arguments −gvi is increasing. By the induction assumption, we can
approximate −gvi with a feedforward neural network Oi with x1, . . . , xk−1 as inputs, k − 1 hidden
layers, and nonnegative weights, such that∣∣∣∣∣

N∑
i=1

(vi−1 − vi)H (xk −Oi (x1, . . . , xk−1))−R

∣∣∣∣∣ < ϵ

because the sum is finite. Expression 11 corresponds to a feedforward neural network with k inputs528

and k hidden layers. Here k − 1 hidden layers are needed to represent −gvi and the k-th hidden529

layer is needed to combine N neural networks with outputs Oi and the input xk. The weights on the530

connections between the last hidden layer and the final output are (vi+1 − vi) > 0. The input xk is531

directly (skip-layer) connected to the k-th hidden layer.532

We can now easily generalize the proof to continuous nondecreasing functions. For continuous
functions, we define the convolution of f with a mollifier Kδ by

fδ = f ⊗Kδ
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Then, fδ is Cinfty and fδ −→ f as δ ↓ 0 uniform on compact subsets. Furthermore, fδ is also533

increasing since Kδ > 0. Now choose δ such that |f−fδ| < ϵ
2 and approximate fδ with a feedforward534

neural network O such that |fδ −O| < ϵ
2 . Then, |f −O| < ϵ.535

If f is nondecreasing, then approximate f by fδ

fδ = f + δ(x1 + · · ·+ xk)

which is strictly increasing and let δ ↓ 0.536

537

B Datasets Description538

The descriptions of datasets used for comparison are detailed below. As mentioned in the section 4,539

the datasets are chosen from [22] and [39] for proper evaluation. The train-test splits of 80%− 20%540

are used for all comparison experiments.541

1. COMPAS [18] is a binary classification dataset, where the task is to predict risk score542

of an individual committing crime again two years, based on the criminal records of543

individuals arrested in Florida. The risk score needs to be monotonically increasing with544

respect to the following attributes number of prior adult convictions, number545

of juvenile felony, number of juvenile misdemeanor, and number of other546

convictions. It should be noted that there have been ethical concerns with the dataset547

[18, 32]548

2. Blog Feedback [4] is a regression dataset where the task is to predict the number of comments549

in the upcoming 24 hours from a feature set containing 276 features of which 8 (A51, A52,550

A53, A54, A56, A57, A58, A59) are monotonic features. The readers are suggested to551

refer to link 2 for more details. As mentioned by the authors of [22], only the data points552

with targets smaller than the 90th percentile are used since the outliers could dominate the553

mean-squared-error metric.554

3. Lending club loan data3 is a classification dataset, where the task is to predict whether the555

individual would default on loan, from a feature set having 28 features containing data556

such as the current loan status, latest payment information etc,. The probability of default557

should be non-decreasing with respect to number of public record bankruptcies,558

Debt-to-Income ratio, and non-increasing with respect to credit score, length559

of employment, annual income.560

4. Auto MPG4 [29] is a regression dataset where the task is to predict city-cycle fuel con-561

sumption in miles per gallon (MPG) from a feature set containing 7 features of which the562

monotonic features are weight (W), displacement (D), and horse-power (HP)563

5. Heart Disease5 [11] is a classification dataset, where the task is to predict the presence of564

heart disease from a feature set containing 13 features of which the risk associated with565

heart disease needs to be monotonically increasing with respect to the features trestbps566

(T), cholestrol (C))567

C Additional Experiments and Results Details568

For all our experiments, we adopt simple architectures of the types depicted in Figure. 3 or Figure. 4.569

More often than not, we have seen from our experiments that the neural architecture type 2 (Figure.570

4) performs better than the neural architecture type 1 (Figure. 3). The number of hidden layers (apart571

from the input layer) is either set to be 1 or 2. The number of neurons in the hidden layer is selected572

from 4, 8, 16, 32, 64. The activation function is set to be either exponential linear unit (ELU) or573

Rectified Linear Unit (ReLU).574

2https://archive.ics.uci.edu/ml/datasets/BlogFeedback
3https://www.kaggle.com/wendykan/lending-club-loan-data
4https://archive.ics.uci.edu/ml/datasets/auto+mpg
5https://archive.ics.uci.edu/ml/datasets/heart+disease

17



−2 −1 0 1 2
x

−2

−1

0

1

2

y

Ground Truth

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

(a)

−2 −1 0 1 2
x

−2

−1

0

1

2

y

Unconstrained ELU

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

(b)

−2 −1 0 1 2
x

−2

−1

0

1

2

y

Constrained ELU

−1.2

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

(c)

−2 −1 0 1 2
x

−2

−1

0

1

2

y

Ours

−4

−3

−2

−1

0

1

2

3

4

(d)

Figure 5: Results for function fitting experiments where (a) is the ground truth, (b) is the result
obtained from a simple unconstrained neural network (with ELU activation) and (c) is the result
obtained from a constrained neural network (weights to be positive and ELU activation) and (d)
shows our results with constrained weights and bipolar ELU activation

Apart from the experimental results in the main part of the paper, here we highlight the usefulness575

of the our monotonic dense unit. In a scenario where the dataset is noisy and very small and also576

contains monotonic features, our neural network constructed using our proposed monotonic dense577

unit tends to perform better because of the inductive bias. To illustrate this we consider a synthetic578

dataset generated by function f(x, y) = sgn(ax) x3 + b sin(cy), a, b, c ∈ {0.5, 0.35, 3.3}. We579

sample points uniformly in the range (−2.5, 2.5) for both x and y, and add zero-centered Gaussian580

noise. We then sample only 100 points for training and train three neural networks having the581

same kind of architecture but having difference in constraints on weights as mentioned in section 3,582

but activation function used is ELU instead of ReLU. We test the three networks - Unconstrained,583

Constrained ELU and Constrained bipolar ELU, to on the task of fitting the aforementioned function.584

The results be seen in the Figure. 5. It is evident that the unconstrained neural network does not585

preserve monotonicity and although constrained neural network does preserve monotonicity, it cannot586

faithfully reproduce the concave part of the function, whereas ours (constrained bipolar ELU) can fit587

both concave and convex part of the function.588
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