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Abstract

We propose a shape-constrained approach to dynamic pricing for censored data in the linear
valuation model eliminating the need for tuning parameters commonly required by existing
methods. Previous works have addressed the challenge of unknown market noise distribution
F0 using strategies ranging from kernel methods to reinforcement learning algorithms, such as
bandit techniques and upper confidence bounds (UCB), under the assumption that F0 satisfies
Lipschitz (or stronger) conditions. In contrast, our method relies on isotonic regression under
the weaker assumption that F0 is α-Hölder continuous for some α ∈ (0, 1], for which we
derive a regret upper bound. Simulations and experiments with real-world data obtained by
Welltower Inc (a major healthcare Real Estate Investment Trust) consistently demonstrate
that our method attains lower empirical regret in comparison to several existing methods in
the literature while offering the advantage of being tuning-parameter free.

1 Introduction

Dynamic pricing is the process of continuously adjusting product prices in response to customer feedback
based on statistical learning and policy optimization. As a fundamental aspect of revenue management,
dynamic pricing has been widely applied across various industries. A key challenge in this area is balancing
the need to explore customer demand with exploiting current knowledge to set optimal prices that maximize
revenue. This tradeoff between exploration and exploitation has been extensively studied in fields such as
statistics, machine learning, economics, and operations research Besbes & Zeevi (2009); Keskin & Zeevi
(2014); Cheung et al. (2017); Cesa-Bianchi et al. (2019); den Boer & Keskin (2020). A large literature
focuses on an important dynamic pricing problem where contextual information, such as product features
and market conditions, is available at each time step. By leveraging this contextual data, we aim to refine
pricing strategies and improve revenue outcomes. This approach, known as feature-based or contextual
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pricing, allows for more customized pricing decisions that better reflect product heterogeneity, leading to
more effective revenue management in today’s data-rich environment.

This paper focuses on the problem of pricing a single product over a finite time horizon T , where the market
value vt of the product is unknown to the seller and may vary over time t = 1, 2, . . . , T . The market value is
modeled as a linear function of observed features (covariates) of the product

vt = θ⊤
0 xt + zt, (1)

where xt ∈ Rd contains 1 in the first component to consider for the intercept, θ0 is some unknown parameter
and xt are independent of the noise zt that are i.i.d. with unknown cumulative distribution function (c.d.f.) F0.
After the seller proposes a price pt = pt(xt), they observe whether the item is sold or not, i.e. yt = 1{pt ≤ vt}
and collect revenue ptyt. The seller aims to design a policy that maximizes the total revenue

∑T
t=1 ptyt, given

the uncertainty in the market value and the limited information available to the seller, that is (pt, xt, yt).
The determination of the optimal revenue entails learning the model parameters (θ0, F0) for which various
statistical tools have been employed such as kernel-based methods, bandit technique, and UCB (Fan et al.,
2021; Luo et al., 2022; 2024; Xu & Wang, 2022; Tullii et al., 2024).

Building on the semi-parametric structure of the model and recent advances in shape-constrained statistics,
we propose a novel policy that requires minimal assumptions about the underlying distribution of market
noise. Specifically, we estimate θ0 using ordinary least squares (OLS) and F0 using non-parametric least
squares (NPLS), subject to the natural constraint that F0 is non-decreasing.

A key advantage of our shape-constrained approach is that it is entirely data-driven and does not require the
specification of any tuning parameters, unlike existing non-parametric methods. For example, the kernel-based
technique proposed by Fan et al. (2021) requires bandwidth selection for optimizing the error of the estimator.
In contrast, the UCB-based strategy of Luo et al. (2022) requires a set of subjective parameters including a
tuning parameter.

Contribution. Our main contributions are:

(1) We propose a new tuning parameter-free method, unlike existing non-parametric methods for estimating
the market noise distribution F0, leveraging the shape constraint that F0 is non-decreasing and assuming
only that F0 is α-Hölder continuous for some α ∈ (0, 1].

(2) We derive an upper bound on the total expected regret of order Õ(T ν(α)dα/2+α), where ν : (0, 1]→ R,

ν(α) ≜ 2
2+α 1{α ∈ (0, 1/2)}+ 2α+1

3α+1 1{α ∈ [1/2, 1]}, (2)

and Õ excludes log factors (under Lipshitzianity of F0, this rates becomes Õ(d1/3T 3/4)), and we provide
a thorough assessment of its empirical performance with comparisons to existing algorithms through a
number of simulations, as well as an emulation experiment based on real data. Our algorithm shows
strong empirical performance: in particular, it dominates the algorithm proposed by Tullii et al. (2024)
in their simulation setting up to very large time horizons. Additionally, our algorithm when applied to
a real data set obtained by Welltower Inc continues to demonstrate stronger performance than Tullii
et al. (2024); Luo et al. (2022) and is competitive with the nonparametric method proposed by Fan et al.
(2021), though the latter relies on stronger smoothness assumptions.

(3) Beyond the application of antitonic regression, our work involves establishing a concentration inequality
for the uniform norm of the antitonic regression estimator error, which is required to derive the expected
regret upper bound. Although the existing literature on isotonic regression explores the rate of convergence
of the uniform error, explicit tail probability bounds (stronger than OP statements) of the type presented
in this work (see Theorem 4.8) appear to be missing.

1.1 Related Works

The linear valuation model for contextual dynamic pricing, as defined in Equation (1), has been extensively
studied under various assumptions. Recent works have explored statistical models—both linear and their
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Table 1: Comparison of customer valuation model-based contextual dynamic pricing algorithms with stochastic
contexts under the same assumptions on θ0 and similar smoothness assumptions on F0. Notes: ($): ν(α) is
defined in Equation (2).

Method Regret
Upper Bound

Hölder
Continuity

Lipschitz
Continuity

2nd Order
Smoothness

Fan et al. (2021) Õ((dT )
2m+1
4m−1 ) × ×

√

Luo et al. (2022) Õ(T 3/4d) ×
√

×
Tullii et al. (2024) Õ((dT )2/3) ×

√
×

This Work Õ(T ν(α)d
α/2+α)$ √ √

×

extensions—for the pricing problem, assuming that F0 (the noise distribution) is either known, partially
known1 (Miao et al., 2019; Ban & Keskin, 2021; Javanmard & Nazerzadeh, 2019; Golrezaei et al., 2019),
or fully unknown (Fan et al., 2021; Xu & Wang, 2022; Luo et al., 2022). For comprehensive overviews of
dynamic pricing from a broader perspective, we refer readers to Den Boer (2015) and Kumar et al. (2018).

We focus on the results most relevant to our work—specifically, the case where both the parameter θ0 and
the distribution F0 are fully unknown. In this setting, Fan et al. (2021) estimate F0 using kernel methods and
derive a regret upper bound of Õ((dT )

2m+1
4m−1 ), where m ≥ 2 denotes the degree of smoothness of F0. In the

realm of reinforcement learning, Luo et al. (2022) introduces the Explore-then-UCB strategy, which balances
revenue maximization, estimation of the linear valuation parameter, and nonparametric learning of the noise
distribution. Under Lipschitz continuity on F0, their approach achieves a regret rate of Õ(dT 3/4), and under
(an additional) second-order smoothness assumption, a regret of Õ(d2T 2/3). However, their regret bounds
depend on a regularization parameter λ > 0, which is hard to tune dynamically, and the impact of the choice
of λ on the regret is not clearly described. Xu & Wang (2022) propose the D2-EXP4 algorithm, which is
based on discretizing both the parameter space of θ0 and F0. With appropriate choices of the discretization
parameters, they establish a regret upper bound of Õ(T 3/4 +

√
dT 2/3). However, as noted in Xu & Wang

(2022, Section 6), they were unable to perform numerical experiments on D2-EXP4 due to the exponential
time complexity of the EXP4 learner with a policy set of size 2T 1/4 , making their algorithm impractical for
application. Furthermore, Assumption 1 of their paper requires their xt and θ0 to have non-negative entries.
While they claim that this assumption entails no loss of generality, this assumption is heavily used in the
proofs of Theorem 6 and Theorem 5 of their work, and it is far from clear whether their derivations are
generalizable to the situation when such sign constraints are not imposed. While the positivity of covariates
can be ensured under boundedness by adding constants and adjusting the intercept parameter, the assumption
that all covariates have a positive impact on the valuation is quite unrealistic for any regression model.

In contrast to Fan et al. (2021); Luo et al. (2022); Xu & Wang (2022), we propose a tuning parameter-
free policy that achieves a regret upper bound of order Õ(T 3/4d1/3) when α = 1 (i.e. F0 is Lipschitz).
Furthermore, estimating the parameters θ0 and F0 is computationally efficient: θ0 is estimated using ordinary
least squares (OLS), and F0 is estimated via isotonic regression2 using the Pool Adjacent Violators Algorithm
(PAVA) introduced by Robertson et al. (1988), which, in our problem, has a computational complexity of
O(dα/2+αT ν(α)) (see Section 3.1).

Very recent work by Tullii et al. (2024) provides a UCB-LCB-based algorithm named VAPE (Valuation
Approximation-Price Elimination). The main idea is to update the estimate of θ0 at time t when xt is far
from previously observed covariate values; otherwise, update the UCB-LCB around F0 and deploy the optimal
price. They prove that their regret is upper bounded by Õ((dT )2/3) under Lipschitz assumption on F0 (i.e.
α = 1), which attains the lower bound in T , Ω(T 2/3) established in Xu & Wang (2022). We summarize the
regret upper bounds and the underlying assumptions in Table 1.

1Meaning F0 is unknown but belongs to a parameterized family.
2Alternatively, estimating S0 = 1 − F0 using antitonic regression.
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1.2 Notation

For an interval I = (a, b), a, b ∈ R we use |I| = b− a. For any given matrix Σ ∈ Rd1×d2 , we write Σ ≽ 0 or
Σ ≼ 0 if Σ or −Σ is semi-definite. For any event A, we let I(A) be an indicator random variable which is
equal to 1 if A is true and 0 otherwise. For two positive sequences {an}n≥1 , {bn}n≥1, we write an = O (bn)
or an ≲ bn if there exists a positive constant C such that an ≤ Cbn. We denote Xn = OP (an) if there exists
a η > 0 and n0 such that P (Xn ≤ an) ≥ 1− 1/nη for n ≥ n0. In addition, we write an = Ω (bn) or an ≳ bn if
an/bn ≥ c with some constant c > 0. Moreover, we let Õ(·), Ω̃(·) represent the same meaning with O(·), Ω(·)
except for ignoring log factors. For a random variable x we will denote by fx, and Px its corresponding
density function and probability measure, respectively. For a c.d.f. F we will use S to denote 1− F . Given a
function h(x, y) we write Ex[h(x, y)] =

∫
h(x, y)dPx(x). We say that a function S is α-Hölder (continuous)

for some constant α ∈ (0, 1] if |S(u)− S(v)| ≤ L|u− v|α for all u, v in it’s domain.

2 Problem Setting

We consider the pricing problem where a seller has a single product for sale at each time period t = 1, 2, · · · , T .
Here T is the total number of periods (i.e. length of the horizon) and may be unknown to the seller. The
market value of the product at time t is denoted by vt and is unknown to the seller. At each period t, the
seller posts a price pt ∈ [pmin, pmax] for 0 ≤ pmin < pmax <∞. If pt ≤ vt, a sale occurs, and the seller collects
a revenue of pt. Otherwise, no sale occurs and no revenue is obtained. Let yt be the response variable that
indicates whether a sale has occurred at period t:

yt = 1{vt ≥ pt},

and let ptyt the collected revenue at time t. We model the market value vt as a linear function of the product’s
observable i.i.d features xt ∈ X ⊂ Rd

vt = θ⊤
0 xt + zt, (3)

where θ0 ∈ Rd is an unknown parameter (which includes the intercept term), and zt are i.i.d sequence of
idiosyncratic noise drawn from an unknown distribution F0 with mean 0 and bounded support

U ≜ (inf{z ∈ R : F0(z) > 0}, sup{z ∈ R : F0(z) < 1}). (4)

We assume that the first entry in xt equals 1 to account for the intercept term in θ0. The overall procedure is
summarized in Box 1. The expected revenue for any offered price p given xt is

rt(p) ≜ Ezt
(p1{vt > p} | xt) = pPzt

(vt > p | xt) = pS0(p− θ⊤
0 xt), S0 = 1− F0.

Note that, since S0 is a survival function, it is non-increasing. The optimal price p∗
t at time t is defined by a

maximizer of the expected revenue function at the round,

p∗
t ∈ argmaxp∈[pmin,pmax] pS0

(
p− θ⊤

0 xt

)
. (5)

Note that p∗
t = p∗

t (xt), depends on xt. The regret at step t is defined by the difference between the expected
revenues from the optimal price p∗

t and the offered price pt: rt(p∗
t )− rt(pt). In other words, we consider the

problem of maximizing revenue as minimizing the following maximum regret

R(T ) ≜ E
[∑T

t=1 p∗
t 1{p∗

t ≤ vt} − pt1{pt ≤ vt}
]

,

where the expectation is taken with respect to the idiosyncratic noise zt, the covariates xt, and the offered
prices pt that depend on the specific policy.
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Box 1: Contextual Pricing Dynamic
For each sales round t = 1, . . . , T :

(1) The seller observes a context vector xt ∈ Rd.

(2) The seller offers a price pt based on xt and the previous sales records {(xτ , pτ , yτ )}t−1
τ=1.

(3) Simultaneously, the customer evaluates the product at vt, which is not known to the seller.
(4) The seller observes yt = 1{vt ≥ pt}, indicating whether the product was sold.

As the firm’s goal is to design a policy that sets prices pt as close as possible to the optimal prices p∗
t defined

in Equation (5), we first estimate (θ0, S0) and then we plug in the estimate as in Equation (6) to get an
estimated optimal price pt. Accurate estimation of (θ0, S0) thereby ensures that the resulting policy incurs
low regret.

3 Proposed Algorithm

We employ an epoch-based design (also known as the doubling trick) that segments the given horizon
T into several clusters of rounds, called epochs or episodes, and executes identical pricing policies on a
per-epoch basis. Let J1 = {0, 1, . . . , τ1 − 1} be the first episode, where τ1 is a prefixed constant. For
k = 2, . . . , K = ⌈log (T/τ1) + 1⌉, define τk = τ12k−1, and Jk = {τk − τ1, . . . , τk+1 − τ1 − 1} the set of times
in the k-th episode.

We partition Jk into two sub-phases, Jk = Ek ∪E′
k, where Ek represents the exploration phase, dedicated

to collecting data for estimating the parameters (θ0, S0), while E′
k denotes the exploitation phase, during

which we apply the optimal prices based on the estimated parameters (θ̂k, Ŝk). The length of the exploration
phase, |Ek|, is set to ⌈dα/2+ατ

ν(α)
k ⌉, chosen to minimize the expected regret R(T ). Specifically, as we show in

the proof of Theorem 4.10, if |Ek| = dξτη
k for some ξ, η ∈ (0, 1), then R(T ) is minimized if ξ and η satisfy

the condition dξτη
k = ⌈dα/2+ατ

ν(α)
k ⌉. Ek is further divided into two equal-sized intervals Ik and Ĩk. In Ik we

collect data to estimate θ0. In Ĩk we collect data to estimate S0. The details are stated in Algorithm 1, and a
picture of a general episode Jk is shown in Figure 1. In the following portion of this section, we examine the
details of exploration-exploitation for a fixed episode k.

Estimation of θ0. For all t ∈ Ik the seller observe xt, deploy pt ∼ unif(pmin, pmax) and observes yt =
1{pt ≤ vt}. Let H = pmax − pmin and estimate

θ̂k = OLS{(xt, Hyt)}t∈Ik
= arg minθ

1
|Ik|

∑
t∈Ik

(Hyt − θ⊤xt)2.

Estimation of S0. For t ∈ Ĩk, the seller observe xt, sample wt ∼ unif(U), propose a price pt = wt + θ̂⊤
k xt

and observes yt = 1{pt ≤ vt}. Estimate

Ŝk = Antitonic{(wt, yt)}t∈Ĩk
= arg minS∈S

∑
t∈Ĩk

(yt − S(wt))2,

where S is the set of non-increasing function in R.

Exploitation. For every t ∈ E′
k, observe xt, set

pt ∈ argmaxp∈[pmin,pmax] pŜk(p− θ̂⊤
k xt), (6)

and get reward pt1{pt ≤ vt}.

3.1 Complexity of the antitonic regression

The algorithmic complexity for estimating S0 is O(dα/2+αT ν(α)). Indeed by Grotzinger & Witzgall (1984);
Tibshirani et al. (2011) the computational complexity for the antitonic estimator is O(n), where n is the
sample size. In our case, the estimation of S0 happens in (half of) the exploration phase which has length
proportional to dα/2+ατ

ν(α)
K = dα/2+α2Kν(α), then, using that K ∝ log2(T ), we have n ∝ dα/2+αT ν(α).
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Algorithm 1 Semi-Parametric Pricing
Input: Time horizon T and length of the first epoch, τ1; the Hölder exponent α of S0 and the corresponding
ν(α) defined in Equation (2); the minimum and maximum of price search range, pmin and pmax, H =
pmax − pmin; U defined in Equation (4).
Set K = ⌈log (T/τ1) + 1⌉.
for epoch k = 1, 2, . . . , K do

τk ← τ12k−1, length of episode k

ak ← ⌈dα/2+ατ
ν(α)
k /2⌉, length of exploration phase

Ik ← {τk − τ1, . . . , τk − τ1 + ak − 1}
Ĩk ← {τk − τ1 + ak, . . . , τk − τ1 + 2ak − 1}
Ek ← Ik ∪ Ĩk indexes of the exploration phase
E′

k ← {τk − τ1 + 2ak, . . . , τk+1 − τ1 − 1} indexes of the exploitation phase.
for t ∈ Ik do

Observe xt

Set pt ∼ unif(pmin, pmax).
Get yt ← 1{pt ≤ vt}

end for
θ̂k ← OLS{(xt, Hyt)}t∈Ik

for t ∈ Ĩk do
Observe xt

Sample wt ∼ unif(U)
Set pt ← wt + θ̂kxt

Get yt ← 1{pt ≤ vt}
end for

Ŝk ← Antitonic{(wt, yt)}t∈Ĩk

for t ∈ E′
k do

Observe xt

Set price pt as defined in Equation (6).
Get yt ← 1{pt ≤ vt}

end for
end for

Figure 1: Picture of a general episode Jk, k = 1, 2, . . . , K.

4 Regret Analysis

Before proceeding with the regret analysis we need to discuss the convergence rates of θ̂k to θ0 and Ŝk to S0.
We present our main theorems and proofs. We defer to the Appendix for the missing proofs.

4.1 Estimation of θ0

Assumption 4.1 (Bounded parameter space). The parameter θ0 ∈ Rd is an interior point of Θ and the
parameter space Θ is a compact convex set.
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Assumption 4.2 (Bounded i.i.d. contexts). (a) xt ∈ X ⊂ Rd is i.i.d. drawn a distribution that does
not involve θ0 and F0, and for all xt ∈ X , ∥xt∥2 ≤ RX for some unknown RX > 0. (b) There exists reals
cmin, cmax > 0, s.t. cminId ≼ Σ ≼ cmaxId, where Σ ≜ Extx

⊤
t and Id the d× d identity matrix.

Assumptions 4.1 and 4.2 are standard in the dynamic pricing literature Javanmard & Nazerzadeh (2019); Xu
& Wang (2022); Luo et al. (2022); Fan et al. (2021). More precisely, the i.i.d. assumption of the context and
the prices {pt}t∈Ik

, is used in Lemma 4.3 to derive a concentration inequality for the estimation of θ0.
Lemma 4.3. [Fan et al. (2021, Lemma 4.1)] Let nk ≜ |Ik| for simplicity of notation. Under Assumptions 4.1
and 4.2, there exist c0, c1 > 0 depending only on absolute constants given in assumptions, such that for any
episode k, as long as nk ≥ c0d, with probability at least 1−Qnk

, with Qnk
≜ 2e−c1c2

minnk/16 + 2
nk

, it holds that

∥θ̂k − θ0∥2 ≤ Cθ0

√
d log nk/nk ≜ Rnk

,

where Cθ0 ≜
8 max{RX ,1}(RX Rθ0 +pmax−pmin)

cmin
.

4.2 Estimation of S0 via antitonic regression

In this section, we provide a uniform convergence result of Ŝk to S0. For simplicity of notation, we re-index
Ĩk as T = {1, 2, . . . , n}, and we denote θ̂k by θ, which was estimated using data {(pt, xt, yt)}t∈Ik

independent
of T . In this section, all the results must be considered as conditioned on θ = θ̂k. We report in Box 2 a
more detailed explanation of the estimation of S0 during the exploration phase in T as expounded in the box
highlighted in Algorithm 1.

Box 2: Sample collection for estimating Sθ

For each t ∈ T do:

(1) Observe xt.
(2) The customer samples zt and evaluate vt = θ⊤

0 xt + zt, unknown to the firm.
(3) The firm samples wt ∼ unif(U) independent of everything else and defines pt = wt + θ⊤xt.
(4) Observe yt = 1{pt ≤ vt}.

This produces a set of data points {(pt, xt, yt)}t∈T that we are going to use for estimating S0. To estimate
S0 we would need to know θ0 in advance, indeed remember that E(yt | pt, xt) = S0(pt − θ⊤

0 xt), which
design points {pt − θ⊤

0 xt}t∈T depend on θ0. However, our knowledge is limited to an approximation θ of
θ0, and the observable design points are pt − θ⊤xt = wt. This implies that we are only able to estimate
Sθ(u) ≜ E(yt | wt = u). We then estimate Sθ(·) considering yt as coming from a sample in the ordinary
current status model, where the data has the form (wt, yt)

i.i.d∼ (w, y), the observation times have uniform
density fw and where yt = 1 with probability Sθ (wt) at observation wt.
Remark 4.4 (The choice of the design points wt). The choice of the distribution for wt is motivated by
the fact that when the density of design points is uniform, we obtain convergence guarantees for the estimator
of S0. Specifically, as mentioned by Mösching & Dümbgen (2020), if the density of the design points is
bounded away from zero – which holds for the uniform distribution – then {wt}t∈T are “asymptotically dense”
within any interval contained in U (defined in Equation (4)). Ensuring that the design points have a density
bounded away from zero is a sufficient condition for the convergence result in Theorem 4.8 (see Lemma A.2
for further details). However, this choice is not restrictive; any distribution whose density is bounded away
from zero in U would still satisfy the convergence result. The only consequence of using a non-uniform density
is that the regret R(T ) will depend on the multiplicative constant C2 = infu∈U fw(u), which may be different
from 1/|U| if fw is not the uniform density in U . Furthermore, since each episode Jk is independent of any
other episode Jk′ for k ̸= k′, it is possible to select a different density f

(k)
w for each episode k, provided that it

remains bounded away from zero in U . An interesting extension of our work would be to adaptively update
the design density f

(k)
w based on the previous design f

(k−1)
w in an optimal manner, namely that f

(k)
w converges

to the optimal design density as k →∞, that is the density that minimizes the integrated mean square error.
This approach, known as sequential optimal design, has been extensively studied in the literature (see, e.g.,
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Müller (1984); Zhao & Yao (2012); Bracale et al. (2024)). A key advantage of an optimal design algorithm
is that it dynamically allocates more data to regions where the estimation of S0 is less accurate, thereby
progressively improving its precision. However, it is important to note that while this adaptive approach can
optimize the multiplicative constant in the regret bound, it does not affect the rate of the regret itself.
Remark 4.5 (The difference between the conditional distributions of y|(p, x) and y|w). We want to
highlight the difference between the conditional distributions of y|(p, x) and y|w. The first is independent of
θ, indeed we have that

Ez[y|p, x] = E[1{p ≤ θ⊤
0 x + z}|p, x] = S0(p− θ⊤

0 x),

while, the distribution of y|w depends on θ because y = 1{p ≤ v} where p = w + θ⊤x, and, since data (w, y)
is generated as in Box 2, we have that

Sθ(u) = Ez(y | w = u) = E(p,x)(Ez(y | p, x) | w = u)
= E(p,x)(S0(p− θ⊤

0 x) | w = u)
= E(p,x)(S0(p− θ⊤x + θ⊤x− θ⊤

0 x) | w = u)
= Ex(S0(u + (θ − θ0)⊤x) | w = u)
=

∫
S0(u + (θ − θ0)⊤x)dPx|w=u(x)

=
∫

S0(u + (θ − θ0)⊤x)dPx(x), (7)

where the first equality is by definition, in the second we use the tower property and in the last equality, we
use that wt is sampled independently of xt. Note from Equation (7) that Sθ(·) is non-increasing for all θ
because S0 = 1− F0, being a survival function, is non-increasing.
Proposition 4.6. Sθ is non-increasing for every θ ∈ Rd. Moreover, if S0 is α-Hölder with α ∈ (0, 1], then
Sθ is α-Hölder uniformly in θ ∈ Rd and |Sθ(u)− S0(u)| ≲ ∥θ − θ0∥α

2 uniformly in u ∈ R.

Proposition 4.6 is crucial because it tells us that we can estimate Sθ under the antitonic constraint and
that Sθ is close to S0 as long as θ is close to θ0, which will be used to prove Theorem 4.10. Guided by
Proposition 4.6, we estimate Sθ using antitonic regression, denoted as

Ŝθ ≜ argminS∈S
∑

t∈T (yt − S(wt))2, (8)

where S is the set of non-increasing functions in R. The minimizer Ŝθ is a piecewise constant function with
jumps at a subset of {wt : t ∈ T }. The order statistics on which Ŝθ is based are the order statistics of the
values wt and the values of the corresponding yt. To be more specific, let u1 < u2 < · · · < um the different
value of the observed {wt}t∈T . For j = 1, . . . , m set

oj = #{t : wt = uj}, ŷj = 1
oj

∑
i:wi=uj

yi.

For every 1 ≤ r ≤ s ≤ m let

ors ≜
∑s

j=r oj = # {t : ur ≤ wt ≤ us} , ŷrs = 1
ors

∑s
j=r oj ŷj .

It is well known that Ŝθ = (Ŝθ(u1), Ŝθ(u2), . . . , Ŝθ(um)) may be represented by the following minimax and
maximin formulae, see Robertson et al. (1988): for 1 ≤ j ≤ m

Ŝθ(uj) = min
r≤j

max
s≥j

ŷrs = max
s≥j

min
r≤j

ŷrs.

The Ŝθ is also known as the antitonic regression on data {(wt, yt)}t∈T , and we will denote it as

Ŝθ = Antitonic{(wt, yt)}t∈T .

We are now prepared to demonstrate the convergence of Ŝk to S0. To establish this result, we require that
Sθ is α-Hölder for some α ∈ (0, 1] uniformly in θ. According to Proposition 4.6, this condition is satisfied
provided we make the following assumption:
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Assumption 4.7. |S0(u)− S0(v)| ≤ C1|u− v|α for some α ∈ (0, 1], C1 > 0 and for all u, v ∈ R.
Theorem 4.8. Let {(wt, yt)}t∈T be as defined in Box 2 and let Assumption 4.7 hold. Then for every κ > 0
and γ > 2 there exists n0 = n0(γ, κ, α) ∈ N and C = C(C1, |U|, κ, α) > 0 (where U is defined in Equation (4))
such that

P
{

sup
u∈Un

|Ŝθ(u)− Sθ(u)| ≤ Cρα/(2α+1)
n

}
≥ 1− 1

nγ−2 , n ≥ n0,

where ρn = log(n)/n and Un = {u ∈ U : [u± δn] ⊂ U}, with δn = κρ
1/(2α+1)
n .

Remark 4.9. Our Theorem 4.8 parallels Theorem 3.3 in Mösching & Dümbgen (2020), with the key distinction
being the nature of the observed response variable. While Mösching & Dümbgen (2020) directly observes the
response variable (which corresponds to our valuation vt), we observe the binary indicator yt = 1{pt ≤ vt}.
This difference simplifies our proof, as it only requires establishing a concentration inequality for |ŷrs− S̄rs(θ)|,
where

S̄rs(θ) ≜ 1
ors

∑s
j=r ojSθ(wj).

In our setting, this concentration inequality can be readily obtained using Hoeffding’s inequality uniformly
over θ. Specifically, as demonstrated in Lemma A.1, for any constant D > 1, P{Mn(θ) ≤ (D log n)1/2} is at
least 1− (n+1/nD)2, where Mn(θ) ≜ max1≤r≤s≤m o

1/2
rs |ŷrs − S̄rs(θ)|.

4.3 Regret Upper Bound

We are now ready to establish an upper bound on the expected regret for our Algorithm 1.
Theorem 4.10. Suppose that Assumptions 4.1, 4.2 and 4.7. For sufficiently large T the cumulative regret of
Algorithm 1, R(T ) has upper bound of orderO(T

2
2+α d

α
α+2 log

α
2α+1 (dT )), α ∈ (0, 1/2),

O(T
2α+1
3α+1 d

α
α+2 log

α
2 (dT )), α ∈ [1/2, 1].

Proof. Sketch. Fix k ≥ 2 and define nk = |Ik| and ñk = |Ĩk| and ak = |Ek| = nk +ñk. Let S0 (p | x) ≜ S0(p−
θ⊤

0 x) and Ŝk (p | x) ≜ Ŝk(p − θ̂⊤
k x). For the exploration phase E[

∑
t∈Ek

rt(p∗
t ) − rt(pt)] ≤ pmax|Ek| ≲ |Ek|.

Now fix t ∈ E′
k

rt(p∗
t )− rt(pt) = p∗

t S0 (p∗
t | xt)− ptS0 (pt | xt)

=
{

p∗
t S0 (p∗

t | xt)− p∗
t Ŝk (p∗

t | xt)
}

+
{

p∗
t Ŝk (p∗

t | xt)− ptŜk (pt | xt)
}

︸ ︷︷ ︸
≤0 by Equation (6)

+
{

ptŜk (pt | xt)− ptS0 (pt | xt)
}

≤ pmax

∣∣∣S0(p∗
t | xt)− Ŝk(p∗

t | xt)
∣∣∣ + pmax

∣∣∣Ŝk (pt | xt)− S0 (pt | xt)
∣∣∣ = Rk,t(p∗

t ) + Rk,t(pt),

where Rk,t(q) ≜ |Ŝk(q − θ̂⊤
k xt)− S0

(
q − θ⊤

0 xt

)
| for q ∈ {p∗

t , pt}, t ∈ E′
k.

Lemma 4.11. If Assumptions in Theorem 4.10 hold, for k sufficiently large we have E(Rk,t(q)) ≲(
log ñk/̃nk

)α/2α+1

+ (d log nk/nk)α/2 for q ∈ {p∗
t , pt} with t ∈ E′

k.

Let k ≥ k0 for k0 be sufficiently large as in Lemma 4.11. Summing up for all t ∈ E′
k, and merging with the

exploration phase of episode k we get

E
[∑

t∈Jk
rt(p∗

t )− rt(pt)
]
≲ |Ek|+ |E′

k|
[(

log ñk/̃nk

)α/2α+1

+ (d log nk/nk)α/2

]
.

Using that nk = ñk = 1
2 ak = 1

2 |Ek| = 1
2 dξ(τ12k−1)ν ∝ dξ2kν for ξ, ν > 0 to be determined such that they

minimize the total regret, and that |E′
k| ≤ |Jk| = τ12k−1 ∝ 2k we get that the RHS of the last inequality is

bounded above by

dξ2kν + d
− ξα

2α+1 2k(1− να
2α+1 )[k + log(d)]

α
2α+1 + d

α
2 (1−ξ)2k(1− να

2 )[k + log(d)]
α
2 .

9
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Here we prove the result for α > 1. We defer to Appendix A.3 for the complete proof. Consider the exponents
of the factor d, i.e. ξ,− ξα

2α+1 and α
2 (1− ξ). As the second exponent is always negative, the regret is minimized

with respect to d if we equalize the first and the third exponent, i.e. ξ = α
2 (1− ξ) to get ξ∗ = α

α+2 . Similarly
for the exponents of the exponential factor 2k, i.e. ν, 1− να

2α+1 and 1− να
2 , we equalize the first two factors, to

get ν∗ = 2α+1
3α+1 . Consequently, the expected regret in episode k, E

[∑
t∈Jk

rt(p∗
t )− rt(pt)

]
is upper bounded

by

2k
2α+1
3α+1 (d

α
α+2 + d

− α2

(2α+1)(α+2) [k + log(d)]
α

2α+1 + d
α

α+2 [k + log(d)]
α
2 ) ≲ 2k

2α+1
3α+1 d

α
α+2 [k + log(d)]

α
2 ,

where we used that α
2α+1 < α

2 for α ∈ (1/2, 1]. Putting together the phases and using that K =
⌈log (T/τ1) + 1⌉ we get

R(T ) = E
[∑K

k=k0

∑
t∈Jk

rt(p∗
t )− rt(pt)

]
≲ 2K

2α+1
3α+1 d

α
α+2 [K + log(d)]

α
2 ≲ T

2α+1
3α+1 d

α
α+2 log

α
2 (dT ).

5 Simulations

We first perform simulations for theoretical validation in Section 5.1 and a simulation to compare our algorithm
with the minimax algorithm by Tullii et al. (2024) and Fan et al. (2021) algorithm in Section 5.2.

5.1 Simulation for theoretical validation

To this end, we replicate the simulation settings used by Fan et al. (2021). We set U = (−1/2, 1/2) (known),
the feature dimension d = 3 (known), the distribution of Xt ∼ Unif(−

√
2/3,

√
2/3)×d (unknown), and the

coefficient θ⊤
0 = (α0, β⊤

0 ) (unknown), where α0 = 3, β0 = (2/3, 2/3, 2/3). We also choose pmin = 0 and pmax = 5
(known). For F0 : U → R we consider different choices:

(1) α < 1: F0,α(z) = 1/2 + (1/2)1−α sign(z)|z|α for z ∈ U , for z > 1/2, for α ∈ {1/3, 1/2, 3/4}.
(2) α = 1: we use four choices of F0: a Gaussian N(0, 1) truncated at U , the c.d.f. used by Fan et al. (2021)

with density f0(z) = 6
( 1

4 − z2)
1{z ∈ U)}, a Laplace with location 0 and scale 0.2 truncated at U , and a

Cauchy with location 0 and scale 0.2 truncated at U .

We start with τ1 = 100 and compute K = 8 total episodes. At every time t we follow Algorithm 1 to
compute pt, with the additional computation of the oracle p∗

t and the corresponding cumulative regret
Reg(t) =

∑t
j=1 p∗

t S0(p∗
t − θ⊤

0 xt)− ptS0(pt − θ⊤
0 xt). We repeated the experiment 36 times and we computed

the mean and the 95% confidence interval in a log2− log2 plot. As illustrated in Figure 2, we validate our
approach by comparing the estimated slope of the linear regression of log2(t) versus log2(Reg(t)) with the
theoretical upper bound rate. Due to space constraints, the plot corresponding to the F0 used by Fan et al.
(2021) with density f0(z) = 6

( 1
4 − z2)

1{z ∈ U)} is provided in Appendix B.
Remark 5.1 (Dependence on τ1). Although τ1 is generally considered a non-tuning parameter – typically set
to 1 in dynamic pricing algorithms that use the doubling trick (see, e.g., Javanmard & Nazerzadeh (2019);
Javanmard et al. (2020; 2024)) – we have included an additional simulation in Figure 3 to demonstrate the
robustness of our algorithm with respect to this parameter.

5.2 Comparison with Tullii et al. (2024) under Lipschitz assumption of F0

We first recall that the regret upper bound by Tullii et al. (2024) is of order Õ(T 2/3) under Lipschitz
assumption on F0 (α = 1), which is smaller than our regret upper-bound Õ(T 3/4). For this reason, we
perform the following simulations.

In their work, Tullii et al. (2024, Supplemenary Material A) compared their VAPE method to the kernel-based
method by Fan et al. (2021) that is: they built a dataset of 5 contexts belonging to R3 generated by a
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Figure 2: This plot shows the total expected regret (blue line) with F0,α, for α ∈ {1/3, 1/2, 3/4} in the first
row, and a Gaussian, Laplace, and Cauchy c.d.f. in the second row (from the left to the right). We repeated
the simulation 36 times and displayed the corresponding 95% confidence intervals. The plot is in log2 - log2
scale to show the regret rate (empirical slope): a slope of η indicated an O (T η) regret. The black dashed line
corresponds to our theoretical regret upper bound.

Figure 3: This plot in log2− log2 scale shows the cumulative regret over time up to T = 4000 for different
values of τ1 ∈ {31, 62, 124, 248} and with F0,1/3 for which theoretical regret rate is 0.86. For each value of
τ1, we repeated the simulation 36 times and displayed the corresponding 95% confidence intervals. As we
can see, the regret remains similar across different values of τ1 and the the empirical slopes are close to the
theoretical regret rate.

canonical Gaussian distribution and subsequently normalized. Throughout the run, the contexts are chosen
from this set uniformly at random, while the noise term is picked from a Gaussian distribution truncated
between −1 and 1 with mean 0 and variance 0.1. Similarly, also the parameter θ0 is a normalized vector
initially drawn from a Gaussian distribution. Note that for this simulation, the error distribution is twice
differentiable (i.e. smoother than what Tullii et al. (2024) and us allow in our theory), then the kernel-based
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Figure 4: Regret comparison in the simulation setting of Tullii et al. (2024).

method by Fan et al. (2021) is applicable with smoothness parameter m = 2. Tullii et al. (2024) showed that
the kernel-based method has stronger performance.

We apply our antitonic regression-based algorithm with α = 1, using the same code and simulation setting
provided by Tullii et al. (2024, Supplemenary Material A). The algorithm has been tested on time horizons
T ∈ [500, 1000, 2000, 4000, 8000]. We computed the regret 36 times and the corresponding 95% confidence
interval. In Figure 4 we show the results. Although the kernel-based method by Fan et al. (2021) applies
to distributions of the error that are at least twice differentiable – which is the case in this simulation –
their algorithm has weaker performance than ours in this setting. Comparing our antitonic method with the
VAPE algorithm by Tullii et al. (2024) (which have the same assumption on F0, i.e. Lipschitzianity of F0)
the empirical performance of VAPE is worse than our method up to very large time horizons (T = 8000),
achieving smaller regret.

6 Real Application

This study applies our method to a real data set obtained by Welltower Inc to simulate the dynamic pricing
process. The dataset consists of various characteristics and the transaction price for units in the United
States (see Table 2 for more details). In our experiments, we present each rental unit to the dynamic pricing
algorithm in a sequential fashion to simulate the dynamic pricing game. The unique aspect of the dataset is
it includes the exact transaction price, which allows us to evaluate the regret of the algorithm directly.

Table 2: Dataset description

Variable Description

vt: act_rate_d Final transaction price.
xt,1: mkt_rate_d Typical rate of similar unit in the primary market area.
xt,2: sqft Square footage of unit.
xt,3: unit_type Type of unit (bedroom, studio, or other).
xt,4: med_home Median home value of primary market area.

This dataset doesn’t contain the variable yt, i.e. whether the sales occurred. Our knowledge is limited to the
final transaction prices act_rate_d. To overcome this we make the following adjustment: at each time point
t, we consider the transaction price act_rate_d as the customer valuation vt, which we treat as unobserved;
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Figure 5: Residuals

Table 3: Summary Statistics

mkt_rate_d sqft 12min_med_home_val 20min_med_home_val act_rate_d
min 0.00 0.00 131131.52 139845.11 0.00
25% 1764.12 334.00 356391.42 350603.75 139.00
50% 2598.32 428.00 478335.94 481045.88 181.00
mean 3210.69 465.64 561100.96 531395.52 200.19
75% 3811.40 546.00 689176.88 681712.58 233.00
max 56475.71 1782.00 1650871.95 1529372.81 1494.63

Table 4: Ordinary least squares: vt = θ⊤xt + zt

Model: OLS Adj. R-squared: 0.597
Df Model: 6 F-statistic: 2.432e+04
Df Residuals: 98552 Prob (F-statistic): 0.00
R-squared: 0.597 Scale: 11.956

Coef. Std.Err. t P> |t| [0.025 0.975]
const 15.0307 0.0116 1299.4124 0.0000 15.0081 15.0534
mkt_rate_d 7.7899 0.0272 286.1036 0.0000 7.7365 7.8432
sqft -0.5291 0.0164 -32.3591 0.0000 -0.5612 -0.4971
12min_med_home_val 0.5431 0.0136 39.8486 0.0000 0.5164 0.5698
unit_type_2 bed 0.1804 0.0167 10.7981 0.0000 0.1477 0.2132
unit_type_other 0.1420 0.0175 8.1030 0.0000 0.1076 0.1763
unit_type_studio 0.0753 0.0218 3.4532 0.0006 0.0326 0.1181

a price pt is posted by the firm, which finally collects the data point (xt, yt) where yt ≜ 1{vt ≥ pt}. Here the
vector xt contains all the variables in Table 2 except act_rate_d, and 1 in the first entry to account for
the intercept. As we assume vt = θ⊤

0 xt + zt for some unknown θ0 and unknown c.d.f. F0 of zt, we validate
this linear validation model. To this end, we perform a linear model using data (xt, vt): the p-value of the F
statistics is close to 0 and the slopes of all the variables are statistically significant at a significance level of
0.05 (see Table 4). The residuals and the associated empirical distribution function (an estimate of F0) are
depicted in Figure 5, from which we notice that U is approximatively (−17, 12). Moreover pmin and pmax are
the maximum and minimum values of vt.

Prior to implementing the methods, we conducted cross-validation to tune the UCB algorithm’s parameters
λ and C2, as defined in Luo et al. (2022). We searched over a grid with (λ, C2) ∈ {0.1, 0.5, 1, 1.5, 2, 5} ×
{5, 10, 15, 20, 30}. After selecting the optimal parameters, we ran the algorithm for each method. The initial
episode length was set to τ1 = 150, with subsequent episodes doubling in length according to τk = τ12k−1,
for a total of K = 4 episodes. Each algorithm then chooses its exploration phase according to its rule. We
conducted 36 iterations, randomly shuffling the data before each run. For our algorithm, we set α = 1.

Figure 6 showcases the (empirical) revenue Rev(t) =
∑t

j=1 ptyt, obtained using our antitonic method (blue
line), the UCB method by Luo et al. (2022) (green line), the kernel method by Fan et al. (2021) (red line)
and the VAPE algorithm by Tullii et al. (2024) (black line). Higher lines indicate better performance. We
present three plots corresponding to different values of the smoothness parameter m, which affects only the
kernel-based method by Fan et al. (2021). We let the antitonic, UCB, and VAPE methods remain the same
across all three plots, while the kernel method’s performance changes with varying m. Overall, our antitonic
method generally outperforms the other approaches. The kernel-based method by Fan et al. (2021) also
performs well and tends to improve as the smoothness parameter m increases. Despite tuning its parameters,
the UCB method by Luo et al. (2022) performs poorly, while as far as the VAPE algorithm by Tullii et al.
(2024) shows worse performance than our method and kernel-based method by Fan et al. (2021)
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Figure 6: Revenue comparison

7 Conclusions

We introduced a novel method for estimating the market noise distribution F0 by leveraging its natural
shape constraint: monotonicity. Our analysis led to an expected upper bound on the total regret of order
Õ(T ν(α)dα/2+α), where ν(α) is defined in Equation (2), matching certain previous rates in T when α = 1 and
enjoying the additional advantage of being tuning parameter-free. Compared to existing methods such as
Tullii et al. (2024); Fan et al. (2021); Luo et al. (2022), our proposed algorithm shows stronger empirical
performance in both simulations and real data applications.

An interesting direction for future research is the study of lower bounds on the expected regret under the
Hölder condition on S0 and an investigation into whether our rate matches this bound. In the special case
when α = 1 (i.e. Lipschitzianity of F0), the regret lower bound of Ω(T 2/3) established in Xu & Wang (2022),
has been attained in Tullii et al. (2024). Another promising extension, particularly for practical applications,
is the incorporation of optimal design strategies, as discussed in Remark 4.4. This could significantly improve
the multiplicative constants in the regret, leading to more efficient algorithms.

Another promising avenue for further research is to integrate the Tullii et al. (2024) algorithm with our
antitonic regression approach. The Tullii et al. (2024) method offers a better theoretical upper bound, whereas
our algorithm shows stronger empirical performance. A potential strategy would be to retain the Valuation
Approximation step from their Algorithm 2 while replacing the Price Elimination step with our antitonic
regression procedure (as highlighted by the blue box in Algorithm 1). The final optimal price would then
be computed as in Equation (5). We acknowledge that this idea is preliminary, and further investigation is
required to rigorously formalize the integration and to perform a comprehensive regret analysis.

8 Code Availability

The codes are available at https://github.com/dbracale/DP_via_Antitonic_TMLR_2025.
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A Missing Proofs

A.1 Proof of Proposition 4.6

Proof. By Equation (7) we have Sθ(u) =
∫

S0(u + (θ − θ0)⊤x)dPx(x), from which we note that Sθ is
non-increasing, because S0 is non-increasing. Moreover if S0 is α-Hölder,

|Sθ(u)− Sθ(v)| =
∫
|S0(u + (θ − θ0)⊤x)− S0(v + (θ − θ0)⊤x)|dPx(x)

≤
∫

C1|u− v|αdPx(x) = C1|u− v|α,

and

|Sθ(u)− S0(u)| =
∫
|S0(u + (θ − θ0)⊤x)− S0(u)|dPx(x)

≤
∫

C1|(θ − θ0)⊤x|αdPx(x)

≤ C1Rα
X ∥θ − θ0∥α

2 ,

where in the last inequality we used Cauchy-Scwartz and that ∥x∥2 ≤ RX .

A.2 Proof of Theorem 4.8

We first need to Lemmas: Lemma A.1 and Lemma A.2.
Lemma A.1. Let

S̄rs(θ) ≜ 1
ors

s∑
j=r

ojSθ(wj),

and
Mn(θ) ≜ max

1≤r≤s≤m
o1/2

rs |ŷrs − S̄rs(θ)|.

Then for any constant D > 1,

P
(

Mn(θ) ≤ (D log n)1/2
)
≤ 1− ( n+1

nD )2.

Proof. First, the by Hoeffding’s inequality, since yj are independent random variables taking values {0, 1}
with mean Sθ(wt), for every η > 0 we have

P
[√

ors|ŷsr − S̄sr(θ)| ≥ η
]
≤ 2e−2η2

.

Note that Mn is the maximum of the
(

m+1
2

)
quantities

o1/2
rs |ŷrs − S̄rs(θ)|.

Consequently,
P (Mn(θ) ≥ ηn) ≤

∑
1≤r≤s≤m

P
(

o1/2
rs |ŷrs − S̄rs(θ)| ≥ ηn

)
≤ 2

(
m

2

)
exp

(
−2η2

n

)
≤ exp

(
2 log(n + 1)− 2η2

n

)
≤ exp

(
2 log((n + 1)/nD)

)
= ( n+1

nD )2,

for arbitrary ηn ≥ 0. But the right hand side converges to zero as n → ∞ if ηn = (D log n)1/2 for some
D > 1.
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Before proceeding with the technical Lemma A.2, let’s define

ρn ≜
log n

n
,

and λ(·) the Lebesgue measure, and denote by Pn(·) the empirical measure of the design points wt, that
means

Pn(B) ≜ 1
n

# {t ∈ T : wt ∈ B} for B ⊂ U .

Lemma A.2. Let w1, w2, . . . , wn i.i.d. points with density fw that satisfies infu∈U fw(u) ≥ C2 for some
universal constant C2 > 0 (which is the case for the uniform distribution), then for a given constant κ > 0,
and for any γ > 2, there exists n0 = n0(γ, κ, α) ∈ N and a sequence ϵn = ϵn(γ, κ, α) > 0, ϵn → 0 such that

P (An,γ) > 1− 1
2(n + 2)γ−2 , n ≥ n0

where An,γ is the event

inf
{

Pn (Un)
λ (Un) : Un ⊂ U , λ (Un) ≥ δn ≜ κρ1/(2α+1)

n

}
≥ C2(1− ϵn).

Proof. This is immediately derived from the proof of the more general result by Mösching & Dümbgen (2020,
Section 4.3) which can be stated as follows: let δn > 0 such that δn → 0 while nδn/ log(n)→∞ (as n→∞).
Then for every γ > 2, there exists n0 = n0(γ, δn) and ϵn = ϵn(γ, δn) > 0, ϵn → 0 such that

P
(

inf
{

Pn (Un)
P (Un) : Un ⊂ U , P (Un) ≥ δn

}
≥ 1− ϵn

)
> 1− 1

2(n + 2)γ−2 , n ≥ n0,

where P (·) is the probability measure of the design points wt, that is

P (B) ≜
∫

B

fw(w)dw, for B ⊂ U ,

and
ϵn ≜ max

(
cn/δn,

√
2cn/δn

)
+ (nδn)−1 → 0,

where cn ≜ γ log(n + 2)/(n + 1). The value n0 is the smallest integer n that satisfies ϵn < 1.

Now we prove Theorem 4.8.

Proof. Let n be sufficiently large so that Un ≠ ∅ and such that the event An,γ in Lemma A.2 occurs. Since fw

is the uniform distribution, the value C2 defined in Lemma A.2 corresponds to 1/|U|. For u ∈ Un the indices

r(u) ≜ min {j ∈ {1, . . . , m} : uj ≥ u− δn} ,

j(u) ≜ max {j ∈ {1, . . . , m} : uj ≤ u} ,

are well-defined, because [u− δn, u] is a subinterval of I of length δn. Note that by Lemma A.2 this interval
contains at least one observation uj . Moreover,

r(u) ≤ j(u),
u− δn ≤ ur(u) ≤ uj(u) ≤ u,

or(u)j(u) = on ([u− δn, u]) ≥ C2(1− ϵn)nδn,
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where ϵn is defined as in Lemma A.2. Consequently, with Mn(θ) as in Lemma A.1, we have

Ŝθ(u)− Sθ(u) ≤ Ŝθ(uj(u))− Sθ(u)
= min

r≤j(u)
max

s≥j(u)
ŷrs − Sθ(u)

≤ max
s≥j(u)

ŷr(u)s − Sθ(u)

≤ o
−1/2
r(u)j(u)Mn(θ) + max

s≥j(u)
S̄r(u)s − Sθ(u)

≤ (C2(1− ϵn)nδn)−1/2
Mn(θ) + Sθ(ur(u))− Sθ(u)

≤ (C2(1− ϵn)nδn)−1/2
Mn(θ) + C1δα

n .

In the first step, we used antitonicity of u 7→ Ŝθ(u), and in the second last step we used antitonicity of
u 7→ Sθ(u), and the last step utilizes that by Assumption 4.7. But on the event

{
Mn(θ) ≤ (D log n)1/2}

, the
previous considerations implies that

sup
u∈Un

(Ŝθ(u)− Sθ(u)) ≤ (C2(1− ϵn)nδn)−1/2 (D log n)1/2 + C1δα
n = Cρα/(2α+1)

n ,

where C =
√

κD/C2 + C1κα, and we recall that C2 = 1/|U| and D is any real value strictly greater than 1.
But sup

u∈Un

(Sθ(u)− Ŝθ(u)) ≤ Cρ
α/(2α+1)
n happens in An,γ ∩ {Mn(θ) ≤ (D log n)1/2} which has probability

P(An,γ ∩ {Mn(θ) ≤ (D log n)1/2}) = 1− P(Ac
n,γ ∪ {Mn(θ) ≥ (D log n)1/2})

≥ 1− P(Ac
n,γ)− P(Mn(θ) ≥ (D log n)1/2)

= P(An,γ) + P(Mn(θ) ≤ (D log n)1/2)− 1

≥ 1− 1
2(n + 2)γ−2 −

(
n + 1
nD

)2

≥ 1− 1
(n + 2)γ−2 ≥ 1− 1

nγ−2 ,

where we used that by Lemma A.1, for any fixed D > 1 we have P
(
Mn(θ) ≤ (D log n)1/2)

≥ 1− ( n+1
nD )2 and

by Lemma A.2 for any γ > 2 we have P (An,γ) > 1− 1
2(n+2)γ−2 . The last two inequalities come from choosing

γ = D sufficiently large.

Analogously one can show that on
{

Mn ≤ (D log n)1/2}
,

sup
u∈Un

(Sθ(u)− Ŝθ(u)) ≤ (nδn)−1/2 (D log n)1/2 + C1δα
n = Cρα/(2α+1)

n ,

with the same constant C and with the same probability tail.

A.3 Proof of Theorem 4.10

Fix k ≥ 2 and define nk = |Ik| and ñk = |Ĩk| and ak = |Ek| = nk + ñk. Let S0 (p | x) ≜ S0(p − θ⊤
0 x) and

Ŝk (p | x) ≜ Ŝk(p − θ̂⊤
k x). For the exploration phase E[

∑
t∈Ek

rt(p∗
t ) − rt(pt)] ≤ pmax|Ek| ≲ |Ek|. Now fix

t ∈ E′
k

rt(p∗
t )− rt(pt)

= p∗
t S0 (p∗

t | xt)− ptS0 (pt | xt)

=
{

p∗
t S0 (p∗

t | xt)− p∗
t Ŝk (p∗

t | xt)
}

+
{

p∗
t Ŝk (p∗

t | xt)− ptŜk (pt | xt)
}

︸ ︷︷ ︸
≤0 by Equation (6)

+
{

ptŜk (pt | xt)− ptS0 (pt | xt)
}

≤ pmax

∣∣∣S0(p∗
t | xt)− Ŝk(p∗

t | xt)
∣∣∣ + pmax

∣∣∣Ŝk (pt | xt)− S0 (pt | xt)
∣∣∣

= Rk,t(p∗
t ) + Rk,t(pt),
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where Rk,t(q) ≜ |Ŝk(q − θ̂⊤
k xt)− S0

(
q − θ⊤

0 xt

)
| for q ∈ {p∗

t , pt}, t ∈ E′
k.

By Lemma 4.11 there exists k0 such that for k ≥ k0, E(Rk,t(q)) ≲
(

log ñk/̃nk

)α/2α+1

+ (d log nk/nk)α/2 for
q ∈ {p∗

t , pt} with t ∈ E′
k. Summing up for all t ∈ E′

k, yields that

E

 ∑
t∈E′

k

rt(p∗
t )− rt(pt)

 ≲ |E′
k|

[(
log ñk/̃nk

)α/2α+1

+ (d log nk/nk)α/2

]
.

Merging with the exploration phase of episode k we get

E

[ ∑
t∈Jk

rt(p∗
t )− rt(pt)

]
≲ |Ek|+ |E′

k|
[(

log ñk/̃nk

)α/2α+1

+ (d log nk/nk)α/2

]
.

Using that nk = ñk = 1
2 ak = 1

2 |Ek| = 1
2 dξ(τ12k−1)ν ∝ dξ2kν for ξ, ν > 0 to be determined such that they

minimize the total regret, and that |E′
k| ≤ |Jk| = τ12k−1 ∝ 2k we get that the RHS of the last inequality is

E

[ ∑
t∈Jk

rt(p∗
t )− rt(pt)

]
≲ dξ2kν + 2k

[(
log(dξ2kν )

dξ2kν

)α/2α+1

+
(

d log(dξ2kν )
dξ2kν

)α/2
]

≲ dξ2kν + 2k
(

log(dξ2kν )
dξ2kν

)α/2α+1

+ 2k
(

d log(dξ2kν )
dξ2kν

)α/2

≲ dξ2kν + d
− ξα

2α+1 2k(1− να
2α+1 )[k + log(d)]

α
2α+1 + d

α
2 (1−ξ)2k(1− να

2 )[k + log(d)]
α
2 .

The exponents of the factor d are ξ,− ξα
2α+1 and α

2 (1−ξ). As the second exponent is always negative we equalize
the first and the third exponent, i.e. ξ = α

2 (1− ξ) to get ξ∗ = α
α+2 . The exponents of the exponential factor

2k are ν, 1− να
2α+1 and 1− να

2 . Equalizing the first two factors, we get ν∗ = 2α+1
3α+1 , however ν∗ > (1− ν∗α

2 )
for α > 1/2, is equal for α = 1/2 and less for α < 1/2. Then for α ≥ 1/2 we equalizing the first and last
factors, obtaining ν = 1− να

2 to get ν∗ = 2
2+α .

Case α > 1/2. The expected regret in episode k, E
[∑

t∈Jk
rt(p∗

t )− rt(pt)
]

is upper bounded by

2k
2α+1
3α+1 (d

α
α+2 + d

− α2

(2α+1)(α+2) [k + log(d)]
α

2α+1 + d
α

α+2 [k + log(d)]
α
2 ) ≲ 2k

2α+1
3α+1 d

α
α+2 [k + log(d)]

α
2 ,

where we used that α
2α+1 < α

2 for α ∈ (1/2, 1]. Putting together the phases we get

R(T ) = E

[
K∑

k=k0

∑
t∈Jk

rt(p∗
t )− rt(pt)

]
≲ 2K

2α+1
3α+1 d

α
α+2 [K + log(d)]

α
2 ≲ T

2α+1
3α+1 d

α
α+2 log

α
2 (dT ),

where we used that K = ⌈log (T/τ1) + 1⌉.

Case α ≤ 1/2. The expected retreat in episode k, E
[∑

t∈Jk
rt(p∗

t )− rt(pt)
]
, is upper bounded by

2k
2

2+α (d
α

α+2 + d
− α2

(2α+1)(α+2) [k + log(d)]
α

2α+1 + d
α

α+2 [k + log(d)]
α
2 ) ≲ 2k

2
2+α d

α
α+2 [k + log(d)]

α
2α+1 ,

where we used that α
2α+1 ≥

α
2 for α ∈ (0, 1]. Putting together the phases we get

R(T ) = E

[
K∑

k=k0

∑
t∈Jk

rt(p∗
t )− rt(pt)

]
≲ 2K

2
2+α d

α
α+2 [K + log(d)]

α
2α+1 ≲ T

2
2+α d

α
α+2 log

α
2α+1 (dT ),

where we used that K = ⌈log (T/τ1) + 1⌉, which concludes the proof.
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A.4 Proof of Lemma 4.11

Let nk = |Ik| and ñk = |Ĩk| and t ∈ E′
k. Define the event Ek = {∥θ̂k − θ0∥ ≤ Rnk

} where we recall

Rnk
∝

√
d log nk

nk
,

as defined in Lemma 4.3, and

Rk,t(q) = |Ŝk(q − θ̂⊤
k xt)− S0

(
q − θ⊤

0 xt

)
|, q ∈ {pt, p∗

t }.

Recall that
θ̂k = OLS{(xt, yt)}t∈Ik

, Ŝk = Antitonic{(wt, yt)}t∈Ĩk
,

and define Sk = S
θ̂k

, where by definition in Equation (7)

Sk(u) = S
θ̂k

(u) = Ex[S0(u + (θ̂k − θ0)⊤x)].

Now let q ∈ {pt, p∗
t } for some t ∈ E′

k. We can write

Rk,t(q) = Rk,t(q)I(Ek) + Rk,t(q)I(Ec
k).

Analyzing the Rk,t(q)I(Ec
k):

By Lemma 4.3 we have E[Rk,t(q)I(Ec
k)] ≤ 2P(Ec

k) = Qnk
= 2e−c1c2

minnk/16 + 2
nk

.

Analyzing the Rk,t(q)I(Ek):

Rk,t(q) is less or equal than two times

|Ŝk(q − θ̂⊤
k xt)− Sk(q − θ̂⊤

k xt)|I(Ek)︸ ︷︷ ︸
=A

+ |Sk(q − θ̂⊤
k xt)− Sk(q − θ⊤

0 xt)|I(Ek)︸ ︷︷ ︸
=B

+ |Sk(q − θ⊤
0 xt)− S0(q − θ⊤

0 xt)|I(Ek)︸ ︷︷ ︸
=C

(9)

Analyzing A on Ek: Define the event Sk = {supu∈U |Ŝk(u)− Sk(u)| ≤ Cρ
α/(2α+1)
ñk

}, where ρn = log(n)/n.
For nk sufficiently large, by Theorem 4.8 we have that

E(A) = E(AI(Sk,∩Ek)) + E(AI(Sc
k ∩ Ek))

≤ E
(

sup
u∈U
|Ŝk(u)− Sk(u)|I(Sk ∩ Ek)

)
+ 2P(Sc

k)P(Ek)

≲ C

(
log ñk

ñk

)α/(2α+1)
P(Sk ∩ Ek) + 2P(Sc

k)

≲

(
log ñk

ñk

)α/(2α+1)
+ 2 1

ñγ−2
k

≲

(
log ñk

ñk

)α/(2α+1)
,

where we chose γ ≥ 3.

Analyzing B on Ek: By Proposition 4.6, Sk is α-Hölder, then E[BI(Ek)] ≲ ∥θ̂k − θ0∥α
2 ≤ Rα

nk
.

Analyzing C on Ek: By Proposition 4.6 we have |Sk(u)− S0(u)|I(Ek) ≲ ∥θ̂k − θ0∥α
2 ≤ Rα

nk
.

Combining the terms Rk,t(q)I(Ec
k) and Rk,t(q)I(Ek) from Equation (9): we get

sup
q

Rk,t(q) ≲
(

log ñk

ñk

)α/(2α+1)
+

(
d log nk

nk

)α/2
.
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B Additional Plots of Section 5.1

Figure 7: This plot was generated using as true F0 the one considered in Fan et al. (2021) with density
f0(z) = 6

( 1
4 − z2)

1{z ∈ (−1/2, 1/2)}. We repeated the simulation 36 times and the corresponding 95%
confidence interval. The plot is in log2-log2 scale to show the regret rate (empirical slope): a slope of η
indicated an O(T η) regret. The black dashed line corresponds to our theoretical regret upper bound of 3/4.
The estimated slope is very close to that value.
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