
Abstract 

The development of large language models 

(LLMs) has resulted in significant 

transformations in the field of chemistry, 

with potential applications in molecular 

science. Traditionally, the exploration of 

methods to enhance pre-trained general-

purpose LLMs has focused on techniques 

like supervised fine-tuning (SFT) and 

retrieval-augmented generation (RAG), 

among others, to improve model 

performance and tailor them to specific 

applications. General purpose extended 

approaches are being researched, but their 

adaptation within the chemical domain has 

not progressed significantly. This study 

aims to advance the application of LLMs in 

molecular science by exploring SFT of 

LLMs, and developing RAG and 

multimodal models, incorporating 

molecular embeddings derived from 

molecular fingerprints and other properties.  

The experimental results show that the 

highest performance was achieved with the 

RAG and multimodal LLMs, particularly 

with the introduction of fingerprints. For 

molecular representations based on 

SMILES notation, fingerprints effectively 

capture the structural information of 

molecular compounds, demonstrating the 

applicability of LLMs in drug discovery 

research. 

1 Introduction 

Large language models (LLMs) has recently 

demonstrated remarkable advancements in the 

field of natural language processing (NLP), mainly 

owing to the scaling up of the model parameters 

and training data sizes (Touvron et al., 2023; 

Achiam et al., 2023; Anil et al., 2023). Progress in 

LLMs has achieved state-of-the-art (SOTA) 

performance across diverse tasks, and also 

significantly impacted the field of chemistry, with 

applications rapidly emerging in areas such as drug 

discovery and domain-specific information 

retrieval (Zheng et al., 2024; Zhang et al., 2024; 

Xiao et al., 2024). Molecular captioning is one of 

the representative tasks in the chemical application. 

In this task, a model takes chemical structure 

information, such as a Simplified Molecular Input 

Line Entry System (SMILES) (Weininger, 1988) or 

molecular graph, and generates a textual 

description of the compound's properties. It enables 

researchers to understand compound feature more 

easily, accelerating drug discovery. Generally, 

SMILES, a textual data format, is used as input for 

this task with LLMs (Edwards et al., 2022). 

Improving the accuracy of LLMs for specialized 

tasks are classified into two strategies: model-

centric improvements and prompt-centric 

improvements. The model-centric approach 

focuses on refining the LLM itself, for example 

through architectural changes, continual pre-

training, or supervised fine-tuning (SFT). 

Especially, SFT is a promising technique due to its 

relatively low training cost compared to pre-

training. The prompt-centric approach focuses on 

optimizing the input given to the model. This can 

involve techniques like prompt engineering, in-

context learning or the use of Retrieval-Augmented 
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Figure 1: Overview of our molecular captioning task. 



Generation (RAG) to retrieve and incorporate 

relevant information from external sources.  

 While considerable research explores for these 

approaches, their application to the molecular 

captioning task remains relatively unexplored. A 

key challenge in applying LLMs to chemistry is 

how to represent and input chemical structures for 

them. This critical question of optimal molecular 

representation within the LLM framework remains 

largely unaddressed. 

In this study, we investigate the effectiveness of 

various approaches for improving LLM-based 

molecular captioning tasks with SMILES notation 

(Figure 1). The first approach involves SFT of a 

closed-source LLM, using SMILES text as the 

input and the corresponding descriptive text as the 

ground truth to create a specialized LLM for 

describing molecular compounds. Because closed-

source LLMs are more powerful at understanding 

text due to their larger model parameters, this SFT 

approach can achieve more precise inference 

compared to fine-tuning open-source LLMs. The 

second approach employs RAG to leverage the 

similarity of SMILES strings to retrieve the related 

compound data. This is intended to allow the LLM 

to describe molecular compounds that may not 

have been sufficiently learned or have complex 

properties not present in the training data. In 

addition to conventional text embedding-based 

retrieval for RAG, we incorporate fingerprint-

based retrieval using the Tanimoto coefficient 

(Bajusz et al., 2015) as a similarity metric to 

retrieve structurally similar compounds. The third 

approach utilizes multimodal-LLMs with 

molecular compound embeddings. In multimodal 

models, the way to embed new modal data is 

crucial. Here, we compare different types of 

embeddings: molecular fingerprint, graph neural 

network embedding, and language model 

embedding. 

Experimental results on a benchmark dataset of 

molecular compounds show that, among molecular 

embeddings, the use of molecular fingerprints for 

RAG and the incorporation of molecular 

fingerprints as an integrated input for multimodal-

LLM yielded the highest accuracy in each 

approach. Specifically, the latter multimodal model 

demonstrated the highest performance in this study. 

This suggests that molecular fingerprints best 

capture molecular property information compared 

with the other two embedding methods and it's 

more effective to use a general model with 

structural information (multimodal) than to 

improve unimodal model training methods. These 

findings suggest the potential to support the 

analysis of molecular compounds and improve the 

efficiency of drug discovery research. 

2 Related Works 

2.1 Representation of molecules 

For the three representations of molecules, the 

information content of the graphs and the SMILES 

is considered equivalent. SMILES is a simple 

notation representing molecular structures as a 

single string. It uses element symbols for atoms and 

symbols for bonds, making it easy to use in 

machine learning.  

SMILES embeddings are typically obtained 

using language models. For SMILES embedding, 

molecular language models that extend 

Transformer-based models (Vaswani et al., 2017) 

like T5 (Raffel et al., 2020) or BERT (Devlin et al., 

2019) for chemistry, such as molbert or MolT5, are 

used (Edwards et al., 2022; Fabian et al., 2020; 

Chithrananda et al., 2020; Ahmad et al., 2022).  

Graphs are variable-length data structures 

capable of representing three-dimensional (3D) 

structural information. With advancements in deep 

learning, graph neural network (GNN)-based 

models (Zhou et al., 2020; Scarselli et al., 2008) are 

commonly used to generate graph embeddings like 

MolCLR (Wang et al., 2022).  

Molecular fingerprints are vectors, typically 

binary, that are calculated from SMILES strings 

using algorithms (Rogers & Hahn, 2010). These 

vectors store information about the presence or 

absence of structural features in a compound. Their 

fixed-length nature allows them to be readily input 

into general-purpose machine learning models. 

2.2 Molecule-text multimodality 

nach0 (Livne et al., 2024), a T5-based model 

trained to acquire molecular chemistry knowledge, 

enables multimodal reasoning by distinguishing 

between SMILES and natural language text tokens. 

Furthermore, research has been conducted on 

models that perform contrastive learning after 

encoding chemical structures and text to solve 

downstream tasks such as property prediction (Su 

et al., 2022; Liu et al., 2023; Luo et al., 2023) , and 

on models that have been extended to include 

images as input (Liu et al., 2024). As an extension 

of LLMs, models that perform multimodal 



reasoning by adding molecular graphs as inputs to 

accurately capture the structural information of 

molecular compounds are also being developed 

(Liu et al., 2023; Cao et al., 2023). On the other 

hand, multimodal models utilizing molecular 

fingerprints, as well as comparative studies of these, 

have not been conducted. 

3 Problem Settings 

This study assumes two tasks using SMILES 

notations of molecular compounds. The first is the 

molecular captioning task, which involves 

explaining the properties of a molecular compound 

from its SMILES notation. For this task, it is 

desirable to appropriately describe the properties of 

the molecular compounds represented by the 

SMILES. The second task is the molecular 

property prediction and the experimental results of 

the second task are presented in detail in the 

Appendix, as part of additional validation. 

We assumed that only SMILES is given as the 

data for molecular compounds, and cases in which 

molecular structure information is provided as data 

are not assumed. In the molecular embedding 

models, we used to be detailed in Table 1. RDKit 

was used for the transformation from SMILES to 

Graph and molecular fingerprints. Extended-

Connectivity Fingerprints 4 (ECFP4) were adopted 

as the algorithm for the transformation to molecular 

fingerprints. Furthermore, molt5-large was used for 

SMILES embeddings, and MolCLR was used for 

Graph embeddings. 

4 Proposed Methods 

We proposed three approaches for predicting the 

properties of molecular compounds based on their 

SMILES text (Figure 2). 

4.1  First Approach: SFT 

For the first approach, we used SFT of a closed-

source LLM to create an LLM specialized in 

generating descriptive text from SMILES text by 

providing the SMILES text of a molecular 

compound as input data and its descriptive text as 

output data to an LLM. Although open-source 

LLMs allow for easy parameter customization 

through the SFT, their parameter counts are lower 

than those of closed-source LLMs. Generally, 

models with more parameters tend to have higher 

performance in text generation tasks. Therefore, 

the SFT of open-source LLMs may not achieve 

sufficient performance in text generation tasks. 

4.2 Second Approach: RAG 

In the second approach using RAG, a dataset of 

pairs of training molecule SMILES text and their 

corresponding descriptive text is stored in a 

database in advance. The molecule that was most 

similar to the input test data of the SMILES text 

was retrieved from the database. To prevent data 

leakage during the search, the SMILES stored in 

the database are not used in the test data. In this 

study, we performed similarity searches for similar 

molecular compounds using retrievers based on the 

following: 

- Similarity of embeddings by a SMILES 

Encoder using CLIP 

- Cosine similarity of embeddings of SMILES 

by MolT5 

- The cosine similarity of GNN embeddings for 

graph-represented molecules. 

- Tanimoto coefficient of molecular fingerprints 

The Tanimoto coefficient is most suitable for 

similarity comparison of molecules converted to 

fingerprints. In this study, we provided the top five 

 Image Feature Convert method  Encoding Method 

SMILES COc1ccc(C(C)=O)cc1 Variable-length 

text - 
Molecular Language Model 

(molt5-large is used in this study) 

Graph 

  

Graph including 

node and edge 

Rule based Graph Neural Network 

(MolCLR is used in this study) 

Molecular 

fingerprint 

 

Fixed-length 

vector 

Rule based 

(ECFP is used in 

this study) 
- 

Table 1: Three types of molecular representation. The right column represents the conversion methods from 

SMILES to their respective representation formats and the creation of embedding vectors employed in this 

study.  



SMILES and caption pairs obtained through a 

similarity search of LLM and instructed it to  

generate an appropriate caption for the input 

SMILES. 

4.3 Third Approach: Multimodal 

The third approach involves multimodal-LLM 

using molecular fingerprints. This is an extension 

of the SFT method to the multimodal domain, 

where the LLM is given a molecular compound's 

SMILES text and fingerprint, enabling it to obtain 

structural information from SMILES and describe 

its properties. We implemented a multimodal LLM 

that processes instruction text and integrated inputs 

of SMILES, graph representations, or molecular 

fingerprints. The input SMILES undergoes a two-

step branching process. First, it is converted into a 

molecular embedding by an encoder model. This 

embedding is then transformed via a projector into 

a vector with the same dimensionality as the LLM 

input and fed into the LLM. The other step involves 

embedding the SMILES string directly into the 

prompt as text. Finally, these inputs are integrated, 

and the LLM generates text. By including graph 

embeddings or fingerprints as inputs, the LLM is 

able to generate text while having captured the 

structural information of the molecular compounds. 

 
1
https://huggingface.co/datasets/languag

e-plus-molecules/LPM-24_train 

5 Experiments and Results 

5.1 Dataset 

We used the L+M-24 dataset, 1  an open dataset 

containing SMILES notation text of molecular 

compounds and text describing their properties. 

There are 3502 property names. the property can be 

divided into four categories: biomedical (=2032), 

light and electricity (=58), human interaction and 

organoleptic (=787), and agriculture and industry 

(=625). This is the most common dataset 

containing pairs of SMILES notations of molecular 

compounds and text describing their properties in 

English.  

Table 2 provides the details of the dataset. The 

number of samples in the training data (split_train) 

is 126,864, and the number of samples in the 

validation data (split_valid) is 33,696. Each 

molecular compound is unique to all the samples. 

In this study, owing to computational time 

constraints, we randomly extracted 1000 samples 

(seed value: 42) from the validation data 

 

Figure 2: Details of our three approaches.  Embeddings are created using three patterns: SMILES + MolT5, 

Graph + MolCLR, and Molecular fingerprint. 

 split train split valid 

Number of samples 126864 33696 

Average SMILES length 108.5 105.4   

Average number of  

sentence text words 

30.39 29.53 

Table 2: Dataset overview. 
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(split_valid) as test data for evaluation. 

Additionally, the training dataset was divided into 

training and validation sets in an 8:2 ratio. The 

divided training data were used to train the 

proposed methods, and the validation data were 

used to evaluate the checkpoint with the highest 

accuracy. 

5.2 LLMs 

For SFT approach, we utilized the custom tuning 

feature of Vertex AI Studio in a Google Cloud 

environment and used the gemini-1.0-pro-002 

model of the closed-source LLM. Also, we used 

molt5-large, meta-llama-3-8B, meditron-7b, and 

nach0_large as the SFTs of the open-source LLMs. 

In addition, when training the LLM parameters, we 

used Lora to achieve lightweight fine-tuning. The 

computational environment for these experiments 

was an NVIDIA A100 40GB computer connected 

to Google Cloud Workstations. 

For RAG approach, because a certain maximum 

length of the input context is required, we used 

Gemini-1.5-pro-002, which is a closed-source 

LLM. This allowed us to input all SMILES, similar 

to the input SMILES and their caption pairs into the 

LLM for captioning. In the RAG using CLIP, we 

used a distilbert-base-uncased text encoder to 

perform lightweight and high-speed training. The 

embedding dimensionality is 768. Because the 

SMILES fingerprint is represented by a 2048-

dimensional vector, the SMILES encoder used a 

linear layer with an input of 2048 dimensions and 

an output of 2048 dimensions. During CLIP 

training, it is necessary to unify the dimensionality 

of these embeddings, we added a projector with 

256 output dimensions for CLIP training. The input 

to the projector for the SMILES encoder was 2048 

dimensions and the input to the projector for the 

text encoder was 768 dimensions.  

For multimodal approach, from the perspective of 

high instruction-following ability and trainable 

parameters, meta-llama/Meta-Llama-3-8B was 

used as the base model for the multimodal model. 

As the dimensionality of the hidden layer 

embeddings of this model is 4096, the projection 

from the SMILES Encoder to the LLM used a 

linear layer with an input of 2048 dimensions and 

an output of 4096 dimensions. The parameters and 

computational environment for the training were 

the same as those for the SFT conducted with open-

source LLMs. The LLM (Llama3) and projector 

are trained simultaneously, while the Mol encoder 

uses a pre-trained model with frozen parameters. 

5.3 Evaluation Metrics 

Following the paper that created the L+M-24 

Dataset (Edwards et al., 2024), we used machine 

translation (MT) evaluation metrics, which have 

been used in NLP tasks, such as machine 

translation and text summarization, and property-

specific scores, which calculate whether the 

generated text includes property-specific words of 

molecular compounds. For the MT evaluation 

metrics, we performed evaluations using natural 

language generation metrics such as BLEU-2/4 

(Papineni et al., 2002), METEOR (Banerjee & 

Lavie, 2005), and ROUGE-1/2/L (Lin, 2004). 

These metrics are similar to those used by Edward 

et al. (Edwards et al., 2022). Property-specific 

scores are calculated by matching tokenized names 

within the generated captions, specifically using 

macro-F1, precision, and recall.  

Comparing MT evaluation metrics and property-

specific scores, MT evaluation metrics are 

influenced by how grammatically similar they are 

to the ground-truth text. Therefore, the score may 

be high even if the characteristics of the molecular 

compound are not properly expressed. Property-

specific scores are more appropriate evaluation 

metrics for assessing whether the characteristics of 

molecular compounds have been correctly 

captured.  

5.4 Results 

We evaluated the performance of our three 

proposed approaches compared with baselines 

including MolT5 (Edwards et al., 2022) and 

Meditron (Chen et al., 2023) , which were utilized 

in the L+M-24 dataset, and nach0, a high-scoring 

model from ACL 2024.  

Figure 3 compares models using property-scores 

on the 𝑦-axis and models on the 𝑥-axis, and Table 

3 delineates the model characteristics and 

evaluation metrics for each model. We compared 

against MolCLR, in Figure 3, represents a non-

LLM, GNN-based predictive model which 

leverages the three-dimensional structure of 

molecules. It predicts the presence or absence of 

property related words and calculates only 

property-specific scores. Among the baselines, 

Meditron achieved the highest scores in MT 

evaluation, while nach0 achieved the highest 

property-specific score. 



Our proposed Closed-source LLM, Gemini 

(Team Gemini et al., 2023), fine-tuned through 

SFT (Gemini SFT), surpassed MolT5 and Llama3 

in both MT evaluation and property-specific f1 

scores. However, it did not outperform Meditron or 

nach0. The underperformance is likely due to 

Gemini's lack of specialization in chemical text 

generation and its inability to effectively 

distinguish SMILES strings from regular alphabet 

sequences during tokenization. This suggests that 

for domain-specific tasks with LLMs, a domain-

specific training approach is more vital than model 

parameter size. 

Conversely, the RAG approach, which does not 

involve SFT, yielded lower scores, failing to fully 

grasp the characteristics of captioning. Upon 

examining generated texts, we observed significant 

variations in grammar and phrasing compared to 

the ground truth, as well as instances of overly 

lengthy text. This is likely due to the LLM not 

having learned the structure of ground truth texts. 

This issue might be mitigated by adjusting the 

system prompt to encourage outputs that follow the 

ground truth text structure. For example, captions 

in the L+M-24 dataset often begin with "The 

Molecule is," a pattern not always captured by 

RAG-generated text. When comparing the 

property specific score, the Molecular fingerprint 

Tanimoto coefficient-based RAG model (Tanimoto 

rag) had the highest f1 score among the RAG 

approaches. This RAG model also surpassed the 

performance of the other unimodal models using 

SFT, suggesting that RAG can be a feasible 

approach when computational resources are 

limited. 

Multimodal LLM captioning consistently 

achieved the highest prediction accuracy overall in 

both MT and property-specific scores across all 

three approaches. Particularly, the multimodal 

model using fingerprint embeddings achieved the 

highest scores overall. 

The superior performance of models that 

incorporate molecular structure information, either 

via multimodal methods or molecular fingerprints 

in RAG, suggests that accurately representing 

chemical structure is paramount for LLMs. Our 

results show that correctly encoding chemical 

structure allows general-purpose LLMs like 

Llama3 to outperform domain-specific unimodal 

models in tasks such as molecular captioning. The 

strong performance of models using molecular 

fingerprints in both RAG and multimodal settings 

underscores that text encoder-based 

representations like those in MolT5 and nach0 may 

not always fully capture crucial molecular features 

like the presence of atoms, bonds, and rings. If 

MolCLR or MolT5 cannot produce embeddings 

that adequately capture these structural aspects, the 

prediction accuracy may suffer. In contrast, 

molecular fingerprints explicitly represent the local 

characteristics of molecules, enabling models to 

easily discern meaningful features. 

Based on these findings, we conclude that for the 

molecular captioning task, multimodal models 

with SFT are the most effective approach. 

Furthermore, when computational resources are 

constrained, RAG offers a viable alternative for 

generating descriptions based on similar molecules. 

Across all methods, molecular fingerprint 

representations, which explicitly encode structural 

information as vectors, consistently yielded the 

best results. 

 

Figure 3: Overall property-specific score for molecular captioning using LLMs. Evaluation Metrics: macro-f1 

score (f1), precision, recall. The model used for verification is the same as the one shown in Table 3. 



   

5.5 RAG vs. multimodal model SFT 

In a general-purpose LLM approach, SFT often 

requires repeated training to memorize specific 

information. In contrast, RAG can predict 

information does not present in the training data 

with few-shot learning by externally inserting 

knowledge into the prompt. To confirm this in our 

study, we compared Tanimoto-rag (our best 

performing RAG model) with fingerprint + 

Llama3 (our best performing fine-tuned 

multimodal model). Figure 4 plots the frequency of 

property words within the training data against the 

accuracy of those words appearing in the generated 

text.  The left side of the figure plots words with a 

training data frequency below 100, while the right-

side plots words with a frequency above 100.  

As shown in Figure 4, for properties with a 

limited number of samples in the training data, 

multimodal models tend to struggle with accurate 

predictions, while Retrieval-Augmented 

Generation models show higher accuracy. 

Therefore, the performance of multimodal models 

relies on high-frequency properties. For instance, 

properties with a frequency exceeding 10,000, such 

as "alcohol," "fatty," and "catalyst," achieved 

accuracy above 99% across all models that 

underwent supervised fine-tuning, except for 

MolT5. 

Table 4 gives the macroF1 scores of RAGs and 

multimodal approach for each categorized property. 

All model's categorized property specific scores are 

listed in the Appendix. As indicated in Table 4, the 

performance categorized by different properties 

generally favors multimodal models. However, for 

properties related to "Light and electricity" 

category, RAG approach exhibit better 

performance. This can be attributed to the relatively 

low frequency of properties within the "Light and 

electricity" category, with the maximum frequency 

being around 500, suggesting that the supervised 

fine-tuning of multimodal models was not 

successful for these properties. The study showed 

similar trends to those seen in general-purpose 

LLMs, and it is expected that applying RAG to 

chemistry-specific LLM that have undergone SFT, 

   

Figure 4: Training data property count and generated 

text accuracy. Molecular fingerprint is used for both 

Tanimoto-rag and fingerprint + Llama3. 

(a) SFT approach BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L 

MolT5 (baseline) 0.048  0.036  0.310  0.427  0.325  0.402  

Meditron (baseline) 0.754  0.545  0.713  0.767  0.580  0.551  

nach0 (baseline) 0.756  0.543  0.707  0.745  0.544  0.525  

Llama3 (baseline) 0.721  0.521  0.700  0.755  0.565  0.545  

Gemini SFT 0.745  0.533  0.694  0.731  0.530  0.512  

 

(b) RAG 

approach 

BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L 

CLIP-rag 0.103  0.030  0.202  0.195  0.052  0.155  

Molt5-rag 0.190  0.087  0.336  0.299  0.108  0.201  

MolCLR-rag 0.182  0.081  0.327  0.291  0.099  0.196  

Tanimoto-rag 0.176  0.079  0.323  0.286  0.099  0.199  

 

(c) MM approach BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L 

MolCLR + Llama3 0.766  0.552  0.725  0.771  0.573  0.549  

MolT5 + Llama3 0.727  0.525  0.714  0.770  0.575  0.555  

fingerprint + Llama3 0.776  0.560  0.738  0.785  0.587  0.563  

Table 3: MT scores for molecular captioning using LLMs of (a) SFT approach, (b) RAG approach, and (c) 

multimodal (MM) approach, respectively. The best performing model for each metric is shown in bold. 



can lead to the creation of more robust models, 

even for properties with insufficient sample data. 

6 Conclusions 

This study explored three enhancement approaches, 

SFT, RAG, and multimodal LLMs for predicting 

molecular compound properties from SMILES 

notation. In the SFT approach, we fine-tuned a 

closed-source LLM using the Gemini API, 

achieving superior MT evaluation scores compared 

to MolT5 and Llama3, although it did not surpass 

the performance of Meditron or nach0. The RAG-

based model exhibited property-specific scores 

comparable to those achieved by the SFT-trained 

model. Notably, both RAG and multimodal LLMs 

demonstrated higher scores when processing 

molecular fingerprints as input, rather than 

SMILES or graph representations. Specifically, a 

multimodal model with fingerprint inputs to the 

LLM achieved the highest overall performance. 

These findings highlight the potential of LLMs 

in drug discovery research and suggest their 

promise for improving the efficiency of future 

pharmaceutical development. 

Future research directions include optimizing 

prompt systems to improve RAG performance, 

investigating methods for combining SFT and 

RAG, developing effective techniques for 

integrating molecular fingerprints into multimodal 

models, exploring regression tasks within LLM-

based molecular property prediction, leveraging 

more sophisticated representations based on 

molecular descriptors and structural information, 

and evaluating the applicability of these techniques 

to real-world drug discovery and other relevant 

tasks. Additionally, further investigation is required 

into the impact of increasing modalities, such as 

multimodal models that simultaneously input 

molecular fingerprints and graphs. 

 

Limitations 

The model used in our research had approximately 

8 billion parameters, suggesting the need for 

experimentation with models that have a 

significantly larger parameter count. However, due 

to limitations in the memory capacity of our 

available computing machines, we were unable to 

explore models with substantially larger parameter 

counts at this study. In addition, due to the training 

time required for fine-tuning and data privacy 

concerns, we were only able to conduct 

experiments using a single open dataset. 
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A Categorized property-specific score 

Table 5 displays the categorized property-specific 

scores. We observed that biomedical properties 

were generally easier to predict. The performance 

was largely consistent regardless of the molecular 

representation method used (SMILES, graph, or 

molecular fingerprints).  

B Molecular Property Prediction 

Molecular property prediction involves predicting 

the property labels of a molecular compound using 

SMILES notation. For this task, accurate prediction 

of the property labels of the molecular compound 

represented by SMILES is desirable. For instance, 

blood–brain barrier penetration (BBBP) can occur. 

The input SMILES is given as text, and if the 

molecular compound given in SMILES can 

penetrate the blood‒brain barrier, the output will be 

"Yes," otherwise, it will be "No." In this study, 

molecular property prediction solves only binary 

classification tasks, where whether the molecular 

compound exhibits a certain property is 

represented in a binary format; it does not solve 

regression tasks. This is because, given that the 

LLMs output tokens probabilistically in the 

forward direction, numerical regression tasks are 

challenging. In contrast, classification tasks are 

easier to solve because probabilistically outputting 

tokens is equivalent to multiclass classification. 



B.1 Dataset 

For molecular property prediction, we used five 

datasets released by Molecule Net2 , a large-scale 

benchmark that organizes several public datasets 

for molecular machine-learning evaluation. All 

datasets used in this research were for binary 

classification tasks that express whether a 

compound exhibits an arbitrary property in a binary 

format, and datasets for solving regression tasks 

were not used. To preprocess the datasets, all 

samples containing SMILES that could not be 

converted to fingerprint notation via rdkit were 

removed. Table 6 shows the types of datasets used 

and their basic statistics. 

 
2 https://moleculenet.org/ 

These datasets were divided into training, 

validation, and test data in a ratio of 6:2:2. Similar 

to molecular captioning, the divided training data 

were used to train the proposed methods, and the 

validation data were used to evaluate the c 

heckpoints with the highest accuracy. All the 

parameters used for the experiments were the same 

as those used for molecular captionin. 

B.2 Results 

As a baseline, we converted the SMILES into 

fingerprints and performed predictions using linear 

regression (LR), XGBoost (XGB), support vector 

machine (SVM) and Neural Network (NN). 

Additionally, we used knn_tanimoto, which 

performs nearest-neighbor searches based on the 

 Biomedical Human Interaction  

and Organoleptics 

Agriculture and 

Industry 

Light and electricity 

  p r f1  p r f1  p r f1  p r f1 

MolT5 0.886  0.200  0.203  0.990  0.001  0.001  0.960  0.022  0.025  0.564  0.038  0.021  

Llama3 0.568  0.255  0.259  0.377  0.031  0.037  0.790  0.048  0.051  0.204  0.061  0.052  

Meditron 0.868  0.255  0.258  0.413  0.045  0.044  0.914  0.056  0.058  0.592  0.058  0.036  

nach0 0.536  0.263  0.265  0.315  0.055  0.054  0.190  0.059  0.059  0.064  0.053  0.054  

Gemini 

SFT 

0.355  0.256  0.248  0.251  0.033  0.035  0.111  0.057  0.050  0.073  0.050  0.054  

CLIP rag 0.895  0.192  0.193  0.158  0.010  0.007  0.102  0.004  0.005  0.000  0.000  0.000  

Molt5 rag 0.649  0.211  0.220  0.381  0.058  0.057  0.161  0.024  0.027  0.254  0.054  0.068  

MolCLR 

rag 

0.651  0.219  0.232  0.380  0.071  0.065  0.170  0.029  0.031  0.252  0.118  0.129  

Tanimoto 

rag 

0.765  0.234  0.254  0.345  0.070  0.061  0.187  0.028  0.030  0.276  0.139  0.151  

MolCLR + 

Llama3 

0.578  0.277  0.280  0.315  0.062  0.066  0.200  0.055  0.059  0.134  0.097  0.096  

MolT5 + 

Llama3 

0.554  0.268  0.269  0.371  0.052  0.052  0.734  0.059  0.060  0.089  0.067  0.055  

fingerprint 

+ Llama3 

0.572  0.280  0.281  0.484  0.071  0.073  0.707  0.063  0.064  0.194  0.111  0.113  

Table 5: Categorized property-specific score. p is precision, r is recall, f1 is macro-f1 score.  

 

 

  BBBP  Clintox  HIV  bace  

Detail of task  Binary labels of  

blood-brain barrier 

penetration 

(permeability).  

Qualitative data of drugs 

approved by the FDA 

and those that have 

failed clinical trials for 

toxicity reasons.  

Experimentally 
measured abilities to 

inhibit HIV 

replication.  
  

Quantitative (IC50) and 

qualitative (binary label) binding 

results for a set of inhibitors of 

human β-secretase 1(BACE-1).  

Number of samples  2039  1480  41127  1513  

Positive label ratio  0.765  0.936  0.035  0.458  

Task Type  Binary 

Classification  

Binary Classification  Binary Classification  Binary Classification  

Table 6: Molecule Net dataset overview. 

 

https://moleculenet.org/


Tanimoto coefficient of fingerprint embeddings, 

and knn_MolT5, which performs predictions based 

on the cosine similarity of the MolT5 embeddings. 

This is equivalent to the retrieve operation 

performed when doing RAG with an LLM. 

We also performed predictions via encoder 

models, such as molbert, MolT5, and nach0. 

Furthermore, research is currently underway to 

perform binary classification based on LLMs, and 

by fine-tuning an LLM to ask for either "Yes" or 

"No," evaluation on the basis of the probability 

distributions of "Yes" or "No" outputs is possible. 

Owing to the API specifications, we did not 

conduct experiments using closed-source models 

because it is difficult to output the probability 

distributions of words. We verified a multimodal 

model by encoding with MolT5 and a multimodal 

model via fingerprints. We used the predictions 

made via fine-tuned Llama3 as the baseline for the 

LLM SFT. 

Tables 7 and 8 show the ROC-AUC and PR-

AUC scores for binary classification for each 

dataset. The prediction model using MolCLR has 

not achieved accuracy surpassing that of text-based 

models. As with molecular captioning, this is likely 

due to the loss of information, such as the 

representation of isomers in SMILES notation, 

when it is converted into a molecular graph. 

Comparing the two KNN models, there are cases 

where the Tanimoto coefficient of the fingerprint 

and the cosine similarity of the MolT5 embedding 

are better, depending on the task. Because the 

Tanimoto coefficient indicates structural similarity, 

the similarity of molecular structure may not 

considerably affect some molecular properties. 

It can also be seen that transformer encoder-

based models, such as molbert, MolT5, and nach0 

(T5 base), are more accurate than the Llama3-

based models, including the multimodal model. 

This is apparent from the fact that transformer 

decoder models, such as Llama3, are designed with 

an emphasis on text generation and are not suitable 

for classification and that Llama3 cannot properly 

tokenize molecules expressed in SMILES. By 

contrast, the Llama3 multimodal model, which 

uses fingerprints, achieved an accuracy similar to 

that of the other transformer encoder models. This 

shows that even without properly tokenizing the 

SMILES, fingerprints contain sufficient molecular 

information.  

B Output Text 

Figure 5 shows the text generated by each molecule 

captioning method, along with the ground truth. 

The Gemini SFT and multimodal models exhibited 

high lexical recall against the ground truth, whereas 

the Tanimoto RAG, which lacks SFT, produced 

 BBBP clintox HIV bace 

fingerprint + 

LR 

0.967  0.952  0.260  0.855  

fingerprint + 

XGB 

0.972  0.956  0.421  0.891  

fingerprint + 

SVM 

0.964  0.957  - 0.844  

fingerprint + 

NN 
0.969  0.960  0.374  0.849  

MolCLR 0.958  0.980  0.077  0.752  

Molbert 0.987  1.000  0.355  0.818  

MolT5 0.988  1.000  0.101  0.513  

nach0 0.990  1.000  0.381  0.857  

Llama3 0.929  0.984  0.205  0.688  

MolT5 + 

Llama3 

0.987  1.000  0.345  0.778  

fingerprint + 

Llama3 

0.986  0.999  0.341  0.825  

MolCLR + 

Llama3 

0.952  0.979  0.269 0.609 

Table 8: PR-AUC of molecule property prediction. 

 

 

 BBBP clintox HIV bace 

fingerprint + 

LR 

0.910  0.627  0.755  0.904  

fingerprint + 

XGB 

0.929  0.675  0.802  0.922  

fingerprint + 

SVM 

0.897  0.631  - 0.889  

fingerprint + 

NN 

0.917  0.640  0.785  0.903  

MolCLR 0.894  0.766  0.773  0.816  

Molbert 0.957  0.998  0.759  0.863  

MolT5 0.958  0.996  0.661  0.626  

nach0 0.963  0.999  0.785  0.895  

Llama3 0.812  0.822  0.746  0.720  

MolT5 + 

Llama3 

0.956  0.994  0.789  0.841  

fingerprint + 

Llama3 

0.953  0.981  0.774  0.878  

MolCLR + 

Llama3 
0.884  0.824  

0.763 0.715 

Table 7: ROC-AUC of molecule property 

prediction. 

 

 



texts with larger word counts and more technical 

terms. As mentioned in the main text, the RAG 

performance is attributed to the model itself not 

having learned vocabulary or phrasing.  

 

Figure 5:  Output caption of models. Molecular fingerprinting is used for multimodal model. 

 

 


