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ABSTRACT

Recent advances in infinite-dimensional diffusion models have demonstrated their
effectiveness and scalability in function generation tasks where the underlying
structure is inherently infinite-dimensional. To accelerate inference in such mod-
els, we derive, for the first time, an analog of the probability-flow ODE (PF-ODE)
in infinite-dimensional function spaces. Leveraging this newly formulated PF-
ODE, we reduce the number of function evaluations while maintaining sample
quality in function generation tasks, including applications to PDEs.

1 INTRODUCTION

Diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Kingma et al.,
2021) is a class of generative model that adds noise to real data to train the score network and se-
quentially approximate the time-reversed process (Föllmer & Wakolbinger, 1986; Anderson, 1982)
to generate samples from the true data distribution. This model has shown remarkable empirical suc-
cess in numerous domains such as image generation (Song et al., 2021b;a), video generation (Luo
et al., 2023), medical data processing (Song et al., 2022; Chung & Ye, 2022; Akrout et al., 2023),
and audio generation (Kong et al., 2020).

However, “classical” diffusion models formulated on finite-dimensional Euclidean spaces limit their
applicability to function generation problems as they can only generate function values realized on a
fixed discretization of the function’s domain (Li et al., 2020) and cannot capture functional properties
of a data such as integrability or smoothness (Kerrigan et al., 2023). Motivated by such a limita-
tion of finite-dimensional models, there has been a line of works extending the finite-dimensional
diffusion model to infinite-dimensional Hilbert spaces; for instance, Hagemann et al. (2023); Ker-
rigan et al. (2023); Lim et al. (2023a;b); Pidstrigach et al. (2023); Phillips et al. (2022); Baldas-
sari et al. (2023). Kerrigan et al. (2023) proposes a discrete-time model that serves as an analog
of Ho et al. (2020) in infinite-dimensional space, and Hagemann et al. (2023) introduces a finite-
dimensional approximation of an infinite-dimensional SDEs and utilizes the time-reversal formula
in finite-dimensional spaces. Lim et al. (2023a); Franzese et al. (2023); Pidstrigach et al. (2023)
propose continuous-time models by extending the SDE framework of Song et al. (2021b) to infinite
dimensions based on semigroup theory (ref. Da Prato & Zabczyk (2014)); however, their consid-
eration is limited to a relatively simple class of SDEs, such as Langevin type SDE or SDEs with
constant-time diffusion coefficients. Later, Lim et al. (2023b) proved a general form of time-reversal
formula which encompasses various choices of SDEs such as VPSDE, VESDE, sub-VPSDE (Song
et al., 2021b) and variance scheduling (Nichol & Dhariwal, 2021), by exploiting more advanced
mathematical machinery, e.g., variational approach and functional derivatives (ref. Krylov & Ro-
zovskii (2007); Bogachev & Mayer-Wolf (1999)).
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Research works mentioned above are primarily focused on the training of diffusion models, i.e., they
aim to implement a mathematical framework in which the score-matching objective (Sohl-Dickstein
et al., 2015; Vincent, 2011) and time reversal (Föllmer & Wakolbinger, 1986; Millet et al., 1989) of
the noising process are possible. Although the “SDE” component and the “score-matching” com-
ponent of the finite-dimensional diffusion model have been transferred to infinite dimensions, the
existence of an infinite dimensional analog of probability-flow ODE (PF-ODE; Song et al. (2021b))
is still open. Indeed, PF-ODE has been crucial in the sampling process of diffusion models as it al-
lows for fast sampling (Chen et al., 2023; Lu et al., 2022b) and consistency modeling (Song et al.,
2023). In this work, we aim to accelerate the inference process of infinite-dimensional diffusion
models by extending the probability-flow ODE (Song et al., 2021b) to infinite-dimensional spaces.

Contributions. Our contributions are as follows:

• We derive in a mathematically rigorous manner the notion of probability-flow ODE (The-
orem 3.1) associated with a general class of stochastic differential equations (SDEs) in
infinite-dimensional spaces, including VPSDE, VESDE, sub-VPSDE (Song et al., 2021b)
and variance scheduling (Nichol & Dhariwal, 2021). We note that our infinite-dimensional
probability-flow ODE is widely applicable regardless of the specific formulation of the
infinite-dimensional diffusion model.

• We empirically demonstrate that sampling with PF-ODE achieves comparable or superior
generation quality to the previous SDE-based approach while requiring significantly fewer
number of function evaluations (NFEs) in both toy and real-world PDE problems.

2 PRELIMINARIES

2.1 PROBABILITY-FLOW ODE IN Rn

Let us consider the following stochastic differential equation in Rn (n <∞) over t ∈ [0, T ]:

dXt = f(t,Xt)dt+ σ(t)dBt, X0 ∼ p0 = pdata, (1)

where (Bt)t≥0 is a standard Brownian motion in Rn, f : [0, T ] × Rn → Rn is the drift term,
σ : [0, T ] → Matn(R) is the diffusion term, and p0 = pdata is the probability density of the target
data distribution. Closely related to this SDE is the so-called probability-flow ODE (PF-ODE; Song
et al. (2021b)):

dYt =

[
f(t, Yt)−

1

2
A(t)∇ log pt(Yt)

]
dt, Y0 ∼ p0,

where A(t) = σ(t)σ(t)⊺, and pt is the density of Xt. It is well-known that the solution for the
PF-ODE has the same density as Xt for each t (Song et al., 2021b, Appendix D.1). The derivation
of the PF-ODE heavily relies on the Fokker-Planck equation (ref. Øksendal (2003) for example),
a well-studied second-order PDE whose solution is (t, x) 7→ pt(x). In infinite-dimensional spaces,
however, one cannot utilize the probability density function in the analysis due to the lack of ref-
erence measure (ref. Lunardi et al. (2015), Proposition 2.2.1). Hence, a more careful treatment is
required for infinite-dimensional cases.

2.2 INFINITE-DIMENSIONAL ANALYSIS

Let H denote a real separable Hilbert space, and (Wt)t≥0 be a Q-Wiener process on H. Denote
by HQ the Cameron-Martin space (ref. Da Prato & Zabczyk (2014)) of N (0, Q). Let L2(H) be
the set of Hilbert-Schmidt operators on H, and let {φi} be an orthonormal basis of H that consists
of eigenvectors of Q corresponding to λi. We assume H is a function space over some set Ω ⊆
Rd (d <∞); for example, H = L2(Ω) or H =W 1,2(Ω).

Due to the lack of reference measure in H, we shall express the time evolution of a family of
probability measures in a weak sense; that is, we express the evolution of the dual pairings of a
probability measure and test functions. Below, we introduce the minimal background required for
this work; we refer the readers to Appendix A for a more detailed overview.
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Test functions. The class of cylindrical functions FC∞b (H) is defined as

FC∞b (H) =

{
x 7→ f(⟨φ1, x⟩ , · · · , ⟨φm, x⟩)

∣∣∣∣ m ∈ N, f ∈ C∞0 (Rm)

}
.

We write fφ1,··· ,φm(x) = f(⟨φ1, x⟩ , · · · , ⟨φm, x⟩) for x ∈ H. Here, C∞0 (Rm) is the space of
smooth functions on Rm that vanish at infinity, which serves as a canonical class of test functions
in usual finite-dimensional analysis.

Weak formulation. Let L be an operator such that Lψ : H → R is in L1(H, µ) for all ψ ∈
FC∞b (H). We say L∗µ = 0 if∫

H
Lfφ1,··· ,φm

(x)µ(dx) = 0, ∀fφ1,··· ,φm
∈ FC∞b (H).

In a similar manner, for a family of measures {νt}, we shall understand the equation L∗µ = ∂tνt in
a weak sense, i.e., we say L∗µ = ∂t νt if∫

H
Lfφ1,··· ,φm

(x)µ(dx) =
∂

∂t

∫
H
fφ1,··· ,φm

(x)νt(dx), ∀fφ1,··· ,φm
∈ FC∞b (H).

Logarithmic gradient. We say that a Borel probability measure µ is Fomin differentiable along
h ∈ HQ if there exists a function ρµh ∈ L1(H, µ) such that∫

H
∂hfφ1,··· ,φm(x)µ(dx) = −

∫
H
fφ1,··· ,φm(x)ρµh(x)µ(dx), ∀fφ1,··· ,φm ∈ FC∞b (H). (2)

Here, ∂hfφ1,··· ,φm
(x) denotes the Gâteaux differential of fφ1,··· ,φm

at x along h. If there exists a
function ρµK : H → H such that ⟨ρµK(x), h⟩K = ρµh(x) for every x ∈ H and h ∈ K, then we call ρµK
the logarithmic gradient of µ along K.

3 PROBABILITY-FLOW ODES IN FUNCTION SPACES

Let us consider an SDE in H given by
dXt = B(t,Xt)dt+G(t)dWt, X0 ∼ P0 = Pdata, (3)

where (Wt)t≥0 is a Q-Wiener process on H, B : [0, T ]×H → H and G : [0, T ] → L2(H) are pro-
gressively measurable, and P0 = Pdata is the probability measure from which X0 is sampled. Prior
works (Hagemann et al., 2023; Lim et al., 2023b;a; Pidstrigach et al., 2023) on infinite-dimensional
diffusion models directly implement Eqn. (3) and its time-reversal. On the other hand, in finite-
dimensional models, PF-ODE has played a crucial role in allowing for faster sampling (Lu et al.,
2022b) and recently, leading to consistency modeling (Song et al., 2023). Thus, it is only natural
to ask whether there is an infinite-dimensional version of the PF-ODE, which, to the best of our
knowledge, has not been tackled in the literature yet.

The usual approach of Song et al. (2021b) of deriving the PF-ODE fails in infinite-dimensions, as
there is no probability density function. Our main question in this section is as follows:

Is there an ODE in infinite-dimensional space with a random initial point Y0 ∼
P0 whose solution evolves like the solution of the original SDE (Eqn. (3))?

The answer is affirmative.

Consider the following family of operators {Lt}t∈(0,T ] defined by

Ltfφ1,··· ,φm
(u) =

1

2
TrHQ

(
A(t) ◦Q ◦D2fφ1,··· ,φm

(u)
)
+ ⟨Dfφ1,··· ,φm

(u), B(t, u)⟩HQ

for fφ1,··· ,φm
∈ FC∞b (H), where A(t) = G(t)G(t)∗ and D stands for the Fréchet derivative. It is

known (ref. Belopolskaya & Dalecky (2012), Chapter 5) that for the solution of Eqn. (3) denoted
Xt, the law µt = Law(Xt) satisfies the following Fokker-Planck-Kolmogorov equation∂tµt = (Lt)

∗µt, t ∈ (0, T ],

µt

∣∣∣
t=0

= P0.

Exploiting the preceding Fokker-Planck-Kolmogorov equation, we explicitly state the PF-ODE in
infinite-dimensional spaces as in the following theorem, whose proof is deferred to Appendix B:
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Theorem 3.1. Let Xt be a solution of Eqn. (3) and µt := Law(Xt). Then, µt satisfies the
Fokker-Planck-Kolmogorov equation of (Yt)t∈[0,T ], where (Yt)t∈[0,T ] is a solution of the following
probability-flow ODE in infinite-dimension:

dYt =

[
B(t, Yt)−

1

2
A(t)ρµt

HQ
(Yt)

]
dt, Y0 ∼ P0. (4)

Here, A(t) := G(t)G(t)∗ and ρµt

HQ
is the logarithmic gradient of µt along HQ.

4 EXPERIMENTS

In all experiments, we sample synthetic functions via our PF-ODE and the usual time-reversed SDE
in infinite-dimensional function spaces, where we employ the Euler’s method for the ODE and SDE
solving for each NFE. In Appendix C, we provide the missing implementation details.

4.1 1D FUNCTION GENERATION
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Figure 1: Power vs. NFE.

Setting. We use a synthetic dataset Quadratic con-
sisting of (noise-corrupted) functions of the form

f(x; a) = ax2 + ε,

where a ∼ Unif{−1, 1} and ε ∼ N (0, 1) are sampled
independently. These functions are evaluated at a fixed
grid x = np.linspace(-10, 10, 100). We uti-
lize the checkpoint trained on the Quadratic dataset
by Lim et al. (2023b). For the evaluation, we calculate
the power of kernel two-sample test with functional PCA
kernel (Wynne & Duncan (2022); lower power is better).
We consider the number of function evaluations (NFEs)
in the range of {10, 20, · · · , 100}.
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(c) ODE, NFE=35
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(d) SDE, NFE=5
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(f) SDE, NFE=35

Figure 2: Qualitative comparison of ODE- and SDE-generated samples in Quadratic dataset with
NFE∈{5, 20, 35}. Samples from the (Top) ODE solver and (Bottom) SDE solver.
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Discussions. Figure 1 quantitatively compares samples from the ODE and SDE solver, which
clearly shows that the ODE solver outperforms the SDE solver at every considered NFE. Remark-
ably, ODE solving with NFE=20 performs even better than SDE solving with any NFE. In Figure 2,
we show the samples generated via the ODE and SDE solving with NFE 5, 20, and 35 (with a fixed
seed). Qualitatively as well, it is clear that the ODE solver produces much better samples than the
SDE solver.

4.2 SYNTHETIC SOLUTION OF VARIOUS PDES

For the PDE tasks, we train an infinite-dimensional diffusion model via the score-matching objec-
tive. Then, we sample a synthetic solution for two well-studied PDE problems, namely, the diffusion-
reaction and the heat equation, via solving our PF-ODE and the usual SDE, respectively. We use the
same checkpoint during the inference via the ODE and SDE solving for a fair comparison.

4.2.1 DIFFUSION-REACTION EQUATION

Figure 3: Ground-truth solutions sam-
pled from PDEBench dataset.

Setting. We consider the diffusion-reaction equation of
the form

∂tu = D∆u+R,

where D is a diagonal matrix, and R is a function that ac-
counts for the diffusion of the system and the source term,
respectively. We utilize PDEBench dataset (Takamoto
et al., 2022), which consists of solutions to the pre-
ceding diffusion-reaction equation with varying D and
R. Figure 3 shows a batch of ground-truth solutions
for diffusion-reaction equation from PDEBench dataset.
We train an infinite-dimensional diffusion model with
resolution 64. During inference, we take various NFEs
∈ {10, 20, · · · , 100}. For a quantitative investigation,
we compute the sliced Wasserstein (SW) distance (Stein
et al., 2024) of synthetic samples (lower SW distance is
better) as in Hagemann et al. (2023).
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Figure 4: SW vs. NFE.

Discussions. Figure 4 shows the SW distance of sam-
ples with resolution 256, generated by SDE and ODE
solving at various NFEs∈ {10, 20, · · · , 100}. We note
that samples from the ODE solver show a lower SW dis-
tance than those from the SDE solver at every NFE. Fig-
ure 5 compares samples obtained from the ODE solver
and the SDE solver at NFE 10, 50, and 90, where each
samples are generated with the same fixed seed. Qual-
itatively, observe that the ODE samples across NFE
∈ {10, 50, 90} (Figure 5a, 5b, and 5c) are similar to
each other, while the SDE samples across the same NFEs
(Figure 5d, 5e, and 5f) show severe variations. This sug-
gests that sampling via our PF-ODE is much faster than
the SDE; for this specific example, running the ODE
solver with NFE=10 is sufficient, while much more is
required for the SDE solver.

4.2.2 HEAT EQUATION

Setting. We consider the heat equation on O = [−1, 1]2 with zero Neumann boundary condition:{
∂tu = β∆u on O,
u = 0 on ∂O.

Here, u : [0, T ] × O → R and β ∈ [2 × 10−3, 2 × 10−2] is a constant. It is well-known that the
preceding heat equation, given with initial condition as an additional datum, has a unique solution
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(a) ODE, NFE=10 (b) ODE, NFE=50 (c) ODE, NFE=90

(d) SDE, NFE=10 (e) SDE, NFE=50 (f) SDE, NFE=90

Figure 5: Qualitative comparison of ODE- and SDE-generated solutions for diffusion-reaction equa-
tion with NFE∈{10, 50, 90}. Samples from the (Top) ODE solver and (Bottom) SDE solver.

under mild regularity conditions (ref. Evans (2022)). Furthermore, the unique solution can be easily
numerically simulated, using numerical analytic techniques such as finite difference methods (Daw-
son et al., 1991). We generate a training dataset by randomly generating an initial condition f as
a mixture of sine functions (as in Zhou & Farimani (2024)), and then numerically solving the heat
equation with β = 0.05 and initial condition u(0, ·) = f . We train an (infinite-dimensional) diffu-
sion model with resolution 64. For a systematic comparison, we first generate synthetic solutions
uSynt via the ODE or SDE solver. Then, we numerically solve the preceding heat equation via the
finite-difference method with the initial condition given as uSynt(0, ·) to obtain a ground truth solu-
tion u⋆. This allows us to compute the Lp-distance ∥uSynt − u⋆∥Lp([0,T ]×O) between the synthetic
solution and corresponding ground truth solution with the same initial condition. In particular, we
measure their L2- and L∞-distances.

uODE

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 t = 1.2 t = 1.4 t = 1.6 t = 1.8

u?

Figure 6: uODE generated with NFE 10.

uSDE

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 t = 1.2 t = 1.4 t = 1.6 t = 1.8

u?

Figure 7: uSDE generated with NFE 10.
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Discussions. Figure 6 shows a synthetic solution generated from the ODE solver with NFE 10 (de-
noted uODE) and corresponding ground truth solution u⋆ with the same initial condition. Similarly,
Figure 7 compares a synthetic solution obtained from solving SDE with NFE 10 and the correspond-
ing ground truth solution. Notably, the solution generated by the ODE solver is much less noisy than
that generated by the SDE solver. Figure 8 shows the pixel-wise difference between a synthetic solu-
tion generated by the ODE solver and the SDE solver with the same NFE 10 and the corresponding
ground truth solution with the same initial solution, where samples are generated with resolution 64.

Sampling method ODE SDE

L2-distance (↓) 12.85± 1.44 15.58± 1.84

L∞-distance (↓) 1.31e-1± 9.83e-3 1.46e-1± 1.36e-2

Table 1: Comparison ofL2- andL∞-distance for samples
generated via the ODE and SDE solving with NFE 10.

From Figure 8, one can observe that the
solution generated from the ODE solver
is much more similar to the ground truth
than that of the SDE solver. From Ta-
ble 1, it is notable that samples generated
via the ODE solver with NFE 10 have
lower Lp-distances to the ground truth
solution u⋆ than those generated via the
SDE solver with the same NFE.

0

10−2

10−1

(a) |uODE(2, ·)− u⋆(2, ·)|

0

10−2

10−1

(b) |uSDE(2, ·)− u⋆(2, ·)|

Figure 8: Difference between a synthetic solution and the corresponding ground truth solution with
same initial condition. Samples are generated with NFE 10.

5 CONCLUSION AND FUTURE WORK

In this work, we derive a notion of probability-flow ODE (PF-ODE) in infinite-dimensional function
spaces with functional derivatives and measure-valued Fokker-Planck-Kolmogorov equation. By
utilizing our infinite-dimensional PF-ODE, we lower the NFEs without affecting the sample quality
in various function generation settings. We observe that in some examples, such as time-evolving
two-dimensional PDE problems, samples generated via our PF-ODE are of higher quality than those
generated via the SDE not only at low NFEs but also for overall NFEs.

Our newly derived infinite-dimensional PF-ODE opens up various avenues for future work in func-
tional diffusion models. First, we leave extending our work to faster solvers (Lu et al., 2022b) and
knowledge distillation (Song et al., 2023)) as future work. Also, a rigorous investigation into the
discretization error of infinite-dimensional diffusion models, both SDE and our PF-ODE, is another
fruitful direction. This direction may shed light on the effectiveness of our PF-ODE over SDE in
several function generation tasks, which we believe is because the ODE method only incurs a single
discretization error from the initial approximation of infinite-dimensional noise ξ ∼ N (0, Q); in
contrast, for the SDE method, repeated discretization error for ξ occurs.
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APPENDIX

Structure of the Appendix.

• In Appendix A, we introduce a minimal mathematical background required in this work.
Table 2 lists mathematical symbols and notations used throughout this work.

• In Appendix B, we provide a full proof of our main Theorem 3.1.
• In Appendix C, we provide details regarding the architecture and training of infinite-

dimensional diffusion model.

TABLE OF NOTATIONS

Symbol Description

T#µ Pushforward of a measure µ by a map T
X∗ Dual space of X
⟨x∗, x⟩ Dual pairing of x∗ ∈ X∗ and x ∈ X
µ̂ Characteristic function of a probability measure µ on X defined by

µ̂(h) =
∫
ei⟨h,x⟩µ(dx), h ∈ X∗.

⟨·, ·⟩H Inner product on a Hilbert space H
TrH Trace on a Hilbert space H
L2(H) The set of Hilbert-Schmidt operators on H
N (0, Q) Centered Gaussian measure in H with covariance operator Q
(Wt)t≥0 A Q-Wiener process in H
HQ The Cameron-Martin space of N (0, Q)
FC∞b (H) The set of all cylindrical functions on H
M(H) The set of all Borel measures on H
Lt Kolmogorov operator defined on FC∞b (H)
∂hf(x) Gâteaux differential of f at x along h
Df(x) Fréchet derivative of f at x
Law(X) Distribution (law) of a random variable X
ρµHQ

Logarithmic gradient of µ along HQ

∆ The Laplace operator
∇ The gradient operator

Table 2: Mathematical Symbols and Definitions

A MATHEMATICAL PRELIMINARIES

In this section, we provide a gentle introduction to the theory of Gaussian measures and stochastic
processes in infinite dimensional Hilbert spaces. Most of the content of this section can be found in
Da Prato & Zabczyk (2014), Bogachev (1998), Bogachev et al. (2022), Prévôt & Röckner (2007),
or Kuo (1975).

We introduce several notations and definitions here before introducing precise definitions of mathe-
matical objects we exploit in this research.

Pushforward measure. If (X,F) and (Y,G) are measurable spaces and T : X → Y is F/G-
measurable, then for any measure µ on (X,F) we define the pushforward measure T#µ by

(T#µ)(A) = µ(T−1(A)), ∀A ∈ G.

Duality and pairing. For a locally convex topological vector space X over k = R (or C), we
denote by X∗ the dual space of X , i.e.,

X∗ = {ℓ : X → k | ℓ is linear and continuous}.
For ℓ ∈ X∗ and x ∈ X we denote by ⟨ℓ, x⟩ the quantity ℓ(x).

13
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Characteristic function. If µ is a probability measure on (X,B(X)), we define the characteristic
function µ̂ of µ by

µ̂(h) =

∫
X

ei⟨h,x⟩µ(dx), ∀h ∈ X∗.

It is well known that if µ̂ = ν̂, then µ = ν (ref. Da Prato & Zabczyk (2014), Proposition 2.5).

A.1 GAUSSIAN MEASURES AND WIENER PROCESSES

A.1.1 GAUSSIAN MEASURES

Definition A.1. A Borel probability measure µ on a locally convex space X is called a Gaussian
measure if the pushforward measure h#µ is Gaussian for every h ∈ X∗. The measure µ is said to
be centered if h#µ is centered in R for every h ∈ X∗.

Theorem A.2 (ref. Bogachev (1998), Theorem 2.2.4). A measure µ on a locally convex space X is
Gaussian if and only if its characteristic function is of the form

µ̂(h) = exp

[
iL(h)− 1

2
B(h, h)

]
, ∀h ∈ X∗,

where L is a linear functional on X∗ and B is a symmetric, non-negative bilinear form on X∗.

From now on, we stick to the case where X = H is a separable Hilbert space. In this case, we may
identify H with H∗ via the Riesz representation. If µ is a Gaussian measure on H, we can find some
m ∈ H and a non-negative symmetric operator Q : H → H such that

µ̂(h) = exp

[
i⟨m,h⟩H − 1

2
⟨Qh, h⟩H

]
∀h ∈ H.

It is known that for every f, g ∈ H,

⟨m, f⟩H =

∫
H
⟨f, x⟩Hµ(dx)

⟨Qf, g⟩H =

∫
H
⟨f, x−m⟩H⟨g, x−m⟩Hµ(dx)

In other words, if Z is an H-valued random variable with Law(Z) = µ, then

m = E[Z], Q = Cov(Z).

We call m the mean vector and Q the covariance operator, and write µ = N (m,Q).

We end this subsection by providing a brief notes on Cameron-Martin space of a Gaussian mea-
sure. Although there are several equivalent definitions of Cameron-Martin space, we follow that of
Da Prato & Zabczyk (2014) as it can be presented without providing additional technical details.
Definition A.3. Let µ be a centered Gaussian measure on a locally convex space X . A linear
space Hµ ⊂ X equipped with an inner product is called a Cameron-Martin space of µ if Hµ is
continuously embedded in X and for every h ∈ X∗, one has that Law(φ) = N (0, |φ|2µ), where

|φ|µ = sup
h∈Hµ,∥h∥Hµ≤1

|φ(h)|.

For a Gaussian measure µ = N (0, Q), it is known that the Cameron-Martin space Hµ = HN (0,Q)

is given by

Hµ = Q1/2(H), ⟨f, g⟩Hµ = ⟨Q−1/2f,Q−1/2g⟩H.

We shall simply denote Hµ = HQ in this case. If {φi} is an orthonormal basis of the ambient
Hilbert space H, then {Q1/2φi} becomes an orthonormal basis for the Cameron-Martin space HQ.

14



Published at the ICLR 2025 DeLTa Workshop

A.1.2 WIENER PROCESSES

Definition A.4. LetQ be a trace class non-negative symmetric operator on H. An H-valued stochas-
tic process W = (Wt)t∈[0,T ] on a probability space (Ω,F ,P) is called a standard Q-Wiener pro-
cess, if

1. W (0) = 0,

2. W has continuous trajectories, i.e., W has P-continuous paths,

3. W has independent increments, i.e., for any n ∈ N and 0 < t1 < · · · < tn <∞,

Wt1 , Wt2 −Wt1 , · · · , Wtn −Wtn−1

are independent,

4. the increments have the following Gaussian laws:

P ◦ (Wt −Ws)
−1 := Law(Wt −Ws) = N (0, (t− s)Q)

for all 0 ≤ s ≤ t ≤ T .

In this work, Q always denote a trace class non-negative symmetric operator on H. Notice that
Q is diagonalizable, and in particular, there exists a sequence {φk}∞k=1 consists of eigenvectors
of Q and a sequence of non-negative real numbers {λk}∞k=1 such that Qφk = λkφk for all k =
1, 2, · · · (Conway, 2007, Chapter II). Based on this eigensystem of Q, one can express Q-Wiener
process as a series expansion. More precisely, one has the so-called Kosambi–Karhunen–Loève
Theorem (see Prévôt & Röckner (2007), for example):
Theorem A.5. A H-valued stochastic process W = (Wt)t≥0 is a Q-Wiener process if and only if

Wt =

∞∑
k=1

√
λkβ

k
t φk

where βk = (βk
t )t∈[0,T ] are independent real-valued Brownian motions on a probability space

(Ω,F ,P). The series converges in L2(Ω,F ,P;C([0, T ];U)). (Hence, there exists a P-a.s. contin-
uous version of W .)

A.2 FUNCTIONAL DERIVATIVES AND FOMIN DERIVATIVE

In this subsection, we introduce the notion of Fréchet and Gâteaux derivative (of functions H → R)
and Fomin derivative (of Borel measures on H). Contents of this section can be found in Helin &
Burger (2015) and Bogachev et al. (2022, Chapter 10), for example.

A.2.1 FUNCTIONAL DERIVATIVES

Let X and Y be locally convex spaces, and let U ⊂ X be open. For a function F : U → Y , the
Gâteaux differential of F along h ∈ X is defined by

∂hF (u) := lim
ε→0

F (u+ εh)− F (u)

ε
=

d

dε

∣∣∣∣
ε=0

F (u+ εh),

whenever the limit exists. If the limit exists for every h ∈ X , then F is called Gâteaux differentiable
at u.

In this paper, we stick to the cases where X = H and Y = R or Y = H. In these cases (or more
generally wheneverX and Y are normed spaces), there is another canonical notion of differentiabil-
ity called the Fréchet derivative. For a function F : X → Y (whereX and Y are normed spaces), we
say that F is Fréchet differentiable at x ∈ U if there is a bounded linear operator DF (x) : X → Y
such that

lim
∥h∥→0

∥F (x+ h)− F (x)−DF (x)h∥
∥h∥

= 0.
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The notion of Fréchet differentiability is stronger than that of Gâteaux differentiability in the sense
that whenever F is Fréchet differentiable at x ∈ X , then F is Gâteaux differentiable at x too, and
∂hF (x) = DF (x)(h). In particular, whenX = H and Y = R, then we can equivalently understand
the notion of Fréchet differentiability at x ∈ H as an existence of DF (x) ∈ H such that

lim
∥h∥→0

|F (x+ h)− F (x)− ⟨DF (x), h⟩H|
∥h∥

= 0,

via the Riesz isomorphism H ∼= H∗. If F : H → R is Fréchet differentiable at x, then its Gâteaux
differential along h ∈ H coincides with ⟨DF (x), h⟩.

A.2.2 FOMIN DERIVATIVE

In this subsection, we briefly introduce the notion of Fomin differentiability of measures, which is
developed by Fomin (1968). Although one can define the notion of Fomin differentiability for any
Borel probability measure µ on a locally convex space X , we will stick to the case where X = H
(and µ ∈ M(H)).

In an infinite dimensional space H, neither the natural notion of probability density function (p) nor
the notion of gradient (∇) exists. Still, a notion of the logarithmic gradient of probability measure µ
on H (that acts as ∇ log p) exists. We provide the formal definition below.
Definition A.6 (ref. Bogachev & Mayer-Wolf (1999)). Let µ be a (Borel) probability measure on
H, and let K ⊂ H be a densely embedded Hilbert space. We say µ is Fomin differentiable along
h ∈ K if there exists a function ρµh ∈ L1(µ) such that∫

H
∂hfφ1,··· ,φn

(x)µ(dx) = −
∫
H
fφ1,··· ,φn

(x)ρµh(x)µ(dx). (5)

If there exists a function ρµK : H → H such that ⟨ρµK(x), h⟩K = ρµh(x) for every x ∈ H and h ∈ K,
then we call ρµK the logarithmic gradient of µ along K.

It is well-known that µ is differentiable along h in the sense of Fomin if and only if the following
quantity

dhµ(A) = lim
ε→0

µ(A+ εh)− µ(A)

ε

exists for every Borel set A in H (ref. Helin & Burger (2015), Proposition 1). Because the zero
measure is the only measure on H which is Fomin differentiable along every vector in H (Bogachev
et al., 2022, p.406), it is a necessary treatment in the above Eqn. (5) to specify the set K ⊂ H.
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B PROOF OF THEOREM 3.1

This section provides a rigorous proof of our main theoretical result, Theorem 3.1, which we re-state
for the sake of convenience.
Theorem (Restatement of Theorem 3.1). Let Xt be a solution of an SDE in H of the form

dXt = B(t,Xt)dt+G(t)dWt, X0 ∼ P0 = Pdata

and let µt := Law(Xt). Then, µt satisfies the Fokker-Planck-Kolmogorov equation of (Yt)t∈[0,T ],
where (Yt)t∈[0,T ] is a solution of the following (infinite dimensional) probability-flow ODE

dYt =

[
B(t, Yt)−

1

2
A(t)ρµt

HQ
(Yt)

]
dt, Y0 ∼ P0. (6)

Here, A(t) := G(t)G(t)∗ and ρµt

HQ
is the logarithmic gradient of µt along the Cameron-Martin

space HQ of N (0, Q).

In the proof of Theorem 3.1, we slightly abuse notations and write φ(h) = ⟨φ, h⟩ in order to avoid
too many brackets in the presentation. Also, we utilize the dual pairing notation of a function and
a Borel (probability) measure: We write ⟨f, ν⟩ for f ∈ FC∞b (H) and ν ∈ M(H) to denote the
quantity

∫
H f(u)ν(du).

Proof of Theorem 3.1. View the probability-flow ODE (Eqn. (6)) as an SDE in H with no diffusion
term, and consider the associated Kolmogorov type operator L̃t, t ∈ [0, T ], defined as

L̃tfφ1,··· ,φm
(u) =

〈
Dfφ1,··· ,φm

(u), B(t, u)− 1

2
A(t)ρµt

HQ
(u)︸ ︷︷ ︸

=:G(t,u)

〉
HQ

, ∀fφ1,··· ,φm
∈ FC∞b (H),

where Dfφ1,··· ,φm
stands for the Fréchet derivative of fφ1,··· ,φm

. One has to check if the time-
evolution of µt = Law(Xt) can be described in terms of the Kolmogorov type operator L̃t. That is,
one has to check if µt satisfies

∂t⟨fφ1,··· ,φm , µt⟩ = ⟨L̃tfφ1,··· ,φm , µt⟩, ∀fφ1,··· ,φm ∈ FC∞b (H). (7)

By the definition of the Kolmogorov operator L̃t, one expands the left-hand side of Eqn. (7) as〈
L̃tfφ1,··· ,φm

, µt

〉
=

∫
H
⟨Dfφ1,··· ,φm

(u),G(t, u)⟩HQ
µt(du)

=

∫
H

[
⟨Dfφ1,··· ,φm

(u), B(t, u)⟩HQ
− 1

2

〈
Dfφ1,··· ,φm

(u), A(t)ρµt

HQ
(u)

〉
HQ

]
µt(du)︸ ︷︷ ︸

=:(I)

.

On the other hand, note that one already knows that {µt}t∈[0,T ] satisfies the Kolmogorov forward
equation for the original stochastic differential equation. That is, if we define

Ltfφ1,··· ,φm
(u) =

1

2
TrHQ

(
A(t) ◦Q ◦D2fφ1,··· ,φm

(u)
)
+ ⟨Dfφ1,··· ,φm

(u), B(t, u)⟩HQ

for fφ1,··· ,φm
∈ FC∞b (H), then the time-evolution of {µt}t∈[0,T ] can be expressed as the following

Cauchy problem in a weak sense (Belopolskaya & Dalecky, 2012):∂tµt = (Lt)
∗µt, t ∈ (0, T ),

µt

∣∣∣
t=0

= P0,
(8)

where (Lt)
∗ denotes the formal adjoint of Lt. From the forward equation (Eqn. (8)), one has that

∂t ⟨fφ1,··· ,φm
, µt⟩

=

∫
H

[
1

2
TrHQ

(
A(t) ◦Q ◦D2fφ1,··· ,φm(u)

)
+ ⟨Dfφ1,··· ,φm(u), B(t, u)⟩HQ

]
µt(du)︸ ︷︷ ︸

=:(II)

for every fφ1,··· ,φm ∈ FC∞b (H). Hence, in order to prove Eqn. (7), one has to check if (I) = (II).
To establish this result, it suffices to prove the following
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Claim: It holds that

−
∫
H

〈
Dfφ1,··· ,φm(u), A(t)ρµt

HQ
(u)

〉
HQ

µt(du)

(!)
=

∫
H
TrHQ

(
A(t) ◦Q ◦D2fφ1,··· ,φm

(u)
)
µt(du)

 . (9)

Before proving the preceding claim, we first establish an auxiliary result on the first- and second-
order Fréchet derivatives of cylindrical functions.

Lemma B.1. For fφ1,··· ,φm
∈ FC∞b (H), f ∈ C∞0 (Rm), its first- and second-order Fréchet deriva-

tives are given by

Dfφ1,··· ,φm
(u) =

m∑
i=1

(∂if)(⟨φ1, u⟩, · · · , ⟨φm, u⟩)φi,

D2fφ1,··· ,φm(u)(h) =

m∑
i,j=1

φi(∂
2
ijf)(⟨φ1, u⟩, · · · , ⟨φm, u⟩)⟨φj , h⟩, h ∈ H.

We then have

TrHQ

(
A(t) ◦Q ◦D2fφ1,··· ,φm

(u)
)

=

∞∑
ℓ=1

〈
A(t) ◦Q ◦D2fφ1,··· ,φm

(u)(Q1/2φℓ), Q
1/2φℓ

〉
HQ

=

∞∑
ℓ=1

〈
A(t) ◦Q ◦

 m∑
i,j=1

(∂2ijf)(φ1(u), · · · , φm(u))
〈
φj , Q

1/2φℓ

〉
H
φi

 , Q1/2φℓ

〉
HQ

(Lemma B.1)

=

m∑
i,j=1

(∂2ijf)(φ1(u), · · · , φm(u))

[ ∞∑
ℓ=1

〈
A(t) ◦Q(φi), Q

1/2φℓ

〉
HQ

〈
φj , Q

1/2φℓ

〉
H

]

=

m∑
i,j=1

(∂2ijf)(φ1(u), · · · , φm(u))

[ ∞∑
ℓ=1

〈
A(t) ◦Q(φi), Q

1/2φℓ

〉
HQ

〈
Q1/2φj , Q

1/2 ◦Q1/2φℓ

〉
HQ

]

=
m∑

i,j=1

(∂2ijf)(φ1(u), · · · , φm(u))

[ ∞∑
ℓ=1

〈
A(t) ◦Q(φi), Q

1/2φℓ

〉
HQ

〈
Qφj , Q

1/2φℓ

〉
HQ

]
(Q1/2 is self-adjoint)

=

m∑
i,j=1

(∂2ijf)(φ1(u), · · · , φm(u)) ⟨A(t) ◦Q(φi), Q(φj)⟩HQ

=

m∑
i=1

 m∑
j=1

∂j (∂if(φ1(u), · · · , φm(u))) ⟨A(t) ◦Q(φi), Q(φj)⟩HQ


=

m∑
i=1

〈
D(∂ifφ1,··· ,m)(u), A(t) ◦Q(φi)

〉
HQ

. (Definition of the Fréchet derivative)

Now, from the preceding chain of equalities, we write∫
H
TrHQ

(
A(t) ◦Q ◦D2fφ1,··· ,φm(u)

)
µt(du)

=

m∑
i=1

∫
H

〈
D(∂ifφ1,··· ,m)(u), A(t) ◦Q(φi)

〉
HQ

µt(du)

18
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=−
m∑
i=1

∫
H
∂ifφ1,··· ,φm

(u) ρµt

A(t)◦Q(φi)
(u)µt(du) (Integration-by-parts)

=−
m∑
i=1

∫
H
∂ifφ1,··· ,φm

(u)
〈
ρµt

HQ
(u), A(t) ◦Q(φi)

〉
HQ

µt(du)

(Definition of the logarithmic gradient)

=−
m∑
i=1

∫
H
∂ifφ1,··· ,φm

(u)
〈
A(t)ρµt

HQ
(u), Q(φi)

〉
HQ

µt(du),

which eventually proves the claim Eqn. (9), and hence the theorem.

Proof of Lemma B.1. From the linearity of inner product, note that

fφ1,··· ,φm(u+ h) = f(⟨φ1, u+ h⟩, · · · , ⟨φm, u+ h⟩)
= f(⟨φ1, u⟩+ ε1, · · · , ⟨φm, u⟩+ εm),

where εi = ⟨φi, h⟩. From the Cauchy-Schwwarz inequality, it is clear that εi → 0 as ∥h∥ → 0 for
each i = 1, 2, · · · ,m. Because f ∈ C∞0 (Rm) is smooth, it follows from the Taylor expansion of f
applied to the RHS of the preceding equality that

fφ1,··· ,φm
(u+ h)

=f(⟨φ1, u⟩, · · · , ⟨φm, u⟩) +
m∑
i=1

(∂if)(⟨φ1, u⟩, · · · , ⟨φm, u⟩)⟨φi, h⟩+ o(∥h∥).

Therefore, it follows that

∂hfφ1,··· ,φm
(u) =

m∑
i=1

(∂if)(⟨φ1, u⟩, · · · , ⟨φm, u⟩)⟨φi, h⟩.

Because ∂hfφ1,··· ,φm
(u) = ⟨Dfφ1,··· ,φm

(u), h⟩, we conclude that

Dfφ1,··· ,φm
(u) =

m∑
i=1

(∂if)(⟨φ1, u⟩, · · · , ⟨φm, u⟩)φi.

Repeating the same method, one observes that

Dfφ1,··· ,φm
(u+ h)

=Dfφ1,··· ,φm
(u) +

m∑
i,j=1

(∂2ijf)(⟨φ1, u⟩, · · · , ⟨φm, u⟩)φi⟨φj , h⟩+ o(∥h∥),

from which the second statement is deduced. This completes the proof.

19



Published at the ICLR 2025 DeLTa Workshop

C EXPERIMENTAL DETAILS

C.1 TRAINING AND SAMPLING

Training. We approximate ρµt

HQ
(u) via a Fourier neural operator Sθ(t, u) parametrized by θ. The

training of Sθ is done via the score-matching objective (Vincent, 2011; Sohl-Dickstein et al., 2015):

minimize
θ

L(θ) =
∫ T

0

E
X0∼P0

[
E

Xt∼µt|X0

[∥∥∥Sθ(t,Xt)− ρ
µt|X0

HQ
(Xt)

∥∥∥2]] ,
where µt|X0

is the conditional measure of Xt given X0. We use the variance-preserving SDE (Song
et al., 2021b) in H of the form

dX→t = −α(t)
2
X→t +

√
α(t)X→t dWt, X0 ∼ P0 = Pdata

where (Wt)t≥0 is a Q-Wiener process in H.

Sampling. Once Sθ is learned, we sample synthetic data by plugging in Sθ(T − t, Y←T−t) in place
of ρµTt

HQ
(Y←T−t) in our probability-flow ODE (Theorem 3.1) as

dY←T−t =
α(T − t)

2

[
Y←T−t + ρ

µT−t

HQ
(Y←T−t)

]
dt, Y0 ∼ N (0, Q), (10)

and run the following plug-and-play ODE

dY←T−t =
α(T − t)

2

[
Y←T−t + Sθ(T − t, Y←T−t)

]
dt, Y0 ∼ N (0, Q). (11)

In every example in this work, we utilize Euler’s method to solve the preceding plug-and-play ODE
(Eqn. (11)).

C.2 APPROXIMATION OF N (0, Q)

1D (Quadratic) function generation. For one-dimensional function generation task, we let
k(·, ·) : [a, b] × [a, b] → R be a positive-definite kernel. We let Q be the integral operator on
L2([a, b]) corresponding to k. Let D = {x1, · · · , xN} be the fixed grid where functions are eval-
uated. Define the Gram matrix K ∈ MatN (R) by Kij = k(xi, xj), and let K = ΦDΦ⊺ be the
eigen-decomposition of K. As in Baker & Taylor (1979); Phillips et al. (2022); Lim et al. (2023b),
we generate a random noise W ∼ N (0, Q) by

W = ZD1/2Φ⊺, Z ∼ N (0, idN ).

We choose our k to be the Gaussian RBF kernel of the form

k(x1, x2) = gain e−|x1−x2|2/len2

, x1, x2 ∈ [a, b].

The hyperparameters gain and len are called the gain parameter and the length parameter, respec-
tively.

PDE problems. For PDE solution generation tasks (reaction-diffusion equation and time-evolving
heat equation), we use the Bessel prior N (0, (γ − ∆)−s), which is introduced in Hagemann et al.
(2023), as our noise N (0, Q) in the ambient Hilbert space H. Sampling from N (0, (γ − ∆)−s) is
done by computing

W = FFT−1
(
λ(γ −∆)−s/2) ⊙ FFT(Z)

)
, Z ∼ N (0, idN2),

where λ((γ − ∆)−s/2) is the vector whose entries consist of eigenvalues of (γ − ∆)−s/2, N is
the resolution of samples, ⊙ denotes the entry-wise product, and FFT and FFT−1 denotes the Fast
Fourier Transform and its inverse transform, respectively. The hyperparameter γ > 0 is called the
scale parameter, and s > 0 is called the power parameter.
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C.3 IMPLEMENTATIONAL DETAILS

In this subsection, we provide details regarding the architecture and training details of the infinite-
dimensional diffusion models used in our experiments.

1D (Quadratic) function generation. For the one-dimensional (Quadratic) function genera-
tion task, we use a modified version of Fourier Neural Operator (Li et al., 2020) that is proposed
in Lim et al. (2023b). Here, we use the pre-trained checkpoint by Lim et al. (2023b) without ad-
ditional training1. Table 3 lists up detailed architectural design used in the 1D function generation
experiment.

Table 3: Architectural details for 1D (Quadratic) function generation

Architecture Base channels 256
# of ResBlocks per stage 4
Lifting channels 256
Projection channels 256
# of modes [100]
Activation function Gelu
Normalization GroupNorm

Diffusion Noise schedule Cosine
# timesteps 1000
log(α2

0/σ
2
0) 10

log(α2
1/σ

2
1) -10

Length parameter 0.8
Gain parameter 1.0

2D Reaction-diffusion equation. For the two-dimensional reaction-diffusion equation problem,
we use a two-dimensional Fourier Neural Operator. We follow the architectural detail used in Hage-
mann et al. (2023)2, which is based on the official implementation of Neural Operators (Kovachki
et al., 2021; Kossaifi et al., 2024)3. Table 4 lists up detailed architectural design used in the reaction-
diffusion equation experiment.

Table 4: Implementational details for 2D (reaction-diffusion) experiment

Architecture Base channels 32
# of ResBlocks per stage 4
Lifting channels 32
Projection channels 128
# of modes [12, 12]
Activation function Gelu
Normalization None

Diffusion Noise schedule Cosine
# timesteps 1000
log(α2

0/σ
2
0) 10

log(α2
1/σ

2
1) -10

Scale parameter 8
Power parameter 0.55

Training Optimizer Adam, β1 = 0.9, β2 = 0.999
Learning rate 0.001
# epochs 200
Batch size 8

1Official code repository: https://github.com/KU-LIM-Lab/hdm-official/
2Official code repository: https://github.com/PaulLyonel/multilevelDiff/
3Official code repository: https://github.com/neuraloperator/neuraloperator/
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2D Heat equation. For the two-dimensional heat equation, we discretize time-evolving solutions
of the heat equation on a three-dimensional domain: two dimensions for spacial and one for time.
We use a three-dimensional Fourier Neural Operator (Li et al., 2020; Kovachki et al., 2021; Kos-
saifi et al., 2024). Table 5 lists up implementational details used in the time-evolving heat equation
experiment.

Table 5: Implementational details for time-evolving heat equation experiment

Architecture Base channels 32
# of ResBlocks per stage 4
Lifting channels 32
Projection channels 128
# of modes [12, 12, 12]
Activation function Gelu
Normalization None

Diffusion Noise schedule Cosine
# timesteps 1000
log(α2

0/σ
2
0) 10

log(α2
1/σ

2
1) -10

Scale parameter 8
Power parameter 0.55

Training Optimizer Adam, β1 = 0.9, β2 = 0.999
Learning rate 0.001
# epochs 200
Batch size 4
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