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ABSTRACT

Knowledge distillation, in which a student model is trained to mimic a teacher
model, has been proved as an effective technique for model compression and
model accuracy boosting. However, most knowledge distillation methods, de-
signed for image classification, have failed on more challenging tasks, such as ob-
ject detection. In this paper, we suggest that the failure of knowledge distillation
on object detection is mainly caused by two reasons: (1) the imbalance between
pixels of foreground and background and (2) lack of distillation on the relation be-
tween different pixels. Observing the above reasons, we propose attention-guided
distillation and non-local distillation to address the two problems, respectively.
Attention-guided distillation is proposed to find the crucial pixels of foreground
objects with attention mechanism and then make the students take more effort
to learn their features. Non-local distillation is proposed to enable students to
learn not only the feature of an individual pixel but also the relation between dif-
ferent pixels captured by non-local modules. Experiments show that our meth-
ods achieve excellent AP improvements on both one-stage and two-stage, both
anchor-based and anchor-free detectors. For example, Faster RCNN (ResNet101
backbone) with our distillation achieves 43.9 AP on COCO2017, which is 4.1
higher than the baseline. Codes have been released on Github†.

1 INTRODUCTION
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Figure 1: Results overview.

Recently, excellent breakthrough in various domains has
been achieved with the success of deep learning (Ron-
neberger et al., 2015; Devlin et al., 2018; Ren et al.,
2015). However, the most advanced deep neural net-
works always consume a large amount of computa-
tion and memory, which has limited their deployment
in edge devices such as self-driving cars and mobile
phones. To address this problem, abundant techniques
are proposed, including pruning (Han et al., 2016;
Zhang et al., 2018; Liu et al., 2018; Frankle & Carbin,
2018), quantization (Nagel et al., 2019; Zhou et al.,
2017), compact model design (Sandler et al., 2018;
Howard et al., 2019; Ma et al., 2018; Iandola et al.,
2016) and knowledge distillation (Hinton et al., 2014;
Buciluǎ et al., 2006). Knowledge distillation, which is
also known as teacher-student learning, aims to trans-
fer the knowledge of an over-parameterized teacher to a
lightweight student. Since the student is trained to mimic the logits or features of the teacher, the
student can inherit the dark knowledge from the teacher, and thus often achieves much higher accu-
racy. Due to its simplicity and effectiveness, knowledge distillation has become a popular technique
for both model compression and model accuracy boosting.
∗Corresponding author
†https://github.com/ArchipLab-LinfengZhang/Object-Detection-Knowledge-Distillation-ICLR2021
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As one of the most crucial challenges in computer vision, object detection has an urgent requirement
of both accurate and efficient models. Unfortunately, most of the existing knowledge distillation
methods in computer vision are designed for image classification and usually leads to trivial im-
provements on object detection (Li et al., 2017). In this paper, we impute the failure of knowledge
distillation on object detection to the following two issues, which will be solved later, respectively.

Imbalance between foreground and background. In an image to be detected, the background
pixels are often more overwhelming than the pixels of the foreground objects. However, in previous
knowledge distillation, the student is always trained to mimic the features of all pixels with the same
priority. As a result, students have paid most of their attention to learning background pixels features,
which suppresses student’s learning on features of the foreground objects. Since foreground pixels
are more crucial in detection, the imbalance hurts the performance of knowledge distillation severely.
To overcome this obstacle, we propose the attention-guided distillation which distills only the crucial
foreground pixels. Since the attention map can reflect the position of the important pixels (Zhou
et al., 2016), we adopt the attention map as the mask for knowledge distillation. Concretely, the pixel
with a higher attention value is regarded as a pixel of a foreground object and then is learned by the
student model with a higher priority. Compared with the previous binary mask method (Wang et al.,
2019), the mask generated by attention maps in our methods is more fine-grained and requires no
additional supervision. Compared with the previous attention-based distillation methods (Zagoruyko
& Komodakis, 2017), the attention map in our methods is not only utilized as the information to be
distilled but also utilized as the mask signal for feature distillation.

Lack of distillation on relation information. It is generally acknowledged that the relation between
different objects contains valuable information in object detection. Recently, lots of researchers suc-
cessfully improve the performance of detectors by enabling detectors to capture and make use of
these relations, such as non-local modules (Wang et al., 2018) and relation networks (Hu et al.,
2018). However, the existing object detection knowledge distillation methods only distill the infor-
mation of individual pixels but ignore the relation of different pixels. To solve this issue, we propose
the non-local distillation, which aims to capture the relation information of students and teachers
with non-local modules and then distill them from teachers to students.

Since the non-local modules and attention mechanism in our methods are only required in the train-
ing period, our methods don’t introduce additional computation and parameters in the inference
period. Besides, our methods are feature-based distillation methods which do not depend on a
specific detection algorithm so they can be directly utilized in all kinds of detectors without any
modification. On MS COCO2017, 2.9, 2.9 and 2.2 AP improvements can be observed on two-stage,
one-stage, and anchor-free models on average, respectively. Experiments on Mask RCNN show that
our methods can also improve the performance of instance segmentation by 2.0 AP, on average. We
have conducted a detailed ablation study and sensitivity study to show the effectiveness and stability
of each distillation loss. Moreover, we study the relation between teachers and students on object
detection and find that knowledge distillation on object detection requires a high AP teacher, which
is different from the conclusion in image classification where a high AP teacher may harm the per-
formance of students (Mirzadeh et al., 2019; Cho & Hariharan, 2019). We hope that these results
are worth more contemplation of knowledge distillation on tasks except for image classification. To
sum up, the contribution of this paper can be summarized as follows.

• We propose the attention-guided distillation, which emphasizes students’ learning on the
foreground objects and suppresses students’ learning on the background pixels.

• We propose the non-local distillation, which enables the students to learn not only the infor-
mation of the individual pixel but also the relation between different pixels from teachers.

• We show that a teacher with higher AP is usually a better teacher in knowledge distillation
on object detection, which is different from the conclusion in image classification.

2 RELATED WORK

As an effective method for model compression and model accuracy boosting, knowledge distillation
has been widely utilized in various domains and tasks, including image classification (Hinton et al.,
2014; Romero et al., 2015; Zagoruyko & Komodakis, 2017), object detection (Chen et al., 2017; Li
et al., 2017; Wang et al., 2019; Bajestani & Yang, 2020), semantic segmentation (Liu et al., 2019),
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Figure 2: Details of our methods: (a) Attention-guided distillation generates the spatial and channel
attention with average pooling in the channel and spatial dimension, respectively. Then, students
are encouraged to mimic the attention of teachers. Besides, students are also trained to mimic
the feature of teachers, which is masked by the attention of both students and teachers. (b) Non-
local distillation captures the relation of pixels in an image with non-local modules. The relation
information of teachers is learned by students with L2 norm loss. (c) The architecture of non-local
modules. ‘1x1’ is convolution layer with 1x1 kernel. (d) Distillation loss is applied to backbone
features with different resolutions. The detection head and neck are not involved in our methods.

face recognition (Ge et al., 2018), pretrained language model (Sanh et al., 2019; Xu et al., 2020),
multi-exit networks training (Zhang et al., 2019b;a), model robustness (Zhang et al., 2020b) and
so on. Hinton et al. (2014) first propose the concept of knowledge distillation where the students
are trained to mimic the results after softmax layers of teachers. Then, abundant methods are pro-
posed to transfer the knowledge in teacher’s features (Romero et al., 2015) or the variants, such as
attention (Zagoruyko & Komodakis, 2017; Hou et al., 2019), FSP (Yim et al., 2017), mutual infor-
mation (Ahn et al., 2019), positive features (Heo et al., 2019), relation of samples in a batch (Park
et al., 2019; Tung & Mori, 2019).

Image Our Method Wang et al.’s Method

Figure 3: Comparison between the proposed
attention-guided distillation and other methods.

Improving the performance of object detection
becomes a hot topic in knowledge distillation
recently. Chen et al. (2017) design the first
knowledge distillation method on object de-
tection, which includes distillation loss on the
backbone, the classification head and the re-
gression head. Then, many researchers find that
the imbalance between the foreground objects
and background is a crucial problem in detec-
tion distillation. Instead of distilling the whole
features of backbone networks, Li et al. (2017)
only apply L2 distillation loss to the features
sampled by RPN. Bajestani & Yang (2020) propose the temporal knowledge distillation, which
introduces a hyper-parameter to balance the distillation loss between the pixels of the foreground
and background. Wang et al. (2019) propose the fine-grained feature imitation, which only distills
the feature near object anchor locations. However, although these works have tried to distill only
the pixels of foreground objects, they always reply on the annotation in groundtruth, anchors, and
bounding boxes and thus can not be transferred to different kinds of detectors and tasks. In contrast,
in our method, the pixels of foreground objects are found with attention mechanism, which can be
easily generated from features. As a result, it can be directly utilized in all kinds of detectors without
any modification. As shown in Figure 3, the difference between the previous mask-based detection
distillation method (Wang et al., 2019) and our attention-guided distillation can be summarized as
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follows (i) Our methods generate the mask with attention mechanism while they generate the mask
with ground truth bounding boxes and anchor priors. (ii) The mask in our methods is a pixel-wise
and fine-grained mask while the mask in their method is an object-wise and binary mask. (iii) The
masks in our methods are composed of a spatial mask and a channel mask while they only have a
spatial mask. More detailed comparison with related work can be found in Appendix.E.

3 METHODOLOGY

3.1 ATTENTION-GUIDED DISTILLATION

We use A ∈ RC,H,W to denote the feature of the backbone in an object detection model, where
C,H,W denotes its channel number, height and width, respectively. Then, the generation of
the spatial attention map and channel attention map is equivalent to finding the mapping function
Gs : RC,H,W −→ RH,W and Gc : RC,H,W −→ RC , respectively. Note that the superscripts s and c
here are utilized to discriminate ‘spatial’ and ‘channel’. Since the absolute value of each element in
the feature implies its importance, we construct Gs by summing the absolute values across the chan-
nel dimension and construct Gc by summing the absolute values across the width and height dimen-
sion, which can be formulated as Gc(A) = 1

HW

∑i=1
H

∑j=1
W |A·,i,j | and Gs(A) = 1

C

∑k=1
C |Ak,·,·|,

where i, j, k denotes the ith, jth, kth slice of A in the height, width, and channel dimension, respec-
tively. Then, the spatial attention mask Ms and the channel attention mask M c used in attention-
guided distillation can be obtained by summing the attention maps from the teacher and the stu-
dent detector, which can be formulated as Ms = HW · softmax((Gs(AS) + Gs(AT ))/T ),M c =
C · softmax((Gc(AS) + Gc(AT ))/T ). Note that the superscripts S and T here are used to discrimi-
nate students and teachers. T is a hyper-parameter in softmax introduced by Hinton et al. to adjust
the distribution of elements in attention masks (see Figure 4). The attention-guided distillation loss
LAGD is composed of two components – attention transfer loss LAT and attention-masked loss
LAM . LAT is utilized to encourage the student model to mimic the spatial and channel attention of
the teacher model, which can be formulated as

LAT = L2(Gs(AS),Gs(AT )) + L2(Gc(AS),Gc(AT )). (1)

LAM is utilized to encourage the student to mimic the features of teacher models by a L2 norm loss
masked by Ms and M c, which can be formulated as

LAM =

 C∑
k=1

H∑
i=1

W∑
j=1

(ATk,i,j −ASk,i,j)2 ·Ms
i,j ·M c

k

 1
2

. (2)

3.2 NON-LOCAL DISTILLATION

Non-local module (Wang et al., 2018) is an effective method to improve the performance of neu-
ral networks by capturing the global relation information. In this paper, we apply non-local
modules to capture the relation between pixels in an image, which can be formulated as ri,j =

1
WH

∑i
′
=1

H

∑j
′
=1

W f(A·,i,j , A·,i′ ,j′ )g(A·,i′ ,j′ ), where r denotes the obtained relation information.
i, j are the spatial indexes of an output position whose response is to be computed. i

′
, j

′
are the spa-

tial indexes that enumerates all possible positions. f is a pairwise function for computing the relation
of two pixels and g is an unary function for computing the representation of an individual pixel. Now,
we can introduce the proposed non-local distillation loss LNLD as the L2 loss between the relation
information of the students and teachers, which can be formulated as LNLD = L2(r

S , rT ).

3.3 OVERALL LOSS FUNCTION

We introduce three hyper-parameters α, β, γ to balance different distillation loss in our methods.
The overall distillation loss can be formulated as

LDistill(A
T , AS) = α · LAT + β · LAM︸ ︷︷ ︸

Attention-guided distillation

+ γ · LNLD.︸ ︷︷ ︸
Non-local distillation

(3)

4



Published as a conference paper at ICLR 2021

Image Spatial Attention (T=0.25) Spatial Attention (T=0.50) Spatial Attention (T=0.75) Spatial Attention (T=1.00)

3 4 5 6 7 8 9 10
0

2

4

6

8

10
T=0.25
T=0.50
T=0.75
T=1.00

F
re

q
u
en

cy

Attention Value

Distribution of Attention Value

F
re

q
u
en

cy

0.0 0.5 1.0 1.5 2.0 2.5
0

100

200

300
T=0.25
T=0.50
T=0.75
T=1.00

Figure 4: Visualization and distribution of the spatial attention with different T . With a smaller T ,
the pixels of high attention values are emphasized more in knowledge distillation.

The overall distillation loss is a model-agnostic loss, which can be added to the original training
loss of any detection model directly. The sensitivity study of each hyper-parameter and the ablation
study of each loss are shown in Figure 5 and Table 4, respectively.

4 EXPERIMENT

4.1 EXPERIMENTS SETTINGS

The proposed knowledge distillation method is evaluated on MS COCO2017, which is a large-scale
dataset that contains over 120k images spanning 80 categories (Lin et al., 2014). The benchmark
detection networks are composed of both two-stage detection models, including Faster RCNN (Ren
et al., 2015), Cascade RCNN (Cai & Vasconcelos, 2019), Dynamic RCNN (Zhang et al., 2020a),
Grid RCNN (Lu et al., 2019) and one-stage detection models, including the RetinaNet (Lin et al.,
2017), Fsaf RetinaNet (Zhu et al., 2019). Besides, we also evaluate our methods on the Mask
RCNN(He et al., 2017), Cascade Mask RCNN (Cai & Vasconcelos, 2019), and anchor-free models
- RepPoints (Yang et al., 2019). We adopt the ResNet50 and ResNet101 (He et al., 2016) as the
backbone network of each detection model. We pre-train the backbone model on ImageNet (Deng
et al., 2009) and then finetune it on MS COCO2017. We have compared our methods with three
kinds of object detection knowledge distillation methods (Chen et al., 2017; Wang et al., 2019; Heo
et al., 2019). All the experiments in this paper are implemented with PyTorch (Paszke et al., 2019)
with mmdetection2 framework (Chen et al., 2019). The reported fps is measured on one RTX 2080Ti
GPU. We adopt the same hyper-parameters settings {α = γ = 7× 10−5, β = 4× 10−3, T = 0.1}
for all the two-stage models and {α = γ = 4 × 10−4, β = 2 × 10−2, T = 0.5} for all the one-
stage models. Cascade Mask RCNN with ResNeXt101 backbone is utilized as the teacher for all the
two-stage students and RetinaNet with ResNeXt101 backbone is utilized as the teacher for all the
one-stage students. Please refer to the codes in Github for more details.

4.2 EXPERIMENT RESULTS

In this section, we show the experiment results of the baseline detectors and our models in Table 1
and Table 2, and compare our methods with other three knowledge distillation methods in Table 3.
It is observed that: (i) Consistent and significant AP boost can be observed on all the 9 kinds of
detectors. On average, there are 2.9, 2.9, and 2.2 AP improvements on the two-stage, one-stage, and
anchor-free detectors, respectively. (ii) With the proposed method, a student model with ResNet50
backbone can outperform the same model with ResNet101 backbone by 1.2 AP on average. (iii) On
Mask RCNN related models, there are 2.3 improvements on bounding box AP and 2.0 improvements
on mask AP on average respectively, indicating the proposed method can be utilized in not only
object detection but also instance segmentation. (iv) Our methods achieve 2.2 higher AP than the
second-best distillation method, on average. (v) There are 2.7 and 2.9 AP improvements on models
with ResNet50 and ResNet101 backbones, respectively, indicating that deeper detectors benefit more
from knowledge distillation.
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Table 1: Experiments on MS COCO2017 with the proposed distillation method.
Model Backbone AP AP50 AP75 APS APM APL FPS Params

Faster RCNN ResNet50 38.4 59.0 42.0 21.5 42.1 50.3 18.1 43.57
Our Faster RCNN ResNet50 41.5 62.2 45.1 23.5 45.0 55.3 18.1 43.57
Faster RCNN ResNet101 39.8 60.1 43.3 22.5 43.6 52.8 14.2 62.57
Our Faster RCNN ResNet101 43.9 64.2 48.1 25.3 48.0 58.7 14.2 62.57

Cascade RCNN ResNet50 41.0 59.4 44.4 22.7 44.4 54.3 15.4 71.22
Our Cascade RCNN ResNet50 44.4 62.7 48.3 24.8 48.0 59.3 15.4 71.22
Cascade RCNN ResNet101 42.5 60.7 46.4 23.5 46.5 56.4 11.7 90.21
Our Cascade RCNN ResNet101 45.2 63.5 49.4 26.2 48.7 60.8 11.7 90.21

Dynamic RCNN ResNet50 39.8 58.3 43.2 23.0 42.8 52.4 18.1 43.57
Our Dynamic RCNN ResNet50 42.8 61.2 47.0 23.9 46.2 57.7 18.1 43.57
Dynamic RCNN ResNet101 41.2 59.7 45.3 24.0 44.9 54.3 14.2 62.57
Our Dynamic RCNN ResNet101 44.8 63.0 48.9 25.0 48.9 60.4 14.2 62.57

Grid RCNN ResNet50 40.4 58.4 43.6 22.8 43.9 53.3 14.0 66.37
Our Grid RCNN ResNet50 42.6 61.1 46.1 24.2 46.6 55.8 14.0 66.37
Grid RCNN ResNet101 41.6 59.8 45.0 23.7 45.7 54.7 11.0 85.36
Our Grid RCNN ResNet101 44.8 63.6 48.9 26.5 48.9 59.6 11.0 85.36

RetinaNet ResNet50 37.4 56.7 39.6 20.0 40.7 49.7 17.7 37.74
Our RetinaNet ResNet50 39.6 58.8 42.1 22.7 43.3 52.5 17.7 37.74
RetinaNet ResNet101 38.9 58.0 41.5 21.0 42.8 52.4 13.5 56.74
Our RetinaNet ResNet101 41.3 60.8 44.3 22.7 46.0 55.2 13.5 56.74

Fsaf RetinaNet ResNet50 37.8 56.8 39.8 20.4 41.1 48.8 20.0 36.19
Our Fsaf RetinaNet ResNet50 41.4 61.0 44.2 23.1 45.2 55.2 20.0 36.19
Fsaf RetinaNet ResNet101 39.3 58.6 42.1 22.1 43.4 51.2 15.0 55.19
Our Fsaf RetinaNet ResNet101 42.6 62.0 45.5 24.5 47.0 56.2 15.0 55.19

RepPoints ResNet50 38.6 59.6 41.6 22.5 42.2 50.4 18.2 36.62
Our RepPoints ResNet50 40.6 61.7 43.8 23.4 44.6 53.0 18.2 36.62
RepPoints ResNet101 40.5 61.3 43.5 23.4 44.7 53.2 13.2 55.62
Our RepPoints ResNet101 42.7 63.7 46.4 24.9 47.2 56.4 13.2 55.62

Table 2: Experiments on MS COCO2017 with the proposed distillation method on Mask RCNN.

Model Backbone Bounding box AP Mask AP
AP APS APM APL AP APS APM APL

Mask RCNN ResNet50 39.2 22.9 42.6 51.2 35.4 19.1 38.6 48.4
Our mask RCNN ResNet50 41.7 23.4 45.3 55.8 37.4 19.7 40.5 52.1
Mask RCNN ResNet101 40.8 23.0 45.0 54.1 36.6 19.2 40.2 50.5
Our Mask RCNN ResNet101 43.0 24.7 47.2 57.1 38.7 20.7 42.3 53.3

Cascade Mask RCNN ResNet50 41.9 23.2 44.9 55.9 36.5 18.9 39.2 50.7
Our Cascade Mask RCNN ResNet50 43.8 24.9 47.2 58.4 38.0 20.2 40.9 52.8
Cascade Mask RCNN ResNet101 42.9 24.4 46.5 57.0 37.3 19.7 40.6 51.5
Our Cascade Mask RCNN ResNet101 45.4 26.3 49.0 60.9 39.6 21.3 42.8 55.0

4.3 ABLATION STUDY AND SENSITIVITY STUDY

Ablation study. Table 4 shows the ablation study of the proposed attention-guided distillation (LAT

and LAM ) and non-local distillation (LNLD). It is observed that: (i) Attention-guided distillation
and non-local distillation lead to 2.8 and 1.4 AP improvements, respectively. (ii) LAT and LAM

lead to 1.2 and 2.4 AP improvements respectively, indicating that most of the benefits of attention-
guided distillation are obtained from the feature loss masked by the attention maps (LAM ). (iii)
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There are 3.1 AP improvements with the combination of attention-guided distillation and non-local
distillation. These observations indicate that each distillation loss in our methods has their individual
effectiveness and they can be utilized together to achieve better performance. We also give an
ablation study to the spatial and channel attention in Appendix A.

Sensitivity study on hyper-parameters. Four hyper-parameters are introduced in this paper. α,
β, and γ are utilized to balance the magnitude of different distillation loss and T is utilized to
adjust the distribution of attention masks. The hyper-parameter sensitivity study on MS COCO2017
with Faster RCNN (ResNet50 backbone) is introduced in Figure 5. It is observed that the worst
hyper-parameters only lead to 0.3 AP drop compared with the highest AP, which is still 2.9 higher
compared with the baseline model, indicating that our methods are not sensitive to the choice of
hyper-parameters.

Sensitivity study on the types of non-local modules. There are four kinds of non-local modules,
including Gaussian, embedded Gaussian, dot production, and concatenation. Table 5 shows the
performance of our methods with different types of non-local modules. It is observed that the worst
non-local type (Gaussian) is only 0.2 AP lower than the best non-local type (Embedded Gaussian
and Concatenation), indicating our methods are not sensitive to the choice of non-local modules.

Table 3: Comparison between our methods and other distillation methods. Note that we don’t
compare our methods with Chen’s and Wang’s methods on RetinaNet because their methods can not
be utilized in one-stage models. ResNet50 is utilized as backbone in these models.

Model AP AP50 AP75 APS APM APL

Faster RCNN 38.4 59.0 42.0 21.5 42.1 50.3
+ Chen et al. Method 38.7 59.0 42.1 22.0 41.9 51.0
+ Wang et al. Method 39.1 59.8 42.8 22.2 42.9 51.1
+ Heo et al. Method 38.9 60.1 42.6 21.8 42.7 50.7
+ Our Methods 41.5 62.2 45.1 23.5 45.0 55.3
Cascade RCNN 41.0 59.4 44.4 22.7 44.4 54.3
+ Chen et al. Method 41.6 62.1 45.7 23.9 45.8 54.7
+ Wang et al. Method 42.1 62.7 46.1 24.4 46.4 55.6
+ Heo et al. Method 41.7 62.3 45.7 23.9 45.7 55.3
+ Our Methods 44.4 62.7 48.3 24.8 48.0 59.3
RetinaNet 37.4 56.7 39.6 20.0 40.7 49.7
+ Heo et al. Method 37.8 58.3 41.1 21.6 41.2 48.3
+ Our Methods 39.6 58.8 42.1 22.7 43.3 52.5

Table 4: Ablation study of the three distillation loss.

Loss
LAT × X × × X X
LAM × × X × X X
LNLD × × × X × X

Result

AP 38.4 39.6 40.8 39.8 41.2 41.5
APS 21.5 22.7 22.8 22.7 23.0 23.5
APM 42.1 42.9 44.3 43.1 44.6 45.0
APL 50.3 52.5 54.3 52.3 55.3 55.3

Table 5: Results of different
types of non-local modules
on Faster RCNN (ResNet50
backbone).

Non-Local Type AP
Embedded Gaussian 41.5
Dot Production 41.4
Concatenation 41.5
Gaussian 41.3

5 DISCUSSION

5.1 ANALYSIS ON THE BENEFITS OF KNOWLEDGE DISTILLATION

Qualitative analysis. Figure 6 shows the comparison of detection results between a baseline and a
distilled detector. It is observed that: (i) Our methods improve the detection ability on small-objects.
In the first three figures, the distilled model can correctly detect cars, the handbag, and the person in
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the car, respectively. (ii) Our methods prevent models from generating multiple bounding boxes for
the same object. In the last two figures, the baseline model generates multiple bounding boxes for
the boat and the train while the distilled model avoids these errors.

Analysis on the types of detection error. We have analyzed the different types of detection errors
in the baseline and distilled models in Figure 7. The number in the legend indicates AUC (area
under the curve). It is observed that our distillation method leads to error reduction on all kinds of
error. In brief, our methods can improve the ability of both localization and classification.
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Figure 5: Hyper-parameter sensitivity study of α, β, γ, T with Faster RCNN on MS COCO2017.
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Figure 6: Qualitative analysis on MS COCO2017 with distilled and baseline Faster RCNN. We mark
the undetected and wrongly detected objects of the baseline detector with orange boxes.

5.2 RELATION BETWEEN STUDENT DETECTORS AND TEACHER DETECTORS.

There is sufficient research focusing on the relation between students and teachers. Mirzadeh et al.
(2019) and Cho & Hariharan (2019) show that a teacher with higher accuracy may not be the better
teacher for knowledge distillation and sometimes a teacher with too high accuracy may harm the
performance of students. Besides, Mobahi et al. (2020) and Yuan et al. (2019) show that the same
model and even a model with lower accuracy than the student model can be utilized as the teacher
model for knowledge distillation. However, all their experiments are conducted on image classifica-
tion. In this section, we study whether these observations still hold in the task of object detection.
As shown in Figure 8 , we conduct experiments on Faster RCNN (ResNet50 backbone) and Cas-
cade RCNN (ResNet50 backbone) students with teacher models of different AP. It is observed that:
(i) In all of our experiments, the student with a higher AP teacher always achieves higher AP. (ii)
When the teacher has lower or the same AP as the student, there are very limited and even negative
improvements with knowledge distillation. This observation indicates that the relation between stu-
dents and teachers on object detection is opposite to that on image classification. Our experiment
results suggest that there is a strong positive correlation between the AP of students and teachers. A
high AP teacher tends to improve the performance of students significantly.

We think that the reason why a high AP teacher model is crucial in object detection but not very
necessary in image classification is that object detection is a more challenging task. As a result, a
weaker teacher model may introduce more negative influence on students, which prevents students
from achieving higher AP. In contrast, on image classification, most of teacher models can achieve
a very high training accuracy so they don’t introduce so much error.
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Figure 7: Distribution of error types on distilled and baseline
Faster RCNN. Loc - Localization error; Sim & Oth - Classifica-
tion error on similar & not similar classes; BG - False positive
prediction fired on background. FN - False Negative prediction.
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dents and teachers on Faster
RCNN and Cascade RCNN in
MS COCO2017.

6 CONCLUSION

In this paper, we have proposed two knowledge distillation methods, including attention-guided
distillation and the non-local distillation to improve the performance of object detection models.
Attention-guided distillation manages to find the crucial pixels and channels from the whole feature
map with attention mechanism and then enables the student to focus more on these crucial pixels and
channels instead of the whole feature map. Non-local distillation enables students to learn not only
the information of an individual pixel but also the relation between different pixels captured by the
non-local modules. Experiments on 9 kinds of models including two-stage, one-stage, anchor-free
and anchor-based models have been provided to evaluate our methods.

Besides, we have also given a study on the relation between students and teachers in object detection.
Our experiments show that there is a strong positive correlation between the AP of teachers and stu-
dents. A high AP teacher detector plays an essential role in knowledge distillation. This observation
is much different from the previous conclusion in image classification, where a teacher model with
very high accuracy may harm the performance of knowledge distillation. We hope that our result
may call for more rethinking works on knowledge distillation in tasks except image classification.
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A ABLATION STUDY ON THE SPATIAL AND CHANNEL ATTENTION

Different from previous attention-based knowledge distillation methods, the attention-guided distil-
lation in our methods uses not only spatial attention but also the channel attention. In this appendix,
we have conducted an ablation study on the two kinds of attention with Faster RCNN (ResNet50)
on MS COCO2017 to show their individual effectiveness.

It is observed that spatial attention and channel attention lead to 2.6 and 2.3 AP improvements, re-
spectively. In contrast, the combination of the two kinds of attention leads to 2.8 AP improvements.
These results indicate that both spatial and channel attention have their individual effectiveness and
they can be utilized together to achieve better performance.
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Table 6: Ablation study on the spatial attention and channel attention.

Attention Type
Spatial × X × X
Channel × × X X

Result

AP 38.4 41.0 40.7 41.2
APS 21.5 22.7 22.9 23.0
APM 42.1 44.7 44.1 44.6
APL 50.3 54.2 54.1 55.3

B ADAPTATION LAYERS IN KNOWLEDGE DISTILLATION

The adaptation layers in knowledge distillation are first proposed by Romero et al. (2015) to adjust
the feature size of students and teachers. Then, recent research finds that the adaptation layers play
an important role in improving the performance of students (Chen et al., 2017). In this paper, we
adopt different kinds of adaptation layers for different distillation loss. Concretely, We adopt 1x1
convolutional layers for LAM and LNLD, 3x3 convolutional layers for Lspatial

AT , and fully connected
layers for Lchannel

AT . Note that the adaptation layers are only utilized in the training period and they
don’t introduce additional computation and parameters.

C EXPERIMENTS ON SMALLER BACKBONES

According to the insightful comments of the reviewers, we conduct a series of experiments on mod-
els with small backbones including ResNet18 and RegNet-800M, and compact detectors including
Yolo v3 and SSD. As shown in Table 7, our methods also achieve significant AP improvements
on these compact models. Note that more experiments with small backbones will be added in the
camera ready version.

Table 7: Experiments on MS COCO2017 with our method on small backbones.

Model Backbone AP AP50 AP75 APS APM APL FPS Params

Faster RCNN ResNet18 34.6 55.0 37.1 19.3 36.9 45.9 28.1 30.57
Our Faster RCNN ResNet18 37.0 57.2 39.7 19.9 39.7 50.3 28.1 30.57

Grid RCNN ResNet18 36.6 54.2 39.7 20.1 39.8 48.2 26.7 66.37
Our Grid RCNN ResNet18 38.8 56.7 41.5 21.1 41.6 52.7 26.7 66.37

RetinaNet ResNet18 33.4 51.8 35.1 16.9 35.6 44.9 25.8 23.30
Our RetinaNet ResNet18 35.9 54.4 38.0 17.9 39.1 49.4 25.8 23.30

RetinaNet RegNet-800M 35.6 54.7 37.7 19.7 39.0 47.8 22.4 19.27
Our RetinaNet RegNet-800M 38.4 57.4 40.7 21.4 42.0 52.3 22.4 19.27

Yolo v3 DarkNet53 33.4 56.3 35.2 19.5 36.4 43.6 42.2 61.95
Our Yolo v3 DarkNet53 35.8 58.2 38.1 21.2 39.0 45.6 42.2 61.95

SSD VGG16 29.4 49.3 31.0 11.7 34.1 44.9 26.1 38.08
Our SSD VGG16 31.2 52.1 32.8 12.6 37.4 46.2 26.1 38.08

D EXPERIMENTS ON CITYSCAPES

According to the insightful comments of the reviewers, as shown in Table 8, we conduct a series of
experiments to show the effectiveness of our method on Cityscapes. Note that more experiments on
Cityscapes will be added in the camera ready version.
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Table 8: Experiments on Cityscapes with our method.
Model Backbone Box AP Mask AP
Faster RCNN ResNet50 40.3 N/A
Our Faster RCNN ResNet50 43.5 N/A

Mask RCNN ResNet50 41.0 35.8
Our Mask RCNN ResNet50 43.0 37.5

E COMPARISION WITH RELATED WORK

Comparison on Methodology and Application. Feature distillation is utilized in all the five meth-
ods. However, Chen et al. distill not only the feature, but also the classification logits and bound-
ing box regression results, which has limited their application scenes in one stage and anchor-free
models. Li et al. and Wang et al. distill the features in the regions of proposals and near object
anchor locations, respectively. As a result, their methods reply on the supervision of anchors and
groundtruths and can’t be utilized in one stage and anchor free models. Bajestani & Yang is utilized
for active perception on video, which can not be utilized in image-based detection. In contrast, in
our method, the attention mask and relation information can be easily generated from the backbone
features, which has no requirements on groundtruths, anchors and proposals. As a result, it can be
easily used in different kinds of models and tasks without any modification.

Table 9: Comparision on methodology and application.

Method Feature Classify Regress Relation One-Stage Two-Stage Anchor-based Anchor-free Segment.

Our Method X × × X X X X X X
Chen et al. X X X × X X X × ×

Li et al. X × × × × X X × ×
Wang et al. X × × × × X X × ×

Bajestani & Yang X × × × X X X × ×

Comparison on Motivation. Chen et al.’s method is a direct application of knowledge distillation
on object detection. The other three methods and our method are motivated by the imbalance be-
tween foreground and background piexles and these methods try to address this issue by reweighting
the distillation loss. Besides, our method is also motivated by the effect of the relation among pixels
in an image, which is ignored by the other methods.
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