
Published as a conference paper at ICLR 2023

GFLOWNETS AND VARIATIONAL INFERENCE

Nikolay Malkin∗, Salem Lahlou∗, Tristan Deleu∗
Mila, Université de Montréal

Xu Ji, Edward Hu
Mila, Université de Montréal

Katie Everett
Google Research

Dinghuai Zhang
Mila, Université de Montréal

Yoshua Bengio
Mila, Université de Montréal, CIFAR

ABSTRACT

This paper builds bridges between two families of probabilistic algorithms: (hi-
erarchical) variational inference (VI), which is typically used to model distribu-
tions over continuous spaces, and generative flow networks (GFlowNets), which
have been used for distributions over discrete structures such as graphs. We
demonstrate that, in certain cases, VI algorithms are equivalent to special cases
of GFlowNets in the sense of equality of expected gradients of their learning ob-
jectives. We then point out the differences between the two families and show
how these differences emerge experimentally. Notably, GFlowNets, which borrow
ideas from reinforcement learning, are more amenable than VI to off-policy train-
ing without the cost of high gradient variance induced by importance sampling.
We argue that this property of GFlowNets can provide advantages for capturing
diversity in multimodal target distributions.
Code: https://github.com/GFNOrg/GFN_vs_HVI.

1 INTRODUCTION

Many probabilistic generative models produce a sample through a sequence of stochastic choices.
Non-neural latent variable models (e.g., Blei et al., 2003), autoregressive models, hierarchical varia-
tional autoencoders (Sønderby et al., 2016), and diffusion models (Ho et al., 2020) can be said to rely
upon a shared principle: richer distributions can be modeled by chaining together a sequence of sim-
ple actions, whose conditional distributions are easy to describe, than by performing generation in
a single sampling step. When many intermediate sampled variables could generate the same object,
making exact likelihood computation intractable, hierarchical models are trained with variational
objectives that involve the posterior over the sampling sequence (Ranganath et al., 2016b).

This work connects variational inference (VI) methods for hierarchical models (i.e., sampling
through a sequence of choices conditioned on the previous ones) with the emerging area of research
on generative flow networks (GFlowNets; Bengio et al., 2021a). GFlowNets have been formulated
as a reinforcement learning (RL) algorithm – with states, actions, and rewards – that constructs an
object by a sequence of actions so as to make the marginal likelihood of producing an object pro-
portional to its reward. While hierarchical VI is typically used for distributions over real-valued
objects, GFlowNets have been successful at approximating distributions over discrete structures
for which exact sampling is intractable, such as for molecule discovery (Bengio et al., 2021a), for
Bayesian posteriors over causal graphs (Deleu et al., 2022), or as an amortized learned sampler
for approximate maximum-likelihood training of energy-based models (Zhang et al., 2022b). Al-
though GFlowNets appear to have different foundations (Bengio et al., 2021b) and applications than
hierarchical VI algorithms, we show here that the two are closely connected.

As our main theoretical contribution, we show that special cases of variational algorithms and
GFlowNets coincide in their expected gradients. In particular, hierarchical VI (Ranganath et al.,
2016b) and nested VI (Zimmermann et al., 2021) are related to the trajectory balance and detailed
balance objectives for GFlowNets (Malkin et al., 2022; Bengio et al., 2021b). We also point out the
differences between VI and GFlowNets: notably, that GFlowNets automatically perform gradient
variance reduction by estimating a marginal quantity (the partition function) that acts as a baseline
and allow off-policy learning without the need for reweighted importance sampling.

Our theoretical results are accompanied by experiments that examine what similarities and differ-
ences emerge when one applies hierarchical VI algorithms to discrete problems where GFlowNets
∗Equal contribution. Contact: nikolay.malkin@mila.quebec.

1

https://github.com/GFNOrg/GFN_vs_HVI

Published as a conference paper at ICLR 2023

have been used before. These experiments serve two purposes. First, they supply a missing hi-
erarchical VI baseline for problems where GFlowNets have been used in past work. The relative
performance of this baseline illustrates the aforementioned similarities and differences between VI
and GFlowNets. Second, the experiments demonstrate the ability of GFlowNets, not shared by hi-
erarchical VI, to learn from off-policy distributions without introducing high gradient variance. We
show that this ability to learn with exploratory off-policy sampling is beneficial in discrete proba-
bilistic modeling tasks, especially in cases where the target distribution has many modes.

2 THEORETICAL RESULTS

2.1 GFLOWNETS: NOTATION AND BACKGROUND

We consider the setting of Bengio et al. (2021a). We are given a pointed1 directed acyclic graph
(DAG) G = (S,A), where S is a finite set of vertices (states), and A ⊂ S × S is a set of directed
edges (actions). If 𝑠→𝑠′ is an action, we say 𝑠 is a parent of 𝑠′ and 𝑠′ is a child of 𝑠. There is exactly
one state that has no incoming edge, called the initial state 𝑠0 ∈ S. States that have no outgoing
edges are called terminating. We denote by X the set of terminating states. A complete trajectory
is a sequence 𝜏 = (𝑠0→ . . .→𝑠𝑛) such that each 𝑠𝑖→𝑠𝑖+1 is an action and 𝑠𝑛 ∈ X. We denote by T
the set of complete trajectories and by 𝑥𝜏 the last state of a complete trajectory 𝜏.

GFlowNets are a class of models that amortize the cost of sampling from an intractable target dis-
tribution over X by learning a functional approximation of the target distribution using its unnor-
malized density or reward function, 𝑅 : X → R+. While there exist different parametrizations and
loss functions for GFlowNets, they all define a forward transition probability function, or a forward
policy, 𝑃𝐹 (− | 𝑠), which is a distribution over the children of every state 𝑠 ∈ S. The forward policy
is typically parametrized by a neural network that takes a representation of 𝑠 as input and produces
the logits of a distribution over its children. Any forward policy 𝑃𝐹 induces a distribution over com-
plete trajectories 𝜏 ∈ T (denoted by 𝑃𝐹 as well), which in turn defines a marginal distribution over
terminating states 𝑥 ∈ X (denoted by 𝑃⊤

𝐹
):

𝑃𝐹 (𝜏 = (𝑠0→ . . .→𝑠𝑛)) =
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 | 𝑠𝑖) ∀𝜏 ∈ T , (1)

𝑃⊤𝐹 (𝑥) =
∑︁

𝜏∈T:𝑥𝜏=𝑥
𝑃𝐹 (𝜏) ∀𝑥 ∈ X. (2)

Given a forward policy 𝑃𝐹 , terminating states 𝑥 ∈ X can be sampled from 𝑃⊤
𝐹

by sampling trajecto-
ries 𝜏 from 𝑃𝐹 (𝜏) and taking their final states 𝑥𝜏 .

GFlowNets aim to find a forward policy 𝑃𝐹 for which 𝑃⊤
𝐹
(𝑥) ∝ 𝑅(𝑥). Because the sum in (2)

is typically intractable to compute exactly, training objectives for GFlowNets introduce auxiliary
objects into the optimization. For example, the trajectory balance objective (TB; Malkin et al.,
2022) introduces an auxiliary backward policy 𝑃𝐵, which is a learned distribution 𝑃𝐵 (− | 𝑠) over
the parents of every state 𝑠 ∈ S, and an estimated partition function 𝑍 , typically parametrized as
exp(log 𝑍) where log 𝑍 is the learned parameter. The TB objective for a complete trajectory 𝜏 is
defined as

LTB (𝜏; 𝑃𝐹 , 𝑃𝐵, 𝑍) =
(
log

𝑍 · 𝑃𝐹 (𝜏)
𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏)

)2
, (3)

where 𝑃𝐵 (𝜏 | 𝑥𝜏) =
∏
(𝑠→𝑠′) ∈𝜏 𝑃𝐵 (𝑠 | 𝑠′). If LTB is made equal to 0 for every complete trajectory

𝜏, then 𝑃⊤
𝐹
(𝑥) ∝ 𝑅(𝑥) for all 𝑥 ∈ X and 𝑍 is the inverse constant of proportionality: 𝑍 =

∑
𝑥∈X 𝑅(𝑥).

The objective (3) is minimized by sampling trajectories 𝜏 from some distribution and making gradi-
ent steps on (3) with respect to the parameters of 𝑃𝐹 , 𝑃𝐵, and log 𝑍 . The distribution from which 𝜏
is sampled amounts to a choice of scalarization weights for the multi-objective problem of minimiz-
ing (3) over all 𝜏 ∈ T . If 𝜏 is sampled from 𝑃𝐹 (𝜏) – note that this is a nonstationary scalarization
– we say the algorithm runs on-policy. If 𝜏 is sampled from another distribution, the algorithm runs
off-policy; typical choices are to sample 𝜏 from a tempered version of 𝑃𝐹 to encourage exploration
(Bengio et al., 2021a; Deleu et al., 2022) or to sample 𝜏 from the backward policy 𝑃𝐵 (𝜏 |𝑥) starting
from given terminating states 𝑥 (Zhang et al., 2022b). By analogy with the RL nomenclature, we
call the behavior policy the one that samples 𝜏 for the purpose of obtaining a stochastic gradient,
e.g, the gradient of the objective LTB in (3) for the sampled 𝜏.

1A pointed DAG is one with a designated initial state.

2

Published as a conference paper at ICLR 2023

Other objectives have been studied and successfully used in past works, including detailed balance
(DB; proposed by Bengio et al. (2021b) and evaluated by Malkin et al. (2022)) and subtrajectory
balance (SubTB; Madan et al., 2022). In the next sections, we will show how the TB objective
relates to hierarchical variational objectives. In §C, we generalize this result to the SubTB loss, of
which both TB and DB are special cases.

2.2 HIERARCHICAL VARIATIONAL MODELS AND GFLOWNETS

Variational methods provide a way of sampling from distributions by means of learning an ap-
proximate probability density. Hierarchical variational models (HVMs; Ranganath et al., 2016b;
Sobolev & Vetrov, 2019; Vahdat & Kautz, 2020; Zimmermann et al., 2021)) typically assume that
the sample space is a set of sequences (𝑧1, . . . , 𝑧𝑛) of fixed length, with an assumption of condi-
tional independence between 𝑧𝑖−1 and 𝑧𝑖+1 conditioned on 𝑧𝑖 , i.e., the likelihood has a factorization
𝑞(𝑧1, . . . , 𝑧𝑛) = 𝑞(𝑧1)𝑞(𝑧2 |𝑧1) . . . 𝑞(𝑧𝑛 |𝑧𝑛−1). The marginal likelihood of 𝑧𝑛 in a hierarchical model
involves a possibly intractable sum,

𝑞(𝑧𝑛) =
∑︁

𝑧1 ,...,𝑧𝑛−1

𝑞(𝑧1)𝑞(𝑧2 |𝑧1) . . . 𝑞(𝑧𝑛 |𝑧𝑛−1).

The goal of VI algorithms is to find the conditional distributions 𝑞 that minimize some divergence
between the marginal 𝑞(𝑧𝑛) and a target distribution. The target is often given as a distribution
with intractable normalization constant: a typical setting is a Bayesian posterior (used in VAEs,
variational EM, and other applications), for which we desire 𝑞(𝑧𝑛) ∝ 𝑝likelihood (𝑥 |𝑧𝑛)𝑝prior (𝑧𝑛).
The GFlowNet corresponding to a HVM: Sampling sequences (𝑧1, . . . , 𝑧𝑛) from a hierarchical
model is equivalent to sampling complete trajectories in a certain pointed DAG G. The states of G
at a distance of 𝑖 from the initial state are in bijection with possible values of the variable 𝑧𝑖 , and
the action distribution is given by 𝑞. Sampling from the HVM is equivalent to sampling trajectories
from the policy 𝑃𝐹 (𝑧𝑖+1 |𝑧𝑖) = 𝑞(𝑧𝑖+1 |𝑧𝑖) (and 𝑃𝐹 (𝑧1 |𝑠0) = 𝑞(𝑧1)), and the marginal distribution
𝑞(𝑧𝑛) is the terminating distribution 𝑃⊤

𝐹
.

The HVM corresponding to a GFlowNet: Conversely, suppose G = (S,A) is a graded pointed
DAG2 and that a forward policy 𝑃𝐹 on G is given. Sampling trajectories 𝜏 = (𝑠0→𝑠1→ . . .→𝑠𝐿)
in G is equivalent to sampling from a HVM in which the random variable 𝑧𝑖 is the identity of the
(𝑖 + 1)-th state 𝑠𝑖 in 𝜏 and the conditional distributions 𝑞(𝑧𝑖+1 |𝑧𝑖) are given by the forward policy
𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖). Specifying an approximation of the target distribution in a hierarchical model with 𝑛
layers is thus equivalent to specifying a forward policy 𝑃𝐹 in a graded DAG.

The correspondence can be extended to non-graded DAGs. Every pointed DAG G = (S,A) can be
canonically transformed into a graded pointed DAG by the insertion of dummy states that have one
child and one parent. To be precise, every edge 𝑠→𝑠′ ∈ A is replaced with a sequence of ℓ′ − ℓ(𝑠)
edges, where ℓ(𝑠) is the length of the longest trajectory from 𝑠0 to 𝑠, ℓ′ = ℓ(𝑠′) if 𝑠′ ∉ X, and
ℓ′ = max𝑠′′∈S ℓ(𝑠′′) otherwise. This process is illustrated in §A. We thus restrict our analysis in this
section, without loss of generality, to graded DAGs.

The meaning of the backward policy: Typically, the target distribution is over the objects X of
the last layer of a graded DAG, rather than over complete sequences or trajectories. Any backward
policy 𝑃𝐵 on the DAG turns an unnormalized target distribution 𝑅 over X into an unnormalized
distribution over complete trajectories T :

∀𝜏 ∈ T 𝑃𝐵 (𝜏) ∝ 𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏), with unknown partition function �̂� =
∑︁
𝑥∈X

𝑅(𝑥). (4)

The marginal distribution of 𝑃𝐵 over terminating states is equal to 𝑅(𝑥)/�̂� by construction. There-
fore, if 𝑃𝐹 is a forward policy that equals 𝑃𝐵 as a distribution over trajectories, then 𝑃⊤

𝐹
(𝑥) =

𝑅(𝑥)/�̂� ∝ 𝑅(𝑥).
VI training objectives: In its most general form, the hierarchical variational objective (‘HVI ob-
jective’ in the remainder of the paper) minimizes a statistical divergence 𝐷 𝑓 between the learned
and the target distributions over trajectories:

LHVI, 𝑓 (𝑃𝐹 , 𝑃𝐵) = 𝐷 𝑓 (𝑃𝐵∥𝑃𝐹) = E𝜏∼𝑃𝐹
[
𝑓

(
𝑃𝐵 (𝜏)
𝑃𝐹 (𝜏)

)]
. (5)

2We recall some facts about partially ordered sets. A pointed graded DAG is a pointed DAG in which all
complete trajectories have the same length. Pointed graded DAGs G are also characterized by the following
equivalent property: the state space S can be partitioned into disjoint sets S =

⊔𝐿
𝑙=0 S𝑙 , with S0 = {𝑠0}, called

layers, such that all edges 𝑠→𝑠′ are between states of adjacent layers (𝑠 ∈ S𝑖 ,𝑠′ ∈ S𝑖+1 for some 𝑖).

3

Published as a conference paper at ICLR 2023

Two common objectives are the forward and reverse Kullback-Leibler (KL) divergences (Mnih
& Gregor, 2014), corresponding to 𝑓 : 𝑡 ↦→ 𝑡 log 𝑡 for 𝐷KL (𝑃𝐵∥𝑃𝐹) and 𝑓 : 𝑡 ↦→ − log 𝑡 for
𝐷KL (𝑃𝐹 ∥𝑃𝐵), respectively. Other 𝑓 -divergences have been used, as discussed in Zhang et al.
(2019b); Wan et al. (2020). Note that, similar to GFlowNets, (5) can be minimized with respect
to both the forward and backward policies, or can be minimized using a fixed backward policy.

Table 1: A comparison of algorithms for approxi-
mating a target distribution in a hierarchical vari-
ational model or a GFlowNet. The gradients used
to update the parameters of the sampling distribu-
tion and of the auxiliary backward policy approxi-
mate the gradients of various divergences between
distributions over trajectories.

Surrogate loss

Algorithm 𝑃𝐹 (sampler) 𝑃𝐵 (posterior)

REVERSE KL 𝐷KL (𝑃𝐹 ∥𝑃𝐵) 𝐷KL (𝑃𝐹 ∥𝑃𝐵)
FORWARD KL 𝐷KL (𝑃𝐵∥𝑃𝐹) 𝐷KL (𝑃𝐵∥𝑃𝐹)
WAKE-SLEEP (WS) 𝐷KL (𝑃𝐵∥𝑃𝐹) 𝐷KL (𝑃𝐹 ∥𝑃𝐵)
REVERSE WAKE-SLEEP 𝐷KL (𝑃𝐹 ∥𝑃𝐵) 𝐷KL (𝑃𝐵∥𝑃𝐹)
On-policy TB 𝐷KL (𝑃𝐹 ∥𝑃𝐵) see §2.3

Divergences between two distributions over tra-
jectories and divergences between their two
marginal distributions over terminating states
distributions are linked via the data process-
ing inequality, assuming 𝑓 is convex (see e.g.
Zhang et al. (2019b)), making the former a sen-
sible surrogate objective for the latter:

𝐷 𝑓 (𝑅/�̂� ∥𝑃⊤𝐹) ≤ 𝐷 𝑓 (𝑃𝐵∥𝑃𝐹) (6)
When both 𝑃𝐵 and 𝑃𝐹 are learned, the diver-
gences with respect to which they are optimized
need not be the same, as long as both objec-
tives are 0 if and only if 𝑃𝐹 = 𝑃𝐵. For ex-
ample, wake-sleep algorithms (Hinton et al.,
1995) optimize the generative model 𝑃𝐹 using
𝐷KL (𝑃𝐵∥𝑃𝐹) and the posterior 𝑃𝐵 using 𝐷KL (𝑃𝐹 ∥𝑃𝐵). A summary of common combinations is
shown in Table 1.

We remark that tractable unbiased gradient estimators for objectives such as (5) may not always
exist, as we cannot exactly sample from or compute the density of 𝑃𝐵 (𝜏) when its normalization
constant �̂� is unknown. For example, while the REINFORCE estimator gives unbiased estimates of
the gradient with respect to 𝑃𝐹 when the objective is REVERSE KL (see §2.3), other objectives, such
as FORWARD KL, require importance-weighted estimators. Such estimators approximate sampling
from 𝑃𝐵 by sampling a batch of trajectories {𝜏𝑖} from another distribution 𝜋 (which may equal 𝑃𝐹)
and weighting a loss computed for each 𝜏𝑖 by a scalar proportional to 𝑃𝐵 (𝜏𝑖)

𝜋 (𝜏𝑖) . Such reweighted
importance sampling is helpful in various variational algorithms, despite its bias when the number
of samples is finite (e.g., Bornschein & Bengio, 2015; Burda et al., 2016), but it may also introduce
variance that increases with the discrepancy between 𝑃𝐵 and 𝜋.

2.3 ANALYSIS OF GRADIENTS

The following proposition summarizes our main theoretical claim, relating the GFN objective of (3)
and the variational objective of (5). In §C, we extend this result by showing an equivalence between
the subtrajectory balance objective (introduced in Malkin et al. (2022) and empirically evaluated
in Madan et al. (2022)) and a natural extension of the nested variational objective (Zimmermann
et al., 2021) to subtrajectories. A special case of this equivalence is between the Detailed Balance
objective (Bengio et al., 2021b) and the nested VI objective (Zimmermann et al., 2021).

Proposition 1 Given a graded DAG G, and denoting by 𝜃, 𝜙 the parameters of the forward and
backward policies 𝑃𝐹 , 𝑃𝐵 respectively, the gradients of the TB objective (3) satisfy:

∇𝜙𝐷KL (𝑃𝐵∥𝑃𝐹) =
1
2
E𝜏∼𝑃𝐵 [∇𝜙LTB (𝜏)], (7)

∇𝜃𝐷KL (𝑃𝐹 ∥𝑃𝐵) =
1
2
E𝜏∼𝑃𝐹 [∇𝜃LTB (𝜏)] . (8)

The proof of the extended result appears in §C. An alternative proof is provided in §B.

While (8) is the on-policy TB gradient with respect to the parameters of 𝑃𝐹 , (7) is not the on-policy
TB gradient with respect to the parameters of 𝑃𝐵, as the expectation is taken over 𝑃𝐵, not 𝑃𝐹 . The
on-policy TB gradient can however be expressed through a surrogate loss

E𝜏∼𝑃𝐹 [∇𝜙LTB (𝜏)] = ∇𝜙
[
𝐷log2 (𝑃𝐵∥𝑃𝐹) + 2(log 𝑍 − log �̂�)𝐷KL (𝑃𝐹 ∥𝑃𝐵)

]
, (9)

where �̂� =
∑
𝑥∈X 𝑅(𝑥), the unknown true partition function. Here 𝐷log2 is the pseudo- 𝑓 -divergence

defined by 𝑓 (𝑥) = log(𝑥)2, which is not convex for large 𝑥. (Proof in §B.)

The loss in (7) is not possible to optimize directly unless using importance weighting (cf. the end
of §2.2), but optimization of 𝑃𝐵 using (7) and 𝑃𝐹 using (8) would yield the gradients of REVERSE
WAKE-SLEEP in expectation.

4

Published as a conference paper at ICLR 2023

Score function estimator and variance reduction: Optimizing the reverse KL loss
𝐷KL (𝑃𝐹 ∥𝑃𝐵) with respect to 𝜃, the parameters of 𝑃𝐹 , requires a likelihood ratio (also known as
REINFORCE) estimator of the gradient (Williams, 1992), using a trajectory 𝜏 (or a batch of trajec-
tories), which takes the form:

Δ(𝜏) = ∇𝜃 log 𝑃𝐹 (𝜏; 𝜃)𝑐(𝜏), where 𝑐(𝜏) = log
𝑃𝐹 (𝜏)

𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏)
(10)

(Note that the term ∇𝜃𝑐(𝜏) that is typically present in the REINFORCE estimator is 0 in expectation,
since E𝜏∼𝑃𝐹 [∇𝜃 log 𝑃𝐹 (𝜏)] =

∑
𝜏
𝑃𝐹 (𝜏)
𝑃𝐹 (𝜏)∇𝜃𝑃𝐹 (𝜏) = 0.) The estimator of (10) is known to exhibit

high variance norm, thus slowing down learning. A common workaround is to subtract a baseline
𝑏 from 𝑐(𝜏), which does not bias the estimator. The value of the baseline 𝑏 (also called control
variate) that most reduces the trace of the covariance matrix of the gradient estimator is

𝑏∗ =
E𝜏∼𝑃𝐹 [𝑐(𝜏)∥∇𝜃 log 𝑃𝐹 (𝜏; 𝜃)∥2]
E𝜏∼𝑃𝐹 [∥∇𝜃 log 𝑃𝐹 (𝜏; 𝜃)∥2]

,

commonly approximated with E𝜏∼𝑃𝐹 [𝑐(𝜏)] (see, e.g., Weaver & Tao (2001); Wu et al. (2018)). This
approximation is itself often approximated with a batch-dependent local baseline, from a batch of
trajectories {𝜏𝑖}𝐵𝑖=1:

𝑏local =
1
𝐵

𝐵∑︁
𝑖=1

𝑐(𝜏𝑖) (11)

A better approximation of the expectation E𝜏∼𝑃𝐹 [𝑐(𝜏)] can be obtained by maintaining a running
average of the values 𝑐(𝜏), leading to a global baseline. After observing each batch of trajectories,
the running average is updated with step size 𝜂:

𝑏global ← (1 − 𝜂)𝑏global + 𝜂𝑏local. (12)
This coincides with the update rule of log 𝑍 in the minimization of LTB (𝑃𝐹 , 𝑃𝐵, 𝑍) with a learning
rate 𝜂

2 for the parameter log 𝑍 (with respect to which the TB objective is quadratic). Consequently,
(8) of Prop. 1 shows that the update rule for the parameters of 𝑃𝐹 , when optimized using the RE-
VERSE KL objective, with (12) as a control variate for the score function estimator of its gradient,
is the same as the update rule obtained by optimizing the TB objective using on-policy trajectories.

While learning a backward policy 𝑃𝐵 can speed up convergence (Malkin et al., 2022), the TB ob-
jective can also be used with a fixed backward policy, in which case the REVERSE KL objective
and the TB objective differ only in how they reduce the variance of the estimated gradients, if the
trajectories are sampled on-policy. In § 4, we experimentally explore the differences between the
two learning paradigms that arise when 𝑃𝐵 is learned, or when the algorithms run off-policy.

3 RELATED WORK

(Hierarchical) VI: Variational inference (Zhang et al., 2019a) techniques originate from graph-
ical models (Saul et al., 1996; Jordan et al., 2004), which typically include an inference machine
and a generative machine to model the relationship between latent variables and observed data. The
line of work on black-box VI (Ranganath et al., 2014) focuses on learning the inference machine
given a data generating process, i.e., inferring the posterior over latent variables. Hierarchical mod-
eling exhibits appealing properties under such settings as discussed in Ranganath et al. (2016b); Yin
& Zhou (2018); Sobolev & Vetrov (2019). On the other hand, works on variational auto-encoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) focus on generative modeling, where the
inference machine – the estimated variational posterior – is a tool to assist optimization of the gener-
ative machine or decoder. Hierarchical construction of multiple latent variables has also been shown
to be beneficial (Sønderby et al., 2016; Maaløe et al., 2019; Child, 2021).

While earlier works simplify the variational family with mean-field approximations (Bishop, 2006),
modern inference methods rely on amortized stochastic optimization (Hoffman et al., 2013). One
of the oldest and most commonly used ideas is REINFORCE (Williams, 1992; Paisley et al., 2012)
which gives unbiased gradient estimation. Follow-up work (Titsias & Lázaro-Gredilla, 2014; Gre-
gor et al., 2014; Mnih & Gregor, 2014; Mnih & Rezende, 2016) proposes advanced estimators to
reduce the high variance of REINFORCE. The log-variance loss proposed by Richter et al. (2020) is
equivalent in expected gradient of 𝑃𝐹 to the on-policy TB loss for a GFlowNet with a batch-optimal
value of log 𝑍 . On the other hand, path-wise gradient estimators (Kingma & Welling, 2014) have
much lower variance, but have limited applicability. Later works combine these two approaches for
particular distribution families (Tucker et al., 2017; Grathwohl et al., 2018).

5

Published as a conference paper at ICLR 2023

Beyond the evidence lower bound (ELBO) objective used in most variational inference methods,
more complex objectives have been studied. Tighter evidence bounds have proved beneficial to the
learning of generative machines (Burda et al., 2016; Domke & Sheldon, 2018; Rainforth et al., 2018;
Masrani et al., 2019). As KL divergence optimization suffers from issues such as mean-seeking
behavior and posterior variance underestimation (Minka, 2005), other divergences are adopted as in
expectation propagation (Minka, 2001; Li et al., 2015), more general 𝑓 -divergences (Dieng et al.,
2017; Wang et al., 2018; Wan et al., 2020), their special case 𝛼-divergences (Hernández-Lobato
et al., 2016), and Stein discrepancy (Liu & Wang, 2016; Ranganath et al., 2016a). GFlowNets could
be seen as providing a novel pseudo-divergence criterion, namely TB, as discussed in this work.

Wake-sleep algorithms: Another branch of work, starting with Hinton et al. (1995), proposes
to avoid issues from stochastic optimization (such as REINFORCE) by alternatively optimizing
the generative and inference (posterior) models. Modern versions extending this framework in-
clude reweighted wake-sleep Bornschein & Bengio (2015); Le et al. (2019) and memoised wake-
sleep (Hewitt et al., 2020; Le et al., 2022). It was shown in Le et al. (2019) that wake-sleep algo-
rithms behave well for tasks involving stochastic branching.

GFlowNets: GFlowNets have been used successfully in settings where RL and MCMC methods
have been used in other work, including molecule discovery (Bengio et al., 2021a; Malkin et al.,
2022; Madan et al., 2022), biological sequence design (Malkin et al., 2022; Jain et al., 2022; Madan
et al., 2022), and Bayesian structure learning (Deleu et al., 2022). A connection of the theoretical
foundations of GFlowNets (Bengio et al., 2021a;b) with variational methods was first mentioned by
Malkin et al. (2022) and expanded in Zhang et al. (2022a; 2023).

A concurrent and closely related paper (Zimmermann et al., 2022) theoretically and experimentally
explores interpolations between forward and reverse KL objectives.

4 EXPERIMENTS

The goal of the experiments is to empirically investigate two main observations consistent with the
above theoretical analysis:

Observation 1. On-policy VI and TB (GFlowNet) objectives can behave similarly in some cases,
when both can be stably optimized, while in others on-policy TB strikes a better compromise than
either the (mode-seeking) REVERSE KL or (mean-seeking) FORWARD KL VI objectives. This
claim is supported by the experiments on all three domains below.

However, in all cases, notable differences emerge. In particular, HVI training becomes more stable
near convergence and is sensitive to learning rates, which is consistent with the hypotheses about
gradient variance in §2.3.

Observation 2. When exploration matters, off-policy TB outperforms both on-policy TB and VI
objectives, avoiding the possible high variance induced by importance sampling in off-policy VI.
GFlowNets are capable of stable off-policy training without importance sampling. This claim is
supported by experiments on all domains, but is especially well illustrated on the realistic domains
in §4.2 and §4.3. This capability provides advantages for capturing a more diverse set of modes.

Observation 1 and Observation 2 provide evidence that off-policy TB is the best method among
those tested in terms of both accurately fitting the target distribution and effectively finding modes,
where the latter is particularly important for the challenging molecule graph generation and causal
graph discovery problems studied below.

4.1 HYPERGRID: EXPLORATION OF LEARNING OBJECTIVES

In this section, we comparatively study the ability of the variational objectives and the GFlowNet
objectives to learn a multimodal distribution given by its unnormalized density, or reward function,
𝑅. We use the synthetic hypergrid environment introduced by Bengio et al. (2021a) and further
explored by Malkin et al. (2022). The states form a 𝐷-dimensional hypergrid with side length 𝐻,
and the reward function has 2𝐷 flat modes near the corners of the hypergrid. The states form a
pointed DAG, where the source state is the origin 𝑠0 = 0, and each edge corresponds to the action
of incrementing one coordinate in a state by 1 (without exiting the grid). More details about the
environment are provided in § D.1. We focus on the case where 𝑃𝐵 is learned, which has been
shown to accelerate convergence (Malkin et al., 2022).

In Fig. 1, we compare how fast each learning objective discovers the 4 modes of a 128 × 128 grid,
with an exploration parameter 𝑅0 = 0.001 in the reward function. The gap between the learned
distribution 𝑃⊤

𝐹
and the target distribution is measured by the Jensen-Shannon divergence (JSD)

6

Published as a conference paper at ICLR 2023

0k 200k 400k 600k 800k 1000k
Trajectories sampled

10 4

10 3

10 2

10 1

100

JS
D

TB
WS
Forward KL
Reverse KL
Reverse WS

0k 200k 400k 600k 800k 1000k
Trajectories sampled

On
 P

ol
icy

Reverse KL Reverse WS WS Forward KL TB

Of
f P

ol
icy

Target Distribution

Figure 1: Top: The evolution of the JSD between the learned sampler 𝑃⊤
𝐹

and the target distribution
on the 128 × 128 grid, as a function of the number of trajectories sampled. Shaded areas represent
the standard error evaluated across 5 different runs (on-policy left, off-policy right). Bottom: The
average (across 5 runs) final learned distribution 𝑃⊤

𝐹
for the different algorithms, along with the

target distribution. To amplify variation, the plot intensity at each grid position is resampled from
the Gaussian approximating the distribution over the 5 runs. Although WS, FORWARD KL, and
REVERSE WS (off-policy) find the 4 target modes, they do not model them with high precision, and
produce a textured pattern at the modes, where it should be flat.

between the two distributions, to avoid giving a preference to one KL or the other. Additionally,
we show graphical representations of the learned 2D terminating states distribution, along with
the target distribution. We provide in § E details on how 𝑃⊤

𝐹
and the JSD are evaluated and how

hyperparameters were optimized separately for each learning algorithm.

Exploration poses a challenge in this environment, given the distance that separates the different
modes. We thus include in our analysis an off-policy version of each objective, where the behavior
policy is different from, but related to, the trained sampler 𝑃𝐹 (𝜏). The GFlowNet behavior policy
used here encourages exploration by reducing the probability of terminating a trajectory at any
state of the grid. This biases the learner towards sampling longer trajectories and helps with faster
discovery of farther modes. When off-policy, the HVI gradients are corrected using importance
sampling weights.

For the algorithms that use a score function estimator of the gradient (FORWARD KL, REVERSE WS,
and REVERSE KL), we found that using a global baseline, as explained in §2.2, was better than using
the more common local baseline in most cases (see Fig. D.1). This brings the VI methods closer to
GFlowNets and thus factors out this issue from the comparison with the GFlowNet objectives.

We see from Fig. 1 that while FORWARD KL and WS – the two algorithms that use 𝐷KL (𝑃𝐵∥𝑃𝐹)
as the objective for 𝑃𝐹 – discover the four modes of the distribution faster, they converge to a local
minimum and do not model all the modes with high precision. This is due to the mean-seeking
behavior of the forward KL objective, requiring that 𝑃⊤

𝐹
puts non-zero mass on terminating states

𝑥 where 𝑅(𝑥) > 0. Objectives that use the reverse KL to train the forward policy (REVERSE KL
and REVERSE WS) are mode-seeking and can thus have a low loss without finding all the modes.
The TB GFlowNet objective offers the best of both worlds, as it converges to a lower value of the
JSD, discovers the four modes, and models them with high precision. This supports Observation
1. Additionally, in support of Observation 2, while both the TB objective and the HVI objectives
benefit from off-policy sampling, TB benefits more, as convergence is greatly accelerated.

We supplement this study with a comparative analysis of the algorithms on smaller grids in §D.1.

4.2 MOLECULE SYNTHESIS

We study the molecule synthesis task from Bengio et al. (2021a), in which molecular graphs are
generated by sequential addition of subgraphs from a library of blocks (Jin et al., 2020; Kumar

7

Published as a conference paper at ICLR 2023

4 8 10 16
reward exponent

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

lo
gP

T F
(x

) t
o

lo
gR

(x
) c

or
re

la
tio

n

Reverse KL on-policy
TB on-policy

Reverse KL off-policy
TB off-policy

10 4 10 3

learning rate

Figure 2: Correlation between marginal sampling log-likelihood and log-reward on the molecule
generation task for different learning algorithms, showing the advantage of off-policy TB (red)
against on-policy TB (orange) and both on-policy (blue) and off-policy HVI (green). For each
hyperparameter setting on the 𝑥-axis (𝛼 or 𝛽), we take the optimal choice of the other hyperparam-
eter (𝛽 or 𝛼, respectively) and plot the mean and standard error region over three random seeds.

et al., 2012). The reward function is expressed in terms of a fixed, pretrained graph neural network
𝑓 that estimates the strength of binding to the soluble epoxide hydrolase protein (Trott & Olson,
2010). To be precise, 𝑅(𝑥) = 𝑓 (𝑥)𝛽 , where 𝑓 (𝑥) is the output of the binding model on molecule 𝑥
and 𝛽 is a parameter that can be varied to control the entropy of the sampling model.

Because the number of terminating states is too large to make exact computation of the target dis-
tribution possible, we use a performance metric from past work on this task (Bengio et al., 2021a)
to evaluate sampling agents. Namely, for each molecule 𝑥 in a held-out set, we compute log 𝑃⊤

𝐹
(𝑥),

the likelihood of 𝑥 under the trained model (computable by dynamic programming, see § E), and
evaluate the Pearson correlation of log 𝑃⊤

𝐹
(𝑥) and log 𝑅(𝑥). This value should equal 1 for a perfect

sampler, as log 𝑃⊤
𝐹
(𝑥) and log 𝑅(𝑥) would differ by a constant, the log-partition function log �̂� .

In Malkin et al. (2022), GFlowNet samplers using the DB and TB objectives, with the backward
policy 𝑃𝐵 fixed to a uniform distribution over the parents of each state, were trained off-policy.
Specifically, the trajectories used for DB and TB gradient updates were sampled from a mixture
of the (online) forward policy 𝑃𝐹 and a uniform distribution at each sampling step, with a special
weight depending on the trajectory length used for the termination action.

We wrote an extension of the published code of Malkin et al. (2022) with an implementation of the
HVI (REVERSE KL) objective, using a reweighted importance sampling correction. We compare
the off-policy TB from past work with the off-policy REVERSE KL, as well as on-policy TB and
REVERSE KL objectives. (Note that on-policy TB and REVERSE KL are equivalent in expectation
in this setting, since the backward policy is fixed.) Each of the four algorithms was evaluated with
four values of the inverse temperature parameter 𝛽 and of the learning rate 𝛼, for a total of 4×4×4 =
64 settings. (We also experimented with the off-policy FORWARD KL / WS objective for optimizing
𝑃𝐹 , but none of the hyperparameter settings resulted in an average correlation greater than 0.1.)

The results are shown in Fig. 2, in which, for each hyperparameter (𝛼 or 𝛽), we plot the performance
for the optimal value of the other hyperparameter. We make three observations:

• In support of Observation 2, off-policy REVERSE KL performs poorly compared to its on-policy
counterpart, especially for smoother distributions (smaller values of 𝛽) where more diversity is
present in the target distribution. Because the two algorithms agree in the expected gradient, this
suggests that importance sampling introduces unacceptable variance into HVI gradients.
• In support of Observation 1, the difference between on-policy REVERSE KL and on-policy TB is

quite small, consistent with their gradients coinciding in the limit of descent along the full-batch
gradient field. However, REVERSE KL algorithms are more sensitive to the learning rate.
• In support of Observation 2, off-policy TB gives the best and lowest-variance fit to the target dis-

tribution, showing the importance of an exploratory training policy, especially for sparser reward
landscapes (higher 𝛽).

8

Published as a conference paper at ICLR 2023

Table 2: Comparison of the Jensen-Shannon divergence for Bayesian structure learning, showing
the advantage of off-policy TB over on-policy TB and on-policy or off-policy HVI. The JSD is
measured between the true posterior distribution 𝑝(𝐺 | D) and the learned approximation 𝑃⊤

𝐹
(𝐺).

Number of nodes

Objective 3 4 5

(Modified) Detailed Balance 5.32 ± 4.15 × 10−6 2.05 ± 0.70 × 10−5 4.65 ± 1.08 × 10−4

Off-Policy Trajectory Balance 3.70 ± 2.51 × 10−7 9.35 ± 2.99 × 10−6 5.44 ± 2.47 × 10−4

On-Policy Trajectory Balance 0.022 ± 0.007 0.123 ± 0.028 0.277 ± 0.040
On-Policy REVERSE KL (HVI) 0.022 ± 0.007 0.125 ± 0.027 0.306 ± 0.042
Off-Policy REVERSE KL (HVI) 0.014 ± 0.008 0.605 ± 0.019 0.656 ± 0.009

4.3 GENERATION OF DAGS IN BAYESIAN STRUCTURE LEARNING

Finally, we consider the problem of learning the (posterior) distribution over the structure of
Bayesian networks, as studied in Deleu et al. (2022). The goal of Bayesian structure learning is
to approximate the posterior distribution 𝑝(𝐺 | D) over DAGs 𝐺, given a dataset of observations
D. Following Deleu et al. (2022), we treat the generation of a DAG as a sequential decision prob-
lem, where directed edges are added one at a time, starting from the completely disconnected graph.
Since our goal is to approximate the posterior distribution 𝑝(𝐺 | D), we use the joint probability
𝑅(𝐺) = 𝑝(𝐺,D) as the reward function, which is proportional to the former up to a normalizing
constant. Details about how this reward is computed, as well as the parametrization of the forward
policy 𝑃𝐹 , are available in §D.3. Note that similarly to §4.2, and following Deleu et al. (2022), we
leave the backward policy 𝑃𝐵 fixed to uniform.

We only consider settings where the true posterior distribution 𝑝(𝐺 | D) can be computed exactly by
enumerating all the possible DAGs 𝐺 over 𝑑 nodes (for 𝑑 ≤ 5). This allows us to exactly compare
the posterior approximations, found either with the GFlowNet objectives or HVI, with the target
posterior distribution. The state space grows rapidly with the number of nodes (e.g., there are 29k
DAGs over 𝑑 = 5 nodes). For each experiment, we sampled a dataset D of 100 observations from a
randomly generated ground-truth graph 𝐺★; the size of D was chosen to obtain highly multimodal
posteriors. In addition to the (Modified) DB objective introduced by Deleu et al. (2022), we also
study the TB (GFlowNet) and the REVERSE KL (HVI) objectives, both on-policy and off-policy.

In Table 2, we compare the posterior approximations found using these different objectives in terms
of their Jensen-Shannon divergence (JSD) to the target posterior distribution 𝑃(𝐺 | D). We observe
that on the easiest setting (graphs over 𝑑 = 3 nodes), all methods accurately approximate the poste-
rior distribution. But as we increase the complexity of the problem (with larger graphs), we observe
that the accuracy of the approximation found with Off-Policy REVERSE KL degrades significantly,
while the ones found with the off-policy GFlowNet objectives ((Modified) DB & TB) remain very
accurate. We also note that the performance of On-Policy TB and On-Policy REVERSE KL degrades
too, but not as significantly; furthermore, both of these methods achieve similar performance across
all experimental settings, confirming our Observation 1, and the connection highlighted in § 2.2.
The consistent behavior of the off-policy GFlowNet objectives compared to the on-policy objec-
tives (TB & REVERSE KL) as the problem increases in complexity (i.e., as the number of nodes 𝑑
increases, requiring better exploration) also supports our Observation 2. These observations are fur-
ther confirmed when comparing the edge marginals 𝑃(𝑋𝑖 → 𝑋 𝑗 | D) in Fig. D.3 (§D.3), computed
either with the target posterior distribution or with the posterior approximations.

5 DISCUSSION AND CONCLUSIONS

The theory and experiments in this paper place GFlowNets, which had been introduced and moti-
vated as a reinforcement learning method, in the family of variational methods. They suggest that
off-policy GFlowNet objectives may be an advantageous replacement to previous VI objectives, es-
pecially when the target distribution is highly multimodal, striking an interesting balance between
the mode-seeking (REVERSE KL) and mean-seeking (FORWARD KL) VI variants. This work should
prompt more research on how best to choose the behavior policy in off-policy GFlowNet training,
seen as a means to efficiently explore and discover modes.

Whereas the experiments performed here focused on the realm of discrete variables, future work
should also investigate GFlowNets for continuous action spaces as potential alternatives to VI in
continuous-variable domains. We make some first steps in this direction in the Appendix (§F). While
this paper was under review, Lahlou et al. (2023) introduced theory for continuous GFlowNets and
showed that some of our claims extend to continuous domains.

9

Published as a conference paper at ICLR 2023

AUTHOR CONTRIBUTIONS

N.M., X.J., D.Z., and Y.B. observed the connection between GFlowNets and variational inference,
providing motivation for the main ideas in this work. N.M., X.J., and T.D. did initial experimental
exploration. S.L., N.M., and D.Z. contributed to the theoretical analysis. S.L. and N.M. extended
the theoretical analysis to subtrajectory objectives. D.Z. reviewed the related work. S.L. performed
experiments on the hypergrid domain. N.M. performed experiments on the molecule domain and the
stochastic control domain. T.D., E.H., and K.E. performed experiments on the causal graph domain.
All authors contributed to planning the experiments, analyzing their results, and writing the paper.

ACKNOWLEDGMENTS

The authors thank Moksh Jain for valuable discussions about the project.

This research was enabled in part by computational resources provided by the Digital Research
Alliance of Canada. All authors are funded by their primary institution. We also acknowledge
funding from CIFAR, Genentech, Samsung, and IBM.

REFERENCES

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint 1806.01261, 2018.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow net-
work based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021a.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. arXiv preprint 2111.09266, 2021b.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

David M. Blei, Michael I. Jordan, Thomas L. Griffiths, and Joshua B. Tenenbaum. Hierarchical
topic models and the nested Chinese restaurant process. Neural Information Processing Systems
(NIPS), 2003.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. International Conference on Learn-
ing Representations (ICLR), 2015.

Yuri Burda, Roger Baker Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
International Conference on Learning Representations (ICLR), 2016.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on im-
ages. International Conference on Learning Representations (ICLR), 2021.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John William Paisley, and David M. Blei.
Variational inference via 𝜒 upper bound minimization. Neural Information Processing Systems
(NIPS), 2017.

Justin Domke and Daniel Sheldon. Importance weighting and variational inference. Neural Infor-
mation Processing Systems (NeurIPS), 2018.

Dan Geiger and David Heckerman. Learning Gaussian networks. In Uncertainty Proceedings 1994,
pp. 235–243. Elsevier, 1994.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Kristjanson Duvenaud. Back-
propagation through the void: Optimizing control variates for black-box gradient estimation. In-
ternational Conference on Learning Representations (ICLR), 2018.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep AutoRe-
gressive networks. International Conference on Machine Learning (ICML), 2014.

10

Published as a conference paper at ICLR 2023

José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Thang D. Bui, Daniel Hernández-
Lobato, and Richard E. Turner. Black-box alpha divergence minimization. International Confer-
ence on Machine Learning (ICML), 2016.

Luke B. Hewitt, Tuan Anh Le, and Joshua B. Tenenbaum. Learning to learn generative programs
with memoised wake-sleep. Uncertainty in Artificial Intelligence (UAI), 2020.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and R M Neal. The “wake-sleep” algorithm for
unsupervised neural networks. Science, 268 5214:1158–61, 1995.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John William Paisley. Stochastic variational
inference. Journal of Machine Learning Research (JMLR), 14:1303–1347, 2013.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F.P.
Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with GFlowNets. Inter-
national Conference on Machine Learning (ICML), 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Chapter 11. junction tree variational autoen-
coder for molecular graph generation. Drug Discovery, pp. 228–249, 2020. ISSN 2041-3211.

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37:183–233, 2004.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. International Conference
on Learning Representations (ICLR), 2014.

Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of Gaussian directed
acyclic graphical models. The Annals of Statistics, 42(4):1689–1691, 2014.

Ashutosh Kumar, Arnout Voet, and Kam Y.J. Zhang. Fragment based drug design: from experimen-
tal to computational approaches. Current medicinal chemistry, 19(30):5128–5147, 2012.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcı́a, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. arXiv preprint 2301.12594, 2023.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. Revisiting
reweighted wake-sleep for models with stochastic control flow. Uncertainty in Artificial Intel-
ligence (UAI), 2019.

Tuan Anh Le, Katherine M. Collins, Luke B. Hewitt, Kevin Ellis, N. Siddharth, Samuel J. Gershman,
and Joshua B. Tenenbaum. Hybrid memoised wake-sleep: Approximate inference at the discrete-
continuous interface. International Conference on Learning Representations (ICLR), 2022.

Yingzhen Li, José Miguel Hernández-Lobato, and Richard E. Turner. Stochastic expectation propa-
gation. Neural Information Processing Systems (NIPS), 2015.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. Neural Information Processing Systems (NIPS), 2016.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. Interna-
tional Conference on Learning Representations (ICLR), 2017.

Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep hierarchy
of latent variables for generative modeling. Neural Information Processing Systems (NeurIPS),
2019.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei
Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from partial episodes
for improved convergence and stability. arXiv preprint 2209.12782, 2022.

11

Published as a conference paper at ICLR 2023

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Neural Information Processing Systems (NeurIPS),
2022.

Vaden Masrani, Tuan Anh Le, and Frank D. Wood. The thermodynamic variational objective. Neural
Information Processing Systems (NeurIPS), 2019.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. arXiv preprint
1301.2294, 2001.

Thomas P. Minka. Divergence measures and message passing. 2005.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. Inter-
national Conference on Machine Learning (ICML), 2014.

Andriy Mnih and Danilo Jimenez Rezende. Variational inference for Monte Carlo objectives. Inter-
national Conference on Machine Learning (ICML), 2016.

John William Paisley, David M. Blei, and Michael I. Jordan. Variational Bayesian inference with
stochastic search. International Conference on Machine Learning (ICML), 2012.

Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank Wood,
and Yee Whye Teh. Tighter variational bounds are not necessarily better. International Conference
on Machine Learning (ICML), 2018.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. Artificial Intelli-
gence and Statistics (AISTATS), 2014.

Rajesh Ranganath, Dustin Tran, Jaan Altosaar, and David M. Blei. Operator variational inference.
Neural Information Processing Systems (NIPS), 2016a.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. International
Conference on Machine Learning (ICML), 2016b.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. International Conference on Machine Learning
(ICML), 2014.

Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco J. R. Ruiz, and Ömer Deniz Akyildiz.
VarGrad: A low-variance gradient estimator for variational inference. Neural Information Pro-
cessing Systems (NeurIPS), 2020.

Lawrence K. Saul, T. Jaakkola, and Michael I. Jordan. Mean field theory for sigmoid belief net-
works. Journal of Artificial Intelligence Research, 4:61–76, 1996.

Artem Sobolev and Dmitry Vetrov. Importance weighted hierarchical variational inference. Neural
Information Processing Systems (NeurIPS), 2019.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. Neural Information Processing Systems (NIPS), 2016.

Michalis K. Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for non-
conjugate inference. International Conference on Machine Learning (ICML), 2014.

Oleg Trott and Arthur J Olson. AutoDock Vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of Computational
Chemistry, 31(2):455–461, 2010.

George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, and Jascha Narain Sohl-Dickstein.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. Neural
Information Processing Systems (NIPS), 2017.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Neural Information
Processing Systems (NeurIPS), 2020.

Neng Wan, Dapeng Li, and Naira Hovakimyan. f-divergence variational inference. Neural Informa-
tion Processing Systems (NeurIPS), 2020.

12

Published as a conference paper at ICLR 2023

Dilin Wang, Hao Liu, and Qiang Liu. Variational inference with tail-adaptive f-divergence. Neural
Information Processing Systems (NeurIPS), 2018.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning.
Uncertainty in Artificial Intelligence (UAI), 2001.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen, Sham M. Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. International Conference on Learning Representations (ICLR), 2018.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. International Conference
on Machine Learning (ICML), 2018.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational in-
ference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41:2008–2026, 2019a.

Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative
models with GFlowNets. arXiv preprint 2209.02606v1, 2022a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. International Conference
on Machine Learning (ICML), 2022b.

Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative
models with GFlowNets and beyond. arXiv preprint 2209.02606, 2023.

Mingtian Zhang, Thomas Bird, Raza Habib, Tianlin Xu, and David Barber. Variational f-divergence
minimization. arXiv preprint 1907.11891, 2019b.

Heiko Zimmermann, Hao Wu, Babak Esmaeili, Sam Stites, and Jan-Willem van de Meent. Nested
variational inference. Neural Information Processing Systems (NeurIPS), 2021.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A. Naesseth. A
variational perspective on generative flow networks. arXiv preprint 2210.07992, 2022.

13

Published as a conference paper at ICLR 2023

A CANONICAL CONSTRUCTION OF A GRADED DAG

s0

s1

s2

s3

s4

s5

s6

s7 s8

s0

s1

s2

s7

s5

s4

s8

s6

s3

Figure A.1: Illustration of the process by which a DAG (left) can turn into a graded DAG (right).
Nodes with a double border represent terminating states. Nodes with a dashed border represent
dummy states added to make the DAG graded.

Fig. A.1 shows the canonical conversion of a DAG into a graded DAG as described in §2.2. Note
that this operation is idempotent: applying it to a graded DAG yields the same graded DAG.

B PROOFS

We prove Prop. 1.

Proof For a complete trajectory 𝜏 ∈ T , denote by 𝑐(𝜏) = log 𝑃𝐹 (𝜏)
𝑅 (𝑥𝜏)𝑃𝐵 (𝜏 |𝑥𝜏) . We have the following:

∇𝜃𝑐(𝜏) = ∇𝜃 log 𝑃𝐹 (𝜏) (13)
∇𝜙𝑐(𝜏) = −∇𝜙 log 𝑃𝐵 (𝜏 | 𝑥𝜏) = −∇𝜙 log 𝑃𝐵 (𝜏) (14)

Denoting by 𝑓1 : 𝑡 ↦→ 𝑡 log 𝑡 and 𝑓2 : 𝑡 ↦→ − log 𝑡, which correspond to the forward and reverse KL
divergences respectively, and starting from

LHVI, 𝑓2 (𝑃𝐹 , 𝑃𝐵) = 𝐷𝐾𝐿 (𝑃𝐹 ∥𝑃𝐵) = E𝜏∼𝑃𝐹
[
log

𝑃𝐹 (𝜏)
𝑃𝐵 (𝜏)

]
= E𝜏∼𝑃𝐹 [𝑐(𝜏)] + log �̂� ,

LHVI, 𝑓1 (𝑃𝐹 , 𝑃𝐵) = 𝐷𝐾𝐿 (𝑃𝐵∥𝑃𝐹) = E𝜏∼𝑃𝐵
[
log

𝑃𝐵 (𝜏)
𝑃𝐹 (𝜏)

]
= −

(
E𝜏∼𝑃𝐵 [𝑐(𝜏)] + log �̂�

)
,

we obtain:

∇𝜃LHVI, 𝑓2 (𝑃𝐹 , 𝑃𝐵) = ∇𝜃E𝜏∼𝑃𝐹 [𝑐(𝜏)] = E𝜏∼𝑃𝐹 [∇𝜃 log 𝑃𝐹 (𝜏)𝑐(𝜏) + ∇𝜃𝑐(𝜏)],
∇𝜙LHVI, 𝑓1 (𝑃𝐹 , 𝑃𝐵) = −∇𝜙E𝜏∼𝑃𝐵 [𝑐(𝜏)] = −E𝜏∼𝑃𝐵 [∇𝜙 log 𝑃𝐵 (𝜏)𝑐(𝜏) + ∇𝜙𝑐(𝜏)] .

From (13) and (14), we obtain:

E𝜏∼𝑃𝐹 [∇𝜃𝑐(𝜏)] = E𝜏∼𝑃𝐹 [∇𝜃 log 𝑃𝐹 (𝜏)] =
∑︁
𝜏∈T

𝑃𝐹 (𝜏)∇𝜃 log 𝑃𝐹 (𝜏) =
∑︁
𝜏∈T
∇𝜃𝑃𝐹 (𝜏) = ∇𝜃1 = 0

Hence, for any scalar 𝑍 > 0, we can write:

E𝜏∼𝑃𝐹 [∇𝜃𝑐(𝜏)] = 0 = E𝜏∼𝑃𝐹 [∇𝜃 log 𝑃𝐹 (𝜏) log 𝑍]
and similarly

E𝜙∼𝑃𝐹 [∇𝜙𝑐(𝜏)] = 0 = E𝜏∼𝑃𝐵 [∇𝜙 log 𝑃𝐵 (𝜏) log 𝑍] .
Plugging these two equalities back in the HVI gradients above, we obtain:

∇𝜃LHVI, 𝑓2 (𝑃𝐹 , 𝑃𝐵) = E𝜏∼𝑃𝐹 [∇𝜃 log 𝑃𝐹 (𝜏) log
𝑍𝑃𝐹 (𝜏)

𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏)
]

∇𝜙LHVI, 𝑓1 (𝑃𝐹 , 𝑃𝐵) = −E𝜏∼𝑃𝐵 [∇𝜃 log 𝑃𝐵 (𝜏) log
𝑍𝑃𝐹 (𝜏)

𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏)
]

14

Published as a conference paper at ICLR 2023

The last two equalities hold for any scalar 𝑍 (that does not depend on the parameters of 𝑃𝐹 , 𝑃𝐵, and
that does not depend on any trajectory). In particular, the equations hold for the parameter 𝑍 of the
Trajectory Balance objective. It thus follows that:

∇𝜃LHVI, 𝑓2 (𝑃𝐹 , 𝑃𝐵) =
1
2
E𝜏∼𝑃𝐹

[
∇𝜃

(
log

𝑍𝑃𝐹 (𝜏)
𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏)

)2
]
=

1
2
E𝜏∼𝑃𝐵 [∇𝜃LTB (𝜏; 𝑃𝐹 , 𝑃𝐵, 𝑍)]

∇𝜙LHVI, 𝑓1 (𝑃𝐹 , 𝑃𝐵) =
1
2
E𝜏∼𝑃𝐵

[
∇𝜃

(
log

𝑍𝑃𝐹 (𝜏)
𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏)

)2
]
=

1
2
E𝜏∼𝑃𝐵 [∇𝜙LTB (𝜏; 𝑃𝐹 , 𝑃𝐵, 𝑍)]

As an immediate corollary, we obtain that the expected on-policy TB gradient does not depend on
the estimated partition function 𝑍 .

Next, we will prove the identity (9), which we restate here:

E𝜏∼𝑃𝐹 [∇𝜙LTB (𝜏)] = ∇𝜙
[
𝐷log2 (𝑃𝐵∥𝑃𝐹) + 2(log 𝑍 − log �̂�)𝐷KL (𝑃𝐹 ∥𝑃𝐵)

]
. (15)

Proof The RHS of (15) equals

∇𝜙

[
E𝜏∼𝑃𝐹

[(
log

𝑃𝐵 (𝜏 | 𝑥𝜏)𝑅(𝑥𝜏)
�̂�𝑃𝐹 (𝜏)

)2
+ 2(log 𝑍 − log �̂�) log

𝑃𝐹 (𝜏) �̂�
𝑃𝐵 (𝜏 | 𝑥𝜏)𝑅(𝑥𝜏)

]]
=E𝜏∼𝑃𝐹

[
∇𝜙

((
log

𝑃𝐵 (𝜏 | 𝑥𝜏)𝑅(𝑥𝜏)
�̂�𝑃𝐹 (𝜏)

)2
+ 2(log 𝑍 − log �̂�) log

𝑃𝐹 (𝜏) �̂�
𝑃𝐵 (𝜏 | 𝑥𝜏)𝑅(𝑥𝜏)

)]
=E𝜏∼𝑃𝐹

[
2∇𝜙 log 𝑃𝐵 (𝜏 | 𝑥𝜏) log

𝑃𝐵 (𝜏 | 𝑥𝜏)𝑅(𝑥𝜏)
�̂�𝑃𝐹 (𝜏)

− 2(log 𝑍 − log �̂�)∇𝜙 log 𝑃𝐵 (𝜏 | 𝑥𝜏)
]

=2E𝜏∼𝑃𝐹

[
∇𝜙 log 𝑃𝐵 (𝜏 | 𝑥𝜏) log

𝑃𝐵 (𝜏 | 𝑥𝜏)𝑅(𝑥𝜏)
𝑍𝑃𝐹 (𝜏)

]
=E𝜏∼𝑃𝐹 [∇𝜙LTB (𝜏)]

C A VARIATIONAL OBJECTIVE FOR SUBTRAJECTORIES

In this section, we extend the claim made in Prop. 1 to connect alternative GFlowNet losses to other
variational objectives. Prop. 1 is thus a partial case of Prop. 2. This provides an alternative proof to
Prop. 1.

The detailed balance objective (DB): The loss proposed in (Bengio et al., 2021b) parametrizes a
GFlowNet using its forward and backward policies 𝑃𝐹 and 𝑃𝐵 respectively, along with a state flow
function 𝐹, which is a positive function of the states, that matches the target reward function on the
terminating states. It decomposes as a sum of transition-dependent losses:

∀𝑠→𝑠′ ∈ A LDB (𝑠→𝑠′; 𝑃𝐹 , 𝑃𝐵, 𝐹) =
(
log

𝐹 (𝑠)𝑃𝐹 (𝑠′ | 𝑠)
𝐹 (𝑠′)𝑃𝐵 (𝑠 | 𝑠′)

)2
, where 𝐹 (𝑠′) = 𝑅(𝑠′) if 𝑠′ ∈ X.

(16)

The subtrajectory balance objective (SubTB): Both the DB and TB objectives can be seen as
special instances of the subtrajectory balance objective (Malkin et al., 2022; Madan et al., 2022).
Malkin et al. (2022) suggested instead of defining the state flow function 𝐹 for every state 𝑠, a state
flow function could be defined on a subset of the state space S, called the hub states. The loss can
be decomposed into a sum of subtrajectory-dependent losses:

∀𝜏 = (𝑠1, . . . , 𝑠𝑛) ∈ T partial LSubTB (𝜏; 𝑃𝐹 , 𝑃𝐵, 𝐹) =
(
log

𝐹 (𝑠1)𝑃𝐹 (𝜏)
𝐹 (𝑠𝑛)𝑃𝐵 (𝜏 | 𝑠𝑡)

)2
, (17)

where 𝑃𝐹 (𝜏) is defined for partial trajectories similarly to complete trajectories (2), 𝑃𝐵 (𝜏 | 𝑠) =∏
(𝑠→𝑠′) ∈𝜏 𝑃𝐵 (𝑠 | 𝑠′), and we again fix 𝐹 (𝑥) = 𝑅(𝑥) for terminating states 𝑥 ∈ X). The SubTB

objective reduces to the DB objective for subtrajectories of length 1 and to the TB objective for
complete trajectories, in which case we use 𝑍 to denote 𝐹 (𝑠0).

15

Published as a conference paper at ICLR 2023

A variational objective for transitions: From now on, we work with a graded DAG G = (S,A),
in which the state space S is decomposed into layers: S =

⊔𝐿
𝑙=0 S𝑙 , with S0 = {𝑠0} and S𝐿 = X.

HVI provides a class of algorithms to learn forward and backward policies on G. Rather than learn-
ing these policies (𝑃𝐹 and 𝑃𝐵) using a variational objective requiring distributions over complete
trajectories, nested variational inference (NVI; Zimmermann et al., 2021)), which combines nested
importance sampling and variational inference, defines an objective dealing with distributions over
transitions, or edges. To this end, it makes use of positive functions 𝐹𝑘 of the states 𝑠𝑘 ∈ S𝑘 , for
𝑘 = 0, . . . , 𝐿 − 1, to define two sets of distributions 𝑝𝑘 and 𝑝𝑘 over edges from S𝑘 to S𝑘+1:

𝑝𝑘 (𝑠𝑘→𝑠𝑘+1) ∝ 𝐹𝑘 (𝑠𝑘)𝑃𝐹 (𝑠𝑘+1 | 𝑠𝑘) 𝑝𝑘 (𝑠𝑘→𝑠𝑘+1) ∝
{
𝑅(𝑠𝐿)𝑃𝐵 (𝑠𝑘 | 𝑠𝐿) 𝑘 = 𝐿 − 1
𝐹𝑘+1 (𝑠𝑘+1)𝑃𝐵 (𝑠𝑘 | 𝑠𝑘+1) otherwise

.

(18)
Learning the policies 𝑃𝐹 , 𝑃𝐵 and the functions 𝐹𝑘 is done by minimizing losses of the form:

LNVI (𝑃𝐹 , 𝑃𝐵, 𝐹) =
𝐿−1∑︁
𝑘=0

𝐷 𝑓 (𝑝𝑘 ∥𝑝𝑘) (19)

The positive function 𝐹𝑘 plays the same role as the state flow function in GFlowNets (in the DB
objective in particular). Before drawing the links between DB and NVI, we first propose a natural
extension of NVI to subtrajectories.

C.1 A VARIATIONAL OBJECTIVE FOR SUBTRAJECTORIES

Consider a graded DAG G = (S,A) where S =
⊔𝐿
𝑙=0 S𝑙 , S0 = {𝑠0}, S𝐿 = X. Amongst the 𝐿 + 1

layers 𝑙 = 0, . . . , 𝐿, we consider 𝐾 + 1 ≤ 𝐿 + 1 special layers, that we call junction layers, of
which the states are called hub states. We denote by 𝑚0, . . . , 𝑚𝐾 the indices of these layers, and we
constrain 𝑚0 = 0 to represent the layer comprised of the source state only, and 𝑚𝐾 = 𝐿 representing
the terminating states X. On each non-terminating junction layer 𝑚𝑘 ≠ 𝐿, we define a state flow
function 𝐹𝑘 : S𝑚𝑘 → R∗+. Given any forward and backward policies 𝑃𝐹 and 𝑃𝐵 respectively,
consistent with the DAG G, the state flow functions define two sets of distributions 𝑝𝑘 and 𝑝𝑘 over
partial trajectories starting from a state 𝑠𝑚𝑘 ∈ S𝑚𝑘 and ending in a state 𝑠𝑚𝑘+1 ∈ S𝑚𝑘+1 (we denote
by T𝑘 the set comprised of these partial trajectories, for 𝑘 = 0 . . . 𝐾 − 1):

∀𝜏𝑘 = (𝑠𝑚𝑘→ . . .→𝑠𝑚𝑘+1) ∈ T𝑘 𝑝𝑘 (𝜏𝑘) ∝ 𝐹𝑘 (𝑠𝑚𝑘)𝑃𝐹 (𝜏𝑘), (20)
∀𝜏𝑘 = (𝑠𝑚𝑘→ . . .→𝑠𝑚𝑘+1) ∈ T𝑘 𝑝𝑘 (𝜏𝑘) ∝ 𝐹𝑘+1 (𝑠𝑚𝑘+1)𝑃𝐵 (𝜏𝑘 | 𝑠𝑚𝑘+1), (21)

where 𝐹𝐾 is fixed to the target reward function 𝑅.

Lemma 1 If 𝑝𝑘 = 𝑝𝑘 for all 𝑘 = 0 . . . 𝐾 −1, then the forward policy 𝑃𝐹 induces a terminating state
distribution 𝑃⊤

𝐹
that matches the target unnormalized distribution (or reward function) 𝑅.

Proof Consider a complete trajectory 𝜏 = (𝑠𝑚0→ . . .→𝑠𝑚1→ . . .→ . . . 𝑠𝑚2→ . . .→ . . .→𝑠𝑚𝐾).
And let 𝜏𝑘 = (𝑠𝑚𝑘→ . . .→𝑠𝑚𝑘+1), for every 𝑘 < 𝐾 .

Denote by �̂�𝑘 and �̌�𝑘 the partition functions (constant of proportionality in (18)) of 𝑝𝑘 and 𝑝𝑘
respectively, for every 𝑘 < 𝐾 . It is straightforward to see that for every 0 < 𝑘 < 𝐾:

�̂�𝑘+1 = �̌�𝑘 =
∑︁

𝑠𝑚𝑘+1 ∈S𝑚𝑘+1

𝐹𝑘+1 (𝑠𝑚𝑘+1) (22)

𝐾−1∏
𝑘=0

𝑝𝑘 (𝜏𝑘) =
∏𝐾−1
𝑘=0 𝐹𝑘 (𝑠𝑚𝑘)∏𝐾−1

𝑘=0 �̂�𝑘
𝑃𝐹 (𝜏), (23)

𝐾−1∏
𝑘=0

𝑝𝑘 (𝜏𝑘) =
∏𝐾−1
𝑘=0 𝐹𝑘+1 (𝑠𝑚𝑘+1)∏𝐾−1

𝑘=0 �̌�𝑘
𝑃𝐵 (𝜏 | 𝑠𝑚𝐾). (24)

Because 𝑝𝑘 = 𝑝𝑘 for all 𝑘 = 0 . . . 𝐾 − 1, then both right-hand sides of (23) and (24) are equal.
Combining this with (22), we obtain:

∀𝜏 ∈ T 𝐹0 (𝑠0)
�̂�0︸ ︷︷ ︸
=1

𝑃𝐹 (𝜏) =
𝑅(𝑥𝜏)∑
𝑥∈X 𝑅(𝑥)

𝑃𝐵 (𝜏 | 𝑥), (25)

16

Published as a conference paper at ICLR 2023

which implies the TB constraint is satisfied for all 𝜏 ∈ T . Malkin et al. (2022) shows that this is a
sufficient condition for the terminating state distribution induced by 𝑃𝐹 to match the target reward
function 𝑅, which completes the proof.

Similar to NVI, we can use Lemma 1 to define objective functions for 𝑃𝐹 , 𝑃𝐵, 𝐹𝑘 , of the form:

LSubNVI, 𝑓 (𝑃𝐹 , 𝑃𝐵, 𝐹0:𝐾−1) =
𝐾−1∑︁
𝑘=1

𝐷 𝑓 (𝑝𝑘 ∥𝑝𝑘) (26)

Note that the SubNVI objective of (26) matches the NVI objective (Zimmermann et al., 2021) when
all layers are junction layers (i.e. 𝐾 = 𝐿, and 𝑚𝑘 = 𝑘 for all 𝑘 ≤ 𝐿), and matches the HVI objective
of (5) when only the first and last layers are junction layers (i.e. 𝐾 = 1, 𝑚0 = 0, and 𝑚1 = 𝐿).

C.2 AN EQUIVALENCE BETWEEN THE SUBNVI AND THE SUBTB OBJECTIVES

Proposition 2 Given a graded DAG G as in §2.1, with junction layers 𝑚0 = 0, 𝑚1, . . . , 𝑚𝐾 = 𝐿 as
in §C.1. For any forward and backward policies, and for any positive function 𝐹𝑘 defined for the
hubs, consider 𝑝𝑘 and 𝑝𝑘 defined in (20) and (21). The subtrajectory variational objectives of (26)
are equivalent to the subtrajectory balance objective (17) for specific choices of the 𝑓 -divergences.
Namely, denoting by 𝜃, 𝜙 the parameters of 𝑃𝐹 , 𝑃𝐵 respectively:

E𝜏𝑘∼ �̌�𝑘 [∇𝜙LSubTB (𝜏𝑘 ; 𝑃𝐹 , 𝑃𝐵, 𝐹)] = 2∇𝜙𝐷 𝑓1 (𝑝𝑘 ∥𝑝𝑘) (27)
E𝜏𝑘∼ �̂�𝑘 [∇𝜃LSubTB (𝜏𝑘 ; 𝑃𝐹 , 𝑃𝐵, 𝐹)] = 2∇𝜃𝐷 𝑓2 (𝑝𝑘 ∥𝑝𝑘) (28)

where 𝐹 = 𝐹0:𝐾−1, and 𝑓1 : 𝑡 ↦→ 𝑡 log 𝑡 and 𝑓2 : 𝑡 ↦→ − log 𝑡.

Proof For a subtrajectory 𝜏𝑘 = (𝑠𝑚𝑘→ . . .→𝑠𝑚𝑘+1) ∈ T𝑘 , let 𝑐(𝜏𝑘) = log 𝐹𝑘 (𝑠𝑚𝑘)𝑃𝐹 (𝜏𝑘)
𝐹𝑘+1 (𝑠𝑚𝑘+1)𝑃𝐵 (𝜏𝑘 |𝑠𝑚𝑘+1)

.

First, note that because �̂�𝑘 and �̌�𝑘 are not functions of 𝜙, 𝜃 ((23)):

∇𝜙𝑐(𝜏𝑘) = −∇𝜙 log
𝐹𝑘+1 (𝑠𝑚𝑘+1)𝑃𝐵 (𝜏𝑘 | 𝑠𝑚𝑘+1)

�̌�𝑘
= −∇𝜙 log 𝑝𝑘 (𝜏𝑘) (29)

∇𝜃𝑐(𝜏𝑘) = ∇𝜃 log
𝐹𝑘 (𝑠𝑚𝑘)𝑃𝐹 (𝜏𝑘)

�̂�𝑘
= ∇𝜙 log 𝑝𝑘 (𝜏𝑘) (30)

17

Published as a conference paper at ICLR 2023

We will prove (27). The proof of (28) follows the same reasoning, and is left as an exercise for the
reader.

𝐷 𝑓1 (𝑝𝑘 ∥𝑝𝑘) = 𝐷𝐾𝐿 (𝑝𝑘 ∥𝑝𝑘)

∇𝜙𝐷 𝑓1 (𝑝𝑘 ∥𝑝𝑘) = ∇𝜙
∑︁
𝜏𝑘 ∈T𝑘

𝑝𝑘 (𝜏𝑘) log
𝑝𝑘 (𝜏𝑘)
𝑝𝑘 (𝜏𝑘)

= −∇𝜙
∑︁
𝜏𝑘 ∈T𝑘

𝑝𝑘 (𝜏𝑘)𝑐(𝜏𝑘) + ∇𝜙 log
�̂�𝑘

�̌�𝑘︸ ︷︷ ︸
=0, according to (23)

= −
∑︁
𝜏𝑘 ∈T𝑘

(∇𝜙𝑝𝑘 (𝜏𝑘)𝑐(𝜏𝑘) + 𝑝𝑘 (𝜏𝑘)∇𝜙𝑐(𝜏𝑘))

= −
∑︁
𝜏𝑘 ∈T𝑘

(𝑝𝑘 (𝜏𝑘)∇𝜙 log 𝑝𝑘 (𝜏𝑘)𝑐(𝜏𝑘) + 𝑝𝑘 (𝜏𝑘)∇𝜙𝑐(𝜏𝑘))

= −E𝜏𝑘∼ �̌�𝑘 [∇𝜙 log 𝑝𝑘 (𝜏𝑘)𝑐(𝜏𝑘)] +
∑︁
𝜏𝑘 ∈T𝑘

𝑝𝑘 (𝜏𝑘)∇𝜙 log 𝑝𝑘 (𝜏𝑘) following (29)

= −E𝜏𝑘∼ �̌�𝑘 [∇𝜙 log 𝑃𝐵 (𝜏𝑘 | 𝑠𝑚𝑘+1)𝑐(𝜏𝑘)] + ∇𝜙
∑︁
𝜏𝑘 ∈T𝑘

𝑝𝑘 (𝜏𝑘)︸ ︷︷ ︸
=0

= E𝜏𝑘∼ �̌�𝑘

[
∇𝜙 log 𝑃𝐵 (𝜏𝑘 | 𝑠𝑚𝑘+1) log

𝐹𝑘+1 (𝑠𝑚𝑘+1)𝑃𝐵 (𝜏𝑘 | 𝑠𝑚𝑘+1)
𝐹𝑘 (𝑠𝑚𝑘)𝑃𝐹 (𝜏𝑘)

]
=

1
2
E𝜏𝑘∼ �̌�𝑘

[
∇𝜙

(
log

𝐹𝑘 (𝑠𝑚𝑘)𝑃𝐹 (𝜏𝑘)
𝐹𝑘+1 (𝑠𝑚𝑘+1)𝑃𝐵 (𝜏𝑘 | 𝑠𝑚𝑘+1)

)2
]

=
1
2
E𝜏𝑘∼ �̌�𝑘 [∇𝜙LSubTB (𝜏𝑘 ; 𝑃𝐹 , 𝑃𝐵, 𝐹)]

As a special case of Prop. 2, when the state flow function is defined for 𝑠0 only (and for the termi-
nating states, at which it equals the target reward function), i.e. when 𝐾 = 1, the distribution 𝑝0 (𝜏)
and 𝑃𝐹 (𝜏) are equal, and so are the distributions 𝑝0 (𝜏) and 𝑃𝐵 (𝜏). We thus obtain the first two
equations of Prop. 1 as a consequence of Prop. 2.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 HYPERGRID EXPERIMENTS

Details about the environment For completeness, we provide more details about the environ-
ment, as explained in Malkin et al. (2022). In a 𝐷-dimension hypergrid of side length 𝐻, the state
space S is partitioned into the non-terminating states S𝑜 = {0, . . . , 𝐻 − 1}𝐷 and terminating states
X = S⊤ = {0, . . . , 𝐻 − 1}𝐷 . The initial state is 0R𝐷 = (0, . . . , 0) ∈ S𝑜, and in addition to the
transitions from a non-terminating state to another (by incrementing one coordinate of the state), an
“exit” action is available for all 𝑠 ∈ S𝑜, that leads to a terminating state 𝑠⊤ ∈ S⊤. The reward at a
terminating state 𝑠⊤ = (𝑠1, . . . , 𝑠𝐷)⊤ is:

𝑅(𝑠⊤) = 𝑅0 + 0.5
𝐷∏
𝑑=1

1
[���� 𝑠𝑑

𝐻 − 1
− 0.5

���� ∈ (0.25, 0.5]
]
+ 2

𝐷∏
𝑑=1

1
[���� 𝑠𝑑

𝐻 − 1
− 0.5

���� ∈ (0.3, 0.4)] , (31)

where 𝑅0 is an exploration parameter (lower values indicate harder exploration).

Architectural details The forward and backward policies are parametrized as neural networks
with 2 hidden layers of 256 units each. The neural networks take as input a one-hot representation
of a a state (also called K-hot, or multi-hot representations), which is a 𝐻×𝐷 vector including exactly
𝐷 ones and (𝐻 − 1)𝐷 zeros, and output the logits of 𝑃𝐹 and 𝑃𝐵 respectively. Forbidden actions
(e.g. when a coordinate is already maxed out at 𝐻 − 1) are masked out by setting the corresponding
logits to −∞ after the forward pass. Unlike Malkin et al. (2022), we do not tie the parameters of 𝑃𝐹
and 𝑃𝐵.

18

Published as a conference paper at ICLR 2023

3 × 10 1

4 × 10 1

On
 P

ol
icy

Reverse KL

10 1

2 × 10 1

3 × 10 1

4 × 10 1
Reverse WS

10 2

10 1

Forward KL
local
global

2.25 × 10 1
2.5 × 10 1

2.75 × 10 1
3 × 10 1

3.25 × 10 1
3.5 × 10 1

3.75 × 10 1

Of
f P

ol
icy

10 2

10 1

10 2

10 1

Figure D.1: A comparison of the the type of baseline used (local or global) for the three HVI
algorithms that use a score function estimator of the gradient.

Behavior policy The behavior policy is obtained from the forward policy 𝑃𝐹 by subtracting a
scalar 𝜖 from the logits output by the forward policy neural network. The value of 𝜖 is decayed from
𝜖𝑖𝑛𝑖𝑡 to 0 following a cosine annealing schedule (Loshchilov & Hutter, 2017), and the value 𝜖 = 0 is
reached at an iteration 𝑇𝑚𝑎𝑥 . The values of 𝜖𝑖𝑛𝑖𝑡 and 𝑇𝑚𝑎𝑥 were treated as hyperparamters.

Hyperparameter optimization Our experiments have shown that HVI objectives were brittle to
the choice of hyperparameters (mainly learning rates), and that the ones used for Trajectory Balance
in Malkin et al. (2022) do not perform as well in the larger 128 × 128 grid we considered. To
obtain a fair comparison between GFlowNets and HVI methods, a particular care was given to the
optimization of hyperparameters in this domain. The optimization was performed in two stages:

1. We use a batch size of 64 for all learning objectives, whether on-policy or off-policy, and the
Adam optimizer with secondary parameters set to their default values, for the parameters of 𝑃𝐹 ,
the parameters of 𝑃𝐵, and log 𝑍 (which is initialized at 0). The learning rates of 𝑃𝐹 , 𝑃𝐵, log 𝑍 ,
along with a schedule factor 𝛾 < 1 by which they are multiplied when the JSD plateaus for
more than 500 iterations (i.e. 500 × 64 trajectories sampled), were sought after separately for
each combination of learning objective and sampling method (on-policy or off-policy), using a
Bayesian search with the JSD evaluated at 200𝐾 trajectories as an optimization target. The choice
of the baseline for HVI methods (except WS, that does not have a score function estimator of the
gradient) was treated as a hyperparameter as well.

2. All objectives were then trained for 106 trajectories using all the combinations of hyperparame-
ters found in the first stage, for 5 seeds each. The final set of hyperparameters for each objective
and sampling mode was then chosen as the one that leads to the lowest area under the JSD curve
(approximated with the trapezoids method).

For off-policy runs, 𝑇𝑚𝑎𝑥 was defined as a fraction 1/𝑛 of the total number of iterations (which is
equal to 106/64). The value of 𝑛 and 𝜖𝑖𝑛𝑖𝑡 was optimized the same way as the learning rate and the
schedule, as described above.

In Fig. D.1, we illustrate the differences between the two types of baselines considered (global and
local) for the 3 algorithms that use a score function estimator of the gradient, both on-policy and
off-policy.

Smaller environments: The environment studied in the main body of text (128 × 128, with
𝑅0 = 10−3) already illustrates some key differences between the Forward and Reverse KL objec-
tives. As a sanity check for the HVI methods that failed to converge in this challenging environment,
we consider two alternative grids: 64×64 and 8×8×8×8, both with an easier exploration parameter
(𝑅0 = 0.1), and compare the 5 algorithms on-policy on these two extra domains. Additionally, for
the two-dimensional domain (64 × 64), we illustrate in Fig. D.2 a visual representation of the aver-
age distribution obtained after sampling 106 trajectories, for each method separately. Interestingly,
unlike the hard exploration domain, the two algorithms with the mode-seeking KL (REVERSE KL
and REVERSE WS) converge to a lower JSD than the mean-seeking KL algorithms (FORWARD KL
and WS), and are on par with TB.

D.2 MOLECULE EXPERIMENTS

Most experiment settings were identical to those of Malkin et al. (2022), in particular, the reward
model 𝑓 the held-out set of molecules used to compute the performance metric, the GFlowNet model

19

Published as a conference paper at ICLR 2023

0k 200k 400k 600k 800k 1000k
Trajectories sampled

10 5

10 4

10 3

10 2

10 1

100

JS
D

8x8x8x8
TB
Reverse KL
WS
Forward KL
Reverse WS

0k 200k 400k 600k 800k 1000k
Trajectories sampled

64x64

Reverse KL Reverse WS WS Forward KL TB Target Distribution

Figure D.2: Top: The evolution of the JSD between the learned sampler 𝑃⊤
𝐹

and the target distribu-
tion on the 8 × 8 × 8 × 8 grid left and the 64 × 64 grid right. Trajectories are sampled on-policy.
Shaded areas represent the standard error evaluated across 5 different runs Bottom: The average
(across 5 runs) final learned distribution 𝑃⊤

𝐹
for the different algorithms, along with the target distri-

bution. To amplify variation, the plot intensity at each grid position is resampled from the Gaussian
approximating the distribution over the 5 runs.

architecture (a graph neural network introduced by by Bengio et al. (2021a)), and the off-policy
exploration rate. All models were trained with the Adam optimizer and batch size 4 for a maximum
of 50000 batches. The metric was computed after every 5000 batches and the last computed value of
the metric was reported, which was sometimes not the value after 50000 batches when the training
runs terminated early because of numerical errors.

D.3 BAYESIAN STRUCTURE LEARNING EXPERIMENTS

Bayesian Networks A Bayesian Network is a probabilistic model where the joint distribution over
𝑑 random variables {𝑋1, . . . , 𝑋𝑑} factorizes according to a directed acyclic graph (DAG) 𝐺:

𝑝(𝑋1, . . . , 𝑋𝑑) =
𝑑∏
𝑖=1

𝑝(𝑋𝑖 | Pa𝐺 (𝑋𝑖)),

where Pa𝐺 (𝑋𝑖) is the set of parent variables of 𝑋𝑖 in the graph 𝐺. Each conditional distribution in
the factorization above is also associated with a set of parameters 𝜃 ∈ Θ. The structure 𝐺 of the
Bayesian Network is often assumed to be known. However, when the structure is unknown, we can
learn it based on a dataset of observation D: this is called structure learning.

Structure of the state space We use the same structure of graded DAG G as the one described
in (Deleu et al., 2022), where each state of G is itself a DAG 𝐺, and where actions correspond to
adding one edge to the current graph𝐺 to transition to a new graph𝐺′. Only the actions maintaining
the acyclicity of 𝐺′ are considered valid; this ensures that all the states are well-defined DAGs,
meaning that all the states are terminating here (we define a distribution over DAGs). Similar to
the hypergrid environment, the action space also contains an extra action “stop” to terminate the
generation process, and return the current graph as a sample of our distribution; this “stop” action is
denoted 𝐺 → 𝐺⊤, to follow the notation introduced in §2.1.

Reward function Our objective in Bayesian structure learning is to approximate the posterior
distribution over DAGs 𝑝(𝐺 | D), given a dataset of observations D. Since our goal is to find a
forward policy 𝑃𝐹 for which 𝑃⊤

𝐹
(𝐺) ∝ 𝑅(𝐺) (see §2.1), we can define the reward function as the

joint distribution 𝑅(𝐺) = 𝑝(𝐺,D) = 𝑝(D | 𝐺)𝑝(𝐺), where 𝑝(𝐺) is a prior over graphs (assumed
to be uniform throughout the paper), and 𝑝(D | 𝐺) is the marginal likelihood. Since the marginal
likelihood involves marginalizing over the parameters of the Bayesian Network

𝑝(D | 𝐺) =
∫
Θ

𝑝(D | 𝜃, 𝐺)𝑝(𝜃 | 𝐺) 𝑑Θ,

it is in general intractable. We consider here a special class of models, called linear-Gaussian
models, where the marginal likelihood can be computed in closed form; for this class of models, the
log-marginal likelihood is also called the BGe score (Geiger & Heckerman, 1994; Kuipers et al.,
2014) in the structure learning literature.

20

Published as a conference paper at ICLR 2023

(Modified)
DB

Off-Policy
TB

On-Policy
TB

On-Policy
HVI

Off-Policy
HVI

0.0

0.1

0.2

0.3

0.4

0.5

0.6
R

M
S

E

Number of nodes: d = 3

(Modified)
DB

Off-Policy
TB

On-Policy
TB

On-Policy
HVI

Off-Policy
HVI

Number of nodes: d = 4

(Modified)
DB

Off-Policy
TB

On-Policy
TB

On-Policy
HVI

Off-Policy
HVI

Number of nodes: d = 5

Edge marginals

Figure D.3: Comparison of edge marginals computed using the target posterior distribution and
using the posterior approximations found either with the GFlowNet objectives, or REVERSE KL.
Performance is reported as the Root Mean Square Error (RMSE) between the marginals (lower is
better).

For each experiment, we sampled a dataset D of 100 samples from a randomly generated Bayesian
network. The (ground truth) structure of the Bayesian Network was generated following an Erdős-
Rényi model, with about 𝑑 edges on average (to encourage sparsity on such small graphs with
𝑑 ≤ 5). Once the structure is known, the parameters of the linear-Gaussian model were sampled
randomly from a standard Normal distribution N(0, 1). See (Deleu et al., 2022) for more details
about the data generation process. For each setting (different values of 𝑑) and each objective, we
repeated the experiment over 20 different seeds.

Forward policy Deleu et al. (2022) parametrized the forward policy 𝑃𝐹 using a linear transformer,
taking all the 𝑑2 possible edges in the graph 𝐺 as an input, and returning a probability distribution
over those edges, where the invalid actions were masked out. We chose to parametrize 𝑃𝐹 using a
simpler neural network architecture, based on a graph neural network (Battaglia et al., 2018). The
GNN takes the graph 𝐺 as an input, where each node of the graph is associated with a (learned)
embedding, and it returns for each node 𝑋𝑖 a pair of embeddings 𝒖𝑖 and 𝒗𝑖 . The probability of
adding an edge 𝑋𝑖 → 𝑋 𝑗 to transition from 𝐺 to 𝐺′ (given that we do not terminate in 𝐺) is then
given by

𝑃𝐹 (𝐺′ | 𝐺,¬𝐺⊤) ∝ exp(𝒖⊤𝑖 𝒗 𝑗),
assuming that 𝑋𝑖 → 𝑋 𝑗 is a valid action (i.e., it doesn’t introduce a cycle in 𝐺), and where the
normalization depends only on all the valid actions. We then use a hierarchical model to obtain the
forward policy 𝑃𝐹 (𝐺′ | 𝐺), following (Deleu et al., 2022):

𝑃𝐹 (𝐺′ | 𝐺) = (1 − 𝑃𝐹 (𝐺⊤ | 𝐺))𝑃𝐹 (𝐺′ | 𝐺,¬𝐺⊤).

Recall that the backward policy 𝑃𝐵 is fixed here, as the uniform distribution over the parents of 𝐺
(i.e. all the graphs were exactly one edge has been removed from 𝐺).

(Modified) Detailed Balance objective For completeness, we recall here the modified Detailed
Balance (DB) objective (Deleu et al., 2022) as a special case of the DB objective (Bengio et al.,
2021b; see also (16)) when all the states of G are terminating (which is the case in our Bayesian
structure learning experiments):

L (𝑀)𝐷𝐵 (𝐺 → 𝐺′; 𝑃𝐹 , 𝑃𝐵) =
(
log

𝑅(𝐺′)𝑃𝐵 (𝐺 | 𝐺′)𝑃𝐹 (𝐺⊤ | 𝐺)
𝑅(𝐺)𝑃𝐹 (𝐺′ | 𝐺)𝑃𝐹 (𝐺⊤ | 𝐺)

)2
.

Optimization Following (Deleu et al., 2022), we used a replay buffer for all our off-policy ob-
jectives ((Modified) DB, TB, and REVERSE KL). All the objectives were optimized using a batch
size of 256 graphs sampled either on-policy from 𝑃𝐹 , or from the replay buffer. We used the Adam
optimizer, with the best learning rate found among {10−6, 3 × 10−6, 10−5, 3 × 10−5, 10−4}. For the
TB objective, we learned log 𝑍 using SGD with a learning rate of 0.1 and momentum 0.8.

Edge marginals In addition to the Jensen-Shannon divergence (JSD) between the true posterior
distribution 𝑝(𝐺 | D) and the posterior approximation 𝑃⊤

𝐹
(𝐺) (see §E for details about how this

21

Published as a conference paper at ICLR 2023

divergence is computed), we also compare the edge marginals computed with both distributions.
That is, for any edge 𝑋𝑖 → 𝑋 𝑗 in the graph, we compare

𝑝(𝑋𝑖 → 𝑋 𝑗 | D) =
∑︁

𝐺 |𝑋𝑖∈Pa𝐺 (𝑋 𝑗)
𝑝(𝐺 | D) and 𝑃⊤𝐹 (𝑋𝑖 → 𝑋 𝑗) =

∑︁
𝐺 |𝑋𝑖∈Pa𝐺 (𝑋 𝑗)

𝑃⊤𝐹 (𝐺).

The edge marginal quantifies how likely an edge 𝑋𝑖 → 𝑋 𝑗 is to be present in the structure of the
Bayesian Network, and is of particular interest in the (Bayesian) structure learning literature. To
measure how accurate the posterior approximation 𝑃⊤

𝐹
is for the different objectives considered

here, we use the Root Mean Square Error (RMSE) between 𝑝(𝑋𝑖 → 𝑋 𝑗 | D) and 𝑃⊤
𝐹
(𝑋𝑖 → 𝑋 𝑗),

for all possible pairs of nodes (𝑋𝑖 , 𝑋 𝑗) in the graph.

Fig. D.3 shows the RMSE of the edge marginals, for different GFlowNet objectives and REVERSE
KL (denoted as HVI here for brevity). The results on the edge marginals largely confirm the ob-
servations made in §4.3: the off-policy GFlowNet objectives ((Modified) DB & TB) consistently
perform well across all experimental settings; On-Policy TB & On-Policy REVERSE KL perform
similarly and degrade as the complexity of the experiment increases (as 𝑑 increases); and Off-Policy
REVERSE KL has a performance that degrades the most as the complexity increases, where the
edge marginals given by 𝑃⊤

𝐹
(𝑋𝑖 → 𝑋 𝑗) do not match the true edge marginals 𝑝(𝑋𝑖 → 𝑋 𝑗 | D)

accurately.

E METRICS

Evaluation of the terminating state distribution 𝑃⊤
𝐹

: When the state space is small enough (e.g.
graphs with 𝑑 ≤ 5 nodes in the Structure learning experiments, or a 2-D hypergrid with length 128,
as in the Hypergrid experiments), we can propagate the flows in order to compute the terminating
state distribution 𝑃⊤

𝐹
from the forward policy 𝑃𝐹 . This is done using a flow function 𝐹 defined

recursively:

𝐹 (𝑠′) =
{
1 if 𝑠′ = 𝑠0∑
𝑠∈𝑃𝑎𝑟 (𝑠′) 𝐹 (𝑠)𝑃𝐹 (𝑠′ | 𝑠) otherwise

(32)

𝑃⊤
𝐹

is then given by:

𝑃⊤𝐹 (𝑠⊤) ∝ 𝐹 (𝑠)𝑃𝐹 (𝑠⊤ | 𝑠), (33)

The recursion can be carried out by dynamic programming, by enumerating the states in any topo-
logical ordering consistent with the graded DAG G. In particular, computation of the flow at a given
terminating state 𝑠 is linear in the number of states and actions that lie on trajectories leading to 𝑠,
and computation of the full distribution 𝑃⊤

𝐹
is linear in |S| + |A|.

Evaluation of the Jensen-Shannon divergence (JSD) Similarly, when the state space is small
enough, the target distribution 𝑃⊤ = 𝑅/𝑍∗ can be evaluated exactly, given that the marginalization is
over X only. The JSD is a symmetric divergence, thus motivating our choice. The JSD can directly
be evaluated as:

𝐽𝑆𝐷 (𝑃⊤∥𝑃⊤𝐹) =
1
2

(
𝐷KL (𝑃⊤∥𝑀) + 𝐷KL (𝑃⊤𝐹 ∥𝑀)

)
where 𝑀 = (𝑃⊤ + 𝑃⊤𝐹)/2 (34)

=
1
2

∑︁
𝑠∈S𝑜

(
𝑃⊤ (𝑠) log

2𝑃⊤ (𝑠)
𝑃⊤ (𝑠) + 𝑃⊤

𝐹
(𝑠) + 𝑃

⊤
𝐹 (𝑠) log

2𝑃⊤
𝐹
(𝑠)

𝑃⊤ (𝑠) + 𝑃⊤
𝐹
(𝑠)

)
(35)

22

Published as a conference paper at ICLR 2023

F EXTENSION TO CONTINUOUS DOMAINS

As a first step towards understanding GFlowNets with continuous action spaces, we perform an
experiment on a stochastic control problem. The goal of this experiment is to explore whether the
observations in the main text may hold in continuous settings as well.

We consider an environment in which an agent begins at the point x0 = (0, 0) in the plane and
makes a sequence of 𝐾 = 10 steps over the time interval [0, 1], through points x0.1, x0.2, . . . , x1.
Each step from x𝑡 to x𝑡+0.1 is Gaussian with learned mean depending on x𝑡 and 𝑡 and with fixed
variance; the variance is isotropic with standard deviation 1

2
√
𝐾

. Equivalently, the agent samples the

Euler-Maruyama discretization with interval Δ𝑡 = 1
𝐾

of the Itô stochastic differential equation

𝑑x𝑡 = 𝑓 (x𝑡 , 𝑡) 𝑑𝑡 +
1
2
𝑑w𝑡 , (36)

where w𝑡 is the two-dimensional Wiener process.

The choice of the drift function 𝑓 determines the marginal density of the final point, x1. We aim
to find 𝑓 such that this marginal density is proportional to a given reward function, in this case a
quantity proportional to the density function of the standard 8gaussians distribution, shown in
Fig. F.2. We scale the distribution so that the modes of the 8 Gaussian components are at a distance
of 2 from the origin and their standard deviations are 0.25.

In GFlowNet terms, the set of states is S = {(0, 0)} ∪ {(x, 𝑡) : x ∈ R2, 𝑡 ∈ {0.1, 0.2, . . . , 1}}. States
with 𝑡 = 1 are terminating. There is an action from (x, 𝑡) to (x′, 𝑡′) if and only if 𝑡′ = 𝑡 + Δ𝑡. The
forward policy is given by a conditional Gaussian:

𝑃𝐹 ((x′, 𝑡 + Δ𝑡) | (x, 𝑡)) = N ©«x′ − x; 𝑓 (x, 𝑡)Δ𝑡,
(√

Δ𝑡

2

)2ª®¬ . (37)

We impose a conditional Gaussian assumption on the backward policy as well, i.e.,

𝑃𝐵 ((x, 𝑡) | (x′, 𝑡 + Δ𝑡)) =
{
N

(
x − x′; 𝜇𝐵 (x′, 𝑡 + Δ𝑡)Δ𝑡, 𝜎2

𝐵
(x′, 𝑡 + Δ𝑡)Δ𝑡

)
𝑡 ≠ 0

1 𝑡 = 0 , (38)

where 𝜇𝐵 and log𝜎2
𝐵

are learned. Notice that all the policies, except the backward policy from time
1
𝐾

to time 0, now represent probability densities; states can have uncountably infinite numbers of
children and parents.

We parametrize the three functions 𝑓 , 𝜇𝐵, log𝜎2
𝐵

as small (two hidden layers, 64 units per layer)
MLPs taking as input the position x and an embedding of the time 𝑡. Their parameters can be
optimized using any of the five algorithms in Table 1 of the main text.3 Fig. F.1 shows the marginal
densities of x𝑡 (estimated using KDE) for different 𝑡 in one well-trained model, as well as some
sampled points and paths.

In addition to training on policy, we consider exploratory training policies that add Gaussian noise
to the mean of each transition distribution. We experiment with adding standard normal noise scaled
by 𝜎exp, where 𝜎exp ∈ {0, 0.1, 0.2}.
Fig. F.2 compares the marginal densities obtained using different algorithms with on-policy and off-
policy training. The algorithms that use a forward KL objective to learn 𝑃𝐵 – namely, REVERSE
WS and FORWARD KL – are not shown because they encounter NaN values in the gradients early
in training, even when using a 10× lower learning rate than that used for all other algorithms (10−3

for the parameters of 𝑓 , 𝜇𝐵, log𝜎2
𝐵

and 10−1 for the log 𝑍 parameter of the GFlowNet).

These results suggest that the observations made for discrete-space GFlowNets in the main text may
continue to hold in continuous settings. The first two rows of Fig. F.2 show that off-policy explo-
ration is essential for finding the modes and that TB achieves a better fit to the target distribution.
Just as in Fig. 1, although all modes are found by WAKE-SLEEP, they are modeled with lower pre-
cision, appearing off-centre and having an oblong shape, which is reflected in the slightly higher
MMD.

3We conjecture (and strongly believe under mild assumptions) but do not prove that the necessary GFlowNet
theory continues to hold when probabilities are placed by probability densities; the results obtained here are
evidence in support of this conjecture.

23

Published as a conference paper at ICLR 2023

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 target

Figure F.1: Above: KDE (2560 samples, bandwidth 0.25) of the agent’s position after 𝑖 steps for
𝑖 = 0, 1, . . . , 10 (𝑡 = 0, 0.1, . . . , 1) for a model trained with off-policy TB, showing a close match to
the target distribution (also convolved with the KDE kernel for fair comparison). Below: A sample
of 2560 points from the trained model and the trajectories taken by 128 of the points.

On-Policy Off-Policy

Algorithm 𝜎exp = 0 𝜎exp = 0.1 𝜎exp = 0.2

TB

MMD 0.1111 0.0005 0.0075

REVERSE KL

MMD 0.0027 0.0059 0.0036

WAKE-SLEEP

MMD 0.0008 0.0036 0.0043

Target

Figure F.2: KDE of learned marginal distributions with various algorithms and exploration policies
and MMD with Gaussian kernel exp(−∥x − y∥2) estimated using 2560 samples.

24

	Introduction
	Theoretical results
	GFlowNets: Notation and background
	Hierarchical variational models and GFlowNets
	Analysis of gradients

	Related Work
	Experiments
	Hypergrid: Exploration of learning objectives
	Molecule synthesis
	Generation of DAGs in Bayesian structure learning

	Discussion and conclusions
	Canonical construction of a graded DAG
	Proofs
	A variational objective for subtrajectories
	A variational objective for subtrajectories
	An equivalence between the SubNVI and the SubTB objectives

	Additional experimental details
	Hypergrid experiments
	Molecule experiments
	Bayesian structure learning experiments

	Metrics
	Extension to continuous domains

