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ABSTRACT

Many methods have been developed to predict static protein structures, but under-
standing structure dynamics is what is essential for elucidating biological function.
While molecular dynamics (MD) simulations remain the in silico gold standard, its
high computational cost limits scalability. We present DYNAPROT, a lightweight,
SE(3)-invariant framework that predicts rich descriptors of protein dynamics di-
rectly from static structures. By casting the problem through the lens of multi-
variate Gaussians, DYNAPROT estimates dynamics at two complementary scales:
(1) per-residue marginal anisotropy as 3× 3 covariance matrices capturing local
flexibility, and (2) joint scalar covariances encoding pairwise dynamic coupling
across residues. From these dynamics outputs, DYNAPROT achieves high accuracy
in predicting residue-level flexibility (RMSF) and, remarkably, enables reasonable
reconstruction of the full covariance matrix for fast ensemble generation. Notably,
it does so using orders of magnitude fewer parameters than prior methods. Our
results highlight the potential of direct protein dynamics prediction as a scalable
alternative to existing methods.

1 INTRODUCTION

Proteins rarely exist in static conformations. Due to interactions with ligands, other biomolecules,
and external factors such as temperature and pH, protein structures continuously fluctuate. Many
enzymes rely on loop motions or domain rearrangements to form catalytically active sites (Zinovjev
et al., 2024), allostery often involves shifting backbone or side chain conformations propagating
signals over long distances (Yu and Koshland Jr, 2001), and even membrane proteins such as GPCRs
switch between inactive and active conformational states essential for signal transduction (Zhang
et al., 2024). Clearly, protein structures are dynamic. Understanding these dynamics is central for
mechanistic insight and, potentially, the design of functions (Guo et al., 2025; McCammon, 1984).

Capturing this ensemble-level behavior computationally has long been the domain of molecular
dynamics (MD). MD simulates the time evolution of atoms under a force field, generating high-
resolution conformational trajectories from which fluctuations, covariances, and time-dependent
observables can be derived. MD remains the in silico gold standard for protein dynamics, offering
fine-grained, physically grounded insights (Shaw et al., 2010; Hollingsworth and Dror, 2018; Childers
and Daggett, 2017). However, it comes with an enormous computational cost: simulating 100 ns
of dynamics for a single protein can take days or weeks on specialized hardware. This limits its
scalability, especially for proteome-wide applications or tasks requiring real-time dynamics estimates.

Recent work has explored the use of deep learning to approximate and accelerate this process.
Generative modeling-based methods like ALPHAFLOW (Jing et al., 2024) repurpose AlphaFold2
(Jumper et al., 2021) under a flow matching paradigm to sample protein conformations. Along this
vein, Lewis et al. (2024) recently introduced BIOEMU as a large-scale diffusion model pretrained
on PDB (Burley et al., 2017) and AFDB structures, and fine-tuned on 200 ms of MD data, to
efficiently generate protein conformations. Other methods, like MSA subsampling, make inference-
time adjustments to the MSA input of AlphaFold2, yielding the structural ensembles (Del Alamo
et al., 2022; Wayment-Steele et al., 2024; Stein and Mchaourab, 2022). Still, all of these approaches
necessitate large scale PDB pretraining and suffer from inference-time computational overhead,
requiring multiple stochastic forward passes to generate meaningful structural diversity. Moreover,
while these ensembles can be used to approximate protein dynamics, generating them remains time
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intensive, and the full ensemble of diverse conformations may not always be necessary. In many
practical settings, compact and interpretable representations of dynamics often suffice. This motivates
the need for models that can explicitly predict such dynamics descriptors without relying on implicit
dynamics learners like expensive ensemble generation methods.

Current explicit dynamics predictors, like FLEXPERT3D (Kouba et al., 2024), resort to predicting
simple collective variables like per-residue RMSF, a scalar quantifying each residue’s positional
fluctuation. RMSF is widely used due to its simplicity and interpretability, but it is fundamentally
limited: it captures only the magnitude of local motion and discards directionality and residue-residue
coupling. Similarly, Wayment-Steele et al. (2025) trained DYNA-1 to predict labels of µs–ms motion
by cleverly exploiting missing chemical shift assignments as hidden observables in NMR ensembles,
but these predictions also remain scalar and lack directionality. A different example of an explicit
dynamics predictor is Normal Mode Analysis (NMA), a classic technique that approximates dynamics
by identifying low frequency eigenmodes to describe the largest movements (Cui and Bahar, 2005;
Skjaerven et al., 2009). NMA does not learn from data however, and instead operates solely on the
input PDB structure. It can estimate the principal global directions of motion and offers insights into
collective flexibility, but is sensitive to input structure quality and fails to adequately capture local
anisotropy or conformational heterogeneity (Ma, 2005). This raises a natural question:

Can we design models that lie on the Pareto frontier of expressiveness and effi-
ciency—capturing rich dynamic behavior without incurring the cost of sampling or simulation?
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Figure 1: Dynamics methods information con-
tent vs. efficiency.

We introduce DYNAPROT, a lightweight, inter-
pretable, and expressive framework for predicting
protein dynamics through the lens of Gaussian dis-
tributions over structure (Section 2). Specifically,
DYNAPROT predicts: (1) per-residue marginal
anisotropy as 3 × 3 covariance matrices captur-
ing local dynamics while encompassing RMSF,
and (2) joint scalar N ×N covariances encoding
pairwise dynamic coupling across residues. Re-
markably, while DYNAPROT was not explicitly
trained to directly model the full 3N × 3N joint
distribution, we find that its marginal and pairwise
outputs can be composed into a reasonable ap-
proximation (Section 3.4), enabling extremely fast
ensemble generation in R3N . DYNAPROT is trained on only ∼1,000 MD-derived proteins, without
large-scale pretraining on PDB structures, and improves upon Normal Mode Analysis (NMA) in
both predictive accuracy and efficiency, while remaining dramatically smaller and faster than existing
ensemble generation approaches.

To our knowledge, DYNAPROT is the first model to explicitly learn both marginal and pairwise
Gaussian representations of protein dynamics, and the first to predict the full 3N × 3N covariance
structure—akin to NMA—in a data-driven, learnable fashion, rather than relying solely on analytical
approximations or less informative per-residue fluctuations.

2 GAUSSIAN REPRESENTATION OF DYNAMICS

We propose a perspective for modeling protein dynamics through distributions over atomic coor-
dinates, relying on tractable approximations such as Gaussians. Formally, we model a protein
structure with N residues as a random variable X ∈ R3N , where each residue contributes the
three-dimensional Cartesian coordinates of its Cα atom. While this coarse-grained representation
omits side-chain flexibility, it enables scalable modeling of backbone dynamics, which is the scope
of our work. We consider an ensemble to be T independent samples after RMSD alignment. The
distribution over conformational states is then represented as a multivariate normal distribution:

X ∼ N (µ,Σjoint), µ ∈ R3N , Σjoint ∈ R3N×3N (1)
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Figure 2: Overview of protein dynamics (Gaussian view).

Here, µ corresponds to the average
(or equilibrium) structure—typically the
minimum energy conformation—and
Σjoint captures the full covariance across
all Cα positions, encoding both local
fluctuations and long-range correlated
motions. This joint covariance matrix
theoretically encodes all second-order
information about the protein’s dynam-
ics: from it, one can derive a wide
range of collective variables including
principal components (PCs) of motion,
residue-residue distance variances, and
global flexibility metrics. The Gaussian
formulation provides a principled way
to decompose protein dynamics across
different levels of granularity (Figure 2
and Table 1), depending on the modeling objective. We highlight some of these below.

At the local level, the marginal distribution (Figure 2.2) for a single residue i is obtained by integrating
out all other residue coordinates: p(xi) =

∫
p(x1, . . . ,xn) dx¬i,where dx¬i :=

∏
j ̸=i dxj . This

results in a 3D Gaussian distribution over the Cα coordinates of residue i:

Xi ∼ N (µi,Σ
(i)
marginal), µi ∈ R3, Σ

(i)
marginal ∈ R3×3 (2)

where Σ
(i)
marginal is the 3× 3 diagonal block of Σjoint. These marginals can be interpreted as Gaussian

blobs encoding anisotropic local fluctuations—i.e., spatial variance of where each residue may reside.

Notably, this formulation allows for simple derivation of scalar flexibility metrics such as the root-

mean-square fluctuation (RMSF) as RMSFi =
√

Tr(Σ
(i)
marginal). RMSF (Figure 2.1) represents a

simple notion of dynamics: a single scalar per residue quantifying positional fluctuation. However, it
discards directional and covariance structure captured by the full marginal.

To capture dynamics beyond residue-local fluctuations, we also consider a covariance matrix C ∈
RN×N of scalar pairwise coupling (Figure 2.3). Each entry Cij summarizes the dynamical coupling
between residues i and j, typically computed as a scalar projection of the corresponding 3 × 3
block in the full joint covariance: Σjoint[3i : 3i + 3, 3j : 3j + 3]. We choose MeanPooling as the
scalar projection to compute each Cij . This compact representation enables efficient modeling of
residue-residue coupling.

Table 1: Taxonomy of protein dynamics representations under a Gaussian view.

Level Description Notation Space Captures

1 Per-residue scalar (i.e. RMSF)
√

Tr(Σ
(i)
marginal) RN Magnitude of fluctuation per residue

2 Per-residue full (Gaussian blob) Σ
(i)
marginal RN×3×3 Anisotropic local covariance per residue

3 Joint scalar (pairwise coupling) Cij RN×N Scalar covariance across all residues

4 Joint full covariance Σjoint R3N×3N Full spatial covariance across all residues

DYNAPROT focuses on levels 2 and 3 of this hierarchy—explicitly predicting both 3× 3 marginal
Gaussians per-residue and a N ×N matrix of residue-residue couplings. As noted before, from the
3× 3 marginals, we can easily derive RMSF (level 1). Interestingly, utilizing both the marginals and
the pairwise coupling, we can retrieve a reasonable approximation of the full joint 3N × 3N (level 4;
Section 3.4). This design strikes a balance between local interpretability and global coordination,
while avoiding the intractibility of directly learning the full joint covariance.
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Figure 3: DYNAPROT architecture.

3 METHOD

3.1 DYNAPROT OVERVIEW

DYNAPROT (Figure 3) consists of two models, each taking as input a protein structure but designed to
explicitly capture different granularities of protein dynamics: (i) marginal Gaussian blobs per residue
(Section 3.2), and (ii) pairwise covariance across residues (Section 3.3). DYNAPROT is given the
input structure as a set of local Cα residue frames. The frames are denoted {Ti}Ni=1, where each
frame Ti ∈ SE(3) is parameterized by a rotation matrix Ri ∈ SO(3) and a translation vector ti ∈ R3.
Simply put, Ti = (Ri, ti) captures the local orientation and position of residue i. Additionally, an
initial embedding layer is included to encode the amino acid sequence s ∈ RN×D.

Both models share a common architectural backbone composed of eight Invariant Point Attention
(IPA) blocks from the structure module of AlphaFold2 (Jumper et al., 2021). These blocks are
designed to encode geometric relationships between residues while maintaining invariance to SE(3)
transformations (global transformations do not affect the learned residue-level representations). The
IPA backbone processes the set of residue frames and the sequence representation, outputting a
learned representation for each residue h ∈ RN×D. No pair representation is given as input to the
model. The two models differ only in their readout layers, which we define in the proceeding sections.

3.2 LEARNING MARGINAL GAUSSIANS

After the input sequence representations and residue frames are processed through the IPA backbone,
a simple MLP readout is used for marginal prediction. Given the hidden representation hi for each
residue, the marginal readout outputs Σ(i)

marginal ∈ R3×3, modeling the local position (xyz) covariance
of residue i. These outputs are trained to match empirical marginal distributions derived from the MD
data. Note that the mean of each Gaussian is not learned. Instead, we take the input structure’s Cα

coordinate ti ∈ R3 as the fixed mean µi of the distribution: µi := ti, Xi ∼ N (µi,Σ
(i)
marginal). This

assumption is motivated by the fact that the input structure usually corresponds to the experimentally
determined (or AlphaFold-predicted) minimum energy conformation, and thus serves as a natural
estimator of the ensemble mean. Consequently, the marginal prediction task reduces to learning the
covariance matrices Σ(i)

marginal alone.

Marginal dynamics module. Recall that covariance matrices are required to be symmetric and
positive definite (SPD). Predicting all 9 elements of a 3× 3 matrix would be overparameterized and
does not guarantee SPD structure. Naively, one might consider symmetrizing an arbitrary matrix
after predicting the 6 independent elements, but this only guarantees symmetry. Instead, we leverage
the fact that any SPD matrix can be uniquely defined by its Cholesky factorization. Thus, we enforce
SPD constraints directly by parameterizing the covariance via its Cholesky factor. Specifically, the
model predicts the entries {aj}6j=1 of a lower triangular matrix Li ∈ R3×3, enforces positivity along
the diagonal with the Softplus activation function (Glorot et al., 2011), and recovers the covariance:

Σ
(i)
marginal = LiL

⊤
i , where Li =

[softplus(a1) 0 0
a2 softplus(a3) 0
a4 a5 softplus(a6)

]
(3)

This factorization ensures that the predicted covariance matrix is SPD by construction. Since SPD
matrices lie on a Riemannian manifold with non-Euclidean geometry, using loss functions that respect
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this structure is critical for meaningful comparison. Standard Euclidean distances (e.g., MSE or
Frobenius norm) ignore the curvature of this space and can lead to unstable or distorted gradients
(see ablations in Appendix A.3.2). We instead employ the log-Euclidean (or log-Frobenius) distance
(Vemulapalli and Jacobs, 2015; Huang et al., 2015) that reflects the intrinsic geometry of the SPD
manifold. The Bures-Wasserstein (Bhatia et al., 2019) distance can also be used, but we find the
log-Frobenius distance to be more stable.

LLogFrob = ∥ log(Σpred)− log(Σtrue)∥2F , where log(Σ) = Q log(Λ)QT (4)
As Riemannian manifolds are “locally Euclidean”, this loss applies the matrix logarithm mapping the
SPD matrix to its tangent space where a Euclidean metric (canonical Frobenius norm) can be utilized.

3.3 LEARNING PAIRWISE DYNAMICS

Using the output representations h from the IPA backbone, the pairwise dynamics module produces
a scalar-valued N ×N covariance matrix C, where each entry Cij captures the dynamical coupling
between residue pairs. These scalar couplings are derived from the full joint covariance matrix via
averaging per block and trained to reproduce MD-derived pairwise fluctuations.

Pairwise Dynamics Module. To predict the global pairwise covariance structure, we first construct
pairwise features for all residue pairs. For each pair (i, j), we concatenate their residue-level embed-
dings [hi ∥hj ] ∈ R2d and project them into a lower-dimensional space: f (0)

ij = Wproj[hi ∥hj ] ∈ Rd′
.

We pass these features through a stack of AlphaFold-style pairwise attention blocks based on the
Evoformer architecture (Jumper et al., 2021), which include triangle updates and residue-wise
message passing. These operations are designed to model transitive and higher-order geometric
dependencies across residue pairs, and have been shown to be highly effective in structure-aware
tasks: f attn

ij = PairwiseAttentionBlock(f (0)
ij ) ∈ Rd′

. The output f attn
ij serves as a “learned basis””

over the space of residue-residue covariance structure. These basis features are then mapped to scalars
through an MLP head, yielding a covariance for each pair of residues: zij = MLP(f attn

ij ), zij ∈
R, for i ≥ j. Following the same procedure as Section 3.2, we enforce SPD constraints on this
covariance matrix by populating the lower-triangle entries of L ∈ RN×N with the values of zij and
applying the Softplus activation when i = j. Finally, the pairwise covariance matrix is reconstructed
via Cholesky composition C = LLT and again equation 4 is used for optimization.

3.4 LEARNING THE FULL JOINT FOR ENSEMBLE SAMPLING

Joint reconstruction heuristic. Given a predicted scalar coupling matrix C ∈ RN×N and a set of
per-residue marginal covariances {Σ(i)

marginal ∈ R3×3}Ni=1, we propose a heuristic to reconstruct an
approximate full joint covariance matrix Σjoint ∈ R3N×3N .

Each marginal covariance Σ
(i)
marginal is SPD by construction, and thus admits a Cholesky factorization

Σ
(i)
marginal = LiL

⊤
i , where Li ∈ R3×3. We then define a block-diagonal matrix Lmarginal ∈ R3N×3N

as Lmarginal =
⊕N

i=1 Li. By construction, Lmarginal is lower triangular with positive diagonal entries,
since each Li satisfies these properties.

Drawing from the univariate identity Cov(i, j) = Corr(i, j) · σiσj , we define the multivariate cross-
covariance block between residues i and j as Σ

(i,j)
joint = LiC̃ijL

⊤
j . Here, the Cholesky factor Li

serves as a matrix square root of the covariance Σ
(i)
marginal, analogous to standard deviation in the

univariate case. And, C̃ is a correlation matrix found by standardizing C. Using the Kronecker
product, we can denote this heuristic cleanly as follows,

Σjoint = Lmarginal (C̃ ⊗ I3) L
⊤
marginal (5)

Proposition 3.1 (SPD Closure). Given marginal covariances {Σ(i)
marginal ∈ R3×3}Ni=1 and

correlation matrix C̃ ∈ RN×N to be symmetric and positive definite, then the reconstructed
joint covariance Σjoint = Lmarginal(C̃ ⊗ I3)L

⊤
marginal is also symmetric and positive definite.
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We refer the reader to Appendix A.1 for the proof. This approximation combines local anisotropic
uncertainty with global correlation structure. While not exact, we find it reconstructs the joint
covariance to a reasonable degree and serves as a useful tool for downstream ensemble generation.

Ensemble sampling. Given the reconstructed joint covariance Σjoint and our assumption that the
mean µ corresponds to the coordinates of the input structure (e.g., the PDB), we have now retrieved
our Gaussian distribution over conformations N (µ,Σjoint). To sample from this distribution, we apply
a multivariate generalization of the reparameterization trick used in univariate Gaussian sampling.

Property 3.1 (Multivariate Gaussian Sampling). Given N (µ,Σ), where Σ ∈ Rd×d is SPD
and Σ = LL⊤ is its Cholesky decomposition. Then,

x = µ+Lϵ, ϵ ∼ N (0, Id) ⇒ x ∼ N (µ,Σ)

Note that this sampling relies directly on the Cholesky factor (similar to a matrix square root),
mirroring the scalar case (Appendix A.1). Utilizing DYNAPROT predictions and this heuristic,
ensemble sampling becomes extremely fast with minimal computational overhead.

4 EXPERIMENTS

Preprocessing. We construct ground-truth dynamics labels from the ATLAS molecular dynamics
dataset, which comprises 1,390 proteins selected based on structural diversity using the ECOD
domain classification (Vander Meersche et al., 2024). Following ALPHAFLOW (Jing et al., 2024)
for preprocessing consistency, we concatenate each of the three replicate simulations of 100 ns per
protein and extract the Cα coordinates. From each ensemble, we compute the empirical full joint
covariance matrix over time and extract the relevant dynamics labels (3× 3 marginals per residue
and N ×N residue coupling) as described in Section 2. We evaluate under two train/val/test split
regimes. The primary matches ALPHAFLOW’s (1265/39/82), while comparisons to FLEXPERT3D
use DYNAPROT trained on their topology-based split (1112/139/139). For naming, we refer to
DYNAPROT-M for the model trained for marginals, DYNAPROT-J for the coupling predictions, and
DYNAPROT for both.

Baselines. For a faithful comparison, we mainly choose baseline methods that take a protein structure
as input and predict dynamics descriptors either implicitly (AFMD+TEMPLATES) or explicitly
(FLEXPERT3D, NMA). For NMA, we utilize the ProDy package (Zhang et al., 2021), specifically
the Anisotropic Network Model instantiation. For a broader set of baselines, we also compare against
some sequence based methods in Appendix A.3.3.

4.1 PREDICTING RESIDUE FLEXIBILITY

Table 2: RMSF Pearson correla-
tion (r) against ATLAS MD-derived
RMSF (FlexPert test split). Median
and 75th percentile reported.

Method RMSF r (↑) # Params

DYNAPROT-M 0.865 / 0.930 955 K
FLEXPERT-3D 0.830 / 0.899 1.2 B
NMA (ANM) 0.697 / 0.784 –

Since DYNAPROT-M is trained to predict marginal Gaussians
per residue, it inherently captures residue-level flexibility,
as RMSF is defined as the square root of the trace of each
marginal covariance (see Section 2). To evaluate DYNAPROT-
M’s ability to recover this, we compare against what is, to our
knowledge, the only method that explicitly predicts residue
flexibility: FLEXPERT-3D. For fair comparison, we train and
evaluate DYNAPROT-M under the same ATLAS train/val/test
split defined in Kouba et al. (2024). Despite solving the
more challenging task of predicting marginal anisotropy rather
than scalar fluctuations alone, DYNAPROT-M achieves a sub-
stantially higher Pearson correlation with MD-derived RMSF (median r = 0.865, 75th percentile
r = 0.930) than FLEXPERT-3D (Table 2), while using three orders of magnitude fewer parameters
(955K vs. 1.2B) and without NMA as input. This allows DYNAPROT-M to generalize better while
being more parameter efficient. See Appendix A.4 for DYNAPROT-M additional RMSF plots.
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Figure 4: DYNAPROT marginal Gaussian and residue coupling analysis. A. Renderings of
predicted marginal Gaussians compared to ATLAS MD constructed Gaussians (mean symmetric KL
divergence and RMWD are reported). B. Joint distribution (within 75th percentile) of DYNAPROT
performance vs. (AFMD+T, NMA). C. Band-wise Pearson correlation between predicted and
ground-truth residue–residue coupling matrices as a function of sequence distance.

4.2 PREDICTING RESIDUE FULL ANISOTROPY

To assess the faithfulness of DYNAPROT-M’s predicted marginals, we compare against both physics-
based and learned ensemble methods. In practice, only NMA (ANM) is a feasible baseline, as
ALPHAFLOW is prohibitively slow: A single 271-length protein (7lao A) requires ∼7000 s, com-
pared to ∼0.02 s for DYNAPROT-M (Table 3). Note that DYNAPROT-M predicts this directly, but for
ALPHAFLOW, we first sample 250 structures per protein and then calculate the empirical covariance
to define the marginal Gaussians. With NMA, we retrieve the full joint via the normal modes and
extract the marginal block diagonals.

To quantify the accuracy, we compute the variance contribution of the symmetric KL divergence (see
Appendix A.2) and the root mean 2-Wasserstein distance (RMWD) as described in Jing et al. (2024),
compared to the ground truth marginal Gaussians computed from the ATLAS test set (AFMD split).

Table 3: Comparison of methods on anisotropic blob pre-
diction (ATLAS test split). Runtime for a length 271 pro-
tein (7lao A). 25th %ile / Median reported (↓ is better).

Method RMWD Var Sym. KL Var # Params Time

DYNAPROT-M 0.84 / 1.18 0.53 / 0.91 955 K ∼0.02 s
AFMD+T 0.87 / 1.10 0.37 / 0.60 95 M ∼7000 s
NMA (ANM) 1.14 / 1.45 3.03 / 4.56 – ∼5.37 s

Despite being orders of magnitude faster
and smaller (955k vs. 95M parame-
ters), DYNAPROT-M achieves compet-
itive accuracy. DYNAPROT-M attains a
median RMWD of 1.18 and symmet-
ric KL divergence of 0.91, both sub-
stantially better than NMA (1.45 and
4.56, respectively), and comparable to
AFMD+TEMPLATES’s 1.10 and 0.60.
Moreover, rather than relying solely on
summary statistics, we also visualize the distributions (75th percentile) of RMWD and mean symmet-
ric KL variance contributions across test set proteins (Figure 4B). These plots compare DYNAPROT-M
to both AFMD+T and NMA on a per-protein basis. Points below the diagonal (highlighted in pink)
indicate that DYNAPROT-M outperformed the method in question on that particular protein. From
this, we see that DYNAPROT-M achieves comparable performance to AFMD+T. Notably, within the
75th percentile it often outperforms AFMD+T (examples visualized in Figure 4A,B) on RMWD
variance contribution. Moreover, DYNAPROT-M significantly outperforms NMA across both RMWD
and symmetric KL. This further corroborates DYNAPROT-M’s ability to capture local anisotropic
structure well despite being much smaller and faster than other methods.

4.2.1 ZERO-SHOT CRYPTIC POCKET DISCOVERY OF ADENYLOSUCCINATE SYNTHETASE

Beyond accuracy, DYNAPROT-M’s marginals can also provide functional insight. Many pro-
teins are considered to be undruggable as their apo form may not display a clear binding pocket.
However, the druggable pocket may only become apparent after the drug is bound (holo form)–
a so called “cryptic pocket.” Identification of cryptic pockets is therefore an important task in
drug discovery (Mou et al., 2025; Hollingsworth et al., 2019; Comitani and Gervasio, 2018).
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Apo   (1ADE) Holo   (1CIB)

Figure 5: DYNAPROT-M predicted residue Gaussians
(ellipsoids) overlaid the apo form.

As a case study, we sought to investigate
DYNAPROT’s ability in cryptic pocket iden-
tification for the enzyme adenylosuccinate
synthetase, as it is known to exhibit a cryp-
tic pocket (Meller et al.) and both the apo
and holo forms are available in the PDB
(1ADE / 1CIB).

We applied DYNAPROT-M to zero shot pre-
dict the marginal Gaussians on the apo
form. When we look at the predictions,
we notice two features (Figure 5). First,
the residues with the largest variance are
exactly those that encompass the binding
pocket. Second, more than just the magni-
tude of the Gaussians, the directionality is consistent with a potential pocket opening motion (when
compared with the holo form 1CIB). These early results suggest the potential of DYNAPROT’s utility
in cryptic pocket discovery, but a systematic exploration is left for future work.

4.3 PREDICTING SCALAR COUPLING

To evaluate DYNAPROT-J in modeling residue–residue couplings, we compare its predicted N ×N
scalar covariance matrices against those derived from NMA, a classical method for capturing global
structural dynamics. While DYNAPROT-J directly predicts these scalar coupling matrices, we
construct comparable matrices for NMA by computing full 3N × 3N anisotropic network models
(using ProDy) from each test protein, and then projecting them into N ×N scalar covariances as
described in Section 2. We obtain per-residue correlation matrices by normalizing the entries to be
unit diagonal and constrained to the range [−1, 1].

We observe that in the ground truth N ×N correlations, magnitude of entries diminish rapidly with
distance from main diagonal, indicating weak long-range coupling. This is indicated by the dotted
gray line in Figure 4C, which shows the mean absolute value of the entries from the principal diagonal
up to the kth diagonal band. To focus on meaningful and prominent interactions, we define a diagonal
band of width k = 50 residues (|i− j| ≤ 50), which captures local and medium-range interactions.
This essentially measures residue-residue coupling as a function of sequence distance (how distal
are i and j along the backbone). We compute the Pearson correlation between predicted and ground-
truth residue–residue correlation matrices for the entries along each diagonal band k, by iteratively
extracting the upper-triangular entries satisfying |i− j| ≤ k for k = 1 to 50. This is repeated for each
of the 82 test set proteins and the median Pearson correlation is reported (each point in Figure 4C).
This band-wise analysis enables us to compare the accuracy of coupling signals at increasing residue
distances, and we find that DYNAPROT-J (peak correlation of r = 0.71) strongly outperforms NMA
(peak correlation of r = 0.59) particularly at short to mid-range coupling distances, where the
coupling is the strongest.

4.4 ENSEMBLE GENERATION

As described in Section 3.4, given the output 3 × 3 marginal covariances and N × N residue
coupling from DYNAPROT-M and DYNAPROT-J respectively, we reconstruct a full joint covariance
using the heuristic defined in Eq. 5. This direct access to the joint distribution enables extremely
fast sampling of diverse structures. For evaluation, we sample 250 structures with DYNAPROT,
AFMD+TEMPLATES, and NMA to form ensembles for each of the 82 test set proteins in the
AFMD split. Following Jing et al. (2024), we assess these ensembles in their flexibility accuracy,
distributional similarity, and the ability to reproduce complex observables. For flexibility accuracy,
we measure the pairwise RMSD to ground truth MD and RMSF correlation at the global and per-
target level. For distributional coverage, we measure the 2-Wasserstein distance after projecting the
ensembles onto the first two principle components derived from the MD trajectory (MD PCA W2) or
the combined (MD+sampled) trajectory (Joint PCA W2). Table 4 summarizes the ensemble evaluation
results across AFMD+TEMPLATES, DYNAPROT, and NMA. DYNAPROT achieves performance

8
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Figure 6: Comparison of DYNAPROT generated ensemble vs. AFMD+T to ATLAS MD simulation
(PDB 7qsu A) overlaid on reference. RMSF Pearson correlation r and sample time reported.

comparable to AFMD+TEMPLATES on key flexibility metrics such as pairwise RMSD and per-target
RMSF correlation, while lagging slightly behind on distributional similarity and observable recovery.

Table 4: Comparison of Cα ensemble evaluation metrics
on ATLAS MD Dataset between AFMD+Templates,
DYNAPROT, and NMA. Underlined is second best.
Metric AFMD+T DYNAPROT NMA

Pairwise RMSD (=2.89) 2.18 2.17 0.91
RMSF (=1.48) 1.17 1.10 0.52
Global RMSF r (↑) 0.91 0.71 0.54
Per-target RMSF r (↑) 0.92 0.86 0.76
MD PCA W2 (↓) 1.25 1.74 1.86
Joint PCA W2 (↓) 1.58 2.39 2.45
Weak contacts J (↑) 0.62 0.51 0.43
Transient contacts J (↑) 0.47 0.29 0.33

# Parameters (↓) 95 M 2.86 M –
Ensemble sampling time (↓) ∼ 10, 000 s ∼ 0.14 s ∼ 5.69 s

Some examples of where DYNAPROT out-
performs AFMD+TEMPLATES on ensem-
ble flexibility correlation are visualized in
Figure 6 and Appendix A.4. For the vi-
suals, all atom reconstruction is enabled
by PULCHRA (Rotkiewicz and Skolnick,
2008). Moreover, DYNAPROT consistently
outperforms NMA across nearly all eval-
uations—except for transient contact pre-
diction—particularly excelling in measures
of local flexibility and pairwise distance
preservation. Notably, DYNAPROT re-
quires only 2.86 million parameters (vs.
95 million for AFMD+TEMPLATES) and
samples ensembles over 70,000× faster on
average (∼0.14 s vs. ∼10,000 s), all while
being trained only to predict marginal and scalar covariances. This efficiency advantage is maintained
when compared against sequence-based methods (i.e. ConfDiff, BioEmu, ESMDiff, see Appendix
A.3). DYNAPROT even outperforms them on modeling flexibility and anisotropy.

Finally, we assess DYNAPROT’s generalization to longer timescale dynamics, by comparing its
zero-shot ensemble of BPTI to the 1ms trajectory from Shaw et al. (2010). Even with these larger
conformational changes, DYNAPROT performs reasonably well. It achieves RMSF correlation of
0.88 (c.f. 86 on ATLAS), anisotropy with RMWD of 0.52 Å(c.f. 1.18 Å on ATLAS), and strong
recovery of transient contacts ( J = 0.54, c.f. 0.29 on ATLAS). See appendix A.3.1 for more.

5 CONCLUSION

Protein dynamics is critical for understanding biological function. Existing approaches to modeling
dynamics often rely on complex generative models with large-scale PDB pretraining and expensive
ensemble generation. In this work, we introduce DYNAPROT, a lightweight and data-driven alter-
native akin to Normal Mode Analysis (NMA), but designed to directly predict structured dynamics
descriptors in the form of per-residue and pairwise Gaussian representations. This formulation enables
extreme parameter efficiency while outperforming traditional baselines on key metrics, including
flexibility estimation, marginal anisotropy, and residue–residue coupling. Remarkably, DYNAPROT’s
outputs also support ultra-fast ensemble sampling with reasonable structural fidelity—offering a
compelling alternative to conventional ensemble generation methods. While further scaling may be
needed to match the full capabilities of state-of-the-art generative methods, our approach highlights a
promising alternative grounded in explicitly learning structured representations of dynamics.
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Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew YK Foong,
Victor Garcı́a Satorras, Osama Abdin, Bastiaan S Veeling, Iryna Zaporozhets, et al. Scalable
emulation of protein equilibrium ensembles with generative deep learning. bioRxiv, 2024.

Valentin Lombard, Dan Timsit, Sergei Grudinin, and Elodie Laine. Seamoon: Prediction of molecular
motions based on language models. bioRxiv, pages 2024–09, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, and
Jian Tang. Structure language models for protein conformation generation. arXiv preprint
arXiv:2410.18403, 2024.

Jianpeng Ma. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolec-
ular complexes. Structure, 13(3):373–380, 2005.

JA McCammon. Protein dynamics. Reports on Progress in Physics, 47(1):1, 1984.

Artur Meller, Michael Ward, Jonathan Borowsky, Meghana Kshirsagar, Jeffrey M. Lotthammer,
Felipe Oviedo, Juan Lavista Ferres, and Gregory R. Bowman. Predicting locations of cryptic
pockets from single protein structures using the PocketMiner graph neural network. 14(1):1177.
ISSN 2041-1723. doi: 10.1038/s41467-023-36699-3.

Minyue Mou, Weicheng Yang, Guangyi Huang, Xiaoyan Yang, Xiao Zhang, Wasala Mudiyanselage
Wishwajith Wickramabahu Kandegama, Charles R Ashby Jr, Gefei Hao, and Yangyang Gao. The
discovery of cryptic pockets increases the druggability of “undruggable” proteins. Medicinal
Research Reviews, 2025.

Piotr Rotkiewicz and Jeffrey Skolnick. Fast procedure for reconstruction of full-atom protein models
from reduced representations. Journal of computational chemistry, 29(9):1460–1465, 2008.

David E Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, Michael P
Eastwood, Joseph A Bank, John M Jumper, John K Salmon, Yibing Shan, et al. Atomic-level
characterization of the structural dynamics of proteins. Science, 330(6002):341–346, 2010.

Lars Skjaerven, Siv M Hollup, and Nathalie Reuter. Normal mode analysis for proteins. Journal of
Molecular Structure: THEOCHEM, 898(1-3):42–48, 2009.

Richard A Stein and Hassane S Mchaourab. Speach af: Sampling protein ensembles and conforma-
tional heterogeneity with alphafold2. PLOS Computational Biology, 18(8):e1010483, 2022.

Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-
lochkina. ATLAS: protein flexibility description from atomistic molecular dynamics simulations.
Nucleic Acids Research, 52(D1):D384–D392, 2024.

Raviteja Vemulapalli and David W Jacobs. Riemannian metric learning for symmetric positive
definite matrices. arXiv preprint arXiv:1501.02393, 2015.

Yan Wang, Lihao Wang, Yuning Shen, Yiqun Wang, Huizhuo Yuan, Yue Wu, and Quanquan
Gu. Protein conformation generation via force-guided se (3) diffusion models. arXiv preprint
arXiv:2403.14088, 2024.

Hannah K Wayment-Steele, Adedolapo Ojoawo, Renee Otten, Julia M Apitz, Warintra Pitsawong,
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A APPENDIX

A.1 METHOD DETAILS

SPD closure of joint reconstruction heuristic (restating Proposition 3.1). Given marginal
covariances {Σ(i)

marginal ∈ R3×3}Ni=1 and a correlation matrix C̃ ∈ RN×N that is symmetric and

positive definite, then the reconstructed joint covariance Σjoint = Lmarginal

(
C̃ ⊗ I3

)
L⊤

marginal is also
symmetric and positive definite.

Proof. Let Lmarginal ∈ R3N×3N be the block-diagonal matrix defined as

Lmarginal =

N⊕
i=1

Li,

where each Li ∈ R3×3 is the Cholesky factor (or any valid matrix square root) of the positive definite
matrix Σ

(i)
marginal. Since each Σ

(i)
marginal ≻ 0, it follows that each Li is full rank, lower triangular, and

has positive diagonal entries. Consequently, Lmarginal is full rank and lower triangular with positive
diagonal blocks.

Now consider the matrix C̃ ⊗ I3 ∈ R3N×3N . Since C̃ ≻ 0 and I3 ≻ 0, the Kronecker product
C̃ ⊗ I3 ≻ 0 as well (Kronecker product of two SPD matrices is also SPD). Finally, the product

Σjoint = Lmarginal

(
C̃ ⊗ I3

)
L⊤

marginal

is a congruence transformation of the SPD matrix C̃ ⊗ I3 by the full-rank matrix Lmarginal. Since
congruence preserves positive definiteness, we conclude:

Σjoint ≻ 0

Moreover, Σjoint is symmetric because it is of the form ABA⊤.

Multivariate Gaussian Sampling. Let ϵ ∼ N (0, I) be a standard multivariate normal in Rd,
and let µ ∈ Rd, Σ ∈ Rd×d be a symmetric positive definite matrix. Suppose L ∈ Rd×d satisfies
Σ = LL⊤ (e.g., via Cholesky decomposition or matrix square root). Then the transformation
x = µ+Lϵ yields a random variable x ∼ N (µ,Σ).

Proof. Since Gaussian distributions are fully characterized by their first two cumulants (mean and
covariance), it suffices to show that the transformed variable has the desired mean and covariance.

Mean of x:
E[x] = E[µ+Lϵ] = µ+L · E[ϵ] = µ

Covariance of x:

Cov[x] = E
[
(x− µ)(x− µ)⊤

]
= E

[
(Lϵ)(Lϵ)⊤

]
= E

[
Lϵϵ⊤L⊤]

= L · E[ϵϵ⊤] ·L⊤

= L · Id ·L⊤

= LL⊤ = Σ

12
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A.2 EVALUATION METRICS

RMWD Variance Contribution. To evaluate the efficacy of the marginal Gaussian predictions,
we adopt distributional similarity metrics used in Jing et al. (2024). The first of these is the root
mean 2-Wasserstein distance (RMWD), specifically its variance contribution term. The 2-Wasserstein
distance between two multivariate Gaussians has a closed-form expression as follows.

Let N0 = N (µ0,Σ0) and N1 = N (µ1,Σ1) be two d-dimensional Gaussian distributions. The
squared 2-Wasserstein distance between them is given by:

W2
2 (N0,N1) = ∥µ0 − µ1∥22 +Tr

(
Σ0 +Σ1 − 2

(
Σ

1/2
1 Σ0Σ

1/2
1

)1/2
)

(6)

This expression consists of two additive components: a mean contribution and a covariance (variance)
contribution. This metric is also referred to as the Bures–Wasserstein distance (Bhatia et al., 2019).
Since our method predicts only the covariances, we isolate and evaluate only the second term. We
define the RMWD variance contribution across N residues as follows:

RMWDvar(N0,N1) =

√√√√ 1

N

N∑
i=1

Tr

(
Σ0,i +Σ1,i − 2

(
Σ

1/2
1,i Σ0,iΣ

1/2
1,i

)1/2
)

(7)

Symmetric KL Divergence Variance Contribution. Alongside the Wasserstein-based metric, we
also evaluate the discrepancy between predicted and ground-truth marginal distributions using the
symmetric Kullback–Leibler (KL) divergence, defined as the mean of the two directed KL divergences
mentioned in (Kullback and Leibler, 1951; Jeffreys, 1998):

KLsym(N0 ∥N1) =
1

2
[KL(N0 ∥N1) + KL(N1 ∥N0)]

For two d-dimensional Gaussian distributions N0 = N (µ0,Σ0) and N1 = N (µ1,Σ1), the KL
divergence from N0 to N1 is given by:

KL(N0 ∥N1) =
1

2

[
Tr(Σ−1

1 Σ0) + (µ1 − µ0)
⊤Σ−1

1 (µ1 − µ0)− d+ log
detΣ1

detΣ0

]
(8)

This expression consists of both a mean contribution—the Mahalanobis term—and a variance
contribution, comprising the trace and log-determinant terms. Since our method predicts only
covariances (and uses the input structure coordinates as means), we isolate the variance terms by
omitting (µ1 = µ0) the mean term:

KLvar(N0 ∥N1) =
1

2

(
Tr(Σ−1

1 Σ0)− d+ log
detΣ1

detΣ0

)
(9)

To symmetrize the variance contribution of the divergence, we define the symmetric variance KL as:

KLsymvar(N0,N1) =
1

2
(KLvar(N0 ∥N1) + KLvar(N1 ∥N0)) (10)

=
1

4

(
Tr(Σ−1

1 Σ0) + Tr(Σ−1
0 Σ1)− 2d

)
(11)
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A.3 ADDITIONAL EXPERIMENTS

A.3.1 DYNAPROT ZERO-SHOT ENSEMBLE GENERATION OF BPTI

We note that DYNAPROT was trained on the ATLAS MD dataset comprising 100 ns per replicate
trajectories. In contrast, D.E. Shaw Research performed simulations of BPTI (PDB: 5PTI) at
millisecond-scale revealing structurally distinct conformational states (Shaw et al., 2010). Thus, in an
effort to understand DYNAPROT’s ability to generalize to long-timescale dynamics, we applied it to
BPTI and compared to the DESRES trajectory.

Listed in Table 7b, we compute the ensemble evaluation metrics from Jing et al. (2024) and observe
that DYNAPROT performs remarkably well: e.g., RMSF correlation of 0.88 (c.f. 86 on ATLAS),
local anisotropy with RMWD of 0.52 Å (c.f. 1.18 Å on ATLAS), and strong recovery of transient
contacts (Jaccard similarity 0.54, c.f. 0.29 on ATLAS). These metrics emphasize that DYNAPROT is
able to model larger conformational changes at high fidelity.

DynaProtMD (5PTI)

(a) Visualization of DYNAPROT zero shot BPTI (PDB:
5PTI) ensemble generation.

Metric DYNAPROT

Pairwise RMSD (=1.57) 1.36
RMSF (=0.84) 0.86
Per-target RMSF r (↑) 0.88
RMWD Var Contrib (↓) 0.52
MD PCA W2 (↓) 0.49
Joint PCA W2 (↓) 0.81
Weak contacts J (↑) 0.54
Transient contacts J (↑) 0.54

# Parameters (↓) 2.86M
Ensemble sampling time (↓) ∼0.05s

(b) DYNAPROT zero shot ensemble generation of
BPTI (PDB: 5PTI), compared to DESRES MD tra-
jectory (Shaw et al., 2010). Note that the global RMSF
Pearson correlation r is omitted as there is only one
protein so global = per-target.

A.3.2 DYNAPROT ABLATIONS

Table 5: DYNAPROT-M ablations of the log Frobenius loss loss
and SE(3) invariance.

Metric DynaProt No LogFrob
Loss

No SE(3)
Invariance

RMWD Var (↓) 1.18 2.70 1.92
Sym KL Var (↓) 0.91 9.26 4.46
RMSF r (↑) 0.87 0.38 0.48

To test both the importance of DY-
NAPROT’s Riemannian aware loss
(log Frobenius norm) and the SE(3)
invariance from the IPA layers, we
have performed the following ab-
lations listed in Table 5. Unsur-
prisingly, replacing the log Frobe-
nius norm objective with standard
Mean Squared Error loss signifi-
cantly degrades performance as the
optimization is over the space of positive definite covariance matrices, which lies on a well-studied
Riemannian manifold. Replacing the IPA blocks with standard MLPs also degrades performance,
suggesting that SE(3) invariance is crucial in this low-data, low-parameter regime.
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A.3.3 SEQUENCE INPUT BASELINES

There are many methods worth noting that aim to predict ensembles or dynamics descriptors from
sequence itself: standard ALPHAFLOW (AFMD), MSA-SUBSAMPLING, FLEXPERT-SEQ, ESMDIFF
(Lu et al., 2024), CONFDIFF (Wang et al., 2024), SEQDANCE (Hou and Shen, 2024), and SEAMOON
(Lombard et al., 2024).

Though DYNAPROT’s true comparison is NMA as it is a data driven and learnable alternative, we still
is we compare against some of these sequence based methods in ensemble generation. DYNAPROT
outperforms these methods on local RMSF correlation and marginal anisotropy prediction and is
comparable with other distributional metrics. Moreover, the efficiency advantage is clear with
DYNAPROT’s sub-second sample time.

Table 6: Comparison of DYNAPROT generated with ensemble generation methods that take in
sequence as input. ESMDiff, ESM3 entries reported from Lu et al. (2024).

Metric DynaProt ConfDiff
OF-r3-MD

AlphaFlow
-MD BioEmu ESM3

(ID)
ESMDiff

(ID)
Pairwise RMSD (=2.89) 2.17 3.43 2.89 3.57 - -
RMSF (=1.48) 1.10 2.21 1.68 2.47 - -
Global RMSF r (↑) 0.71 0.67 0.60 0.63 0.19 0.49
Per-target RMSF r (↑) 0.86 0.85 0.85 0.77 0.67 0.68
RMWD Var Contrib (↓) 1.18 1.40 1.30 2.04 4.35 3.37
MD PCA W2 (↓) 1.74 1.44 1.52 2.05 2.06 2.29
Joint PCA W2 (↓) 2.39 2.25 2.25 4.22 5.97 6.32
Weak contacts J (↑) 0.51 0.59 0.62 0.33 0.45 0.52
Transient contacts J (↑) 0.29 0.36 0.41 0.19 0.26 0.26

# Parameters (↓) 2.86M 12.64M 95M 31M 1.4B 1.4B
Sampling time (↓) ∼0.14s ∼ 570s ∼ 10,000s ∼ 240s ∼ 70s ∼ 70s
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Figure 8: DYNAPROT-M predicted RMSF correlations. Visualized test set examples of predicted
RMSF per residue (derived from the predicted marginal Gaussians) compared to ground truth RMSF
derived from MD trajectories. Pearson correlation coefficient (r) between predicted and ground truth
RMSF is reported.

16


	Introduction
	Gaussian representation of dynamics
	Method
	DynaProt Overview
	Learning marginal Gaussians
	Learning pairwise dynamics
	Learning the full joint for ensemble sampling

	Experiments
	Predicting residue flexibility
	Predicting residue full anisotropy
	Zero-shot cryptic pocket discovery of Adenylosuccinate Synthetase

	Predicting scalar coupling
	Ensemble generation

	Conclusion
	Appendix
	Method details
	Evaluation Metrics
	Additional Experiments
	DynaProt zero-shot ensemble generation of BPTI
	DynaProt ablations
	Sequence input baselines

	Supplementary Figures


