

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING RESIDUE LEVEL PROTEIN DYNAMICS WITH MULTISCALE GAUSSIANS

Anonymous authors

Paper under double-blind review

ABSTRACT

Many methods have been developed to predict static protein structures, but understanding structure *dynamics* is what is essential for elucidating biological function. While molecular dynamics (MD) simulations remain the *in silico* gold standard, its high computational cost limits scalability. We present DYNAPROT, a lightweight, SE(3)-invariant framework that predicts rich descriptors of protein dynamics directly from static structures. By casting the problem through the lens of multivariate Gaussians, DYNAPROT estimates dynamics at two complementary scales: (1) per-residue marginal anisotropy as 3×3 covariance matrices capturing local flexibility, and (2) joint scalar covariances encoding pairwise dynamic coupling across residues. From these dynamics outputs, DYNAPROT achieves high accuracy in predicting residue-level flexibility (RMSF) and, remarkably, enables reasonable reconstruction of the full covariance matrix for fast ensemble generation. Notably, it does so using orders of magnitude fewer parameters than prior methods. Our results highlight the potential of direct protein dynamics prediction as a scalable alternative to existing methods.

1 INTRODUCTION

Proteins rarely exist in static conformations. Due to interactions with ligands, other biomolecules, and external factors such as temperature and pH, protein structures continuously fluctuate. Many enzymes rely on loop motions or domain rearrangements to form catalytically active sites (Zinovjev et al., 2024), allostery often involves shifting backbone or side chain conformations propagating signals over long distances (Yu and Koshland Jr, 2001), and even membrane proteins such as GPCRs switch between inactive and active conformational states essential for signal transduction (Zhang et al., 2024). Clearly, protein structures are *dynamic*. Understanding these dynamics is central for mechanistic insight and, potentially, the design of functions (Guo et al., 2025; McCammon, 1984).

Capturing this ensemble-level behavior computationally has long been the domain of molecular dynamics (MD). MD simulates the time evolution of atoms under a force field, generating high-resolution conformational trajectories from which fluctuations, covariances, and time-dependent observables can be derived. MD remains the *in silico* gold standard for protein dynamics, offering fine-grained, physically grounded insights (Shaw et al., 2010; Hollingsworth and Dror, 2018; Childers and Daggett, 2017). However, it comes with an enormous computational cost: simulating 100 ns of dynamics for a single protein can take days or weeks on specialized hardware. This limits its scalability, especially for proteome-wide applications or tasks requiring real-time dynamics estimates.

Recent work has explored the use of deep learning to approximate and accelerate this process. Generative modeling-based methods like ALPHAFLOW (Jing et al., 2024) repurpose AlphaFold2 (Jumper et al., 2021) under a flow matching paradigm to sample protein conformations. Along this vein, Lewis et al. (2024) recently introduced BIOEMU as a large-scale diffusion model pretrained on PDB (Burley et al., 2017) and AFDB structures, and fine-tuned on 200 ms of MD data, to efficiently generate protein conformations. Other methods, like MSA subsampling, make inference-time adjustments to the MSA input of AlphaFold2, yielding the structural ensembles (Del Alamo et al., 2022; Wayment-Steele et al., 2024; Stein and Mchaourab, 2022). Still, all of these approaches necessitate large scale PDB pretraining and suffer from inference-time computational overhead, requiring multiple stochastic forward passes to generate meaningful structural diversity. Moreover, while these ensembles can be used to approximate protein dynamics, generating them remains time

intensive, and the full ensemble of diverse conformations may not always be necessary. In many practical settings, compact and interpretable representations of dynamics often suffice. This motivates the need for models that can *explicitly* predict such dynamics descriptors without relying on *implicit* dynamics learners like expensive ensemble generation methods.

Current explicit dynamics predictors, like FLEXPERT3D (Kouba et al., 2024), resort to predicting simple collective variables like per-residue RMSF, a scalar quantifying each residue’s positional fluctuation. RMSF is widely used due to its simplicity and interpretability, but it is fundamentally limited: it captures only the magnitude of local motion and discards directionality and residue-residue coupling. Similarly, Wayment-Steele et al. (2025) trained DYNA-1 to predict labels of μ s-ms motion by cleverly exploiting missing chemical shift assignments as hidden observables in NMR ensembles, but these predictions also remain scalar and lack directionality. A different example of an explicit dynamics predictor is Normal Mode Analysis (NMA), a classic technique that approximates dynamics by identifying low frequency eigenmodes to describe the largest movements (Cui and Bahar, 2005; Skjaerven et al., 2009). NMA does not learn from data however, and instead operates solely on the input PDB structure. It can estimate the principal global directions of motion and offers insights into collective flexibility, but is sensitive to input structure quality and fails to adequately capture local anisotropy or conformational heterogeneity (Ma, 2005). This raises a natural question:

Can we design models that lie on the Pareto frontier of expressiveness and efficiency—capturing rich dynamic behavior without incurring the cost of sampling or simulation?

We introduce DYNAPROT, a lightweight, interpretable, and expressive framework for predicting protein dynamics through the lens of Gaussian distributions over structure (Section 2). Specifically, DYNAPROT predicts: (1) per-residue marginal anisotropy as 3×3 covariance matrices capturing local dynamics while encompassing RMSF, and (2) joint scalar $N \times N$ covariances encoding pairwise dynamic coupling across residues. Remarkably, while DYNAPROT was not explicitly trained to directly model the full $3N \times 3N$ joint distribution, we find that its marginal and pairwise outputs can be composed into a reasonable approximation (Section 3.4), enabling extremely fast ensemble generation in \mathbb{R}^{3N} . DYNAPROT is trained on only $\sim 1,000$ MD-derived proteins, without large-scale pretraining on PDB structures, and improves upon Normal Mode Analysis (NMA) in both predictive accuracy and efficiency, while remaining dramatically smaller and faster than existing ensemble generation approaches.

To our knowledge, DYNAPROT is the first model to *explicitly* learn both marginal and pairwise Gaussian representations of protein dynamics, and the first to predict the full $3N \times 3N$ covariance structure—akin to NMA—in a data-driven, learnable fashion, rather than relying solely on analytical approximations or less informative per-residue fluctuations.

2 GAUSSIAN REPRESENTATION OF DYNAMICS

We propose a perspective for modeling protein dynamics through distributions over atomic coordinates, relying on tractable approximations such as Gaussians. Formally, we model a protein structure with N residues as a random variable $\mathbf{X} \in \mathbb{R}^{3N}$, where each residue contributes the three-dimensional Cartesian coordinates of its C_α atom. While this coarse-grained representation omits side-chain flexibility, it enables scalable modeling of backbone dynamics, which is the scope of our work. We consider an *ensemble* to be T independent samples after RMSD alignment. The distribution over conformational states is then represented as a multivariate normal distribution:

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\text{joint}}), \quad \boldsymbol{\mu} \in \mathbb{R}^{3N}, \quad \boldsymbol{\Sigma}_{\text{joint}} \in \mathbb{R}^{3N \times 3N} \quad (1)$$

108
 109
 110 Here, μ corresponds to the average
 111 (or equilibrium) structure—typically the
 112 minimum energy conformation—and
 113 Σ_{joint} captures the full covariance across
 114 all C_α positions, encoding both local
 115 fluctuations and long-range correlated
 116 motions. This joint covariance matrix
 117 theoretically encodes all second-order
 118 information about the protein’s dynamics:
 119 from it, one can derive a wide
 120 range of collective variables including
 121 principal components (PCs) of motion,
 122 residue-residue distance variances, and
 123 global flexibility metrics. The Gaussian
 124 formulation provides a principled way
 125 to decompose protein dynamics across
 126 different levels of granularity (Figure 2
 127 and Table 1), depending on the modeling
 128 objective. We highlight some of these below.
 129

130 At the local level, the marginal distribution (Figure 2.2) for a single residue i is obtained by integrating
 131 out all other residue coordinates: $p(\mathbf{x}_i) = \int p(\mathbf{x}_1, \dots, \mathbf{x}_n) d\mathbf{x}_{\neg i}$, where $d\mathbf{x}_{\neg i} := \prod_{j \neq i} d\mathbf{x}_j$. This
 132 results in a 3D Gaussian distribution over the C_α coordinates of residue i :

$$\mathbf{X}_i \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_{\text{marginal}}^{(i)}), \quad \boldsymbol{\mu}_i \in \mathbb{R}^3, \quad \boldsymbol{\Sigma}_{\text{marginal}}^{(i)} \in \mathbb{R}^{3 \times 3} \quad (2)$$

133 where $\boldsymbol{\Sigma}_{\text{marginal}}^{(i)}$ is the 3×3 diagonal block of $\boldsymbol{\Sigma}_{\text{joint}}$. These marginals can be interpreted as *Gaussian*
 134 *blobs* encoding anisotropic local fluctuations—i.e., spatial variance of where each residue may reside.

135 Notably, this formulation allows for simple derivation of scalar flexibility metrics such as the *root-*
 136 *mean-square fluctuation (RMSF)* as $\text{RMSF}_i = \sqrt{\text{Tr}(\boldsymbol{\Sigma}_{\text{marginal}}^{(i)})}$. RMSF (Figure 2.1) represents a
 137 simple notion of dynamics: a single scalar per residue quantifying positional fluctuation. However, it
 138 discards directional and covariance structure captured by the full marginal.

139 To capture dynamics beyond residue-local fluctuations, we also consider a covariance matrix $\mathbf{C} \in \mathbb{R}^{N \times N}$ of scalar pairwise coupling (Figure 2.3). Each entry \mathbf{C}_{ij} summarizes the dynamical coupling
 140 between residues i and j , typically computed as a scalar projection of the corresponding 3×3
 141 block in the full joint covariance: $\boldsymbol{\Sigma}_{\text{joint}}[3i : 3i + 3, 3j : 3j + 3]$. We choose MeanPooling as the
 142 scalar projection to compute each \mathbf{C}_{ij} . This compact representation enables efficient modeling of
 143 residue-residue coupling.

144 Table 1: Taxonomy of protein dynamics representations under a Gaussian view.

Level	Description	Notation	Space	Captures
1	Per-residue scalar (i.e. RMSF)	$\sqrt{\text{Tr}(\boldsymbol{\Sigma}_{\text{marginal}}^{(i)})}$	\mathbb{R}^N	Magnitude of fluctuation per residue
2	Per-residue full (Gaussian blob)	$\boldsymbol{\Sigma}_{\text{marginal}}^{(i)}$	$\mathbb{R}^{N \times 3 \times 3}$	Anisotropic local covariance per residue
3	Joint scalar (pairwise coupling)	\mathbf{C}_{ij}	$\mathbb{R}^{N \times N}$	Scalar covariance across all residues
4	Joint full covariance	$\boldsymbol{\Sigma}_{\text{joint}}$	$\mathbb{R}^{3N \times 3N}$	Full spatial covariance across all residues

150 DYNAPROT focuses on levels 2 and 3 of this hierarchy—explicitly predicting both 3×3 marginal
 151 Gaussians per-residue and a $N \times N$ matrix of residue-residue couplings. As noted before, from the
 152 3×3 marginals, we can easily derive RMSF (level 1). Interestingly, utilizing both the marginals and
 153 the pairwise coupling, we can retrieve a reasonable approximation of the full joint $3N \times 3N$ (level 4;
 154 Section 3.4). This design strikes a balance between local interpretability and global coordination,
 155 while avoiding the intractability of directly learning the full joint covariance.

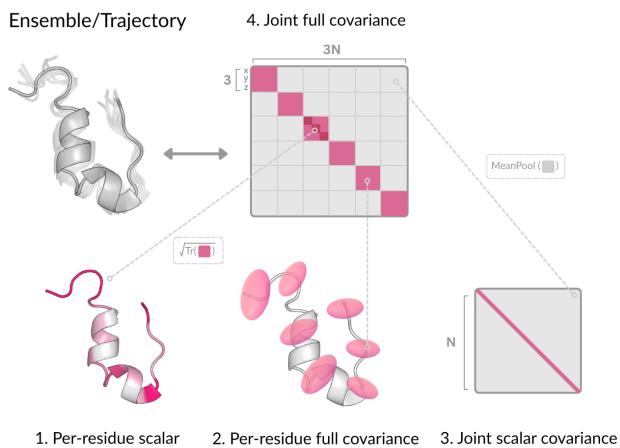


Figure 2: Overview of protein dynamics (Gaussian view).

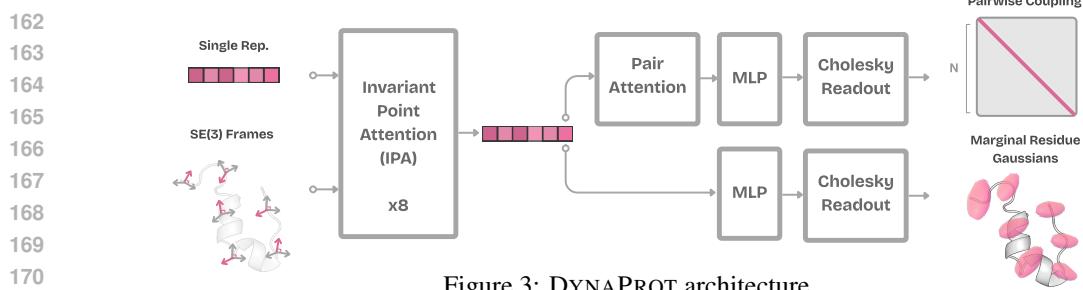


Figure 3: DYNAPROT architecture.

3 METHOD

3.1 DYNAPROT OVERVIEW

DYNAPROT (Figure 3) consists of two models, each taking as input a protein structure but designed to *explicitly* capture different granularities of protein dynamics: (i) marginal Gaussian blobs per residue (Section 3.2), and (ii) pairwise covariance across residues (Section 3.3). DYNAPROT is given the input structure as a set of local C_α residue frames. The frames are denoted $\{\mathbf{T}_i\}_{i=1}^N$, where each frame $\mathbf{T}_i \in \text{SE}(3)$ is parameterized by a rotation matrix $\mathbf{R}_i \in \text{SO}(3)$ and a translation vector $\mathbf{t}_i \in \mathbb{R}^3$. Simply put, $\mathbf{T}_i = (\mathbf{R}_i, \mathbf{t}_i)$ captures the local orientation and position of residue i . Additionally, an initial embedding layer is included to encode the amino acid sequence $\mathbf{s} \in \mathbb{R}^{N \times D}$.

Both models share a common architectural backbone composed of eight Invariant Point Attention (IPA) blocks from the structure module of AlphaFold2 (Jumper et al., 2021). These blocks are designed to encode geometric relationships between residues while maintaining invariance to $\text{SE}(3)$ transformations (global transformations do not affect the learned residue-level representations). The IPA backbone processes the set of residue frames and the sequence representation, outputting a learned representation for each residue $\mathbf{h} \in \mathbb{R}^{N \times D}$. No pair representation is given as input to the model. The two models differ only in their readout layers, which we define in the proceeding sections.

3.2 LEARNING MARGINAL GAUSSIANS

After the input sequence representations and residue frames are processed through the IPA backbone, a simple MLP readout is used for marginal prediction. Given the hidden representation h_i for each residue, the marginal readout outputs $\Sigma_{\text{marginal}}^{(i)} \in \mathbb{R}^{3 \times 3}$, modeling the local position (xyz) covariance of residue i . These outputs are trained to match empirical marginal distributions derived from the MD data. Note that the mean of each Gaussian is not learned. Instead, we take the input structure’s C_α coordinate $\mathbf{t}_i \in \mathbb{R}^3$ as the fixed mean μ_i of the distribution: $\mu_i := \mathbf{t}_i$, $\mathbf{X}_i \sim \mathcal{N}(\mu_i, \Sigma_{\text{marginal}}^{(i)})$. This assumption is motivated by the fact that the input structure usually corresponds to the experimentally determined (or AlphaFold-predicted) minimum energy conformation, and thus serves as a natural estimator of the ensemble mean. Consequently, the marginal prediction task reduces to learning the covariance matrices $\Sigma_{\text{marginal}}^{(i)}$ alone.

Marginal dynamics module. Recall that covariance matrices are required to be symmetric and positive definite (SPD). Predicting all 9 elements of a 3×3 matrix would be overparameterized and does not guarantee SPD structure. Naively, one might consider symmetrizing an arbitrary matrix after predicting the 6 independent elements, but this only guarantees symmetry. Instead, we leverage the fact that any SPD matrix can be uniquely defined by its Cholesky factorization. Thus, we enforce SPD constraints directly by parameterizing the covariance via its Cholesky factor. Specifically, the model predicts the entries $\{a_j\}_{j=1}^6$ of a lower triangular matrix $\mathbf{L}_i \in \mathbb{R}^{3 \times 3}$, enforces positivity along the diagonal with the Softplus activation function (Glorot et al., 2011), and recovers the covariance:

$$\Sigma_{\text{marginal}}^{(i)} = \mathbf{L}_i \mathbf{L}_i^\top, \quad \text{where } \mathbf{L}_i = \begin{bmatrix} \text{softplus}(a_1) & 0 & 0 \\ a_2 & \text{softplus}(a_3) & 0 \\ a_4 & a_5 & \text{softplus}(a_6) \end{bmatrix} \quad (3)$$

This factorization ensures that the predicted covariance matrix is SPD by construction. Since SPD matrices lie on a Riemannian manifold with non-Euclidean geometry, using loss functions that respect

this structure is critical for meaningful comparison. Standard Euclidean distances (e.g., MSE or Frobenius norm) ignore the curvature of this space and can lead to unstable or distorted gradients (see ablations in Appendix A.3.2). We instead employ the log-Euclidean (or log-Frobenius) distance (Vemulapalli and Jacobs, 2015; Huang et al., 2015) that reflects the intrinsic geometry of the SPD manifold. The Bures-Wasserstein (Bhatia et al., 2019) distance can also be used, but we find the log-Frobenius distance to be more stable.

$$\mathcal{L}_{\text{LogFrob}} = \|\log(\Sigma_{\text{pred}}) - \log(\Sigma_{\text{true}})\|_F^2, \quad \text{where } \log(\Sigma) = \mathbf{Q} \log(\Lambda) \mathbf{Q}^T \quad (4)$$

As Riemannian manifolds are “locally Euclidean”, this loss applies the matrix logarithm mapping the SPD matrix to its tangent space where a Euclidean metric (canonical Frobenius norm) can be utilized.

3.3 LEARNING PAIRWISE DYNAMICS

Using the output representations \mathbf{h} from the IPA backbone, the pairwise dynamics module produces a scalar-valued $N \times N$ covariance matrix \mathbf{C} , where each entry C_{ij} captures the dynamical coupling between residue pairs. These scalar couplings are derived from the full joint covariance matrix via averaging per block and trained to reproduce MD-derived pairwise fluctuations.

Pairwise Dynamics Module. To predict the global pairwise covariance structure, we first construct pairwise features for all residue pairs. For each pair (i, j) , we concatenate their residue-level embeddings $[\mathbf{h}_i \parallel \mathbf{h}_j] \in \mathbb{R}^{2d}$ and project them into a lower-dimensional space: $f_{ij}^{(0)} = W_{\text{proj}}[\mathbf{h}_i \parallel \mathbf{h}_j] \in \mathbb{R}^{d'}$.

We pass these features through a stack of AlphaFold-style pairwise attention blocks based on the Evoformer architecture (Jumper et al., 2021), which include triangle updates and residue-wise message passing. These operations are designed to model transitive and higher-order geometric dependencies across residue pairs, and have been shown to be highly effective in structure-aware tasks: $f_{ij}^{\text{attn}} = \text{PairwiseAttentionBlock}(f_{ij}^{(0)}) \in \mathbb{R}^{d'}$. The output f_{ij}^{attn} serves as a “learned basis” over the space of residue-residue covariance structure. These basis features are then mapped to scalars through an MLP head, yielding a covariance for each pair of residues: $z_{ij} = \text{MLP}(f_{ij}^{\text{attn}})$, $z_{ij} \in \mathbb{R}$, for $i \geq j$. Following the same procedure as Section 3.2, we enforce SPD constraints on this covariance matrix by populating the lower-triangular entries of $\mathbf{L} \in \mathbb{R}^{N \times N}$ with the values of z_{ij} and applying the Softplus activation when $i = j$. Finally, the pairwise covariance matrix is reconstructed via Cholesky composition $\mathbf{C} = \mathbf{L}\mathbf{L}^T$ and again equation 4 is used for optimization.

3.4 LEARNING THE FULL JOINT FOR ENSEMBLE SAMPLING

Joint reconstruction heuristic. Given a predicted scalar coupling matrix $\mathbf{C} \in \mathbb{R}^{N \times N}$ and a set of per-residue marginal covariances $\{\Sigma_{\text{marginal}}^{(i)} \in \mathbb{R}^{3 \times 3}\}_{i=1}^N$, we propose a heuristic to reconstruct an approximate full joint covariance matrix $\Sigma_{\text{joint}} \in \mathbb{R}^{3N \times 3N}$.

Each marginal covariance $\Sigma_{\text{marginal}}^{(i)}$ is SPD by construction, and thus admits a Cholesky factorization $\Sigma_{\text{marginal}}^{(i)} = \mathbf{L}_i \mathbf{L}_i^\top$, where $\mathbf{L}_i \in \mathbb{R}^{3 \times 3}$. We then define a block-diagonal matrix $\mathbf{L}_{\text{marginal}} \in \mathbb{R}^{3N \times 3N}$ as $\mathbf{L}_{\text{marginal}} = \bigoplus_{i=1}^N \mathbf{L}_i$. By construction, $\mathbf{L}_{\text{marginal}}$ is lower triangular with positive diagonal entries, since each \mathbf{L}_i satisfies these properties.

Drawing from the univariate identity $\text{Cov}(i, j) = \text{Corr}(i, j) \cdot \sigma_i \sigma_j$, we define the multivariate cross-covariance block between residues i and j as $\Sigma_{\text{joint}}^{(i,j)} = \mathbf{L}_i \tilde{\mathbf{C}}_{ij} \mathbf{L}_j^\top$. Here, the Cholesky factor \mathbf{L}_i serves as a matrix square root of the covariance $\Sigma_{\text{marginal}}^{(i)}$, analogous to standard deviation in the univariate case. And, $\tilde{\mathbf{C}}$ is a correlation matrix found by standardizing \mathbf{C} . Using the Kronecker product, we can denote this heuristic cleanly as follows,

$$\Sigma_{\text{joint}} = \mathbf{L}_{\text{marginal}} (\tilde{\mathbf{C}} \otimes \mathbf{I}_3) \mathbf{L}_{\text{marginal}}^\top \quad (5)$$

Proposition 3.1 (SPD Closure). *Given marginal covariances $\{\Sigma_{\text{marginal}}^{(i)} \in \mathbb{R}^{3 \times 3}\}_{i=1}^N$ and correlation matrix $\tilde{\mathbf{C}} \in \mathbb{R}^{N \times N}$ to be symmetric and positive definite, then the reconstructed joint covariance $\Sigma_{\text{joint}} = \mathbf{L}_{\text{marginal}} (\tilde{\mathbf{C}} \otimes \mathbf{I}_3) \mathbf{L}_{\text{marginal}}^\top$ is also symmetric and positive definite.*

270 We refer the reader to Appendix A.1 for the proof. This approximation combines local anisotropic
 271 uncertainty with global correlation structure. While not exact, we find it reconstructs the joint
 272 covariance to a reasonable degree and serves as a useful tool for downstream ensemble generation.
 273

274 **Ensemble sampling.** Given the reconstructed joint covariance Σ_{joint} and our assumption that the
 275 mean μ corresponds to the coordinates of the input structure (e.g., the PDB), we have now retrieved
 276 our Gaussian distribution over conformations $\mathcal{N}(\mu, \Sigma_{\text{joint}})$. To sample from this distribution, we apply
 277 a multivariate generalization of the reparameterization trick used in univariate Gaussian sampling.
 278

280 **Property 3.1** (Multivariate Gaussian Sampling). *Given $\mathcal{N}(\mu, \Sigma)$, where $\Sigma \in \mathbb{R}^{d \times d}$ is SPD
 281 and $\Sigma = \mathbf{L}\mathbf{L}^+$ is its Cholesky decomposition. Then,*

$$282 \quad \mathbf{x} = \mu + \mathbf{L}\boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d) \quad \Rightarrow \quad \mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$$

285 Note that this sampling relies directly on the Cholesky factor (similar to a matrix square root),
 286 mirroring the scalar case (Appendix A.1). Utilizing DYNAPROT predictions and this heuristic,
 287 ensemble sampling becomes extremely fast with minimal computational overhead.

290 4 EXPERIMENTS

292 **Preprocessing.** We construct ground-truth dynamics labels from the ATLAS molecular dynamics
 293 dataset, which comprises 1,390 proteins selected based on structural diversity using the ECOD
 294 domain classification (Vander Meersche et al., 2024). Following ALPHAFLOW (Jing et al., 2024)
 295 for preprocessing consistency, we concatenate each of the three replicate simulations of 100 ns per
 296 protein and extract the C_α coordinates. From each ensemble, we compute the empirical full joint
 297 covariance matrix over time and extract the relevant dynamics labels (3×3 marginals per residue
 298 and $N \times N$ residue coupling) as described in Section 2. We evaluate under two train/val/test split
 299 regimes. The primary matches ALPHAFLOW’s (1265/39/82), while comparisons to FLEXPERT3D
 300 use DYNAPROT trained on their topology-based split (1112/139/139). For naming, we refer to
 301 DYNAPROT-M for the model trained for marginals, DYNAPROT-J for the coupling predictions, and
 302 DYNAPROT for both.

303 **Baselines.** For a faithful comparison, we mainly choose baseline methods that take a protein structure
 304 as input and predict dynamics descriptors either *implicitly* (AFMD+TEMPLATES) or *explicitly*
 305 (FLEXPERT3D, NMA). For NMA, we utilize the ProDy package (Zhang et al., 2021), specifically
 306 the Anisotropic Network Model instantiation. For a broader set of baselines, we also compare against
 307 some sequence based methods in Appendix A.3.3.

309 4.1 PREDICTING RESIDUE FLEXIBILITY

311 Since DYNAPROT-M is trained to predict marginal Gaussians
 312 per residue, it inherently captures residue-level flexibility,
 313 as RMSF is defined as the square root of the trace of each
 314 marginal covariance (see Section 2). To evaluate DYNAPROT-
 315 M’s ability to recover this, we compare against what is, to our
 316 knowledge, the only method that *explicitly* predicts residue
 317 flexibility: FLEXPERT-3D. For fair comparison, we train and
 318 evaluate DYNAPROT-M under the same ATLAS train/val/test
 319 split defined in Kouba et al. (2024). Despite solving the
 320 more challenging task of predicting marginal anisotropy rather
 321 than scalar fluctuations alone, DYNAPROT-M achieves a sub-
 322 stantially higher Pearson correlation with MD-derived RMSF (median $r = 0.865$, 75th percentile
 323 $r = 0.930$) than FLEXPERT-3D (Table 2), while using three orders of magnitude fewer parameters
 (955K vs. 1.2B) and without NMA as input. This allows DYNAPROT-M to generalize better while
 being more parameter efficient. See Appendix A.4 for DYNAPROT-M additional RMSF plots.

324 Table 2: RMSF Pearson correlation (r) against ATLAS MD-derived
 325 RMSF (FlexPert test split). Median and 75th percentile reported.

Method	RMSF r (\uparrow)	# Params
DYNAPROT-M	0.865 / 0.930	955 K
FLEXPERT-3D	0.830 / 0.899	1.2 B
NMA (ANM)	0.697 / 0.784	–

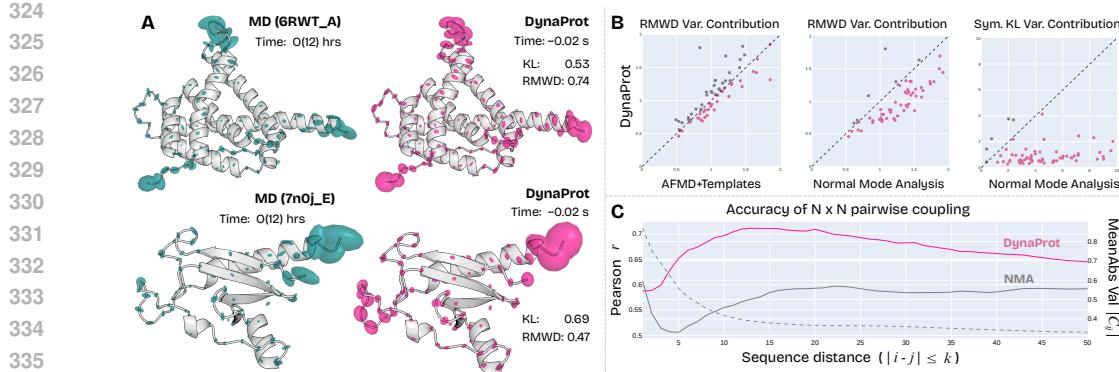


Figure 4: **DYNAProt marginal Gaussian and residue coupling analysis.** **A.** Renderings of predicted marginal Gaussians compared to ATLAS MD constructed Gaussians (mean symmetric KL divergence and RMWD are reported). **B.** Joint distribution (within 75th percentile) of DYNAProt performance vs. (AFMD+T, NMA). **C.** Band-wise Pearson correlation between predicted and ground-truth residue–residue coupling matrices as a function of sequence distance.

4.2 PREDICTING RESIDUE FULL ANISOTROPY

To assess the faithfulness of DYNAProt-M’s predicted marginals, we compare against both physics-based and learned ensemble methods. In practice, only NMA (ANM) is a feasible baseline, as ALPHAFLOW is prohibitively slow: A single 271-length protein (`71ao_A`) requires ~ 7000 s, compared to ~ 0.02 s for DYNAProt-M (Table 3). Note that DYNAProt-M predicts this directly, but for ALPHAFLOW, we first sample 250 structures per protein and then calculate the empirical covariance to define the marginal Gaussians. With NMA, we retrieve the full joint via the normal modes and extract the marginal block diagonals.

To quantify the accuracy, we compute the variance contribution of the *symmetric KL divergence* (see Appendix A.2) and the *root mean 2-Wasserstein distance* (RMWD) as described in Jing et al. (2024), compared to the ground truth marginal Gaussians computed from the ATLAS test set (AFMD split). Despite being orders of magnitude faster and smaller (955k vs. 95M parameters), DYNAProt-M achieves competitive accuracy. DYNAProt-M attains a median RMWD of 1.18 and symmetric KL divergence of 0.91, both substantially better than NMA (1.45 and 4.56, respectively), and comparable to AFMD+TEMPLATES’s 1.10 and 0.60.

Moreover, rather than relying solely on summary statistics, we also visualize the distributions (75th percentile) of RMWD and mean symmetric KL variance contributions across test set proteins (Figure 4B). These plots compare DYNAProt-M to both AFMD+T and NMA on a per-protein basis. Points below the diagonal (highlighted in pink) indicate that DYNAProt-M outperformed the method in question on that particular protein. From this, we see that DYNAProt-M achieves comparable performance to AFMD+T. Notably, within the 75th percentile it often outperforms AFMD+T (examples visualized in Figure 4A,B) on RMWD variance contribution. Moreover, DYNAProt-M significantly outperforms NMA across both RMWD and symmetric KL. This further corroborates DYNAProt-M’s ability to capture local anisotropic structure well despite being much smaller and faster than other methods.

Table 3: Comparison of methods on anisotropic blob prediction (ATLAS test split). Runtime for a length 271 protein (`71ao_A`). 25th %ile / Median reported (↓ is better).

Method	RMWD Var	Sym. KL Var	# Params	Time
DYNAProt-M	0.84 / 1.18	0.53 / 0.91	955 K	~0.02 s
AFMD+T	0.87 / 1.10	0.37 / 0.60	95 M	~7000 s
NMA (ANM)	1.14 / 1.45	3.03 / 4.56	–	~5.37 s

4.2.1 ZERO-SHOT CRYPTIC POCKET DISCOVERY OF ADENYLOSUCCINATE SYNTHETASE

Beyond accuracy, DYNAProt-M’s marginals can also provide functional insight. Many proteins are considered to be undruggable as their *apo* form may not display a clear binding pocket. However, the druggable pocket may only become apparent after the drug is bound (*holo* form)—a so called “cryptic pocket.” Identification of cryptic pockets is therefore an important task in drug discovery (Mou et al., 2025; Hollingsworth et al., 2019; Comitani and Gervasio, 2018).

378 As a case study, we sought to investigate
 379 DYNAPROT’s ability in cryptic pocket iden-
 380 tification for the enzyme adenylosuccinate
 381 synthetase, as it is known to exhibit a cryp-
 382 tic pocket (Meller et al.) and both the *apo*
 383 and *holo* forms are available in the PDB
 384 (1ADE / 1C1B).

385 We applied DYNAPROT-M to zero shot pre-
 386 dict the marginal Gaussians on the *apo*
 387 form. When we look at the predictions,
 388 we notice two features (Figure 5). First,
 389 the residues with the largest variance are
 390 exactly those that encompass the binding
 391 pocket. Second, more than just the mag-
 392 nitude of the Gaussians, the directionality is consistent with a potential pocket opening motion (when
 393 compared with the *holo* form 1C1B). These early results suggest the potential of DYNAPROT’s utility
 394 in cryptic pocket discovery, but a systematic exploration is left for future work.

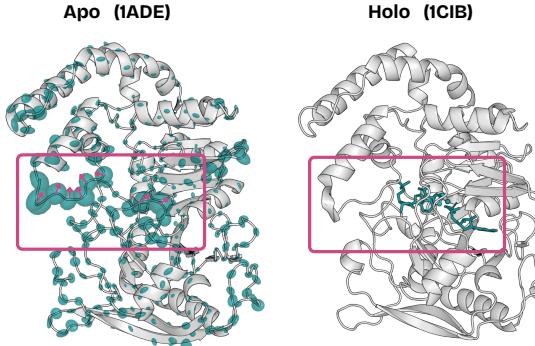


Figure 5: DYNAPROT-M predicted residue Gaussians (ellipsoids) overlaid the *apo* form.

396 4.3 PREDICTING SCALAR COUPLING

398 To evaluate DYNAPROT-J in modeling residue–residue couplings, we compare its predicted $N \times N$
 399 scalar covariance matrices against those derived from NMA, a classical method for capturing global
 400 structural dynamics. While DYNAPROT-J directly predicts these scalar coupling matrices, we
 401 construct comparable matrices for NMA by computing full $3N \times 3N$ anisotropic network models
 402 (using ProDy) from each test protein, and then projecting them into $N \times N$ scalar covariances as
 403 described in Section 2. We obtain per-residue correlation matrices by normalizing the entries to be
 404 unit diagonal and constrained to the range $[-1, 1]$.

405 We observe that in the ground truth $N \times N$ correlations, magnitude of entries diminish rapidly with
 406 distance from main diagonal, indicating weak long-range coupling. This is indicated by the dotted
 407 gray line in Figure 4C, which shows the mean absolute value of the entries from the principal diagonal
 408 up to the k th diagonal band. To focus on meaningful and prominent interactions, we define a *diagonal*
 409 *band* of width $k = 50$ residues ($|i - j| \leq 50$), which captures local and medium-range interactions.
 410 This essentially measures residue–residue coupling as a function of *sequence distance* (how distal
 411 are i and j along the backbone). We compute the Pearson correlation between predicted and ground-
 412 truth residue–residue correlation matrices for the entries along each diagonal band k , by iteratively
 413 extracting the upper-triangular entries satisfying $|i - j| \leq k$ for $k = 1$ to 50. This is repeated for each
 414 of the 82 test set proteins and the median Pearson correlation is reported (each point in Figure 4C).
 415 This band-wise analysis enables us to compare the accuracy of coupling signals at increasing residue
 416 distances, and we find that DYNAPROT-J (peak correlation of $r = 0.71$) strongly outperforms NMA
 417 (peak correlation of $r = 0.59$) particularly at short to mid-range coupling distances, where the
 418 coupling is the strongest.

419 4.4 ENSEMBLE GENERATION

421 As described in Section 3.4, given the output 3×3 marginal covariances and $N \times N$ residue
 422 coupling from DYNAPROT-M and DYNAPROT-J respectively, we reconstruct a full joint covariance
 423 using the heuristic defined in Eq. 5. This direct access to the joint distribution enables extremely
 424 fast sampling of diverse structures. For evaluation, we sample 250 structures with DYNAPROT,
 425 AFMD+TEMPLATES, and NMA to form ensembles for each of the 82 test set proteins in the
 426 AFMD split. Following Jing et al. (2024), we assess these ensembles in their flexibility accuracy,
 427 distributional similarity, and the ability to reproduce complex observables. For flexibility accuracy,
 428 we measure the pairwise RMSD to ground truth MD and RMSF correlation at the global and per-
 429 target level. For distributional coverage, we measure the 2-Wasserstein distance after projecting the
 430 ensembles onto the first two principle components derived from the MD trajectory (MD PCA \mathcal{W}_2) or
 431 the combined (MD+sampled) trajectory (Joint PCA \mathcal{W}_2). Table 4 summarizes the ensemble evaluation
 432 results across AFMD+TEMPLATES, DYNAPROT, and NMA. DYNAPROT achieves performance

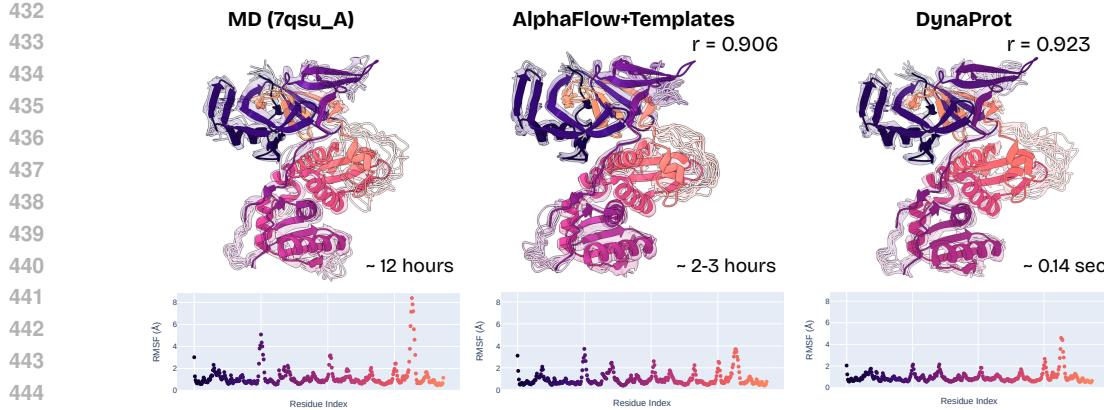


Figure 6: Comparison of DYNAPROT generated ensemble vs. AFMD+T to ATLAS MD simulation (PDB 7qsu_A) overlaid on reference. RMSF Pearson correlation r and sample time reported.

comparable to AFMD+TEMPLATES on key flexibility metrics such as pairwise RMSD and per-target RMSD correlation, while lagging slightly behind on distributional similarity and observable recovery. Some examples of where DYNAPROT outperforms AFMD+TEMPLATES on ensemble flexibility correlation are visualized in Figure 6 and Appendix A.4. For the visuals, all atom reconstruction is enabled by PULCHRA (Rotkiewicz and Skolnick, 2008). Moreover, DYNAPROT consistently outperforms NMA across nearly all evaluations—except for transient contact prediction—particularly excelling in measures of local flexibility and pairwise distance preservation. Notably, DYNAPROT requires only 2.86 million parameters (vs. 95 million for AFMD+TEMPLATES) and samples ensembles over $70,000 \times$ faster on average (~ 0.14 s vs. $\sim 10,000$ s), all while being trained only to predict marginal and scalar covariances. This efficiency advantage is maintained when compared against sequence-based methods (i.e. ConfDiff, BioEmu, ESMDiff, see Appendix A.3). DYNAPROT even outperforms them on modeling flexibility and anisotropy.

Finally, we assess DYNAPROT’s generalization to longer timescale dynamics, by comparing its zero-shot ensemble of BPTI to the 1ms trajectory from Shaw et al. (2010). Even with these larger conformational changes, DYNAPROT performs reasonably well. It achieves RMSD correlation of 0.88 (c.f. 86 on ATLAS), anisotropy with RMWD of 0.52 Å (c.f. 1.18 Å on ATLAS), and strong recovery of transient contacts ($J = 0.54$, c.f. 0.29 on ATLAS). See appendix A.3.1 for more.

5 CONCLUSION

Protein dynamics is critical for understanding biological function. Existing approaches to modeling dynamics often rely on complex generative models with large-scale PDB pretraining and expensive ensemble generation. In this work, we introduce DYNAPROT, a lightweight and data-driven alternative akin to Normal Mode Analysis (NMA), but designed to directly predict structured dynamics descriptors in the form of per-residue and pairwise Gaussian representations. This formulation enables extreme parameter efficiency while outperforming traditional baselines on key metrics, including flexibility estimation, marginal anisotropy, and residue–residue coupling. Remarkably, DYNAPROT’s outputs also support ultra-fast ensemble sampling with reasonable structural fidelity—offering a compelling alternative to conventional ensemble generation methods. While further scaling may be needed to match the full capabilities of state-of-the-art generative methods, our approach highlights a promising alternative grounded in explicitly learning structured representations of dynamics.

486 REFERENCES
487

488 Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures–Wasserstein distance between positive
489 definite matrices. *Expositiones Mathematicae*, 37(2):165–191, 2019.

490 Stephen K Burley, Helen M Berman, Gerard J Kleywegt, John L Markley, Haruki Nakamura, and
491 Sameer Velankar. Protein data bank (pdb): the single global macromolecular structure archive.
492 *Protein crystallography: methods and protocols*, pages 627–641, 2017.

493 Matthew Carter Childers and Valerie Daggett. Insights from molecular dynamics simulations for
494 computational protein design. *Molecular systems design & engineering*, 2(1):9–33, 2017.

495 Federico Comitani and Francesco Luigi Gervasio. Exploring cryptic pockets formation in targets of
496 pharmaceutical interest with swish. *Journal of chemical theory and computation*, 14(6), 2018.

497 Qiang Cui and Ivet Bahar. *Normal mode analysis: theory and applications to biological and chemical
498 systems*. CRC press, 2005.

499 Diego Del Alamo, Davide Sala, Hassane S Mchaourab, and Jens Meiler. Sampling alternative
500 conformational states of transporters and receptors with alphafold2. *Elife*, 11:e75751, 2022.

501 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
502 *Proceedings of the fourteenth international conference on artificial intelligence and statistics*,
503 pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

504 Amy B Guo, Deniz Akpinaroglu, Christina A Stephens, Michael Grabe, Colin A Smith, Mark JS
505 Kelly, and Tanja Kortemme. Deep learning–guided design of dynamic proteins. *Science*, 388
506 (6749):eadr7094, 2025.

507 Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. *Neuron*, 99(6):
508 1129–1143, 2018.

509 Scott A Hollingsworth, Brendan Kelly, Celine Valant, Jordan Arthur Michaelis, Olivia Mastromihalis,
510 Geoff Thompson, AJ Venkatakrishnan, Samuel Hertig, Peter J Scammells, Patrick M Sexton, et al.
511 Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic gpcrs. *Nature
512 Communications*, 10(1):3289, 2019.

513 Chao Hou and Yufeng Shen. Seqdance: A protein language model for representing protein dynamic
514 properties. *bioRxiv*, 2024.

515 Zhiwu Huang, Ruiping Wang, Shiguang Shan, Xianqiu Li, and Xilin Chen. Log-euclidean metric
516 learning on symmetric positive definite manifold with application to image set classification. In
517 *International conference on machine learning*, pages 720–729. PMLR, 2015.

518 Harold Jeffreys. *The theory of probability*. OuP Oxford, 1998.

519 Bowen Jing, Bonnie Berger, and Tommi Jaakkola. AlphaFold meets flow matching for generating
520 protein ensembles. *arXiv preprint arXiv:2402.04845*, 2024.

521 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
522 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
523 protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589, 2021.

524 Petr Kouba, Joan Planas-Iglesias, Jiri Damborsky, Jiri Sedlar, Stanislav Mazurenko, and Josef Sivic.
525 Learning to engineer protein flexibility. *arXiv preprint arXiv:2412.18275*, 2024.

526 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathematical
527 statistics*, 22(1):79–86, 1951.

528 Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew YK Foong,
529 Victor García Satorras, Osama Abdin, Bastiaan S Veeling, Iryna Zaporozhets, et al. Scalable
530 emulation of protein equilibrium ensembles with generative deep learning. *bioRxiv*, 2024.

531 Valentin Lombard, Dan Timsit, Sergei Grudinin, and Elodie Laine. Seamoond: Prediction of molecular
532 motions based on language models. *bioRxiv*, pages 2024–09, 2024.

540 Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, and
 541 Jian Tang. Structure language models for protein conformation generation. *arXiv preprint*
 542 *arXiv:2410.18403*, 2024.

543 Jianpeng Ma. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. *Structure*, 13(3):373–380, 2005.

544 JA McCammon. Protein dynamics. *Reports on Progress in Physics*, 47(1):1, 1984.

545 Artur Meller, Michael Ward, Jonathan Borowsky, Meghana Kshirsagar, Jeffrey M. Lotthammer,
 546 Felipe Oviedo, Juan Lavista Ferres, and Gregory R. Bowman. Predicting locations of cryptic
 547 pockets from single protein structures using the PocketMiner graph neural network. 14(1):1177.
 548 ISSN 2041-1723. doi: 10.1038/s41467-023-36699-3.

549 Minyue Mou, Weicheng Yang, Guangyi Huang, Xiaoyan Yang, Xiao Zhang, Wasala Mudiyanselage
 550 Wishwajith Wickramabahu Kandegama, Charles R Ashby Jr, Gefei Hao, and Yangyang Gao. The
 551 discovery of cryptic pockets increases the druggability of “undruggable” proteins. *Medicinal
 552 Research Reviews*, 2025.

553 Piotr Rotkiewicz and Jeffrey Skolnick. Fast procedure for reconstruction of full-atom protein models
 554 from reduced representations. *Journal of computational chemistry*, 29(9):1460–1465, 2008.

555 David E Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, Michael P
 556 Eastwood, Joseph A Bank, John M Jumper, John K Salmon, Yibing Shan, et al. Atomic-level
 557 characterization of the structural dynamics of proteins. *Science*, 330(6002):341–346, 2010.

558 Lars Skjaerven, Siv M Hollup, and Nathalie Reuter. Normal mode analysis for proteins. *Journal of
 559 Molecular Structure: THEOCHEM*, 898(1-3):42–48, 2009.

560 Richard A Stein and Hassane S Mchaourab. Speach_af: Sampling protein ensembles and confor-
 561 mational heterogeneity with alphafold2. *PLOS Computational Biology*, 18(8):e1010483, 2022.

562 Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-
 563 lochkina. ATLAS: protein flexibility description from atomistic molecular dynamics simulations.
 564 *Nucleic Acids Research*, 52(D1):D384–D392, 2024.

565 Raviteja Vemulapalli and David W Jacobs. Riemannian metric learning for symmetric positive
 566 definite matrices. *arXiv preprint arXiv:1501.02393*, 2015.

567 Yan Wang, Lihao Wang, Yuning Shen, Yiqun Wang, Huizhuo Yuan, Yue Wu, and Quanquan
 568 Gu. Protein conformation generation via force-guided se (3) diffusion models. *arXiv preprint*
 569 *arXiv:2403.14088*, 2024.

570 Hannah K Wayment-Steele, Adedolapo Ojoawo, Renee Otten, Julia M Apitz, Warintra Pitsawong,
 571 Marc Hömberger, Sergey Ovchinnikov, Lucy Colwell, and Dorothee Kern. Predicting multiple
 572 conformations via sequence clustering and alphafold2. *Nature*, 625(7996):832–839, 2024.

573 Hannah K Wayment-Steele, Gina El Nesr, Ramith Hettiarachchi, Hasindu Kariyawasam, Sergey
 574 Ovchinnikov, and Dorothee Kern. Learning millisecond protein dynamics from what is missing in
 575 nmr spectra. *bioRxiv*, pages 2025–03, 2025.

576 Edward W Yu and Daniel E Koshland Jr. Propagating conformational changes over long (and short)
 577 distances in proteins. *Proceedings of the National Academy of Sciences*, 98(17):9517–9520, 2001.

578 Mingyang Zhang, Ting Chen, Xun Lu, Xiaobing Lan, Ziqiang Chen, and Shaoyong Lu. G protein-
 579 coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. *Signal Trans-
 580 duction and Targeted Therapy*, 9(1):88, 2024.

581 She Zhang, James M Krieger, Yan Zhang, Cihan Kaya, Burak Kaynak, Karolina Mikulska-Ruminska,
 582 Pemra Doruker, Hongchun Li, and Ivet Bahar. Prody 2.0: increased scale and scope after 10 years
 583 of protein dynamics modelling with python. *Bioinformatics*, 37(20):3657–3659, 2021.

584 Kirill Zinovjev, Paul Guénon, Carlos A Ramos-Guzmán, J Javier Ruiz-Pernía, Damien Laage, and
 585 Iñaki Tuñón. Activation and friction in enzymatic loop opening and closing dynamics. *Nature
 586 Communications*, 15(1):2490, 2024.

594 **A APPENDIX**595 **A.1 METHOD DETAILS**

598 **SPD closure of joint reconstruction heuristic (restating Proposition 3.1).** Given marginal
 599 covariances $\{\Sigma_{\text{marginal}}^{(i)} \in \mathbb{R}^{3 \times 3}\}_{i=1}^N$ and a correlation matrix $\tilde{\mathbf{C}} \in \mathbb{R}^{N \times N}$ that is symmetric and
 600 positive definite, then the reconstructed joint covariance $\Sigma_{\text{joint}} = \mathbf{L}_{\text{marginal}} (\tilde{\mathbf{C}} \otimes \mathbf{I}_3) \mathbf{L}_{\text{marginal}}^\top$ is also
 601 symmetric and positive definite.
 602

603 *Proof.* Let $\mathbf{L}_{\text{marginal}} \in \mathbb{R}^{3N \times 3N}$ be the block-diagonal matrix defined as
 604

$$606 \mathbf{L}_{\text{marginal}} = \bigoplus_{i=1}^N \mathbf{L}_i,$$

607 where each $\mathbf{L}_i \in \mathbb{R}^{3 \times 3}$ is the Cholesky factor (or any valid matrix square root) of the positive definite
 608 matrix $\Sigma_{\text{marginal}}^{(i)}$. Since each $\Sigma_{\text{marginal}}^{(i)} \succ 0$, it follows that each \mathbf{L}_i is full rank, lower triangular, and
 609 has positive diagonal entries. Consequently, $\mathbf{L}_{\text{marginal}}$ is full rank and lower triangular with positive
 610 diagonal blocks.
 611

612 Now consider the matrix $\tilde{\mathbf{C}} \otimes \mathbf{I}_3 \in \mathbb{R}^{3N \times 3N}$. Since $\tilde{\mathbf{C}} \succ 0$ and $\mathbf{I}_3 \succ 0$, the Kronecker product
 613 $\tilde{\mathbf{C}} \otimes \mathbf{I}_3 \succ 0$ as well (Kronecker product of two SPD matrices is also SPD). Finally, the product
 614

$$615 \Sigma_{\text{joint}} = \mathbf{L}_{\text{marginal}} (\tilde{\mathbf{C}} \otimes \mathbf{I}_3) \mathbf{L}_{\text{marginal}}^\top$$

616 is a congruence transformation of the SPD matrix $\tilde{\mathbf{C}} \otimes \mathbf{I}_3$ by the full-rank matrix $\mathbf{L}_{\text{marginal}}$. Since
 617 congruence preserves positive definiteness, we conclude:
 618

$$619 \Sigma_{\text{joint}} \succ 0$$

620 Moreover, Σ_{joint} is symmetric because it is of the form \mathbf{ABA}^\top . □
 621

622 **Multivariate Gaussian Sampling.** Let $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ be a standard multivariate normal in \mathbb{R}^d ,
 623 and let $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ be a symmetric positive definite matrix. Suppose $\mathbf{L} \in \mathbb{R}^{d \times d}$ satisfies
 624 $\Sigma = \mathbf{L}\mathbf{L}^\top$ (e.g., via Cholesky decomposition or matrix square root). Then the transformation
 625 $\mathbf{x} = \mu + \mathbf{L}\epsilon$ yields a random variable $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$.
 626

627 *Proof.* Since Gaussian distributions are fully characterized by their first two cumulants (mean and
 628 covariance), it suffices to show that the transformed variable has the desired mean and covariance.
 629

630 Mean of \mathbf{x} :

$$631 \mathbb{E}[\mathbf{x}] = \mathbb{E}[\mu + \mathbf{L}\epsilon] = \mu + \mathbf{L} \cdot \mathbb{E}[\epsilon] = \mu$$

632 Covariance of \mathbf{x} :

$$633 \begin{aligned} \text{Cov}[\mathbf{x}] &= \mathbb{E}[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^\top] \\ 634 &= \mathbb{E}[(\mathbf{L}\epsilon)(\mathbf{L}\epsilon)^\top] \\ 635 &= \mathbb{E}[\mathbf{L}\epsilon\epsilon^\top\mathbf{L}^\top] \\ 636 &= \mathbf{L} \cdot \mathbb{E}[\epsilon\epsilon^\top] \cdot \mathbf{L}^\top \\ 637 &= \mathbf{L} \cdot \mathbf{I}_d \cdot \mathbf{L}^\top \\ 638 &= \mathbf{L}\mathbf{L}^\top = \Sigma \end{aligned}$$

639 □

648
649

A.2 EVALUATION METRICS

650
651
652
653

RMWD Variance Contribution. To evaluate the efficacy of the marginal Gaussian predictions, we adopt distributional similarity metrics used in Jing et al. (2024). The first of these is the *root mean 2-Wasserstein distance* (RMWD), specifically its variance contribution term. The 2-Wasserstein distance between two multivariate Gaussians has a closed-form expression as follows.

654
655

Let $\mathcal{N}_0 = \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ and $\mathcal{N}_1 = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ be two d -dimensional Gaussian distributions. The squared 2-Wasserstein distance between them is given by:

656
657
658

$$\mathcal{W}_2^2(\mathcal{N}_0, \mathcal{N}_1) = \|\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1\|_2^2 + \text{Tr} \left(\boldsymbol{\Sigma}_0 + \boldsymbol{\Sigma}_1 - 2 \left(\boldsymbol{\Sigma}_1^{1/2} \boldsymbol{\Sigma}_0 \boldsymbol{\Sigma}_1^{1/2} \right)^{1/2} \right) \quad (6)$$

659
660
661
662
663

This expression consists of two additive components: a mean contribution and a covariance (variance) contribution. This metric is also referred to as the Bures–Wasserstein distance (Bhatia et al., 2019). Since our method predicts only the covariances, we isolate and evaluate only the second term. We define the RMWD variance contribution across N residues as follows:

664
665
666
667

$$\text{RMWD}_{\text{var}}(\mathcal{N}_0, \mathcal{N}_1) = \sqrt{\frac{1}{N} \sum_{i=1}^N \text{Tr} \left(\boldsymbol{\Sigma}_{0,i} + \boldsymbol{\Sigma}_{1,i} - 2 \left(\boldsymbol{\Sigma}_{1,i}^{1/2} \boldsymbol{\Sigma}_{0,i} \boldsymbol{\Sigma}_{1,i}^{1/2} \right)^{1/2} \right)} \quad (7)$$

668
669
670
671

Symmetric KL Divergence Variance Contribution. Alongside the Wasserstein-based metric, we also evaluate the discrepancy between predicted and ground-truth marginal distributions using the *symmetric Kullback–Leibler (KL) divergence*, defined as the mean of the two directed KL divergences mentioned in (Kullback and Leibler, 1951; Jeffreys, 1998):

672
673
674

$$\text{KL}_{\text{sym}}(\mathcal{N}_0 \parallel \mathcal{N}_1) = \frac{1}{2} [\text{KL}(\mathcal{N}_0 \parallel \mathcal{N}_1) + \text{KL}(\mathcal{N}_1 \parallel \mathcal{N}_0)]$$

675
676

For two d -dimensional Gaussian distributions $\mathcal{N}_0 = \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ and $\mathcal{N}_1 = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$, the KL divergence from \mathcal{N}_0 to \mathcal{N}_1 is given by:

677
678
679

$$\text{KL}(\mathcal{N}_0 \parallel \mathcal{N}_1) = \frac{1}{2} \left[\text{Tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0) + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^\top \boldsymbol{\Sigma}_1^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) - d + \log \frac{\det \boldsymbol{\Sigma}_1}{\det \boldsymbol{\Sigma}_0} \right] \quad (8)$$

680
681
682
683
684

This expression consists of both a *mean contribution*—the Mahalanobis term—and a *variance contribution*, comprising the trace and log-determinant terms. Since our method predicts only covariances (and uses the input structure coordinates as means), we isolate the variance terms by omitting ($\mu_1 = \mu_0$) the mean term:

685
686
687

$$\text{KL}_{\text{var}}(\mathcal{N}_0 \parallel \mathcal{N}_1) = \frac{1}{2} \left(\text{Tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0) - d + \log \frac{\det \boldsymbol{\Sigma}_1}{\det \boldsymbol{\Sigma}_0} \right) \quad (9)$$

688
689
690
691
692
693
694
695
696
697
698
699
700
701

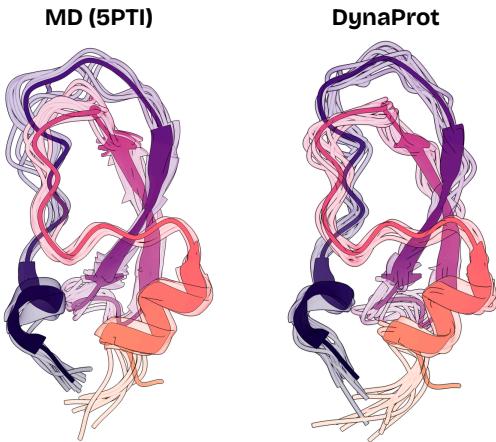
To symmetrize the variance contribution of the divergence, we define the symmetric variance KL as:

$$\text{KL}_{\text{symvar}}(\mathcal{N}_0, \mathcal{N}_1) = \frac{1}{2} (\text{KL}_{\text{var}}(\mathcal{N}_0 \parallel \mathcal{N}_1) + \text{KL}_{\text{var}}(\mathcal{N}_1 \parallel \mathcal{N}_0)) \quad (10)$$

$$= \frac{1}{4} (\text{Tr}(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0) + \text{Tr}(\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\Sigma}_1) - 2d) \quad (11)$$

702
703 A.3 ADDITIONAL EXPERIMENTS

704 A.3.1 DYNAPROT ZERO-SHOT ENSEMBLE GENERATION OF BPTI

705
706 We note that DYNAPROT was trained on the ATLAS MD dataset comprising 100 ns per replicate
707 trajectories. In contrast, D.E. Shaw Research performed simulations of BPTI (PDB: 5PTI) at
708 millisecond-scale revealing structurally distinct conformational states (Shaw et al., 2010). Thus, in an
709 effort to understand DYNAPROT’s ability to generalize to long-timescale dynamics, we applied it to
710 BPTI and compared to the DESRES trajectory.711 Listed in Table 7b, we compute the ensemble evaluation metrics from Jing et al. (2024) and observe
712 that DYNAPROT performs remarkably well: e.g., RMSF correlation of 0.88 (c.f. 86 on ATLAS),
713 local anisotropy with RMWD of 0.52 Å (c.f. 1.18 Å on ATLAS), and strong recovery of transient
714 contacts (Jaccard similarity 0.54, c.f. 0.29 on ATLAS). These metrics emphasize that DYNAPROT is
715 able to model larger conformational changes at high fidelity.718 (a) Visualization of DYNAPROT zero shot BPTI (PDB:
719 5PTI) ensemble generation.

Metric	DYNAPROT
Pairwise RMSD (=1.57)	1.36
RMSF (=0.84)	0.86
Per-target RMSF r (\uparrow)	0.88
RMWD Var Contrib (\downarrow)	0.52
MD PCA \mathcal{W}_2 (\downarrow)	0.49
Joint PCA \mathcal{W}_2 (\downarrow)	0.81
Weak contacts J (\uparrow)	0.54
Transient contacts J (\uparrow)	0.54
# Parameters (\downarrow)	2.86M
Ensemble sampling time (\downarrow)	\sim 0.05s

720 (b) DYNAPROT zero shot ensemble generation of
721 BPTI (PDB: 5PTI), compared to DESRES MD tra-
722 jectory (Shaw et al., 2010). Note that the global RMSF
723 Pearson correlation r is omitted as there is only one
724 protein so global = per-target.

734 A.3.2 DYNAPROT ABLATIONS

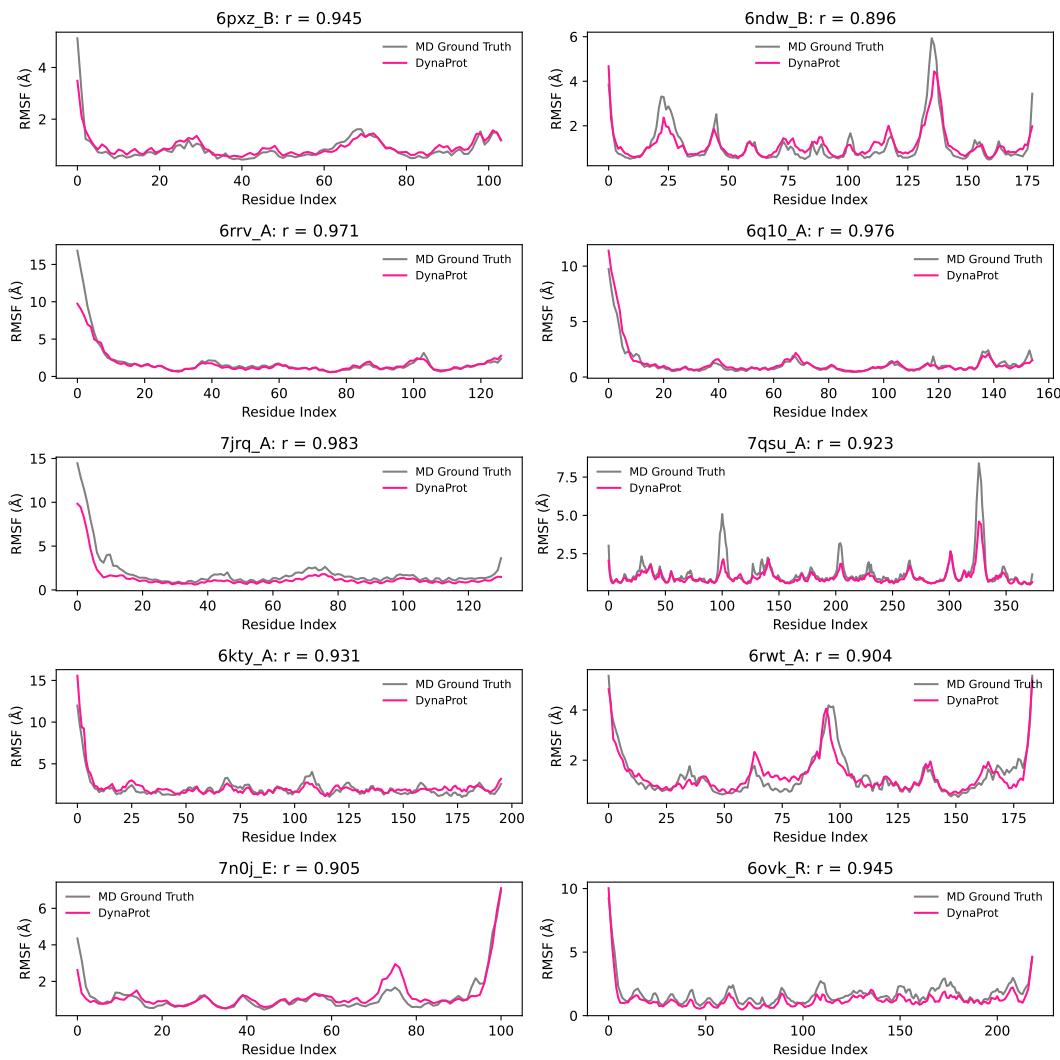
735
736 To test both the importance of DYN-
737 APROT’s Riemannian aware loss
738 (log Frobenius norm) and the SE(3)
739 invariance from the IPA layers, we
740 have performed the following ab-
741 lations listed in Table 5. Unsur-
742 prisingly, replacing the log Frobe-
743 nius norm objective with standard
744 Mean Squared Error loss signif-
745 icantly degrades performance as the
746 optimization is over the space of positive definite covariance matrices, which lies on a well-studied
747 Riemannian manifold. Replacing the IPA blocks with standard MLPs also degrades performance,
748 suggesting that SE(3) invariance is crucial in this low-data, low-parameter regime.749 Table 5: DYNAPROT-M ablations of the log Frobenius loss loss
750 and SE(3) invariance.

Metric	DynaProt	No LogFrob Loss	No SE(3) Invariance
RMWD Var (\downarrow)	1.18	2.70	1.92
Sym KL Var (\downarrow)	0.91	9.26	4.46
RMSF r (\uparrow)	0.87	0.38	0.48

756 A.3.3 SEQUENCE INPUT BASELINES
757758 There are many methods worth noting that aim to predict ensembles or dynamics descriptors from
759 sequence itself: standard ALPHAFLOW (AFMD), MSA-SUBSAMPLING, FLEXPERT-SEQ, ESMDIFF
760 (Lu et al., 2024), CONFIDIFF (Wang et al., 2024), SEQDANCE (Hou and Shen, 2024), and SEAMOON
761 (Lombard et al., 2024).762 Though DYNAPROT’s true comparison is NMA as it is a data driven and learnable alternative, we still
763 is we compare against some of these sequence based methods in ensemble generation. DYNAPROT
764 outperforms these methods on local RMSF correlation and marginal anisotropy prediction and is
765 comparable with other distributional metrics. Moreover, the efficiency advantage is clear with
766 DYNAPROT’s sub-second sample time.767 Table 6: Comparison of DYNAPROT generated with ensemble generation methods that take in
768 sequence as input. ESMDiff, ESM3 entries reported from Lu et al. (2024).
769

Metric	DynaProt	ConfDiff OF-r3-MD	AlphaFlow -MD	BioEmu	ESM3 (ID)	ESMDiff (ID)
Pairwise RMSD (=2.89)	2.17	3.43	2.89	3.57	-	-
RMSF (=1.48)	1.10	2.21	1.68	2.47	-	-
Global RMSF r (\uparrow)	0.71	0.67	0.60	0.63	0.19	0.49
Per-target RMSF r (\uparrow)	0.86	0.85	0.85	0.77	0.67	0.68
RMWD Var Contrib (\downarrow)	1.18	1.40	1.30	2.04	4.35	3.37
MD PCA \mathcal{W}_2 (\downarrow)	1.74	1.44	1.52	2.05	2.06	2.29
Joint PCA \mathcal{W}_2 (\downarrow)	2.39	2.25	2.25	4.22	5.97	6.32
Weak contacts J (\uparrow)	0.51	0.59	0.62	0.33	0.45	0.52
Transient contacts J (\uparrow)	0.29	0.36	0.41	0.19	0.26	0.26
# Parameters (\downarrow)	2.86M	12.64M	95M	31M	1.4B	1.4B
Sampling time (\downarrow)	~0.14s	$\sim 570s$	$\sim 10,000s$	$\sim 240s$	$\sim 70s$	$\sim 70s$

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A.4 SUPPLEMENTARY FIGURES
811

847 **Figure 8: DYNAPROT-M predicted RMSF correlations.** Visualized test set examples of predicted
848 RMSF per residue (derived from the predicted marginal Gaussians) compared to ground truth RMSF
849 derived from MD trajectories. Pearson correlation coefficient (r) between predicted and ground truth
850 RMSF is reported.

851
852
853
854
855
856
857
858
859
860
861
862
863

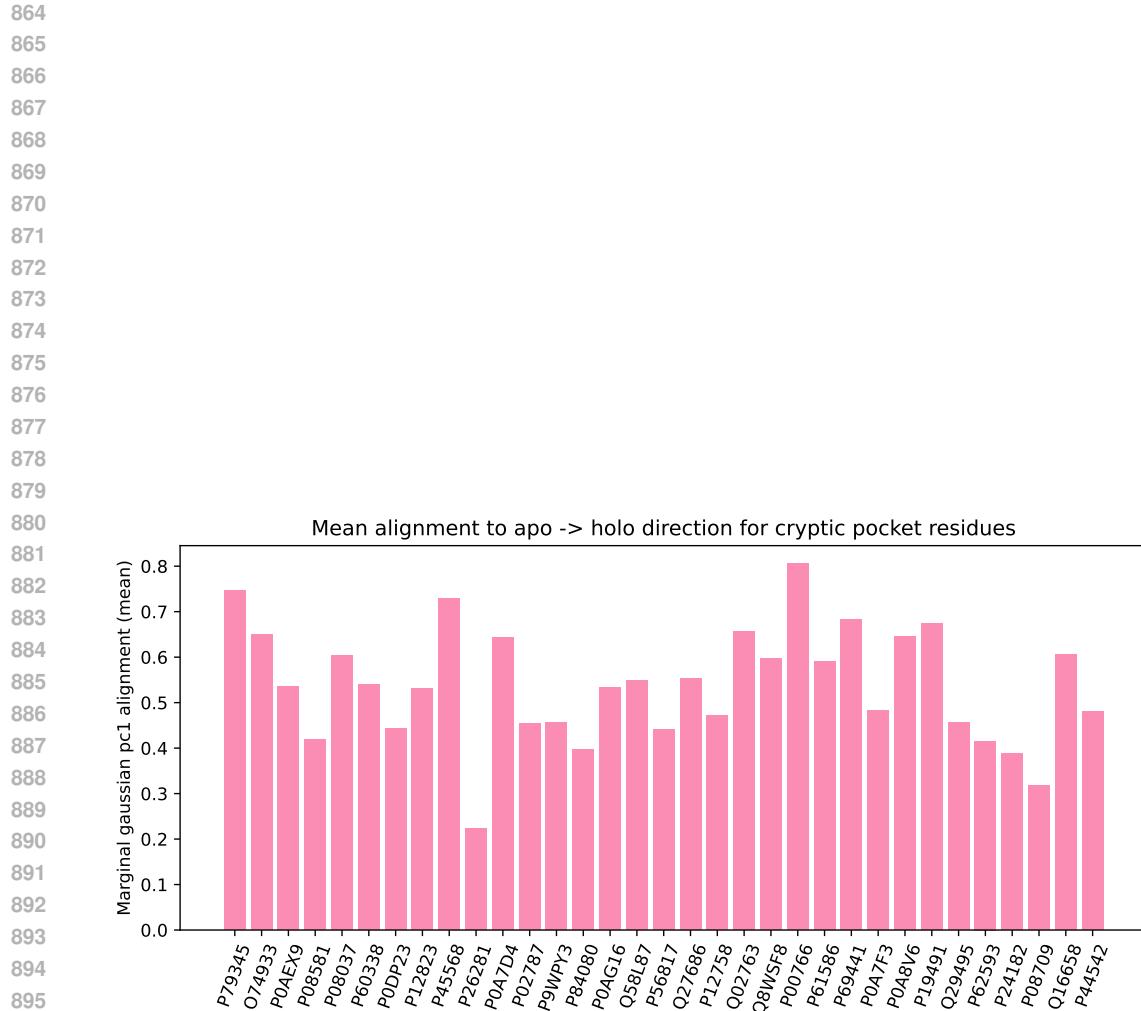


Figure 9: **Evaluation of DynaProt-M zero shot prediction for BioEmu cryptic pocket proteins.** For each reference cryptic pocket protein from Lewis et al. (2024), the apo structure was provided to DynaProt-M, predicting marginal Gaussians for every residue. For each annotated cryptic-pocket residue, a displacement vector from the apo to the holo structure was computed and compared to the principal eigenvector of the respective predicted Gaussian. Cosine similarity between the two vectors quantifies how well DynaProt anticipates the direction of motion associated with pocket formation.

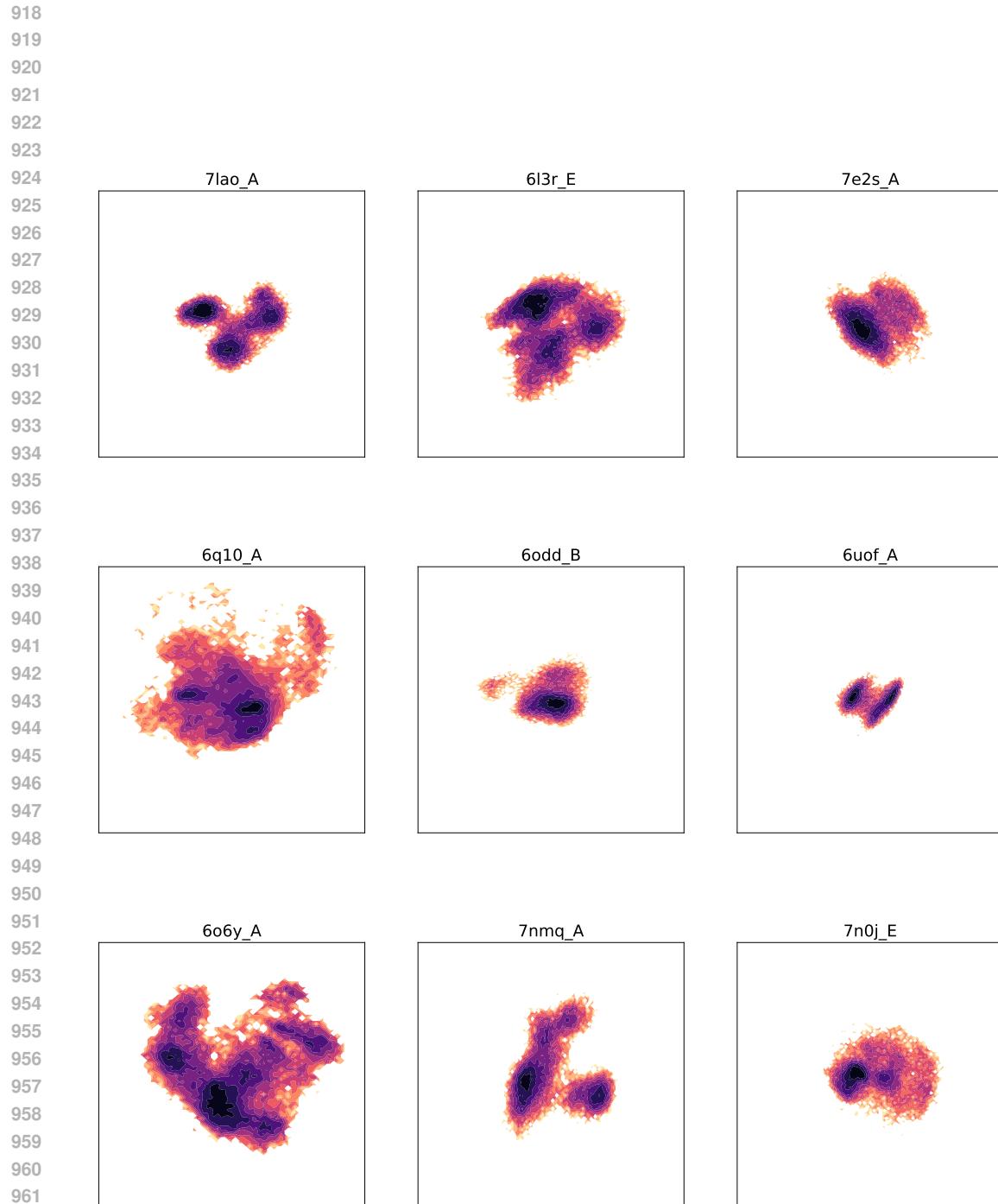
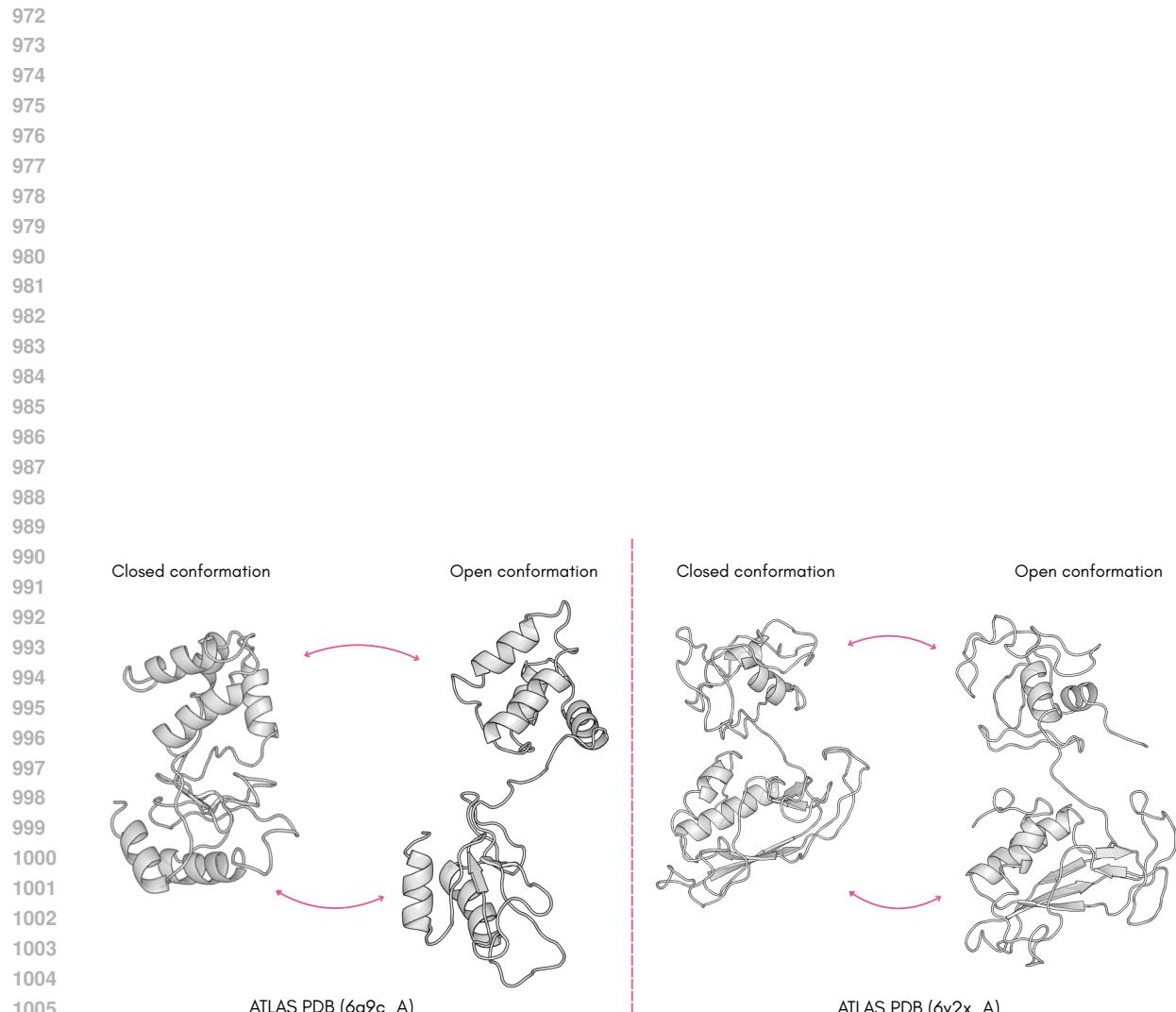


Figure 10: **Sample ATLAS free energy landscapes.** Free energy landscapes obtained by projecting ATLAS MD trajectories onto their top two principal components computed per protein. 2D density estimates transformed into free energy reveal dominant conformational basins explored during simulations.



1007 **Figure 11: Sample ATLAS proteins with opening motions.** Visualized are two ATLAS proteins
1008 (6q9c_A and 6y2x_A) that display significant opening motions over the course of their trajectories.

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025