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ABSTRACT

Many methods have been developed to predict static protein structures, but under-
standing structure dynamics is what is essential for elucidating biological function.
While molecular dynamics (MD) simulations remain the in silico gold standard, its
high computational cost limits scalability. We present DYNAPROT, a lightweight,
SE(3)-invariant framework that predicts rich descriptors of protein dynamics di-
rectly from static structures. By casting the problem through the lens of multi-
variate Gaussians, DYNAPROT estimates dynamics at two complementary scales:
(1) per-residue marginal anisotropy as 3 X 3 covariance matrices capturing local
flexibility, and (2) joint scalar covariances encoding pairwise dynamic coupling
across residues. From these dynamics outputs, DYNAPROT achieves high accuracy
in predicting residue-level flexibility (RMSF) and, remarkably, enables reasonable
reconstruction of the full covariance matrix for fast ensemble generation. Notably,
it does so using orders of magnitude fewer parameters than prior methods. Our
results highlight the potential of direct protein dynamics prediction as a scalable
alternative to existing methods.

1 INTRODUCTION

Proteins rarely exist in static conformations. Due to interactions with ligands, other biomolecules,
and external factors such as temperature and pH, protein structures continuously fluctuate. Many
enzymes rely on loop motions or domain rearrangements to form catalytically active sites (

, ), allostery often involves shifting backbone or side chain conformations propagating
signals over long distances ( , ), and even membrane proteins such as GPCRs
switch between inactive and active conformational states essential for signal transduction (

, ). Clearly, protein structures are dynamic. Understanding these dynamlcs is central for
mechanistic insight and, potentially, the design of functions ( s ; s ).

Capturing this ensemble-level behavior computationally has long been the domain of molecular
dynamics (MD). MD simulates the time evolution of atoms under a force field, generating high-
resolution conformational trajectories from which fluctuations, covariances, and time-dependent
observables can be derived. MD remains the in silico gold standard for protein dynamlcs offering
fine-grained, physically grounded insights ( , ;

, ). However, it comes with an enormous computational cost: smlulatmg 100 ns
of dynamics for a single protein can take days or weeks on specialized hardware. This limits its
scalability, especially for proteome-wide applications or tasks requiring real-time dynamics estimates.

Recent work has explored the use of deep learning to approximate and accelerate this process.

Generative modeling-based methods like ALPHAFLOW ( , ) repurpose AlphaFold2
( , ) under a flow matching paradigm to sample protein conformations. Along this
vein, ( ) recently introduced BIOEMU as a large-scale diffusion model pretrained
on PDB ( , ) and AFDB structures, and fine-tuned on 200 ms of MD data, to

efficiently generate protein conformations. Other methods, like MSA subsampling, make inference-
time adjustments to the MSA input of AlphaFole yielding the structural ensembles (

; R ). Still, all of these approaches
necessuate large scale PDB pretralmng and suffer from inference-time computational overhead,
requiring multiple stochastic forward passes to generate meaningful structural diversity. Moreover,
while these ensembles can be used to approximate protein dynamics, generating them remains time
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intensive, and the full ensemble of diverse conformations may not always be necessary. In many
practical settings, compact and interpretable representations of dynamics often suffice. This motivates
the need for models that can explicitly predict such dynamics descriptors without relying on implicit
dynamics learners like expensive ensemble generation methods.

Current explicit dynamics predictors, like FLEXPERT3D ( , ), resort to predicting
simple collective variables like per-residue RMSF, a scalar quantifying each residue’s positional
fluctuation. RMSF is widely used due to its simplicity and interpretability, but it is fundamentally
limited: it captures only the magnitude of local motion and discards directionality and residue-residue
coupling. Similarly, ( ) trained DYNA-1 to predict labels of p1s—ms motion
by cleverly exploiting missing chemical shift assignments as hidden observables in NMR ensembles,
but these predictions also remain scalar and lack directionality. A different example of an explicit
dynamics predictor is Normal Mode Analysis (NMA), a classic technique that approximates dynam1cs
by identifying low frequency eigenmodes to describe the largest movements ( ,

, ). NMA does not learn from data however, and instead operates solely on the
input PDB structure. It can estimate the principal global directions of motion and offers insights into
collective flexibility, but is sensitive to input structure quality and fails to adequately capture local
anisotropy or conformational heterogeneity (Ma, ). This raises a natural question:

Can we design models that lie on the Pareto frontier of expressiveness and effi-
ciency—capturing rich dynamic behavior without incurring the cost of sampling or simulation?

We introduce DYNAPROT, a lightweight, inter-

pretable, and expressive framework for predicting Dynamics Pareto Frontier

protein dynamics through the lens of Gaussian dis-

tributions over structure (Section 2). Specifically,

DYNAPROT predicts: (1) per-residue marginal

anisotropy as 3 x 3 covariance matrices captur- 2"

ing local dynamics while encompassing RMSF, Content

and (2) joint scalar NV x NN covariances encoding

pairwise dynamic coupling across residues. Re-

markably, while DYNAPROT was not explicitly

trained to directly model the full 3N x 3N joint Efficiency

distribution, we find that its marginal and pairwise

outputs can be composed into a reasonable ap- Figure 1: Dynamics methods information con-
proximation (Section 3.4), enabling extremely fast tent vs. efficiency.

ensemble generation in R*Y. DYNAPROT is trained on only ~1,000 MD-derived proteins, without
large-scale pretraining on PDB structures, and improves upon Normal Mode Analysis (NMA) in
both predictive accuracy and efficiency, while remaining dramatically smaller and faster than existing
ensemble generation approaches.

To our knowledge, DYNAPROT is the first model to explicitly learn both marginal and pairwise
Gaussian representations of protein dynamics, and the first to predict the full 3N x 3N covariance
structure—akin to NMA—in a data-driven, learnable fashion, rather than relying solely on analytical
approximations or less informative per-residue fluctuations.

2  GAUSSIAN REPRESENTATION OF DYNAMICS

We propose a perspective for modeling protein dynamics through distributions over atomic coor-
dinates, relying on tractable approximations such as Gaussians. Formally, we model a protein
structure with N residues as a random variable X € R3Y, where each residue contributes the
three-dimensional Cartesian coordinates of its C,, atom. While this coarse-grained representation
omits side-chain flexibility, it enables scalable modeling of backbone dynamics, which is the scope
of our work. We consider an ensemble to be T' independent samples after RMSD alignment. The
distribution over conformational states is then represented as a multivariate normal distribution:

X ~ N(u’v 2:joint), JTRS RSN’ Ejoint c R3NV*3N 0
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Ensemble/Trajectory 4. Joint full covariance

Here, p corresponds to the average

(or equilibrium) structure—typically the K 2 \ -
minimum energy conformation—and 3\ "
Yjoine captures the full covariance across gj \) B
all C,, positions, encoding both local YR o |
fluctuations and long-range correlated <«

motions. This joint covariance matrix
theoretically encodes all second-order
information about the protein’s dynam- \Q

ics: from it, one can derive a wide @ )

range of collective variables including J >

principal components (PCs) of motion, J

residue-residue distance variances, and

global ﬂex1b111ty metrics. The Gaussian 1. Per-residue scalar 2. Per-residue full covariance 3. Joint scalar covariance

formulation provides a principled way

to decompose protein dynamics across Figure 2: Overview of protein dynamics (Gaussian view).
different levels of granularity (Figure

and Table 1), depending on the modeling objective. We highlight some of these below.

At the local level, the marginal distribution (Figure 2.2) for a single residue ¢ is obtained by integrating
out all other residue coordinates: p(x;) = [ p(z1,...,®,) dr_;, where dz—; := [1;4; dz;. This
results in a 3D Gaussian distribution over the C,, coordinates of residue ¢:

marginal marginal

| c R3 X3 (2)
where Eszrgmal is the 3 x 3 diagonal block of Xjy;n.. These marginals can be interpreted as Gaussian
blobs encoding anisotropic local fluctuations—i.e., spatial variance of where each residue may reside.

Notably, this formulation allows for simple derivation of scalar flexibility metrics such as the root-

mean-square fluctuation (RMSF) as RMSF; = Tr(El(jergmal). RMSF (Figure 2.1) represents a
simple notion of dynamics: a single scalar per residue quantifying positional fluctuation. However, it

discards directional and covariance structure captured by the full marginal.

To capture dynamics beyond residue-local fluctuations, we also consider a covariance matrix C' €
RN*N of scalar pairwise coupling (Figure 2.3). Each entry C;; summarizes the dynamical coupling
between residues ¢ and j, typically computed as a scalar projection of the corresponding 3 x 3
block in the full joint covariance: Xijoin[3¢ : 37 + 3,35 : 35 + 3]. We choose MeanPooling as the
scalar projection to compute each C';;. This compact representation enables efficient modeling of
residue-residue coupling.

Table 1: Taxonomy of protein dynamics representations under a Gaussian view.

Level  Description Notation Space Captures
1 Per-residue scalar (i.e. RMSF) ’I‘r(Er(nZ?_"inal) RN Magnitude of fluctuation per residue
2 Per-residue full (Gaussian blob) b} éli)rwinal RN *3x3 Anisotropic local covariance per residue
3 Joint scalar (pairwise coupling) Cij ROES Scalar covariance across all residues

4 Joint full covariance Sjoint R3NVX3N Full spatial covariance across all residues

DYNAPROT focuses on levels 2 and 3 of this hierarchy—explicitly predicting both 3 x 3 marginal
Gaussians per-residue and a N x N matrix of residue-residue couplings. As noted before, from the
3 X 3 marginals, we can easily derive RMSF (level 1). Interestingly, utilizing both the marginals and
the pairwise coupling, we can retrieve a reasonable approximation of the full joint 3N x 3N (level 4;
Section 3.4). This design strikes a balance between local interpretability and global coordination,
while avoiding the intractibility of directly learning the full joint covariance.
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Figure 3: DYNAPROT architecture.
3 METHOD

3.1 DYNAPROT OVERVIEW

DyNAPROT (Figure 3) consists of two models, each taking as input a protein structure but designed to
explicitly capture different granularities of protein dynamics: (i) marginal Gaussian blobs per residue
(Section 3.2), and (ii) pairwise covariance across residues (Section 3.3). DYNAPROT is given the
input structure as a set of local C,, residue frames. The frames are denoted {7} }2 ;, where each
frame T; € SE(3) is parameterized by a rotation matrix R; € SO(3) and a translation vector ¢; € R3.
Simply put, T; = (R;, t;) captures the local orientation and position of residue i. Additionally, an
initial embedding layer is included to encode the amino acid sequence s € RV*P,

Both models share a common architectural backbone composed of eight Invariant Point Attention
(IPA) blocks from the structure module of AlphaFold2 ( , ). These blocks are
designed to encode geometric relationships between residues while maintaining invariance to SE(3)
transformations (global transformations do not affect the learned residue-level representations). The
IPA backbone processes the set of residue frames and the sequence representation, outputting a
learned representation for each residue h € RV *?_ No pair representation is given as input to the
model. The two models differ only in their readout layers, which we define in the proceeding sections.

3.2 LEARNING MARGINAL GAUSSIANS

After the input sequence representations and residue frames are processed through the IPA backbone,
a simple MLP readout is used for marginal prediction. Given the hidden representation h; for each

residue, the marginal readout outputs Er(rfzrginal € R3*3, modeling the local position (xyz) covariance
of residue <. These outputs are trained to match empirical marginal distributions derived from the MD

data. Note that the mean of each Gaussian is not learned. Instead, we take the input structure’s C,,
coordinate ¢; € R? as the fixed mean p; of the distribution: p; := t;, X; ~ N (u;, » ). This

marginal
assumption is motivated by the fact that the input structure usually corresponds to the experimentally
determined (or AlphaFold-predicted) minimum energy conformation, and thus serves as a natural
estimator of the ensemble mean. Consequently, the marginal prediction task reduces to learning the
)

covariance matrices alone
marginal .

Marginal dynamics module. Recall that covariance matrices are required to be symmetric and
positive definite (SPD). Predicting all 9 elements of a 3 x 3 matrix would be overparameterized and
does not guarantee SPD structure. Naively, one might consider symmetrizing an arbitrary matrix
after predicting the 6 independent elements, but this only guarantees symmetry. Instead, we leverage
the fact that any SPD matrix can be uniquely defined by its Cholesky factorization. Thus, we enforce
SPD constraints directly by parameterizing the covariance via its Cholesky factor. Specifically, the
model predicts the entries {a; }%_; of a lower triangular matrix L; € R3*3, enforces positivity along

the diagonal with the Softplus activation function ( s ), and recovers the covariance:
) softplus(a; ) 0 0
Efﬁrgma] = LZ-LZ»T7 where L; = as softplus(as) 0 3)
a4 as softplus(ag)

This factorization ensures that the predicted covariance matrix is SPD by construction. Since SPD
matrices lie on a Riemannian manifold with non-Euclidean geometry, using loss functions that respect
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this structure is critical for meaningful comparison. Standard Euclidean distances (e.g., MSE or
Frobenius norm) ignore the curvature of this space and can lead to unstable or distorted gradients
(see ablations in Appendix ) We instead employ the log-Euclidean (or log-Frobenius) distance
( s s ) that reflects the intrinsic geometry of the SPD
manifold. The Bures—Wasserstein ( s ) distance can also be used, but we find the
log-Frobenius distance to be more stable.

Liogriod = ||108(Sprea) — 10g(ine)[[7,  where log(2) = Qlog(A)Q" O]
As Riemannian manifolds are “locally Euclidean”, this loss applies the matrix logarithm mapping the
SPD matrix to its tangent space where a Euclidean metric (canonical Frobenius norm) can be utilized.

3.3 LEARNING PAIRWISE DYNAMICS

Using the output representations h from the IPA backbone, the pairwise dynamics module produces
a scalar-valued NV x N covariance matrix C, where each entry C;; captures the dynamical coupling
between residue pairs. These scalar couplings are derived from the full joint covariance matrix via
averaging per block and trained to reproduce MD-derived pairwise fluctuations.

Pairwise Dynamics Module. To predict the global pairwise covariance structure, we first construct
pairwise features for all residue pairs. For each pair (4, j), we concatenate their residue-level embed-

dings [h; || h;] € R?? and project them into a lower-dimensional space: f = Wprojlhi || hj] € RY .

We pass these features through a stack of AlphaFold-style pairwise attention blocks based on the
Evoformer architecture ( , ), which include triangle updates and residue-wise
message passing. These operations are designed to model transitive and higher-order geometric
dependencies across residue pairs, and have been shown to be highly effective in structure-aware

tasks: fi" = Pa1rw1seAttent10nBlock( f (0)) € R?. The output f2™ serves as a “learned basis™
over the space of residue-residue covariance structure. These basis features are then mapped to scalars
through an MLP head, yielding a covariance for each pair of residues: z;; = MLP(f{{"), z;; €
R, for¢ > j. Following the same procedure as Section 3.2, we enforce SPD constraints on this
covariance matrix by populating the lower-triangle entries of L € RY*Y with the values of z;; and
applying the Softplus activation when 7 = j. Finally, the pairwise covariance matrix is reconstructed
via Cholesky composition C = LL” and again equation 4 is used for optimization.

3.4 LEARNING THE FULL JOINT FOR ENSEMBLE SAMPLING

Joint reconstruction heuristic. Given a predicted scalar coupling matrix C € RV*" and a set of

R3*3} || we propose a heuristic to reconstruct an
c R3NX3N

per-residue marginal covariances { mmgmal €

approximate full joint covariance matrix X;oin

Each marginal covariance »

mal’glna
Efnzrgmal L;L], where L; € R3*3. We then define a block-diagonal matrix Ligina € R3V >3V

as Liarginal = @i:1 L;. By construction, Lmainal is lower triangular with positive diagonal entries,
since each L, satisfies these properties.

| is SPD by construction, and thus admits a Cholesky factorization

Drawing from the univariate identity Cov (¢, j) = Corr(3, j) - 0;0;, we define the multivariate cross-

covariance block between residues ¢ and j as EJ(;}]“) = LiC,-jL;-r. Here, the Cholesky factor L;

serves as a matrix square root of the covariance U analogous to standard deviation in the

margmal 4

univariate case. And, C is a correlation matrix found by standardizing C. Using the Kronecker
product, we can denote this heuristic cleanly as follows,

z)joint = Lmargmal (C & 13) Lmargmal (5)

Proposition 3.1 (SPD Closure). Given marginal covariances {Emwgml € R¥>3}MN | and

correlation matrix C € RN*N 10 be symmetrtc and positive definite, then the reconstructed
Jjoint covariance Xjoin; = meg,,wl(C ® 13) marginal is also symmetric and positive definite.
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We refer the reader to Appendix for the proof. This approximation combines local anisotropic
uncertainty with global correlation structure. While not exact, we find it reconstructs the joint
covariance to a reasonable degree and serves as a useful tool for downstream ensemble generation.

Ensemble sampling. Given the reconstructed joint covariance Xjin and our assumption that the
mean p corresponds to the coordinates of the input structure (e.g., the PDB), we have now retrieved
our Gaussian distribution over conformations AV (¢, ioin). To sample from this distribution, we apply
a multivariate generalization of the reparameterization trick used in univariate Gaussian sampling.

Property 3.1 (Multivariate Gaussian Sampling). Given N'(u, ), where ¥ € R4*? is SPD
and ¥ = LL" is its Cholesky decomposition. Then,

x=p+Le, e~N(0,1;)) = z~NpX)

Note that this sampling relies directly on the Cholesky factor (similar to a matrix square root),
mirroring the scalar case (Appendix ). Utilizing DYNAPROT predictions and this heuristic,
ensemble sampling becomes extremely fast with minimal computational overhead.

4 EXPERIMENTS

Preprocessing. We construct ground-truth dynamics labels from the ATLAS molecular dynamics
dataset, which comprises 1,390 proteins selected based on structural diversity using the ECOD
domain classification ( , ). Following ALPHAFLOW (

for preprocessing consistency, we concatenate each of the three replicate simulations of 100 ns per
protein and extract the C,, coordinates. From each ensemble, we compute the empirical full joint
covariance matrix over time and extract the relevant dynamics labels (3 x 3 marginals per residue
and N x N residue coupling) as described in Section 2. We evaluate under two train/val/test split
regimes. The primary matches ALPHAFLOW’s (1265/39/82), while comparisons to FLEXPERT3D
use DYNAPROT trained on their topology-based split (1112/139/139). For naming, we refer to
DYNAPROT-M for the model trained for marginals, DYNAPROT-J for the coupling predictions, and
DYNAPROT for both.

Baselines. For a faithful comparison, we mainly choose baseline methods that take a protein structure
as input and predict dynamics descriptors either implicitly (AFMD+TEMPLATES) or explicitly
(FLEXPERT3D, NMA). For NMA, we utilize the ProDy package ( , ), specifically
the Anisotropic Network Model instantiation. For a broader set of baselines, we also compare against
some sequence based methods in Appendix

4.1 PREDICTING RESIDUE FLEXIBILITY

Since DYNARRQT-M is trained to predigt marginal Gau.ss.ia}ns Table 2: RMSF Pearson correla-
per remdu.e, it inherently captures residue-level flexibility, (o, (r) against ATLAS MD-derived
as RMSF is deﬁned as the square root of the trace of each R\SF (FlexPert test split). Median
marginal covariance (see Section 2). To evaluate DYNAPROT-
M'’s ability to recover this, we compare against what is, to our
knowledge, the only method that explicitly predicts residue
flexibility: FLEXPERT-3D. For fair comparison, we train and
evaluate DYNAPROT-M under the same ATLAS train/val/test ~ DYNAPROT-M  0.865/0.930 955K
split defined in (2024). Despite solving the ~ FLEXPERT-3D 083070899 1.2B
more challenging task of predicting marginal anisotropy rather Loty e _
than scalar fluctuations alone, DYNAPROT-M achieves a sub-

stantially higher Pearson correlation with MD-derived RMSF (median » = 0.865, 75th percentile
r = 0.930) than FLEXPERT-3D (Table 2), while using three orders of magnitude fewer parameters
(955K vs. 1.2B) and without NMA as input. This allows DYNAPROT-M to generalize better while
being more parameter efficient. See Appendix for DYNAPROT-M additional RMSF plots.

and 75th percentile reported.

Method RMSEF r (1) # Params
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Figure 4: DYNAPROT marginal Gaussian and residue coupling analysis. A. Renderings of
predicted marginal Gaussians compared to ATLAS MD constructed Gaussians (mean symmetric KL
divergence and RMWD are reported). B. Joint distribution (within 75th percentile) of DYNAPROT
performance vs. (AFMD+T, NMA). C. Band-wise Pearson correlation between predicted and
ground-truth residue-residue coupling matrices as a function of sequence distance.

4.2 PREDICTING RESIDUE FULL ANISOTROPY

To assess the faithfulness of DYNAPROT-M’s predicted marginals, we compare against both physics-
based and learned ensemble methods. In practice, only NMA (ANM) is a feasible baseline, as
ALPHAFLOW is prohibitively slow: A single 271-length protein (71ao_A) requires ~7000 s, com-
pared to ~0.02 s for DYNAPROT-M (Table 3). Note that DYNAPROT-M predicts this directly, but for
ALPHAFLOW, we first sample 250 structures per protein and then calculate the empirical covariance
to define the marginal Gaussians. With NM A, we retrieve the full joint via the normal modes and
extract the marginal block diagonals.

To quantify the accuracy, we compute the variance contribution of the symmetric KL divergence (see
Appendix ) and the root mean 2-Wasserstein distance (RMWD) as described in ( ),
compared to the ground truth marginal Gaussians computed from the ATLAS test set (AFMD split).

Despite being orders of magnitude faster  aple 3: Comparison of methods on anisotropic blob pre-
and smaller (955k vs. 95M parame- jction (ATLAS test split). Runtime for a length 271 pro-

ters), DYNAPROT-M achieves compet- (ein (7140 _a). 25th %ile / Median reported (/. is better).
itive accuracy. DYNAPROT-M attains a

median RMWD of 1.18 and symmet-

. . Method RMWD Var Sym. KL Var # Params Time
ric KL divergence of 0.91, both sub- y
stantially better than NMA (1.45 and  DYNaPROT-M 084/ 118 053/ 091 EIC ke
4.56, respectively), and comparable to AFMD+T 0.87/ 1.10 0.37/ 0.60 95M ~7000's
NMA (ANM) 1.14/ 1.45 3.03/ 4.56 = ~537s

AFMD+TEMPLATES’s 1.10 and 0.60.
Moreover, rather than relying solely on
summary statistics, we also visualize the distributions (75th percentile) of RMWD and mean symmet-
ric KL variance contributions across test set proteins (Figure 4B). These plots compare DYNAPROT-M
to both AFMD+T and NMA on a per-protein basis. Points below the diagonal (highlighted in pink)
indicate that DYNAPROT-M outperformed the method in question on that particular protein. From
this, we see that DYNAPROT-M achieves comparable performance to AFMD+T. Notably, within the
75th percentile it often outperforms AFMD+T (examples visualized in Figure 4A,B) on RMWD
variance contribution. Moreover, DYNAPROT-M significantly outperforms NMA across both RMWD
and symmetric KL. This further corroborates DYNAPROT-M’s ability to capture local anisotropic
structure well despite being much smaller and faster than other methods.

4.2.1 ZERO-SHOT CRYPTIC POCKET DISCOVERY OF ADENYLOSUCCINATE SYNTHETASE

Beyond accuracy, DYNAPROT-M’s marginals can also provide functional insight. Many pro-
teins are considered to be undruggable as their apo form may not display a clear binding pocket.
However, the druggable pocket may only become apparent after the drug is bound (holo form)-
a so called “cryptic pocket.” Identification of cryptic pockets is therefore an important task in
drug discovery ( s ; s ; s ).
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. . Apo (IADE Holo (i1CIB
As a case study, we sought to investigate ROSHARE) olo (1cB)

DYNAPROT’s ability in cryptic pocket iden-
tification for the enzyme adenylosuccinate
synthetase, as it is known to exhibit a cryp-
tic pocket ( ) and both the apo
and holo forms are available in the PDB
(1ADE / 1CIB).

We applied DYNAPROT-M to zero shot pre-
dict the marginal Gaussians on the apo
form. When we look at the predictions,
we notice two features (Figure 5). First,

the residues with the largest variance are Figure 5: DYNAPROT-M predicted residue Gaussians
exactly those that encompass the binding (ellipsoids) overlaid the apo form.
pocket. Second, more than just the magni-

tude of the Gaussians, the directionality is consistent with a potential pocket opening motion (when
compared with the holo form 1CIB). These early results suggest the potential of DYNAPROT’s utility
in cryptic pocket discovery, but a systematic exploration is left for future work.

4.3 PREDICTING SCALAR COUPLING

To evaluate DYNAPROT-J in modeling residue-residue couplings, we compare its predicted N x N
scalar covariance matrices against those derived from NMA, a classical method for capturing global
structural dynamics. While DYNAPROT-J directly predicts these scalar coupling matrices, we
construct comparable matrices for NMA by computing full 3N x 3N anisotropic network models
(using ProDy) from each test protein, and then projecting them into N x N scalar covariances as
described in Section 2. We obtain per-residue correlation matrices by normalizing the entries to be
unit diagonal and constrained to the range [—1, 1].

We observe that in the ground truth N x N correlations, magnitude of entries diminish rapidly with
distance from main diagonal, indicating weak long-range coupling. This is indicated by the dotted
gray line in Figure 4C, which shows the mean absolute value of the entries from the principal diagonal
up to the kth diagonal band. To focus on meaningful and prominent interactions, we define a diagonal
band of width k = 50 residues (i — j| < 50), which captures local and medium-range interactions.
This essentially measures residue-residue coupling as a function of sequence distance (how distal
are ¢ and j along the backbone). We compute the Pearson correlation between predicted and ground-
truth residue—residue correlation matrices for the entries along each diagonal band k, by iteratively
extracting the upper-triangular entries satisfying |¢ — j| < k for k = 1 to 50. This is repeated for each
of the 82 test set proteins and the median Pearson correlation is reported (each point in Figure 4C).
This band-wise analysis enables us to compare the accuracy of coupling signals at increasing residue
distances, and we find that DYNAPROT-J (peak correlation of » = 0.71) strongly outperforms NMA
(peak correlation of = 0.59) particularly at short to mid-range coupling distances, where the
coupling is the strongest.

4.4 ENSEMBLE GENERATION

As described in Section 3.4, given the output 3 X 3 marginal covariances and N x N residue
coupling from DYNAPROT-M and DYNAPROT-J respectively, we reconstruct a full joint covariance
using the heuristic defined in Eq. 5. This direct access to the joint distribution enables extremely
fast sampling of diverse structures. For evaluation, we sample 250 structures with DYNAPROT,
AFMD+TEMPLATES, and NMA to form ensembles for each of the 82 test set proteins in the
AFMD split. Following ( ), we assess these ensembles in their flexibility accuracy,
distributional similarity, and the ability to reproduce complex observables. For flexibility accuracy,
we measure the pairwise RMSD to ground truth MD and RMSF correlation at the global and per-
target level. For distributional coverage, we measure the 2-Wasserstein distance after projecting the
ensembles onto the first two principle components derived from the MD trajectory (MD PCA W) or
the combined (MD+sampled) trajectory (Joint PCA Ws). Table 4 summarizes the ensemble evaluation
results across AFMD+TEMPLATES, DYNAPROT, and NMA. DYNAPROT achieves performance
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Figure 6: Comparison of DYNAPROT generated ensemble vs. AFMD+T to ATLAS MD simulation
(PDB 7gsu_2) overlaid on reference. RMSF Pearson correlation 7 and sample time reported.

comparable to AFMD+TEMPLATES on key flexibility metrics such as pairwise RMSD and per-target
RMSF correlation, while lagging slightly behind on distributional similarity and observable recovery.

Some examples of where DYNAPROT out- ) ) )
performs AFMD+TEMPLATES on ensem- Lable 4: Comparison of C,, ensemble evaluation metrics

ble flexibility correlation are visualized in o0 ATLAS MD Dataset between AFMD+Templates,
Figure 6 and Appendix . For the vi- DYNAPROT, and NMA. Underlined is second best.

suals, all atom reconstruction is enabled Metric AFMD+T  DyNAPROT NMA
by PULCHRA ( ,

). Moreover, DYNAPROT consistently Eﬁ:}ff_l?hf;]) =259 ?13 % g'z;
outperforms NMA across nearly all eval- = oo @ 0.1 071 054
uations—except for transient contact pre- Per-target RMSF 7 (1) 092 0.56 0.76
diction—particularly excelling in measures i pca W, (4) 125 174 186
of local flexibility and pairwise distance  joinc pca Wy (1) 158 239 245
preservation. Notably, DYNAPROT re- weak contacts J (1) 0.62 051 0.43
quires only 2.86 million parameters (VS. Transient contacts J (1) 0.47 0.29 0.33
95 million for AFMD+TEMPLATES) and
samples ensembles over 70,000 x faster on # Parameters (1) »M 286M -

e Ensemble sampling time ()  ~ 10,000s ~ 0.14s ~ 5.69s

average (~0.14 s vs. ~10,000s), all while

being trained only to predict marginal and scalar covariances. This efficiency advantage is maintained
when compared against sequence-based methods (i.e. ConfDiff, BioEmu, ESMDiff, see Appendix
). DYNAPROT even outperforms them on modeling flexibility and anisotropy.

Finally, we assess DYNAPROT’s generalization to longer timescale dynamics, by comparing its
zero-shot ensemble of BPTT to the 1ms trajectory from ( ). Even with these larger
conformational changes, DYNAPROT performs reasonably well. It achieves RMSF correlation of
0.88 (c.f. 86 on ATLAS), anisotropy with RMWD of 0.52 A(c.f. 1.18 A on ATLAS), and strong
recovery of transient contacts ( JJ = 0.54, c.f. 0.29 on ATLAS). See appendix for more.

5 CONCLUSION

Protein dynamics is critical for understanding biological function. Existing approaches to modeling
dynamics often rely on complex generative models with large-scale PDB pretraining and expensive
ensemble generation. In this work, we introduce DYNAPROT, a lightweight and data-driven alter-
native akin to Normal Mode Analysis (NMA), but designed to directly predict structured dynamics
descriptors in the form of per-residue and pairwise Gaussian representations. This formulation enables
extreme parameter efficiency while outperforming traditional baselines on key metrics, including
flexibility estimation, marginal anisotropy, and residue—residue coupling. Remarkably, DYNAPROT’s
outputs also support ultra-fast ensemble sampling with reasonable structural fidelity—offering a
compelling alternative to conventional ensemble generation methods. While further scaling may be
needed to match the full capabilities of state-of-the-art generative methods, our approach highlights a
promising alternative grounded in explicitly learning structured representations of dynamics.
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A APPENDIX

A.1 METHOD DETAILS

SPD closure of joint reconstruction heuristic (restating Proposition 3.1). Given marginal
ﬁfjrgml € R33N | and a correlation matrix C € RV*¥ that is symmetric and

T
margina

covariances {3

positive definite, then the reconstructed joint covariance Xioint = Lmarginal (6’ ® I 3> L | is also

symmetric and positive definite.

Proof. Let Liaginat € R3Y*3N be the block-diagonal matrix defined as

N
Lmarginal = @ Li7
=1

where each L; € R3*3 is the Cholesky factor (or any valid matrix square root) of the positive definite

matrix Er(rizrginal' Since each zr(xszrginal > 0, it follows that each L; is full rank, lower triangular, and

has positive diagonal entries. Consequently, Lyarginal is full rank and lower triangular with positive
diagonal blocks.

Now consider the matrix C @ T 3 € R3V>3N_ Since C = 0and I 3 > 0, the Kronecker product
C ® I3 > 0 as well (Kronecker product of two SPD matrices is also SPD). Finally, the product

z]joint = Lmarginal (é ® 13) LrIarginal

is a congruence transformation of the SPD matrix C ® I3 by the full-rank matrix Lyarginal. Since
congruence preserves positive definiteness, we conclude:

Ejoint =0

Moreover, i is symmetric because it is of the form AB AT. O

Multivariate Gaussian Sampling. Let € ~ N(0, I) be a standard multivariate normal in R,
and let u € R%, ¥ € R?*? be a symmetric positive definite matrix. Suppose L € R4*¢ satisfies
3 = LL" (e.g., via Cholesky decomposition or matrix square root). Then the transformation
@« = p + Le yields a random variable © ~ N (u, X).

Proof. Since Gaussian distributions are fully characterized by their first two cumulants (mean and
covariance), it suffices to show that the transformed variable has the desired mean and covariance.

Mean of x:
Elx]| =E[p+ Le] =p+ L -Ele] = p
Covariance of x:

Covlz] =E [(@ — p)(@ — )]
=E[(Le)(Le) "]
=E[Lee'L"]
=L Elee'] LT
=L-I,-L"
=LL" =%

12
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A.2 EVALUATION METRICS

RMWD Variance Contribution. To evaluate the efficacy of the marginal Gaussian predictions,
we adopt distributional similarity metrics used in ( ). The first of these is the root
mean 2-Wasserstein distance (RMWD), specifically its variance contribution term. The 2-Wasserstein
distance between two multivariate Gaussians has a closed-form expression as follows.

Let My = N (o, Xo) and N1 = N (p1, 21) be two d-dimensional Gaussian distributions. The
squared 2-Wasserstein distance between them is given by:

1/2
W%(NO)Nl) — Hl‘l’o — Hl“% + Tr <20 + 21 -2 (21/22021/2) ) (6)

This expression consists of two additive components: a mean contribution and a covariance (variance)
contribution. This metric is also referred to as the Bures—Wasserstein distance ( , ).
Since our method predicts only the covariances, we isolate and evaluate only the second term. We
define the RMWD variance contribution across N residues as follows:

N
) 1/2
RMWDVar(N()aNl) = N Z Tr (2071' + 21,@' - 2 (2}’/122071217/12> ) (7)
=1

Symmetric KL Divergence Variance Contribution. Alongside the Wasserstein-based metric, we
also evaluate the discrepancy between predicted and ground-truth marginal distributions using the
symmetric Kullback—Leibler (KL) divergence, defined as the mean of the two directed KL divergences
mentioned in ( , ; s ):

1
KLsym(NO HNI) = 5 [KL(NO HNl) + KL(Nl HNO)}

For two d-dimensional Gaussian distributions Ny = N (po, o) and N7 = N (p1,31), the KL
divergence from Ny to A is given by:

1
2

det 21
det 20

KL(No | N1) = {Tr(zflzo) + (11— po) "7 (1 — po) — d + log } (®)

This expression consists of both a mean contribution—the Mahalanobis term—and a variance
contribution, comprising the trace and log-determinant terms. Since our method predicts only
covariances (and uses the input structure coordinates as means), we isolate the variance terms by
omitting (141 = ptp) the mean term:

1
)

KLyar (No | N1) 9)

>
(ﬂ(z:;lzo) ~d 4 log 3 1)

det 20
To symmetrize the variance contribution of the divergence, we define the symmetric variance KL as:

1
KLsymvar(NO7Nl) = 5 (KLvar(NO HNl) + KLvar(Nl ||NO)) (10)
i (Tr(B7 %) + Tr(Zg ' =) — 2d) (11

13
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A.3 ADDITIONAL EXPERIMENTS

A.3.1 DYNAPROT ZERO-SHOT ENSEMBLE GENERATION OF BPTI

We note that DYNAPROT was trained on the ATLAS MD dataset comprising 100 ns per replicate
trajectories. In contrast, D.E. Shaw Research performed simulations of BPTI (PDB: 5PTI) at
millisecond-scale revealing structurally distinct conformational states ( , ). Thus, in an
effort to understand DYNAPROT’s ability to generalize to long-timescale dynamics, we applied it to
BPTI and compared to the DESRES trajectory.

Listed in Table 7b, we compute the ensemble evaluation metrics from ( ) and observe
that DYNAPROT performs remarkably well: e.g., RMSF correlation of 0.88 (c.f. 86 on ATLAS),
local anisotropy with RMWD of 0.52 A (c.f. 1.18 A on ATLAS), and strong recovery of transient
contacts (Jaccard similarity 0.54, c.f. 0.29 on ATLAS). These metrics emphasize that DYNAPROT is
able to model larger conformational changes at high fidelity.

MD (5PT1) DynaProt Metric DYNAPROT
Pairwise RMSD (=1.57) 1.36
RMSF (=0.84) 0.86
Per-target RMSF 7 (1) 0.88
RMWD Var Contrib () 0.52
MD PCA W; (1) 0.49
Joint PCA W5 () 0.81
Weak contacts J (1) 0.54
Transient contacts .J (1) 0.54
# Parameters (]) 2.86M

Ensemble sampling time ({) ~0.05s

(b) DYNAPROT zero shot ensemble generation of
BPTI (PDB: 5PT1I), compared to DESRES MD tra-

jectory ( , ). Note that the global RMSF
(a) Visualization of DYNAPROT zero shot BPTI (PDB: Pearson correlation 7 is omitted as there is only one
5PT1I) ensemble generation. protein so global = per-target.

A.3.2 DYNAPROT ABLATIONS

To test both the importance of DY- Table 5: DYNAPROT-M ablations of the log Frobenius loss loss
NAPROT’s Riemannian aware loss and SE(3) invariance.
(log Frobenius norm) and the SE(3)

invariance from the IPA layers, we . No LogFrob  No SE(3)
have performed the following ab- ~ Metric DynaProt Loss Invariance
lations listed in Table 5. Unsur-

prisingly, replacing the log Frobe- ~RMWD Var ({) 1.18 270 1.92
nius norm objective with standard ~ Sym KL Var (|) 091 9.26 4.46
Mean Squared Error loss signifi- RMSF 7 ) 0.87 0.38 0.48

cantly degrades performance as the
optimization is over the space of positive definite covariance matrices, which lies on a well-studied
Riemannian manifold. Replacing the IPA blocks with standard MLPs also degrades performance,
suggesting that SE(3) invariance is crucial in this low-data, low-parameter regime.
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A.3.3 SEQUENCE INPUT BASELINES

There are many methods worth noting that aim to predict ensembles or dynamics descriptors from
sequence itself: standard ALPHAFLOW (AFMD), MSA-SUBSAMPLING, FLEXPERT-SEQ, ESMDIFF
( , ), CONFDIFF ( s ), SEQDANCE ( s ), and SEAMOON

( , )

Though DYNAPROT’s true comparison is NMA as it is a data driven and learnable alternative, we still
is we compare against some of these sequence based methods in ensemble generation. DYNAPROT
outperforms these methods on local RMSF correlation and marginal anisotropy prediction and is
comparable with other distributional metrics. Moreover, the efficiency advantage is clear with
DYNAPROT’s sub-second sample time.

Table 6: Comparison of DYNAPROT generated with ensemble generation methods that take in

sequence as input. ESMDiff, ESM3 entries reported from ( ).

. ConfDiff  AlphaFlow . ESM3 ESMDiff
Metric DynaProt OF-r3-MD -MD BioEmu (ID) (ID)
Pairwise RMSD (=2.89) 2.17 343 2.89 3.57 - -
RMSF (=1.48) 1.10 2.21 1.68 2.47 - -
Global RMSF r (1) 0.71 0.67 0.60 0.63 0.19 0.49
Per-target RMSF r (1) 0.86 0.85 0.85 0.77 0.67 0.68
RMWD Var Contrib () 1.18 1.40 1.30 2.04 4.35 3.37
MD PCA W, (1) 1.74 1.44 1.52 2.05 2.06 2.29
Joint PCA W, (1) 2.39 2.25 2.25 4.22 5.97 6.32
Weak contacts J (1) 0.51 0.59 0.62 0.33 0.45 0.52
Transient contacts J (T) 0.29 0.36 0.41 0.19 0.26 0.26
# Parameters (J.) 2.86M 12.64M 95M 31M 1.4B 1.4B
Sampling time ({) ~0.14s ~ 570s ~ 10,000s ~240s ~70s ~ 70s
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A.4 SUPPLEMENTARY FIGURES
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Figure 8: DYNAPROT-M predicted RMSF correlations. Visualized test set examples of predicted
RMSF per residue (derived from the predicted marginal Gaussians) compared to ground truth RMSF
derived from MD trajectories. Pearson correlation coefficient (r) between predicted and ground truth

RMSF is reported.
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