MDP Geometry, Normalization and Reward Balancing

Solvers
Arsenii Mustafin Alex Olshevsky Ioannis Ch. Paschalidis
Department of EEA Department of ECE Department of ECE
Aalto University Boston University Boston University
Espoo, Finland 02600 Boston, MA 02215, USA Boston, MA 02215, USA
arsenii.mustafin@aalto.fi alexols@bu.edu yannisp@bu.edu
Aleksei Pakharev

Memorial Sloan Kettering Cancer Center
New York, NY, 10065, USA
pakhara@mskcc.org

Abstract

Despite recent progress in theoretical reinforcement learning—motivated by the
success of practical algorithms—there have been few fundamentally new ideas for
solving Markov Decision Processes (MDPs), and state value estimation remains
central to most existing approaches. In this paper, we present a new geometric
interpretation of classic MDPs, introducing a natural normalization procedure that
adjusts the value function at each state without altering the advantage of any action
with respect to any policy. This advantage-preserving transformation motivates
a class of algorithms we call Reward Balancing, which solve MDPs by iterating
through such transformations until an approximately optimal policy can be trivially
identified. We provide a convergence analysis of several algorithms in this class,
and in particular show that for MDPs with unknown transition probabilities, our
approach improves upon state-of-the-art sample complexity results.

1 Introduction

A Markov Decision Process (MDP) is a common mathematical model for sequential decision making.
It was initially introduced in the late 1950s with main algorithms such as Value Iteration [Bellman,
1957]] and Policy Iteration [Howard, [1960]. The topic has been developed over the course of the
next decades, and the most important results were summarized in 1990 by |Puterman|[[1990]. More
recently, the rise of practical Reinforcement Learning (RL) algorithms has drawn new attention to
MDP analyses, leading to several important results, especially in terms of finite-time convergence
analysis. At the same time, we have not seen fundamentally new algorithms for solving MDPs and
state value estimation remains a backbone of existing MDP algorithms.

In this paper, we introduce a novel geometric view of MDP actions. Inspired by this view we suggest
a new class of algorithms which solve MDPs without assigning state values. We present a particular
algorithm from this class, Safe Reward Balancing (RB-S), that achieves state-of-the-art convergence
results in several settings.

1.1 Related work

There is a vast and growing literature providing theoretical analyses of MDP algorithms. In this
section we mention only those works, which are directly related to our paper.
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We are aware of only one work which suggests an MDP analysis from a geometric perspective
[Dadashi et al.l [2019]], which was subsequently utilized by |Bellemare et al.| [2019], [Dabney et al.
[2021]).

Value Iteration algorithm (VI) was initially proposed by [Bellman|[1957]] as an algorithm to solve
known MDPs, and its convergence was proven by [Howard|[[1960] based on ~y-contraction properties
of the Bellman update (where  is the MDP discount factor). More recently, additional properties of
VI convergence were explored in|Puterman| [2014]], [Feinberg and Huang| [2014]].

Q-learning might be seen as a version of VI applied to MDPs with unknown transition dynam-
ics [Watkins} 1989, Watkins and Dayanl, [1992]]. Its asymptotic convergence was analyzed in Jaakkola
et al.| [1993]], Tsitsiklis| [[1994], Szepesvari [1997]], Borkar and Meyn| [2000]. Lately, a few finite-
time convergence results have appeared in [Even-Dar and Mansour, 2001} [Beck and Srikant, [2012]
Wainwrightl 2019} |Chen et al.l 2020], including |Li et al.| [2024]] showing sample complexity of

o (ﬁ)ﬂ which is the current state-of-the-art result. Federated -learning was analysed in
Chen et al.| [2022], [Shen et al.|[2023]], Woo et al.|[2023b]], with the latter work obtaining the current
state-of-the-art sample complexity of @) (ﬁ)

1.2 Main Contributions

In this work we introduce a new geometric interpretation of an MDP and demonstrate how this
perspective helps to analyze existing algorithms and develop a new algorithmic approach for solving
MDPs. Our main contributions are as follows:

* We present a new geometric interpretation of the classical MDP framework and show that
the MDP problems of policy evaluation and finding the optimal policy have geometric
representations. Building on this interpretation, we introduce a geometric transformation
that modifies the MDP action rewards into so-called normal form while preserving the
optimal policy. For an MDP in normal form, the problem of finding an optimal policy
becomes trivial (Section [3).

* Leveraging this intuition, we propose to solve MDPs by doing what we call Reward Balanc-
ing, which modifies an MDP to approach its normal form. We show that value iteration and
several of its modifications can be viewed as doing this. We consider one algorithm in the
Reward balancing class, Safe Reward Balancing (RB-S), and extend it to the unknown MDP,
resulting in an an algorithm which is new to our knowledge. The stochastic version of RB-S
is learning-rate-free (i.e., no step-size needs to be set), maintains only a single vector at
each iteration just like Q)-learning, while achieving a state-of-the-art O ((1 — 7)*4) sample
complexity for producing an e-optimal policy (and not just computing an approximation
to the true -values). Additionally, stochastic RB-S is parallelizable and one can speed up
performance by a multiplicative factor of K with K independent workers sampling from
the same MDP; this is not known to be the case for Q-learning (Section 4.2)).

2 Basic MDP setting

We assume a standard infinite-horizon, discounted reward MDP setting [Sutton and Barto, 2018},
Puterman, 2014]. An MDP is defined by the tuple M = (S, A, st, P, R, v), where S = {s1,...,8,}
is a finite set of n states; A is a finite set of size m of all possible actions over all states combined; P
is the assignment of a probability distribution P( - |a) over S to each action; R : A — R specifies
deterministic rewards given for actions in \A; and v € (0, 1) is a discount factor. The only non-
standard attribute of M is st, with which we denote the map from A to S that associates an action a
can be chosen at state s to the state s, and we need it for the following reason.

Note. We define A such that each action is attributed to a particular state via the map st, i.e., if in
two different states there is an option to choose two actions with the same rewards and the same
transition probability distribution, we consider them as two different actions. In other words, we treat
as separate actions what is called "state-action pairs" in earlier literature. Consequently, the overall
number of actions m = | A| in our setting corresponds to |S| - | A| in the “universal” action setting,

where A is the number of universal actions, i.e., actions available at every state. We understand that

'The notation O() subsumes constant and logarithmic factors.



this notational choice may initially cause some confusion, but the reasoning behind it will become
clear later.

Having an MDP, an agent chooses a policy to interact with it, that is a map 7 : S — A such that
st(m(s)) = s for any s € S. We consider only deterministic stationary policies, which are policies
that choose a single action to perform in each state throughout the entire trajectory. If policy 7
chooses action ¢ in a state s, we say that ¢ € 7. Each policy can be defined by the actions it takes in
all states, 7 = {a1, ..., a,}, where a; denotes the action taken in state 7.

Given a policy 7, we can define its value over a state s to be the expected infinite discounted reward
over trajectories starting from the state s:

o0
Vr(s) =8 [z w] |
t=1
where 7; is the reward received at time step ¢ starting with state s and actions taken according to

policy 7. The vector V™ will be the unique vector that satisfies the Bellman equation 7"V™ = VT,
where T'™ is the Bellman operator, defined as:

(T7V)(s) = R(n(s)) + Y P (s |m(s)) 7V (s).

Evaluating the policy values of a given policy 7 is an important problem in MDPs called the Policy
Evaluation problem. However, the main problem of interest given an MDP is to find the optimal
policy 7* such that:

V™ (s)>V™(s), Vm,s.

The exact solution to this problem can be found using the Policy Iteration algorithm, but each iteration
requires inverting a square matrix of size n X n, which is computationally expensive. Instead, we
might be interested in a non-exact solution, or an e-optimal policy 7€ — a policy that satisfies:

V™ (s) = V™ (s) <€, Vs.

An e-optimal policy can be found using the VI algorithm in a number of iterations dependent on e,
with each iteration having a computational complexity of O(nm).

3 Geometry of Action Space

Take an action a at state 1 participating in a policy m with values V™. Denote the reward associated
with this action as r,, and the probabilities to move to state s as p2. We know that the policy values
satisfy the Bellman equation, which can be rewritten as:

r 1 (pd = V() +4 Y pivT(i) = 0. M

=2

The left hand side can be written as the dot product of two vectors: (r*,vp$ — 1,vpg,...,vp%)
and (1,V7™(1),V™(2),...,V™(n)). Note that the former vector contains all the information related
to the action a — reward and transition probabilities — and can be constructed without defining a
policy. The latter vector consists of policy values and can be constructed without knowing the actions
participating in the policy. We denote the first vector as a™ and call it the action vector, assuming it
is a row vector, and the second vector as V" and call it the policy vector, assuming it is a column
vector. With this notation we can establish the following proposition.

Proposition 3.1. For a policy m and an action a € w, the dot product of the corresponding action
vector and policy vector is 0. In other words, the action vector a™ is orthogonal to the policy vector
VI@ifaem

Consider the (n + 1)-dimensional linear space where the action vectors lie, which we call the action
space. Index the coordinates starting from 0, so that an action vector a™ would have its zeroth
coordinate equal to the reward r*. The possible locations of action vectors in this space are limited.
First, the sum of all vector entries apart from the zeroth one is equal to v — 1, which means that all of
them lie on a fixed n-dimensional affine hyperplane. Additionally, exactly one of the last n entries
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Figure 1: An example of the action space for a 2-state MDP with 3 actions in each state. The vertical
axis is the action reward axis, while the two horizontal axes correspond to the first (axis c;) and
second (axis co) coefficients of the action vector (the same example with actions only can be found in
the Appendix, Figure[3). The figure also illustrates the application of Theorem 3.3} The shaded area
represents the policy hyperplane H™ of the policy = = (a, b). The black line connecting actions a
and b indicates the intersection of the policy hyperplane and the action constraint hyperplane. The
red and cyan bar heights correspond to the values of the policy 7 in States 1 and 2.

of an action vector ™ must be negative, specifically the one corresponding to the state st(a), and
all other entries are non-negative. Therefore, the actions of an MDP lie in the designated pairwise
non-intersecting polytope zones in the action space, with each state having its own zone. For a state
s, any corresponding action vector at = (cg,c§, ..., c%) must obey the following inequalities:

b=y 1,
0<cl, .., Co 1,Cou1,-- 1 Cp <, 2)
1<l <vy—1.

Figure[I|shows an example of an action space for a 2-state MDP (and a more clear figure with actions
only is given in Appendix [A] Figure [3). We suggest to visualize the reward, the zeroth coordinate in
the action space, as the height function, as presented in the figure. We will refer to this choice of a
height function later when we talk about horizontal and vertical directions or the relation of being
higher or lower.

From the point of view of the action space, the policy vector V" defines the hyperplane of vectors
orthogonal to V. Denote this hyperplane by H™. From Proposition@ it follows that for any action
a €  in the policy T, the corresponding action vector a™ lies in the hyperplane H™. Therefore, an
alternative definition of H™ for a policy 7 = {a1,...,a,} is the linear hull of the action vectors

ay,...,at. This allows us to restate the Bellman equation in more geometric terms.

Proposition 3.2. The problem of evaluating the values of a policy m = {aq,...,a,} (Policy
Evaluation Problem) is equivalent to the problem of calculating the coordinates of a vector normal to
the n-dimensional linear span H™ = (af, ..., a}) of the participating action vectors af, coat.
Proof. = : [If the policy values are known, Proposition [3.I] implies that vector
(1,V™(1),...,V™(n)) is normal to the span H™.

<= : Having the coefficients (cp, ¢1,. .., ¢,) of a vector normal to hyperplane H™, the values of
the policy 7 can be calculated as (¢1, ¢, . . ., ¢,)/co. Indeed, the coefficients of this hyperplane are
defined uniquely up to a scaling, and are equal to the values if the zeroth coordinate is equal to 1. [
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Figure 2: Two-dimensional plot corresponding to the constrained action space from Figure All the
information required to analyze the MDP — action coefficients and policy values — is presented in
the plot. Additionally, the plot includes the advantages of two actions, ¢ and d, that do not participate
in the policy 7.

The important property of this interpretation is that the values of the policy 7 defining the hyperplane
™ can be recovered in an intuitive geometric way, presented in Figure[I] Recall that for a state s we
have a designated zone for action vectors defined by [2| Consider the following one-dimensional line
in the boundary of the zone: (r,0,...,0,7 —1,0,...,0), where the zeroth coordinate r is equal to a
free parameter, and the s-th coordinate is equal to v — 1. Denote this line by L. In fact, this line
represents all vectors of the self-loop actions in state s.

Theorem 3.3. The values of a policy m can be recovered as the rewards of the intersection points
between H™ and the self-loop lines L, s € S, divided by 1 — .

Proof. For each state s, take the point [ of the intersection between L, and H™. We know that the
vector [ is orthogonal to the vector VT

0=1,V7 =1,0)+ Enj L(sHV7(s") =

s'=1
=1:00)+ (v =DV7(s) = V7™(s) = 1s(0)/(1 = ).
Thus, the zeroth coordinate of I corresponds to the policy value in state s. O

Theorem [3.3] simplifies the analysis by allowing us to focus solely on the constrained space
i, c(i) = v — 1 as all meaningful information, including both actions and policy values, is
contained within it. Consequently, Figure[T|can be reduced to Figure 2] The theorem helps to view
policies in geometric terms in the action space: every policy can be thought of as a hyperplane in this
space, and any non-vertical hyperplane (i.e., non-parallel to the reward axis) can be thought of as a
policy substitute, but not necessarily produced by a set of available actions. Such hyperplanes, or sets
of values which are not produced by the actions in the MDP, often appear in practice, for example,
during the run of the Value Iteration algorithm. To underline their similarity to regular policies, we
call them pseudo-policies.

3.1 Optimal policy in action space

Consider an action b and a policy 7 such that b ¢ 7, assuming without loss of generality that b is
an action on the state 1. What is the dot product of the action vector b and the policy vector V[ '?



Mathematically, it is:

n
PIVE =1ty phVT(E) - V().
i=1
This quantity is often used in the reinforcement learning literature and is known as an advantage
or an appeal of action b with respect to policy 7, denoted as adv(b, 7) (in this paper we stick to the
term advantage). It has an intuitive meaning: the quantity shows the potential gain (or loss) in the
infinite sum of discounted rewards if, instead of following the policy 7 from State 1, the agent takes
action b and then follows 7.

Advantages are key quantities in MDPs since they define the dynamics of the main MDP algorithms:

* Given a policy 7, the Policy Iteration algorithm chooses the action a in a state s with the
highest advantage among other actions in s with respect to 7.

* Similarly, while choosing actions to update values, the Value Iteration algorithm chooses
actions with the highest advantage with respect to the pseudo-policy implied by current
values.

Now let’s establish the relation between an action advantage and the policy hyperplane in the action
space. Since the advantage of an action b with respect to a policy 7 is the inner product of the vector
b™ with the vector V[, which is orthogonal to the hyperplane H™, a positive advantage means that
the vector b lies above H™, and a negative advantage means that b™ lies below H™. With this
observation, we are ready to present the second important result of this paper.

Theorem 3.4. The problem of solving an MDP, or finding a stationary optimal policy * for an

MDP, is equivalent to the problem of constructing a hyperplane H such that at least one action from
every state is incidental to it and no action lies above it.

Proof. = : Suppose we know the optimal policy 7*. Every action has 0 or negative advantage
with respect to it; therefore, none of the action vectors lie above the hyperplane H™ . On the other
hand, each state has the optimal action, and the corresponding action vector is incidental to H™ .

<= : Let’s choose a set of actions (ay,...,ay) such that their action vectors are incidental
with H and denote the policy they form as w. Clearly H = H™. We know that a;." VI = 0and
btV < 0,Vst(b) = s. Then a; = argmax, adv(b, 7), which implies that policy 7 is stationary
with respect to a greedy upgrade and, consequently, optimal. O

We can view Theorem [3.4] as a rephrasing of the linear programming formulation of finding an
optimal policy in an MDP. However, this more geometric rephrasing, together with Proposition
and Theorem [3.3] provides a foundation for the approach to MDP solving that we develop in this

paper.
3.2 MDP transformation

If we try to analyze the dynamics of the policy iteration algorithm in a 2-state MDP (which we do in
Appendix [A.3]and Figure[d), we see that it is not very convenient to do the analysis when the rewards
for two states are not comparable (e.g., large rewards in one state and small rewards in another state),
making all policy hyperplanes steep. Can we modify the MDP to make the corresponding hyperplanes
flatter? It turns out we can! In this section, we describe the transformation £ of an MDP which
changes the values of every policy in one particular state, while keeping all advantages unchanged.

Choose a state s and a real number 6 € R — the desired increment of the state value V7 (s) of every
policy 7. We denote this transformation as £2. To perform it, we need to modify every reward in
the MDP using the following rules:

* For every action a, st(a) = s the reward r* should be modified as:

r =1t =8¢t =r* = §(ypd —1).

» For every action b, st(b) # s the reward r° should be modified as:

b._ b b_ b b
r’ =71’ —dc, =1r"—dyp,,



where p? and p® are the probabilities of getting to state s from the state of the action.

The geometric interpretation of Eg is as follows. We transform the whole action space with the linear

transformation

(z(0),z(1),...,2(n)) — (z(0) — dx(s), z(1),...,xz(n)).
This transformation maps the designated action zones for each state to itself. Any point on a line L/,
s’ # s, is fixed by this transformation, and any point on the line L; is lifted by §(1 — ~). Coupled

with Theorem [3.3] we see that the values of any hyperplane H stay the same for s’ # s, and increases
by § on the state s. The following theorem shows the most important property of L.

Theorem 3.5. Transformation LO preserve the advantage of any action with respect to any policy.
Proof. A simple proof is given in Appendix [B.1] O

For MDPs M and M, we write M’ = £5 M if £3 transforms M to M’. Since these transformations
are mutually commutative, it is useful to introduce the following notation:

M = LOM = L3(L2 (... (L2EM)..)),

where A = (81,02, ...,6,)T is a column vector, and the ith entry of it, §;, is the quantity added to
every value in state s;.

Then, choose some MDP M and compute its optimal values (V*(1),...,V*(n)). Apply the
following sequence of transformations to M:

M* = L2 M, 3)

where A* = (=V*(1),...,—V*(n))”. The values of the optimal policy 7* in M* are 0 in all states.
At the same time, since the transformations £ preserve advantages, the advantages of the modified
actions @’ € 7* remain 0, which implies that

adv(a/, 1) = r* + ZC?V‘”/ (i) =r" =0,

i=1

meaning that every action participating in the optimal policy in M* has reward 0, while every action
not participating in the optimal policy has a reward equal to its advantage with respect to the optimal
policy, which is always negative. Geometrically, the optimal policy hyperplane ™ is given by the
equation ¢y = 0, all the action vectors from the optimal policy lie on the hyperplane, while every
action not participating in the optimal policy lie below it.

This picture is convenient to analyze, so we give this special kind of MDPs a definition:

Definition 3.6. We call an MDP M* normal if all values of the optimal policy of M* are equal to
zero.

The normalization M* of an MDP M is the result of applying the transformation L™ to the MDP
M, where A* = —V*, negation to optimal policy values of MDP M. The normalization of an MDP
is always a normal MDP.

4 Reward Balancing Aalgorithms

4.1 MDPs with known dynamics

There is one more nice property of a normalization of an MDP that we did not mention in Section
[3.2} it is trivially solvable! To solve it, one just needs to pick the action with the reward of 0 at every
state, and the resulting policy is optimal. This policy has a value of 0 at every state, while any other
action has a negative reward, thus their inclusion to a policy will result in negative values.

This is an intriguing property of an MDP. Imagine one needs to solve an MDP M. Suppose that M
can be solved by Policy Iteration starting from a policy 7 in T steps. If the same algorithm is run on
the normalization M*, it will take exactly the same number of iterations 7" to solve it as it is shown
in Section[A.3] However, there is no need to run the algorithm on the normalization: we can just pick
actions with rewards 0 to form the optimal policy. This property of the normalization of an MDP



Algorithm 1 Safe Reward Balancing (RB-S)

Initialize My := M andt = 1.
Update:
* Vs compute s = — maxg r%/(1 — yp%).
» Update the MDP M; = L2 M,_;, where A; = (01,...,6,)T.
* Store the maximum action reward in each state while performing the update. Set R} to
the minimum of these maxima.
if |R]"|/(1 —~) > ethen
Increment ¢ by 1 and return to the update step.
else
Output policy 7, such that 7(s) = arg max, r®.
end if

inspires a new class of solution algorithms that do not compute state values but instead solve the
MDP by manipulating its rewards. Due to this characteristic, we refer to these value-free algorithms
as reward balancing solvers.

Of course, given a random MDP M, it is not possible to normalize it without solving it, because the
optimal values are not known. However, we still have the transformations Efz available to us, and we
have a goal: if at some point we achieve an MDP in which the maximum action reward in every state
is 0, we know that the corresponding actions form the optimal policy. Furthermore, the following
lemma shows that if the MDP is “close” to normal, a policy consisting of actions with the maximum
reward at each state produces a good approximate solution.

Lemma 4.1. Suppose that all rewards of an MDP M are non-positive. Let’s choose a maximum
reward on each state and denote minimum of these maxima as Ry.in. If a policy w chooses the actions
with the maximum reward in each state, then T is e-optimal with € = —Rin /(1 — 7).

Proof. We know that the values of any policy in this MDP are upper bounded by 0. At the same time,
minimum possible values of the policy satisfy ||[V* — V7||oc < (0 — Ruin)/(1 — 7). O

Therefore, the quantity R,,;, can be used to establish a stopping criterion. Now we are ready to
provide an intuition for a solution algorithm.

Note. We start every algorithm by decreasing the reward of every action in the MDP by the overall
maximum reward so that the maximum action reward becomes 0 and every action has a non-positive
reward.

Our goal is then to carefully "flatten" action rewards by applying transformations £9 to the states
where the highest rewards are below 0, so that the maximum reward in every state becomes closer
to 0. The issue is that while increasing the reward of an action « in a state s, the transformation Eg
also has a negative side effect: it decreases the rewards of all actions in every other state that have
a non-zero transition probability to s. A straightforward approach would be to account for these
side effects, but this algorithm is equivalent to the Policy Iteration algorithm, as it is discussed in

Appendix [C.1]

However, if we do not aim to produce an exact solution, we can develop a novel algorithm. The
easiest way to simplify the algorithm is to disregard the aforementioned side effects and make “safe"
updates, which leads to Algorithm [I|— Safe Reward Balancing or RB-S for short. More information
about the intuition behind the design of the algorithm is given in Appendix [C.2]

Algorithm[I] which in the known MDP setting might be seen as the Value Iteration on a modified MDP,
has the same iteration complexity as VI, but has different convergence properties. In particular, VI
does not perform well on tree-structured MDPs, potentially achieving the worst possible convergence
rate of . In contrast, tree-structured MDPs are the best case for the RB-S algorithm. We can show
this for a broader case of hierarchical MDPs.

Definition 4.2. MDP M is hierarchical if every state can be attributed to a class c € N such that
every action leads either back to the state s or to states that belong to lower classes.

Theorem 4.3. Applied to a hierarchical MDP M, the RB-S algorithm is guaranteed to converge to
the exact solution in at most C' iterations where C'is the number of hierarchy classes.



Proof. An induction-based proof of the theorem is given in Appendix O

The RB-S algorithm has interesting convergence properties not only in hierarchical MDPs, but on
general MDPs too, which is shown in the following theorem.

Theorem 4.4. The policy m, is €;-optimal where

' l

€t = 77—~ 'max-
(1-B)1—v) ™
Here
- Pﬂ' 88
a= IE%TXH[[RT]]SS <y, B= H;ng[Pﬂ}ss <1,
l=1—vymin[Pr]ss < 1,
and
Tmax = —Iin max 75

s a,st(a)=s

is the negation of the minimum among maximum state rewards.
Proof. The proof is given in Appendix [B.J] O

The theorem implies that convergence rate o of RB-S algorithm is always smaller or equal than ~.
Notably, RB-S algorithm enjoys faster convergence rate in the case of non-trivial self-loop action
probabilities in the MDP. Also, the theorem has a following interesting corollary:

Corollary 4.5. For all actions a, .

|ri — adv(a, )| < 2TmaX177

Proof. The Corollary proof follows from the proof of Theorem 6] given in Appendix [B.4] O

The significance of the corollary is that the upper bound is observable during the run of the algorithm,
which allows for the RB-S algorithm to output an exact solution by applying action filtering, see
Appendix [C.3|for details.

The main difference between RB-S and VI in the known MDP case is how they treat self-loop
actions. In the absence of the self-loops two algorithms are equivalent as it is shown in Appendix[C.4]
Appendix demonstrates the experimental comparison of the two algorithms.

4.2 MDPs with unknown dynamics

In Section ] we considered the case of fully known MDPs, where all transition probabilities P are
known and available to the solver. In practice, the assumption of a fully known MDP is usually
impractical, and the solver only has access to transition data in the form (s, s’, a, r®), where a is an
action chosen in state s, r® is the received reward, and s’ is the state where the agent appears after a
transition sampled from P(s’ | a).

In this section we switch from state-based to action-based notation. From now on, the reward vector
r¢ is of length equal to the number of actions m and consists of all action rewards from every state.
Consequently, the transition matrix P™ has a size of m x m, and its element P[i, j] is the probability
that after choosing action ¢, the next action chosen is action j. This value is non-zero only if the agent
has a non-zero probability of appearing in state s’ = st(j), and policy 7 chooses action j in s’. For
our analysis, we need an additional vector Ry, a vector of length m, where for every action a, it stores
the maximum reward available in the state of action a at time ¢, R;(a) = max; r’ : st(b) = st(a).
For convenience we abuse notation and define R;(s) = max;, r° : st(b) = s.

The unknown MDP setting also requires a few adjustments to the algorithm: the first adjustment
we need to make is to give up on self-loop coefficients, since self-loop probabilities are no longer



known. Therefore, without the self-loop coefficients, but with known transition probabilities, the
reward balancing update becomes

Tt+1 =Tt — Rt + ’YPR{» (4)

However, we no longer have access to the transition probabilities P”*, but only to samples from it. We
assume an access to generative model, which is common in the literature analyzing the convergence
of the synchronous @-learning algorithm. It means that the solver can freely sample any number of
transitions for any action at any time step. For the stability of the algorithm, at step ¢ it samples not
one, but £ transitions matrices Pti from P.

Then the algorithm, which we call Stochastic Reward Balancing, has an update:

1§+~w1%)R
T ) R

3 &)

Tt+17"th+’Y<

Note. Just like Q-learning, this algorithm requires to store only a single vector of dimension m.

‘We denote the estimation matrix above as P;:

- Pt1+...+Ptk
= ? ;
A formal definition of the algorithm is given in Appendix The following theorem analyzes its
convergence.

Pt ]E[Pt]:P

Theorem 4.6. Fix 7 € [0,1] and choose
> 4Tr2nax lOg 12_777747—
T e =P+

and run stochastic reward balancing for

t> L 1og< ! )
T 1y e(l=v))"

steps. Let Ty be the policy where every node takes the action with the maximal reward at time t. Then
my is e-optimal with probability 1 — T.

Proof. Proofs of a few propositions, lemmas and the theorem itself are given in Appendix O

Corollary 4.7. Overall the number of samples M required to achieve an e-optimal policy is:

2

2r 1
M &~ M2 og(m) log | ————
ML - )t o8 log <e<1 —w) ’

which is a scale ofO(#).

We now can compare this complexity with previous works. Note, that RB-S actually produces
better results since it outputs e-optimal policy, while known Q-learning results only guarantee the
convergence to a vector of Q values such that ||Q) — Q*||s < €. Obtaining e-optimal policy requires
increasing the complexity by factor (1 — 7)~2. More comments on the difference between two
algorithms are given in Appendix

With the notation used in this paper, the current state-of-the-art result for Q-learning from|[Li et al.
[2024] is
ca(log" M)(log 1)
(1 —7)*
Therefore, the result we provide for RB-S has the same scale as Q-learning, but improves upon

it in terms of logarithmic and constant factors, while also eliminating the need for a learning rate
parameter and any associated tuning.

MZzZm
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Corollary 4.8. The sampling of transitions required to compute P; can be done independently which
makes the algorithm parallelizable. Therefore, in a federated learning setting, splitting the task over
K agents provides a linear speed up, and the overall number of samples assigned to each agent is a

scale of
~ m
o ()

Additionally, the algorithm requires (5(1 /(1 — 7)) communication rounds, which makes it efficient in
terms of amount of communication needed.

This result improves upon the current state-of-the-art result on federated ()-learning from [Woo et al.
[2023a] by the factor of (1 — ).

Overall, the Safe Reward Balancing algorithm is not only conceptually novel, but also exhibits
favorable convergence properties, with sample efficiency that surpasses current results from Q-
learning, while requiring exactly the same amount of space.

5 Conclusion

In this paper, we have presented a new geometric interpretation of Markov Decision Processes,
establishing the equivalence between MDP problems and specific geometric problems. Based on
this interpretation, we developed new algorithms for both known and unknown MDP cases, showing
state-of-the-art convergence properties in some cases and improving on the state-of-the-art in others.
The authors conjecture that these are only the first results provided by this new interpretation. The
authors hope that this new perspective would be useful to the researchers in the field whether in the
analysis of existing algorithms or the development of new ones.
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Actions on State 1
@ Actions on State 2
Pivot line of constraint
c+c=y-1
Frame of projected picture

Reward

Figure 3: An example of the action space for 2-states MDP with 3 actions on each state described
in Appendix [A.T] Vertical axis show action rewards, and two horizontal axes correspond to the first
(axis ¢1) and second (axis cg) coefficients of action vector.

A Additional Remarks on MDP Geometry

A.1 Example of the Geometric Interpretation of a Regular MDP

In this example, we illustrate how to represent a regular MDP geometrically. Consider a 2-state MDP
with a discount factor of v = 0.75 and 3 actions available in each state:

* State 1:
- Action ay: r* = 0.3, p7* = 0.9,p3* = 0.1
- Action ag: % = 0.7, pi* = 0.4,p3*> = 0.6
- Action az: r* = 0.1, p7® = 0.2,p3* = 0.8
* State 2:
— Action by: r = 0.4, pll’l = 0.1,pl271 =0.9
— Action by: P2 = 0.8, pl{2 = 0.4,]012’2 =0.6
— Action bs: 7% = 0.4, pt> = 0.8, pb? = 0.2
Each action vector is constructed with the reward of the corresponding action as its Oth coordinate.
To compute the other coordinates, we multiply the transition probabilities by the discount factor ~y
and then adjust them by subtracting 1 from the coordinate correspondent to the state of the action.

Specifically, for actions a1, as, and ag, we subtract 1 from the first coordinate, while for actions by,
ba, and b3, we subtract 1 from the second coordinate. The resulting action vectors are as follows:

State 1: af = (0.3,—0.325,0.075), a5 = (0.7,—0.7,0.45), a3 = (0.1,—0.85,0.6).
State 2: b = (0.4,0.075, —0.325), b5 = (0.8,0.3, —0.55), b3 = (0.4, 0.6, —0.85).

These points are visualized in Figure[3] Note that all the vectors satisfy the constraint ¢; + ¢; =
v — 1 = —0.25, which corresponds to the blue line in the figure.
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Policy Iteration Dynamics
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obtained after greedy update of m;
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N
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Figure 4: Illustration of the Policy Iteration algorithm dynamics in 2-state MDP.

A.2 Affine equivalence

In this section we discuss the relation of the transformation £° and standard RL algorithms: value
iteration and policy iteration. Choose MDPs M and MDP M/, such that M’ = £3 M (which means
that L’fz transforms M to M”). Note that M and M’ have the same sets of actions and, therefore,
the policies are drawn from the same sets of actions. Then, we can make the following observations
regarding the dynamics of the policy iteration and value iteration algorithms in MDPs M and M’:

* Each advantage adv(a, ) remains the same, which leads to the same action choices during
the policy improvement steps of the policy iteration algorithm in M and M’. Therefore,
the transformation £ preserves the dynamics of the Policy Iteration algorithm.

* Assume the starting values of the Value Iteration algorithm are V; in M and V{j in M/, such
that Vo(s) + d = V{j(s). Then, due to preservation of the advantages, the choice of action
remains the same at every step of the algorithm. At the same time, since we increase the
value of state s by ¢ for every pseudo-policy, the difference between the two value vectors
remains unchanged. This, in turn, implies that ﬁ‘ss preserves the error vectors e, = V; — V¥,
which defines the dynamics of the value iteration algorithm and set of e-optimal policies. It
also preserves the values of V1 — V/, the vector used to compute the stopping criteria in
the Value Iteration algorithm. All these properties together imply that the transformation Eg
preserves the dynamics of the Value Iteration algorithm if the initial values are adjusted.

The dynamics of the main algorithms imply a similarity between MDPs M and M/, based on which
we give the following definition:
Definition A.1. MDPs M and M’ are affine equivalent if there exists a vector A = (61, ...,0,)

such that
M = LAM.

Affine equivalence is a transitive relation on the set of MDPs. An affine equivalence class of MDPs
is a maximal subset of MDPs in which every two MDPs M1 and M are affine equivalent.

We then demonstrate the geometrical dynamics of the main MDP algorithms —Value Iteration and

Policy Iteration —in the action space. We analyze the dynamics of the normalized MDP since every
MDP can be transformed into its normal form while keeping the same affine equivalence class.

A.3 Policy Iteration

The example dynamics of the policy iteration algorithm is presented in Figure ] Policy iteration
consists of two steps applied sequentially: policy evaluation and policy improvement. As follows
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Value Iteration Dynamics
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Figure 5: Illustration of the Value Iteration algorithm dynamics.

from Proposition 3.2} the policy evaluation step is identical to hyperplane construction. For the policy
improvement step, at each state it chooses the highest actions with respect to the current policy 7.
Therefore, with every iteration, policy iteration algorithm gets a higher hyperplane until the optimal
one is reached.

A.4 Value Iteration

The dynamics of the Value Iteration algorithm are a little bit more complex and are presented in
Figure[5] At each step, value iteration performs the following update:

Vit1(s) = max r(s,a) + 72P(s'|5,a)%(5’)

S
= Vi(s) +r(s,a;) + (vP(s]s, a7) — 1)Vi(s)+
Y7 P(S|s.a)Vils') = Vils) + adv(a;, Vi),
s'#s

where a; is the action maximizing the advantage on state s at timestep ¢.
Therefore, Value Iteration simply finds the highest advantage and adds it to the current state value,
which, in normal form, is equal to the state error. Note that, for positive values, advantages are
always negative, which guarantees that the Value Iteration update decreases the norm of the values.

Graphically, advantages and values are multiplied by (1 — «y), ensuring that the Value Iteration update
is safe: if values were positive before the update, they will remain positive afterward.

B Theorem Proofs

B.1 Proof of Theorem 3.5

We need to prove that the advantage of any action with respect to any policy does not change after
the transformation Lg. The first case is st(a) = s. Denote the original value vector of a policy as V.,
the modified value vector as V|, the original action vector as a™, and the modified action vector as

(a’)T. Then
at Vi =r®+ (- 1)VE + v Zpg,Vj/ =
s'#s
=8l =)+ (= D(VE+8) + Y pi Vi = ()Y
s'#s
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For action st(b) # s the proof looks essentially the same. Denoting the corresponding action vectors
as b* and (V)" we have:

bV =" +plVE 4+ 4 Z Ve =
s'#s
v — Sypl A (VE+0) + > py Vi = () TV
s'#s

B.2 Proof of Theorem 4.3

The theorem can be proven by induction on the class number. We are going to show that after ¢
iterations of the algorithm ¢ lowest hierarchy classes have maximum reward of 0.

Basis: The lowest class of 1 — leaf nodes. Each of states correspondent to these nodes has only
self-loop actions, and after first iteration of the algorithm maximum reward on each node becomes 0.
That does not change during the run of the algorithm, since probability to transfer to other nodes is 0
and, consequently, §’s associated with these states remain 0 during the run of the algorithm, so they
won’t affect other states.

Step: By induction hypothesis after ¢ steps of the algorithm for each state s of class ¢ < ¢, maximum
reward on state s is equal to 0, which implies that §; computed during the ¢ + 1 steps is also equal to
0. Now recall that for any action a, st(a) = s its new reward r{, ; can be expressed as:

rio =r = 0s(ypt = 1)+ Y Py by =

s'#s
N OV VR S A NE L I S O
s'ec,c<t s'ec,c>t

Note that for any action « the last sum term is always 0. Then, if class ¢ of s is less or equal to ¢, J
and all d¢ in the second summation term are 0, which means that reward of action a does not change
and, consequently, the maximum reward on state s remains 0. In the case when ¢ = ¢ + 1, both
summation terms are equal to 0, and r{, | = r{ — 0,(yp? — 1). However the quantity d, is chosen
such that it maximizes the quantity ¢ /(yp% — 1), which implies that max, r{’, ; = 0 for every state
sin class t 4+ 1. This concludes the proof of the induction step and the theorem.

B.3 Proof of Theorem[d.4/and Corollary [4.5|

We begin the proof by reiterating and clarifying the notation used. We operate on state-based vectors,
meaning all vectors have dimension n = |S|, and matrices are of size n X n.

* rmax — One of the key quantities used throughout the paper. It is defined as the minimum

over the maxima of action rewards in each state: rax = — ming max, g4(q)=s 76- Roughly,
it can be understood as the (negative of the) distance the algorithm needs to cover during its
run.

» [J; — The subscript ¢ refers to quantities obtained after ¢ iterations of the algorithm. This is
important in our setting because rewards change at each step.

* 0., — The subscript 7; refers to quantities related to the policy 7, which is the policy
formed by the set of actions chosen during iteration ¢ of the algorithm. We use this as a
subscript only for objects related to transition probabilities.

e P, — The transition matrix produced by the policy 7.

* D, = diag(I — vP) — A diagonal matrix consisting of the elements from the diagonal of
the matrix [ — yP.

* r7 — The rewards of the actions that form the policy 7 after ¢ steps of the algorithm. In
Tt

particular, r/{ | represents the rewards of actions from the policy 7; after ¢ + 1 steps of the
algorithm (one iteration after policy m; was chosen).
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* V{1 — Similar to rewards, these are the values of the policy 7 produced by the rewards of
the policy 7 during iteration ¢ + 1 of the algorithm.

* A; — The vector of update values during the ¢ step of the algorithm. The entries of the
vector are chosen according to the rule §(i) = — maxg; st(a)—i {%} .

Now we start proving the theorem with the following lemma.

Lemma B.1. Suppose P is a stochastic matrix and D = diag(I — ~P). Then the matrix W defined

as
W =1I1-DYI-~P)
satisfies
v = Y[Plis
Wllse = max <«
Wl = e =5
Proof. Observe that the matrix W has zero diagonal and
V[Plij L
W;j = ———=— when ¢ # j.
1—~[Plii

It is thus a matrix with non-negative elements, and we have

2Pl (1 — [Plis)
miaxl—’)’[P]ii - 1 —~[Pli

Wlleo =

We now give the proof of Theorem [4.4]

Proof. From the definition of A;, we have that
Ay = —D;tlrf‘, ©6)
where D, again is a diagonal matrix of I — yP™ .
By the definition of the update £, for the policy 7, (as well as for any other policy),
Vih =V + A
Now plugging in Eq. (6),
Vi = Vi = DRl
Next, using the fact V™ = (I — vP™)~ 7™ we obtain
i =17t = (L= 9P ) DRI

Now multiplying both sides by fD;tl:

=Drlriy = =Dglrit = DENI = yPr) (=Dl (M

At time ¢ + 1, we again choose the next policy 74 implicitly (via choosing the minimizing actions).
We thus have the key inequality:

—1 £
A = —DZl T ®)
-1
< =D i, )

where the last equality is true because it is the actions in 7 ; that achieve the maxima at time ¢ 4 1.
We can now put together Eq. (7)) and Eq. (8) and Eq. (9) to obtain
-1 ™ -1 -1 -1
_D7Tg+1rzr—;jil S _DTH, Tft - DTH, (I - ’}/Pﬂ't)(_DT(t Tzrt)'
We rewrite this as

At-i—l S At - D;,l(l - rYPW{,)At = W‘thAt7
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where similarly to before
Wy :=1I1—D; (I —~P;).

Using induction and Lemma[B.T} we obtain

1A < @[|Ao]|oc;

where o comes from the definition of the theorem.

We have thus shown that the size of the update to the value function decreases exponentially in the
infinity norm. We next translate this into a direct suboptimality bound on V™.

Starting from
rit = —Dg, Ay,
and
Vi = (I = yPr,) e,
we put the last two equations together to obtain

Vvtﬂ-t = _(I _’ypﬂt)_lDﬂ'tAt
Letc = ||(I —vPx,) ' Dx,||co- Clearly,

1
< I- P7r _looDﬂ' oo<7l~
e I =1Pr) " leclIDrlloe < 7=

‘We then have that
IV loo < e[| Ao |oo-

Let us use bound .
Q]| < —=

71—/8,

so that .

Tt @
||‘/f HOO S Cl . 5rmax-
The RHS of the above equation is €; from the definition of the theorem. Since for any policy 7 its
values V™ are always nonpositive (since rewards are nonpositive throughout execution of the RB-S by
Proposition|[C.T), the values of optimal policy are upper bounded by 0, implying that 7 is e;-optimal.

O

Proof of Corollary[d.3] Let m, be the policy defined earlier achieving the minimum at time ¢ and let
7* be an optimal policy. We have that

t
* g Y
OZV;W ZV; i Z_Tmaxﬁ~

Since
t—1
‘/tﬂ* = VOTr* + Z Ak’a
k=0
we obtain that if we define

t—1
dy =V — (—ZAk> ,
k=0

t
delloe < Tmax 72— (10)
-7

then

Next, we have
t—1

e =170+ Z(I — yP)Ag.
k=0
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Algorithm 2 Stochastic RB-S

Initialize MDP M with rewards rq and t = 1.
Update:

e Compute estimation matrix P; = Z .
» Update the MDP rewards ry 1 = ry — Ry + YP.R;.
* Store the maximum action reward in each state as R;1. Set R}'}; to the minimum of
these maxima.
if |[R},]/(1—7) = e then
Increment ¢ by 1 and return to the Update step.
else
Output policy m, such that 7(s) = arg max, rf, ;.
end if

Ptl"""""Dt,lC

We can write this as
t—1

re=ro+»_ (YP— D)V —dy),
k=0
or . )
re=rot PV = Vi = (P~ D),
Finally, for every action a,
r¢ = adv(a, ") + (vP — I)d;.
Finally, using the bound ||yP — ||« < 2 and Eq. concludes the proof. O

B.4 Proof of Theorem 4.6

We begin the proof by reiterating and clarifying the notation used. We work with action-based vectors,
meaning all vectors have dimension m = |.A|, and matrices are of size m x m.

» 7, — the vector of all action rewards at step ¢ of the algorithm (assuming the order of actions
is fixed).

* r¢ — the reward of action a at step ¢ of the algorithm.

* R, — avector with entries corresponding to the same actions as 7, but each entry represents
the maximum reward available in the state to which the action belongs (at step ¢ of the
algorithm). Specifically, R;(a) = max;,r® st(b) = st(a). Additionally, we abuse the
notation to define Ry (s) = max; r®, st(b) = s for state s.

s R = min Ry — the minimum of state maximum rewards. This is a key quantity to track
during the run of the algorithm, as it provides a stopping criterion, as shown in Lemma [.1]

* Tmax — the maxima of action rewards in each state: rpax = —ming Max, s (q)=s 6
Roughly, it can be understood as the distance the algorithm needs to cover during its run. In
this case, "max = —R§"™ = — min Ry.

* P, — action-to-action transition matrix with size of m x m. Its element P;[i, j] is the
probability that after choosing action ¢, the next action chosen is action j. This value is
non-zero only if the agent has a non-zero probability of appearing in state s’ = st(j), and
policy 7 chooses action j in s’. Alternatively, P, can be seen as a product P4 C,;, where
P4 is am x n matrix of action transition probabilities (independent of policy) and C'; is an
n x m is policy matrix - C[i, j] = 1 if policy 7 chooses action j in state ¢ and 0 otherwise.

The formal definition of Stochastic RB-S algorithm is presented as Algorithm [2] The following
proposition demonstrates the geometric convergence of the Ry"'" quantity during the run of the
algorithm.

Proposition B.2. We have that for all t, R}I}ﬁl > yRmin,

Proof. Let s be the state where minimum is achieved, R;41(s) = R{%}. Suppose action a has the
maximum reward during iteration ¢, R;(s) = r{. Then,

RPY > iy =1 — Ri(a) + (YP'Re)(a) = (YP'Re)(a) > RP™,
where the last inequality follows from stochasticity of P;. O
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During the run of the algorithm rewards of all actions are always negative, which is demonstrated in
the following proposition, similar to Proposition|C.1]

Proposition B.3. r; < 0 forall t.

Proof. We will prove this by induction. This holds at time zero by the inductive assumption. Now
suppose it holds at time ¢. In particular, max r; < 0. It suffices to prove that maxr;;; < 0. But:
maxriy; = max(rt — Rt + ’yPth)
< R, — R, +maxyP R,

= ymax P R;.

By the inductive hypothesis we have max r; < 0 and combining that with the stochasticity of P, we
obtain the RHS is nonpositive. This completes the proof.

Next, let us rewrite our update rule to have an explicit expression for the stochastic error at each time
step. Instead of Eq. [5]let us write
re1 =1t — Ry + v Pr, Re + 24,

where

Elzt|re, ..., 1m0] = 0.
Specifically, we have

zt = y(P; — Pr,)R:.
The size of the noise term 2, plays an important role in our analysis. What turns out to matter is the
infinity norm of the sum of these random variables, which is bounded in the next proposition.

Proposition B.4. The random variable

Q
[\v]

is a sub-Gaussian random variable with parameter 0 = ﬁ

Proof. Observe that each z(s) is the average of k random variables whose support lies in
[~TmaxY's TmaxY!] by Proposition Let us denote these random variables as e, so that

koo i
._ 1€
ZZ(S) Zzél l )

‘We thus have that

P<z_:zl(s) 26) =P<z_:zeli](:) 26).
1=0 1=0 i=1

We can apply Azuma’s inequality to the martingale

k 1 1
1 1 2 ko i <§ o e’)+e
€0 €t € 2 i1 €0 =170 L

Oa?v L [N L ) L LR ]

at time kt to yield

t—1 t—1
r
St < S o 3t e
1=0 1=0
— . . . . 2
We conclude that Zfzé 2(s) is a sub-Gaussian random variable with parameter 02 = ﬁ

O
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Given a policy m, let us denote by G the vector
Gi = Q5 —QF,

where ()7 is the Q-value vector of the policy 7 under the rewards ;. This vector has as many entries
as the number of actions. Note that because 7, is now a random variable, so is )7 and thus also G7.

Lemma B.5.
/ 2
E (max 16 - 67 Il ) < 12 B 12

Proof. Indeed, for any fixed policy 7,
QF = (I =P 'rs
where P, is the action-to-action transition matrix. Thus
Qf1 = QF + (I = Px) ™ (vPr, = DRy + (I = vPr) " 2.

A key observation is that the second term on the RHS does not depend on the policy, despite appearing
to do so. Indeed, matrix P, = PoCr, and P, = P5C}, as it described in the beginning of the
Section, but since R; has the same entries on the coordinates correspondent to the action on the same
state, therefore Cr, Ry = Cx R and Py, R; = P, R;. Therefore

P7rt Rt = Pﬂ'Rta
for any policy 7. We thus have
Qfi1 = QF — Re+ (I —vPr) "2

Now, iterating this recurrence, we obtain that for any two policies 7, 7/,

t—1 t—1
Gr —GF :(I—'yPﬂ)_lzzl—(I—*yPﬂf)_lzzl. (11)
1=0 1=0
Thus
t—1
1GT — GF llo < 1T = 7Pe) ™ = (I = 7Pe) oo x |3
=0 oo
Therefore
) 9 t—1
HG;T *G? ||oo < i Zzl
7= o

Since this bound holds for any policy 7 and any policy 7/, we have in fact proven

t—1
E 2l .
=0

- o 2
r_frrl’?ﬁ(HGt _Gt ||oc < m

oo

We can now prove our main result of this section.

Proof of Theorem{.6] By Proposition att = ﬁ log( S(Ti“j’j{)) we have that
R > A" RE™ > —e(1 — 7).

It follows that @Q7* > —el. On the other hand, using nonpositivity of rewards from Proposition
we obtain that Q7 < 0 for any policy m. We conclude that the policy 7, is e-optimal under the
rewards 7;.

However, what we need to bound is the optimality of 7r; under the initial rewards . Observe that for
any policy m we have by definition of G7,

Q7 = Qg + Gy
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By e-optimality of 7; under the rewards r;, we have that for any policy m,
Q +GY < Q" + G +el,
or
Qb — Qi <Git —GF +el. (12)

We conclude that the event that the policy 7 is not 2e¢ optimal under 7o can occur only if for some
policy 7, we have
IGF = Gi*llee = €.

Let us call that “bad” event &X'. To prove the theorem we need to upper bound the probability of this
event:

!’ 2
P@) < Ploaxliof - GF b 2 < P (2 |zl 2 o). (13)

To proceed we need a high-probability bound on || Z; ||~ where each entry of Z; is a Sub-Gaussian
random variable. While standard, we did not find an explicit statement of what we need to use in the
existing literature, so we provide a proof below.

Proposition B.6. For m random variables 71, . .., Z,, where Z; ~ subG(c?) the following bound
holds:
&2
P(max Z; > ¢) <mexp | —— (14)
202

Proof. Forany A > 0

P(max Z; > ¢)

IN

P (Z exp (AZ;) > exp (5)\)>

i=1

EY " exp (A\Z;) A2o?
= < Y
exp (eN) = Mmexp )

where second inequality is Markov inequality and third inequality follows from the properties of
subgaussian moment-generating functions.

We next choose the value of A > 0 which minimizes the upper bound we have derived, which is
A\ = ¢/02. Plugging this value in, we obtain the required result:

A2g? g?
P(max Z; > ) < mexp —eX| <mexp|—=—].
2 202

O

Now applying Proposition[B.6| (multiplying it by 2 since we need it for both maximum and minimum)
to Equation[I3] we have:

2 (1 - )
< —— > < —_ .
P(X)P<1_7|Zt||ooe>2mexp< 172 )

Now, plugging in 0% = k(qijjyg) we have:

P(X) <2mexp (—k(l — 7:2262(1 — 7)2> .

max

Choosing
4r2 . log 12_—’”7
Ce(1-9)3(1+y)
guarantees that P(X) > 7, which concludes the proof.
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C Additional Remarks on Algorithms

C.1 Exact Reward Balancing Algorithm

In this section, we provide a formal definition of the Exact Reward Balancing algorithm and demon-
strate its equivalence to Policy Iteration. The formal definition is presented below (Algorithm

3).

The issue with the algorithm arises in its Update step: choosing A; such that the value function of
the policy 7 in the updated MDP M, is zero. This means we must compute A; values that ensure
the new value function of 7, is zero, implying they must be exactly the negation of the current value
function of m;: Ay = =V,
If we define the transition probabilities under policy 7; as Py, and the rewards at iteration ¢ as ry*,
then:

0=17"+(vPr, — )&y = A= —(vPy, = I)" '] (15)
Thus, computing A, requires inverting an n X n matrix, which is analogous to the policy evaluation
step in the Policy Iteration algorithm.

Next, to compute the update M; = L2 M,_1, we calculate 7%t + 1 = 79 + >, ¢,(i)A¢(i) and
select the action with the maximum reward. This step is identical to the policy improvement step.

By combining these two observations, we conclude that the Exact Reward Balancing algorithm is
equivalent to Policy Iteration.

Algorithm 3 Exact Reward Balancing

Initialize My := M andt = 1.
while True do
Select policy 7; by choosing as = arg max, r%,st(a) = s for each state s. Denote the reward
of the action as r%s.
if 7% =0 Vsthen
Output policy 7,
else
Update the MDP M, = £?* M,_; by choosing A, such that the values of the policy 7; in
the updated MDP M, are all 0.
Increment ¢ by 1 and return to the policy choice step.
end if
end while

C.2 Intuition behind Safe Reward Balancing algorithm

Having introduced the concept of reward balancing, there are multiple ways to design an algorithm
based on this idea. In this section, we provide intuition behind the Safe Reward Balancing algorithm
(RB-S), the version presented and analyzed in this paper. The algorithm is considered "safe" in the
following sense: action rewards, which start as negative after the initial subtraction of the maximum
reward, remain negative throughout the execution of the algorithm. This is guaranteed by the choice

a

of deltas s = — max, ﬁW’ which is justified from both classic MDP and geometric perspectives.

From the classic MDP point of view, for every state s, the value of the optimal policy at state s is
guaranteed to be at least the maximum over all actions of the sum of discounted rewards collected
before leaving state s. This value is exactly the value of d; proposed in the algorithm:

,r.(l

0; = — max —,
alst(a)=i 1 — yp},

Including action a*, which maximizes this quantity, in a policy = guarantees that V'™ (i) < §;, which
is also true for the optimal policy. Therefore, the value of the optimal policy will remain negative,
and the choice of §; is safe. A stronger fact is shown in the following proposition.

Proposition C.1. r{ < 0 for all times t and actions a.
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Figure 6: RB-S algorithm choice of d.

Proof. Recall that we assumed this to hold at step zero. Now we will argue that this property is
preserved by applying each map Lfi computed in the execution of the RB-S. Indeed, in applying this

map have
,r(l.

~alstlay=i T—ypk
Since the numerator is negative and denominator is positive, we have
0; > 0.
This immediately implies that for actions b with st(b) # i, the update performed by Efi,
rb b — 6mpé

leaves 7, non-positive.
As for actions a with st(a) = ¢, we have that the update has the property that

¢t =8l — 1)
r* +6; (1 —pf)

,ra
it
s —1

IA

(1 —~ps)

0.
O

The choice of §; is also justified from a geometric perspective (Figure[6). The selection of 5 can be
interpreted as the choice of a hyperplane H%, which is incident to one of the actions in state s and
zeros on the other self-loop vertical lines L/, where s’ # s. After applying the transformation £%,
each action retains its advantage with respect to %, or its relative position to it. Therefore, since
none of the actions were above the hyperplane before the transformation, all of them remain below or
on the hyperplane afterward.

C.3 Reward Balancing with Action Filtering

Action filtering is a technique that allows an algorithm originally designed as an approximate solver
to produce an exact solution under the assumption that the optimal policy is unique. In this section,
we describe the algorithm and prove its convergence.

The intuition behind the algorithm is based on Corollary [.3] which establishes that:
t

|ri — adv(a,7*)| < 2rmax177
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Algorithm 4 RB-S with Action Filtering

Initialize My := M, Ao = Aand ¢t = 1.
Update:
* Vs compute 65 = — max, 7*/(1 — yp?).
» Update the MDP M; = L2 M,_;, where A; = (01,...,6,)T.

t
* Update A; by filtering actions with criteria 7{ < 27pax 72—

1—v°
if | A| > n then
Increment ¢ by 1 and return to the update step.
else
Output policy 7 that sonsits of remaining actions.
end if

This implies that as the algorithm progresses, the reward of each action converges to its advantage
with respect to the optimal policy. Consequently, the rewards of the actions participating in the
optimal policy converge to zero, while the rewards of the actions not participating converge to some
value less than zero. More precisely, if after ¢ iterations of the RB-S algorithm the reward 7§ of action

a satisfies .

7’? < 27"Inaxm,
then action a is not optimal and does not need to be considered in the following iterations of the
algorithm.

(16)

At the same time, Corollary and Inequality [16] guarantee that this moment will eventually
occur. Let us denote the true advantage of action a with respect to the optimal policy as h, where

4T max

h = —adv(mo,a) > 0. Then, after a number of algorithm iterations exceeding ¢, > log,, (M)’
the action a can be filtered out because after ¢, iterations it is true that:
a h
rg —adv(mo,a)| < 5
which implies that the observed action’s reward satisfies 7y, < % and can indeed be filtered out.

The two propositions above imply that action filtering will converge after
1 — Jmax

AT max
iterations, where h™?* = — max, adv(*7*)a is the negation of the maximum advantage with respect
to the optimal policy among non-optimal actions.

Action filtering provides an idea of how to run the algorithm in a more practical setting. Choose the
number of iterations 7" such that the run time is satisfactory. Then, the algorithm will either converge
for ¢ < T to the optimal policy by filtering out all non-optimal actions or output an approximate
solution after 7" iterations. Additionally, action filtering during the execution of the algorithm reduces
the number of computations required to perform updates.

C.4 Similarity Between RB-S and VI

For known MDPs in the diagonal-free case the two algorithms are indeed equivalent. This case
corresponds to 0 self-loop probabilities on every action. In this case, the RB-S simply chooses
maximum reward as d at every iteration and the update of action a becomes:

ripn =i — Re(s) + (YPaRe)(s),
where R; is the maxima vector defined in Appendix [B.4] Note that we can make these choices and
updates even in the case when self-loop probabilities are not 0.

Let’s denote the cumulative adjustment of the RB-S algorithm up to step ¢ as Ay



Then, we are going to prove that A, = V; in the diagonal-free case by induction, given that initial
values Vj; = 0. Induction base 0 = 0 is trivial. Induction step can be derived as follows: at step ¢ of
the RB-S algorithm, reward r{ of action @ on state s is equal to:
1 =1g + COAy = 1§ — Ay(s) +p° Ay
Maximizing this quantity over actions a on the state s is the same as maximizing:
argmaxrd — A.(s) +yp*A, = argmaxrgd + vp® A, = r¢ + 4p°V;,
a a
by inductive assumption. Therefore, the choice of action will be the same. Now, abusing notation
let’s assume that action a indeed maximizes the the expression. Then,
Vigi(s) = + "V
for tth step of the VI algorithm. For RB-S,

Aip1(s) = argmaxrf — At(s) + ’yp”At
a

and
Apr1(s) = Argi(s) + A¢(s) = 15 — Ag(s) + " A¢ + A¢(s) = Vigpa(s)

Therefore, in the known diagonal-free MDP case, the two algorithms are equivalent. At the same
time, in the presence of self-loops, RB-S can also be viewed as a VI algorithm, but run on a modified
MDP in which self-loops are removed. To perform this modification, each action a : st(a) = s, needs
to be transformed into a self-loop-free action a such that it produces the same values for every policy
it participates in:

0=a™VI =r"+ (ypl = DV™(s) +7 > pf V(i)

i#1
- ‘+(—1)V”(s)+7(1_pé)z PL_yr(iy =atvT
L —pg L=ape 1-1k

Note that in the resulting MDP, each action has a different discount factor v depending on the self-loop
probability of the action a before the transformation. Therefore, the standard VI convergence proof is
not directly applicable here. However, it is not difficult to modify the proof to show that VI run on
pi
1—-pi>

this modified MDP will have a convergence rate of at least the maximum of which matches the

convergence rate stated in Theorem [4.4]

C.5 Comparison of RB-S and Value Iteration/Q-learning in stochastic case

Does the equivalence between RB-S and VI, as presented in Section [C.4], apply to the stochastic
case? In this Section, we show the difference between RB-S and value-based algorithms. First, we
show the difference between RB-S and Stochastic Value Iteration. In the known MDP case the VI
update can be written as:

Vit1 = maxr® + yPV;.
Subtracting V; from both sides, we obtain:
Vier — Vi = maxr® + (yP — 1)V,.

Note, that the expression in the right-hand side is indeed the expression of the new reward of the
modified MDP ﬁA, where A = —V,. Then, if we assume 1}y = 0, the expression can be rewritten as:
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¢
Vie1 — maxr +(P-1 Z maxr +(HP-1) ZR Rit1
i=1 i=1

This equality again demonstrates the equivalence between RB-S and Value Iteration in the determin-
istic case. But are two algorithms equivalent in the stochastic case? No, they are not. Assuming the
matrix P; is sampled at step ¢ of the algorithm. Then, the difference between subsequent values can
be written similarly as in the previous expression:

t
Virr = Ve = maxr® + (yP, = 1)) (Vi = Vie) (17)
i=1

As for RB-S update values, they are equal to:

Riv1 = Max 7y = Maxry + (yP: — I)R;

= Maxri— +(yP—1 — IRy + (WP, — IRy

t
= maxr® + Z(’yPi — DR, (18)

i=1

Equations [T7]and [T8]shows the difference between two algorithms: the Value Iteration update is more
influenced by the stochasticity of the matrix P;, while in RB-S the term (v P; — I) R; dependent on
estimation obtained at time step ¢ converges to 0 as ¢ — oo.

Then, we show that stochastic RB-S is not equivalent to Q-learning with any learning rate schedule
a;. We define the operator max to replace a value with the maximum on the correspondent state, and
a

Q™ = max(. Then, for Q-learning with initial values of 0, the updates are:
Qo=0,Qy =0

Q1 =ar, Q' =R
Q2= (1—a2)Q1+ ax(r+vPQT), Q5 = ﬁ5?&[(1 — )1 + aa(r +vPIQTY)).

Now the equivalence between RB-S and Q-learning can hold if and only if a; = oo = 0. Then, for
the third update:

Qs = (1-0a3)Q2 + a3(r + 7vRQ3"), Q3 = ﬁ%&[(l —a3)Q2 + az(r + v2Q3")].
Therefore, for Q-learning to be equivalent to RB-S, we need to analyze the difference:
Q3" — Q3" = max [(1 — a3)Q2 + as(r + 7P2Q5") — Q3]
= ﬁ%ﬁ/{ [(1 = a3)(r + vP1QT") + as(r +7RQ7%") — Q'] =
= ﬁ? [r— Q3" +vPi(1 — a3)QY" + 7P203Q3'] .

For the equivalence with the RB-S to hold, this expression should be equal to:
Ay = Ry =i [r + (7P, ~ DQY + (1P, — 1)(QF — Q1] =
ﬁé\&[r - Q3 + 7P + 7 (Q7 — QT')],
which is not possible for any value of «s.

This results in an important difference in stochastic RB-S and Q-learning dynamics: the Bellman
update in Q-learning has only one stationary point, while the RB-S update has a subspace of stationary
points. This leads to different algorithm dynamics: Q-learning can recover from errors, but progress
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after a single update might sometimes be negative. In contrast, RB-S cannot recover from errors,
but steady progress toward stationary subspace is guaranteed in every step. Therefore, if the results
of a Q-learning run are not satisfactory, the output Q-values can be reused to continue running the
algorithm. In RB-S, however, the output is not reusable, so the algorithm must be restarted from
scratch.

D Experimental Results

D.1 Known MDP experiments

In this section, we present the performance results of the RB-S Algorithm (Algorithm [I)) on three
experiments. We compare the convergence of the RB-S algorithm with the Value Iteration algorithm.

In all the MDPs below, we construct the action transition probabilities as follows: the number of
actions at each state is equal to the number of potential destinations, and each action has a distinct
destination assigned to it. Then, the MDP has global parameters:

» Execution probability: the probability that, after taking an action, the agent appears in the
destination state assigned to that action.

* Random probability: the probability that, after taking an action, the agent appears in one of
the destinations assigned to the state where the action is taken, with the destination chosen
according to a unique exponential distribution.

¢ Self-loop probability: the probability that, despite taking an action, the agent remains in
the same state.

The comparison is performed on three kinds of MDPs:

* Random MDP: We create this MDP by choosing, for each state, between 1 and 4 potential
transition destinations selected randomly. We then create the same number of actions as there
are potential destinations. The reward of each action is the sum of a randomly sampled state
reward from the interval (0, 3) and a random action reward from the interval (—0.5,0.5).
The average shortest path in this MDP is O(logn).

* Grid World MDP: One hundred states correspond to the cells in a 10 x 10 grid. Possible
destinations are "Up," "Left," "Down," and "Right," which are available at any state unless
they would move the agent beyond the grid’s border. The reward for each action is equal to
0.1 times the sum of the cell’s coordinates, plus a small random component. The average
shortest path in this MDP is O(y/n).

* Cycle MDP: Numbered states organized into a cycle. Each state has three available
destinations: the first, second, and third states ahead in the cycle, with an equal number of
actions. The reward is equal to the state’s number multiplied by 0.1, plus a small random
component. The average shortest path in this MDP is O(n).

Our results are presented in Figures O Experimental details may be found in the figure
captions. Overall, the experimental results support the theoretical findings: the RB-S algorithm
largely benefits from self-loops, while the VI algorithm benefits from information exchange between
nodes.

D.2 Unknown MDP experiments

As discussed in Appendix [C.3] it is challenging to compare the performance of the two algorithms
due to differences between them. In particular, tracking the progress of Q-learning and determining
the number of iterations required for convergence is difficult. In contrast, for RB-S, the progress in
terms of the infinity norm of the vector R is known, with the error being the unknown factor. In this
work, we design the experiments as follows: the number of iterations ¢ is set to

]' 10g< rmax >
1—vy e(l—7)/)"

which is the number required by RB-S to achieve an e-optimal policy (Theorem [4.6). We set € to
0.1 in all experiments. The number of samples % used to estimate P during each iteration varies
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Figure 7: Comparison of the performance of VI and RB-S algorithms. X-axis is value of execution
probability (while remaining probability is assigned to self-loop). Y-axis is number of iteration it took
the algorithm to converge to an e-optimal policy, where € = 0.1. Average numbers and log standard
deviations are presented. Number of states n = 100, discount factor v = 0.95. 3 presented plots
demonstrate how RB-S benefits from high probability of self-loops.
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Figure 8: Comparison of the performance of VI and RB-S algorithms. X-axis is value of random
action probability (while remaining probability is assigned to self-loop). Y-axis is number of iteration
it took the algorithm to converge to an e-optimal policy, where e = 0.1. Average numbers and log
standard deviations are presented. Number of states n = 100, discount factor v = 0.95. 3 presented
plots demonstrate how RB-S benefits from high probability of self-loops.
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Figure 9: Comparison of the performance of VI and RB-S algorithms. X-axis is value of gamma.
Y-axis is number of iteration it took the algorithm to converge to an e-optimal policy, where € = 0.1.
Average numbers and log standard deviations are presented. Number of states n = 100, execution
and random action probabilities are both 0.5. Performances of RB-S and VI are indistinguishable.

and is shown on the z axis. To measure performance, we use the infinity norm between the original
rewards of actions of the optimal policy and the action currently implied by the current Q-value or
RB-S reward vectors. We use the same MDP types—Random, Grid World, and Ring—as described
in the previous section. Specific MDP setups are detailed in the corresponding figures. We run 20
experiments for each setup and plot the mean and standard deviation.
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Figure 10: Comparison of the performance of VI and RB-S algorithms. X-axis is a number of states.
Y-axis is number of iteration it took algorithm to converge to e-optimal policy, where ¢ = 0.1. Average
numbers and log standard deviations are presented. Execution and random action probabilities are
both 0.5, discount factor v = 0.95. Performances of RB-S and VI are very similar.
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Figure 11: Comparison of the performance of Q-learning and stochastic RB-S algorithms. X-axis
is a number of samples used each iteration to estimate transition probabilities. Y-axis is maximum
absolute difference between rewards of optimal actions and actions currently implied by the algorithm.
MDP sizes are 100, probability to take random action is 1, discount factor is v = 0.95. RB-S and
Q-learning perform similarly on random MDP, but RB-S performs better on Grid World and Ring
MDPs.
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Figure 12: Comparison of the performance of Q-learning and stochastic RB-S algorithms. X-axis
is a number of samples used each iteration to estimate transition probabilities. Y-axis is maximum
absolute difference between rewards of optimal actions and actions currently implied by the algorithm.
MDP sizes are 200, probability to take random action is 0.75 and probability of self-loop action is
0.25, discount factor is v = 0.9. RB-S and Q-learning perform similarly on random MDP, but RB-S
performs better on Grid World and Ring MDPs.

Results are presented on Figures [TT] [T2] [T3] Two algorithms perform similarly in Random MDP,
where mixing is quick and Q-Values of all actions are similar, while in Grid World and Ring MDPs
performance of RB-S is better.
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Figure 13: Comparison of the performance of Q-learning and stochastic RB-S algorithms. X-axis
is a number of samples used each iteration to estimate transition probabilities. Y-axis is maximum
absolute difference between rewards of optimal actions and actions currently implied by the algorithm.
MDP sizes are 400, probability to take random action is 0.25 and probability of self-loop action is
0.25 and probability to execute the action is 0.5, discount factor is v = 0.9. RB-S and Q-learning
perform similarly on random MDP, but RB-S performs better on Grid World and Ring MDPs.
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