
Evaluating Bayes Error Estimators on
Real-World Datasets with FeeBee

Cedric Renggli⇤
ETH Zurich

Luka Rimanic⇤
ETH Zurich

Nora Hollenstein
University of Copenhagen

Ce Zhang
ETH Zurich

Abstract

The Bayes error rate (BER) is a fundamental concept in machine learning that
quantifies the best possible accuracy any classifier can achieve on a fixed probability
distribution. Despite years of research on building estimators of lower and upper
bounds for the BER, these were usually compared only on synthetic datasets with
known probability distributions, leaving two key questions unanswered: (1) How

well do they perform on realistic, non-synthetic datasets?, and (2) How practical

are they? Answering these is not trivial. Apart from the obvious challenge of
an unknown BER for real-world datasets, there are two main aspects any BER
estimator needs to overcome in order to be applicable in real-world settings: (1)
the computational and sample complexity, and (2) the sensitivity and selection of
hyper-parameters. In this work, we propose FeeBee, the first principled framework
for analyzing and comparing BER estimators on modern real-world datasets with
unknown probability distribution. We achieve this by injecting a controlled amount
of label noise and performing multiple evaluations on a series of different noise
levels, supported by a theoretical result which allows drawing conclusions about the
evolution of the BER. By implementing and analyzing 7 multi-class BER estimators
on 6 commonly used datasets of the computer vision and NLP domains, FeeBee
allows a thorough study of these estimators, clearly identifying strengths and
weaknesses of each, whilst being easily deployable on any future BER estimator.

1 Introduction

The Bayes error rate (BER) [5] is a fundamental concept of machine learning (ML) which quantifies
the “irreducible error” of a given task, corresponding to the error rate of a Bayes optimal classifier.
Given a dataset representative for a task, knowing its exact BER yields the best accuracy any machine
learning model could achieve. Being such a fundamental quantity, BER estimators have been applied
to a diverse range of applications, from performing feature selection [17, 18], exploring the feature
space or behaviour of intermediate representations in trained networks [18], assessing the quality of
security defences against ML-based attacks [4], to estimating the feasibility of a ML application given
a target accuracy prior to its development [15]. In the asymptotic regime, in which one can access
an infinite amount of data, one could use a consistent classifier such as k-nearest neighbor (kNN)
to estimate the BER [5]. Over the last 50 years, coming up with practical Bayes error estimators
in the finite-data regime has been a never ending pursuit of the ML community: from Fukunaga’s
early effort back in 1975 [10] to Sekeh et al.’s recent effort just last year in 2020 [18] and a diverse
collection of other Bayes error estimators [1, 2, 6, 11, 14, 16].

Despite this wide range of real-world applications and the large number of estimators, there exists a
technical gap: BER estimators have only been evaluated and compared on simple synthetic datasets

for which the true BER can be calculated. This results in a lack of understanding of the performance
and practicality of BER estimators in real-world scenarios. First, all these synthetic datasets are

⇤Equal contribution. Contact: cedric.renggli@inf.ethz.ch or luka.rimanic@inf.ethz.ch.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

mailto:cedric.renggli@inf.ethz.ch
mailto:luka.rimanic@inf.ethz.ch

constructed with simple data generative processes, which can be very different from real-world
datasets that are diverse in their modalities (e.g., images, text, tabular data) and data distributions.
Second, many BER estimators consist of a hyper-parameter tuning mechanism that relies on the true
BERs of synthetic datasets [5, 11, 20], which are in practice not available for real-world datasets.
Third, real-world datasets can often take advantage of pre-trained feature transformations which can
lead to improving convergence rates at the cost of a slight grow of the BER [16]. Such a behavior is
also hard to explore on synthetic datasets.

In this paper, we present FeeBee, which, to our best knowledge, is the first evaluation framework of
BER estimators on realistic, non-synthetic datasets. The goal of FeeBee is to enable a systematic
study of the performance and practicality of BER estimators in more realistic scenarios. Designing
FeeBee is challenging — after all, how can we compare BER estimators without knowing the true

BER? FeeBee’s idea is to go beyond simply evaluating an estimator at a single point — instead,
evaluate it on a series of points, for which we know the relative relationship among their BERs.
At its core, FeeBee injects label noise to existing datasets, and using a simple but novel technical
result, it estimates the corresponding BER on different noise levels to measure to what degree a
BER estimator under/overestimates. The FeeBee framework allows us to systematically evaluate
BER estimators. Especially, we focus on two main reasons that hamper the applications of BER
estimators in real-world scenarios: (i) difficulty of choosing correct hyper-parameters and a feature
transformation, and (ii) computational and data efficiency. Our key contributions can be summarized
as follows:

• We propose FeeBee, the first principled and practical framework for comparing different BER
estimators by reasoning about the evolution of the true (unknown) BER rather than evaluating
the BER as a single value.

• We open-source and deploy FeeBee on 6 well-established, real-world, computer vision and text
classification benchmark datasets, on which we systematically evaluate a range of 7 existing
BER estimators. The framework can easily be extended with new BER estimators.2

• We perform further studies in order to understand the behavior of certain BER estimators, as
well as studying the potential of simple (scaled) classifiers to be used as BER estimators.

Moving forward. Evaluating BER estimators on real-world datasets is a fundamentally challenging
problem. FeeBee provides, to our best knowledge, the first attempt to tackling this problem. We see
our contributions as moving away from the synthetic setting by using realistic, well-known datasets
for which we are not aware of the true BER. We are aware that this framework is only a step towards
covering all the real-world scenarios. Therefore, we hope that FeeBee can help open up future
research endeavors towards understanding the behavior of BER estimators on real-world datasets,
whilst motivating the development of alternative evaluation frameworks and new BER estimators,
followed by further real-world applications of the BER.

2 Preliminaries

In this section, we give a short overview over the technical terms and the notation used throughout
this paper. Let X be the feature space and Y be the label space, with C= |Y|. Let X,Y be random
variables taking values in X and Y , respectively. We denote their joint distribution by p(X,Y) ⇠ D,
often using the simplified notation p(x, y)=p(X=x,Y =y). We define ⌘y(x)=p(y|x) when C > 2,
and ⌘(x)=p(1|x) when C=2, in which case we assume Y = {0, 1}.

Bayes error. Bayes optimal classifier is the classifier that achieves the lowest error rate among all
possible classifiers from X to Y , with respect to D. Its error rate is called the Bayes error rate (BER)

and we denote it, depending on the context, by R⇤
D or R⇤

X,Y , often abbreviated to R⇤
X when Y is

clear from the context. It can be expressed as
R⇤

X = EX

⇥
1�

(2)
z }| {
max
y2Y

⌘y(x)| {z }
(1)

⇤

| {z }
(3)

. (1)

When examining BER estimators, we only consider methods which are capable of estimating the
BER for multi-class classification problems (C � 2), and divide them into three categories, based on

2Accessible via: https://github.com/DS3Lab/feebee.

2

https://github.com/DS3Lab/feebee

different parts of Equation 1: density estimators that estimate (1), divergence estimators that address
(2), and estimators built around the k-nearest neighbors algorithm, which focus on (3). In Section 4.1
we distill each of these groups in detail.

Synthetic vs non-synthetic regimes. In previous work, even though BER estimators were some-
times applied on real-world datasets (e.g., as a utility for feature reduction strategies, or for quantifying
layer-to-layer change in convolutional neural networks, both in [18]), their theoretical properties were
tested only on synthetic datasets [5, 6, 11, 12, 18, 20]. Upon knowing the underlying probability
distribution, the true BER can then either be computed directly (e.g., [5, 20]), or through a simulation,
such as Monte Carlo method [18]. These synthetic datasets often assume Gaussian distributions [11,
12, 20], over small dimensions (at most 8 in [11, 12, 18]). Since a BER estimator is usually con-
structed based on strong theoretical guarantees in the asymptotic regimes, for each such synthetic
dataset one can usually find a set of hyper-parameters which make the estimator predict the true BER
reasonably well. However, in order to be able to compare BER estimators, a useful framework needs
to give them a chance to be wrong. Therefore, comparing them on synthetic datasets would not yield
transferable insights towards real-world, non-synthetic datasets, since they perform well on synthetic
datasets, whereas in practice, predicting the true BER is notoriously hard.

3 Evaluation Framework

Given a dataset D containing n i.i.d. samples from p(X,Y), a BER estimator m provides us an
estimation of the lower bound `D,m and the upper bound uD,m of the unknown BER R⇤

D. In the
following, we also assume that we are aware of the state-of-the-art performance (SOTA) of applying
machine learning on this dataset: sD � R⇤

D � 0. The goal of our evaluation framework is to come
up with some metrics to measure the quality of the lower bound `D,m and the upper bound uD,m:

LD(m) 2 [0, 1]
�
= Sub-optimality of LB estimator `D,m; lower the better

UD(m) 2 [0, 1]
�
= Sub-optimality of UB estimator uD,m; lower the better

What is a good evaluation framework? In this paper, we consider two natural key requirements that
we believe need to be satisfied when evaluating BER estimators. First, if the estimator predicts exactly
the BER R⇤

D for both the lower and the upper bound, then it should hold that LD(m) = UD(m) = 0.
Second, any lower-bound estimate that satisfies `D,m > sD is clearly wrong, whereas any upper-
bound estimate that satisfies uD,m > sD is clearly outperformed by u = sD, SOTA itself. In
particular, a good framework should penalize these two cases.

Challenges of evaluating BER estimators at a single point. The key challenge of evaluating
BER estimators on real-world datasets is that the true BER R⇤

D is unknown and we only have access
to the SOTA sD. We first show that simply evaluating BER estimators using sD is challenging in
meeting these two natural requirements. The first baseline would use the SOTA as the proxy of R⇤

D:

LD(m) = |sD � `D,m|, UD(m) = |uD,m � sD|.

This does not satisfy our first requirement — an “ideal” estimator that always outputs R⇤
D would have

non-zero sub-optimality as long as sD 6= R⇤
D.

We could construct another baseline inspired by the fact that `D,m = 0 and uD,m = sD are true
bounds and assign them zero sub-optimality:

LD(m) = |`D,m|, UD(m) = |uD,m � sD|.

It satisfies that predicting `D,m = 0 and uD,m = sD gives a perfect score. However, the true BER
R⇤

D has a non-zero score as soon as it differs from sD, again contradicting the first requirement.

(ii) One could attempt at penalizing intervals that are certainly sub-optimal, for example by

LD(m) = 1{`D,m>sD}, UD(m) = 1{uD,m>sD}.

However, this is not distinguishable enough as both the estimator that predicts `D,m = uD,m = 0
and `D,m = uD,m = sD have perfect score, whereas it is obvious that even though an estimator that
always predicts 0 gives a valid lower bound, it is completely non-informative.

3

Figure 1: Evaluation Methodology for estimating the lower bound (left) and the upper bound (right).
Evaluating through a series of points. In order to overcome the above limitation, FeeBee injects
different levels of label noise and measures how an estimator follows the evolution of the BER, as
illustrated in Figure 1. For each sample, with probability ⇢ 2 [0, 1] we flip the label, in which case
we choose a label uniformly at random. The following result quantifies the increase in the BER.
Lemma 3.1. Let Y⇢ be a random variable defined on Y by setting Y⇢ = Z · U(Y) + (1 � Z) · Y,
where U is a uniform variable taking values in Y , and Z is a Bernoulli variable with probability

0 ⇢ 1, both independent of X and Y . Then R⇤
X,Y⇢

= R⇤
X,Y + ⇢(1� 1/C �R⇤

X,Y).

PROOF: Let p(X,Y⇢) be the corresponding joint distribution on X ⇥ Y for the random variables X
and Y⇢, simplified as p⇢(x, y). Note that

p⇢(y|x) = p⇢(y|x, Z = 0)
| {z }

p(y|x)

p(Z = 0) + p⇢(y|x, Z = 1)
| {z }

p(U=y)

p(Z = 1) = (1� ⇢)p(y|x) + ⇢

C
.

Thus,
R⇤

X,Y⇢
= EX

⇥
1�max

y2Y
p⇢(y|x)

⇤
= 1� EX max

y2Y

⇥
(1� ⇢)p(y|x) + ⇢/C

⇤

= 1� ⇢/C � (1� ⇢)EX max
y2Y

p(y|x) = R⇤
X,Y + ⇢(1� 1/C �R⇤

X,Y).

We remark that Y⇢ 2 Y , where ⇢ corresponds to the probability of randomly changing the original
label to a random value in Y and note that Lemma 3.1 implies that 1� 1/C � R⇤

X,Y⇢
� R⇤

X,Y . As a
direct consequence of Lemma 3.1, using the SOTA as an upper bound for R⇤

X , and R⇤
X � 0 as the

lower bound, we can define the valid bounds on R⇤
X,Y⇢

:
`D(⇢) = ⇢(1� 1/C), uD(⇢) = sD + ⇢(1� 1/C � sD),

yielding R⇤
X,Y⇢

2 [`D(⇢), uD(⇢)]. For a fixed method m, we can estimate the lower bound `D,m(⇢)
and the upper bound uD,m(⇢) using any BER estimation method on a manipulated dataset D⇢

obtained by taking ⇢ · n samples out of D, and randomly changing their labels, whilst keeping the
other (1� ⇢) · n samples intact. Notice that our evaluation framework needs to change the label on
all the data points (i.e. in both the training and test sets). For those estimators that predict only a
single value, i.e., try to estimate the exact BER, we set both `D,m(⇢) and uD,m(⇢) to that estimate.

As illustrated in Figure 1, in order to define the error of a given method m on the modified dataset D⇢,
we can estimate four areas with respect to the curves: the area where m clearly under/overestimates

the Bayes error lower/upper bound. More formally, for a given method m we define the lower BER

estimator score LD(m) and the upper BER estimator score UD(m) by
LD(m) =LD,.(m) + LD,/(m), UD(m) = UD,.(m) + UD,/(m),

LD,/(m) =
2C

C � 1

Z 1

⇢=0
1{`D,m(⇢)<`D(⇢)}(`D(⇢)� `D,m(⇢))d⇢,

LD,.(m) =
2C

C � 1

Z 1

⇢=0
1{`D,m(⇢)>uD(⇢)}(`D,m(⇢)� uD(⇢))d⇢,

UD,/(m) =
2C

C � 1

Z 1

⇢=0
1{uD,m(⇢)<`D(⇢)}(`D(⇢)� uD,m(⇢))d⇢,

UD,.(m) =
2C

C � 1

Z 1

⇢=0
1{uD,m(⇢)>uD(⇢)}(uD,m(⇢)� uD(⇢))d⇢.

4

Table 1: Datasets and state-of-the-art performance on classification tasks. Raw features and thus their
dimensionality for NLP tasks do not exist.

Name Dimension Classes C Train / Test Samples SOTA %

MNIST 784 10 60K / 10K 0.13 [3]
CIFAR10 3072 10 50K / 10K 0.5 [8]
CIFAR100 3072 100 50K / 10K 3.92 [9]

IMDB N/A 2 25K / 25K 3.79 [21]
SST2 N/A 2 67K / 872 3.2 [21]
YELP N/A 5 500K / 50K 27.80 [21]

Notation . and / reflects the corresponding upper-left and bottom-right triangles in Figure 1. The
scaling constant is chosen in the way that the random classifier, the one that chooses a label uniformly
at random, satisfies LD(m) = UD(m) = 1. We will use BER estimator scores LD(m), UD(m) to
assess the performance of existing methods on real-world datasets. We estimate the expectation and
standard deviation of the score SD(m) by sampling linearly 10 values for ⇢ and constructing at least
5 random datasets D⇢ for every sampled ⇢.

Discussion. Going back to the two requirements laid down at the beginning of this section, both are
clearly satisfied: (i) Lemma 3.1 and the construction of the areas (see Figure 1) prove that predicting
`D,m(⇢) = uD,m(⇢) = R⇤

D⇢
always yields LD(m) = UD(m) = 0. In that case the method m is

an optimal lower/upper-bound estimate. (ii) Estimators that consistently predict `D,m(⇢) = 0 and
uD,m(⇢) = sD clearly have LD(m) > 0 and UD(m) > 0. Furthermore, for two methods m and
m0, E [LD(m)] < E [LD(m0)] implies that m yields a better lower-bound estimate compared to m0,
whereas E [UD(m0)] > E [UD(m)] implies that m yields a better upper-bound estimate compared to
m0, in expectation. This allows one to compare two estimators even when they produce valid bounds.

Limitations. The main limitation we see in FeeBee is the need of having a relatively strong
SOTA value. Note that having no SOTA value would allow even random classifier to satisfy
LD,.(m) = UD,.(m) = 0. In that sense, for FeeBee to give valuable insights, we need SOTA to be
close to BER to have a wide range of possible values for the areas. We examine this in Section 4.3.

4 Analysis of Existing Estimators
In this section, we use our FeeBee framework to conduct a systematic study of a diverse range of
BER estimators over a collection of real-world datasets.

4.1 Setup
Datasets. We perform the evaluation on two data modalities that are ubiquitous in modern machine
learning — visual classification tasks and text classification tasks, over 6 well-established real-world
datasets presented in Table 1. The first group consists of visual classification tasks, including MNIST
and CIFAR10/CIFAR100. The second group consists of standard text classification tasks, where we
focus on IMDB, SST2, and YELP. Table 1 presents the details of the involved datasets. The splits for
all datasets except YELP3 are taken from Tensorflow Datasets4. The SOTA values, especially for the
NLP tasks, may sometimes differ as different sources provide values on slightly different splits. A
key assumption we made when choosing relevant datasets is that we assume that both the train and
test dataset originate from the same distribution. With that in mind, we rule out datasets for which
this is clearly known not to be true, such as ImageNet [13].

Feature transformations. BER estimators are usually tested on synthetic data of often small
dimension. By testing each estimator on raw data, we observe that on real-world datasets having a
transformation that adequately transforms the space and/or reduces the dimension is necessary for
every method. We report the results on the raw features (i.e., pixel values) for the vision datasets in
Appendix B.1, omitting NLP tasks in this evaluation as there exists no completely raw representation.
Even though applying a transformation might increase the BER [16], it is often supported by theory,
e.g., for kNN-Extrapolate [19] and for kNN [16], by improving convergence. Therefore, we deploy
each estimator on a collection of feature transformations, presented in Tables 6 and 7 in Appendix A.

3https://www.yelp.com/dataset.
4https://www.tensorflow.org/datasets/catalog/overview.

5

https://www.yelp.com/dataset
https://www.tensorflow.org/datasets/catalog/overview

Table 2: Overview of BER estimators and their hyper-parameters.
Estimator Parameter Values

GHP None

DE-kNN,1NN-kNN k [2, 100]

Gaussian KDE B {0.0025, 0.05, 0.1, 0.25, 0.5}
1NN / kNN / kNN-LOO/ kNN-Extrapolate k; dist [1, 10]; {cosine, L2}

BER estimators. The BER estimators implemented initially in our framework can be divided into
three groups, motivated by three different parts of Equation 1.

(1) Density estimators. Both methods in this group use the full test set with labels to estimate the
class posterior, repeated once again for the same test set, but this time without the labels. This
allows one to sample the feature space accordingly and get an estimate of the expectation over X .
(DE-kNN) This method estimates the per-class posterior ⌘y for all y 2 Y , by counting the fraction
ky/k of samples with that specific label amongst the k nearest neighbors, in expectation over the
feature space [12]. One uses the full test set only to estimate an upper bound by the leave-one-out
(LOO) technique, and an optimistic lower bound by the re-substitution technique [11]. (KDE) This
method estimates the class prior by first taking a fraction of per-class samples in the full test set.
Using a kernel density approach, the class likelihood is then estimated using all the samples per class
separately. Finally, by using the Bayes formula, one can derive the posterior density per class, which
is used as the lower and upper bound.

(2) Divergence estimator. (GHP) This estimator uses the generalized Henze-Penrose divergence [18]
between every pair of ⌘i and ⌘j , to get a provably valid estimator of the BER in the asymptotic regime.
The estimation of the divergence can be further utilized to get an upper/lower-bound estimate of the
BER. Implementation-wise, using only a single set of samples, one first constructs the minimum
spanning tree (MST) over the fully connected graph over all the samples, with edges being defined
through Euclidean distances, and then uses the number of dichotomous edges to estimate the BER,
noting that GHP and kNN-LOO (introduced below) have similar computational complexity.

(3) kNN classifier accuracy. (1NN-kNN) The approach by Devijver [6] aims at estimating the 1NN
classifier accuracy by using the k-nearest-neighbor information. In order to get an unbiased estimator
of the 1NN classifier accuracy, in [6] it is proposed using 1

k(k�1)

P
y2Y ky(k � ky) as the estimator,

where k is the hyper-parameter of the method. This approach is very similar to DE-kNN, with the
difference that we are not estimating ⌘y based on a test set, but directly the 1NN classifier accuracy.
Samples are usually used twice through the resubstitution technique in order to get the 1NN classifier
accuracy. (kNN-Extrapolate) One major caveat of bounding the BER by any kNN accuracy method
lies in the fact that the bounds hold only in the asymptotic regime. As an attempt to surpass this
limitation, Snapp and Xu [20] extrapolate the convergence values of kNN for different number
of training samples by assuming probability densities with uniformly bounded partial derivatives
up through order N . However, this requires the number of samples to be exponential in the input
dimension and, hence, is challenging to generalize it to representations of higher dimension on
real-world datasets. (1NN) Inspired by Cover and Hart [5], we define

bRX,1NN := (RX)n,1/
�
1 +

r
1� C(RX)n,1

C � 1

�
, (2)

where (RX)n,k is the validation error of a kNN classifier (with n training samples). The main
motivation comes from the fact that in the asymptotic regime, i.e. for n = 1, Cover and Hart [5]
proved that the RHS of Equation 2 serves as a lower bound of the BER. (kNN) For k > 1 and C > 2
there is no known bound as strong as for k = 1. However, we can still use the same bound even for
k > 1, even though it is less tight, with a further improvement by Devroye [7] when C = 2, yielding

bRX,kNN =

8
><

>:

(RX)n,k/
�
1 +

q
1� C(RX)n,k

C�1

�
, C > 2, k > 1,

(RX)n,k/(1 +
p
2/k), C = 2, k = 2,

(RX)n,k/(1 +
p
1/k), C = 2, k > 2.

(3)

(kNN-LOO) When one wants to omit splitting the dataset into test and train sets, the kNN classifier
accuracy can be reported using a leave-one-out approach. In this work we simply use this estimator
for a fair comparison with certain non-scalable methods, noting that this approach is typically not
computationally feasible in practice.

6

Table 3: LD(m) (upper part) and UD(m) (lower part): The optimal values per method.
Dataset DE-kNN KDE GHP 1NN-kNN 1NN kNN kNN-LOO kNN_Ext

MNIST 0.11 0.41 0.03 0.07 0.02 0.02 0.03 0.28
CIFAR10 0.14 0.36 0.07 0.10 0.05 0.03 0.03 0.34
CIFAR100 0.27 0.31 0.20 0.29 0.14 0.06 0.07 0.22
IMDB - 0.49 0.16 0.31 0.25 0.25 0.15 0.25
SST2 0.42 0.49 0.44 0.38 0.32 0.29 0.34 0.47
YELP - 0.20 - - 0.03 0.00 - -

MNIST 0.11 0.41 0.33 0.22 0.32 0.09 0.11 0.37
CIFAR10 0.15 0.36 0.39 0.26 0.37 0.15 0.17 0.20
CIFAR100 0.28 0.31 0.55 0.36 0.49 0.31 0.37 0.21
IMDB - 0.49 0.51 0.39 0.60 0.43 0.34 0.28
SST2 0.43 0.49 0.73 0.42 0.63 0.48 0.57 0.61
YELP - 0.20 - - 0.38 0.25 - -

Computational feasibility. Some BER estimators are not suitable for very large datasets for two
reasons: (1) algorithmic or (2) space (i.e., memory) complexity. We restrict the memory and
compute time available to run the described evaluation for a single combination of dataset, estimator,
transformation and set of hyper-parameters to 45GB and 24h respectively on 4 CPU nodes and access
to a single NVIDIA GeForce RTX 2080 Ti GPU. Out of 2376 combinations, 103 ran out of memory
and 60 ran out of time (e.g., for high dimensional representations such as BoW, or large datasets such
as the test sets of IMDB or YELP).

Hyper-parameters. We define a meaningful range of hyper-parameters per method in Table 2. The
list was manually curated during the evaluation process by shrinking the range of possible values to
get the best possible set of hyper-parameters per dataset and per method. For every combination of
dataset and feature transformation, we evaluate each method for every value of the hyper-parameter.

Experiment protocol. In order to estimate the quantities described in Section 3, we run every
combination of (1) dataset, (2) pre-trained transformations available for the data modality, (3)
estimator, and (4) the values of their hyper-parameter, multiple times with different random seeds.
The code to reproduce all the results along with a public colab that was used to analyze the results
are available in the public repository under https://github.com/DS3Lab/feebee. We perform
5 independent runs for YELP and 10 independent runs for all other datasets. We sample 11 values
linearly between 0.0 and 1.0 for the fraction of label noise ⇢. We omit reporting derivations of the
estimated mean quantities in all tables and plots with more than two lines, as we observe that the
variance mostly lies near zero (except for the kNN-Extrapolate method).

4.2 Main Results
We now dive into the analysis by examining each presented BER estimator using FeeBee, noting that
in each plot a solid line represents an upper bound, whereas a dashed line represents a lower bound.

Analysis of LD(m) and UD(m). The main quantities that FeeBee reports are LD(m) and UD(m).
In Table 3 we list the optimal scores LD(m) and UD(m) per method and per dataset, meaning that
for each m, each dataset and each score, we choose a transformations and hyper-parameters that
minimize that score. Further details can be found in Tables 9–20 in Appendix B.2, where we report all
the corresponding individual areas LD,/, LD,., UD,/ and UD,., with further example plots presented
in Figure 8 in Appendix B.3.

For LD(m) we observe that 1NN, kNN, kNN-LOO and GHP are consistently outperforming all the
other methods, with either kNN or kNN-LOO being the best choice on each dataset. It is important
to note that the main contribution to LD(m) in the case of 1NN, kNN, kNN-LOO and GHP comes
from LD,.(m), whereas for DE-kNN, KDE and kNN-Extrapolate there is significant contribution
from LD,/(m). This yields that the first group will only get better as more transformations become
available (by reducing the bias that a transformation introduces), whereas the second group provides
less informative lower-bound estimators. For UD(m), we see that there is no method that consistently
outperforms the others. Out of the well-performing methods on LD(m), 1NN and GHP are tangibly
inferior to kNN and kNN-LOO, noting similarly as above that the main contribution for these methods
comes from UD,.(m) which will decrease with better feature transformations.

7

https://github.com/DS3Lab/feebee

Figure 2: Plotting two methods where one of them has low and the other has high (left, middle)
LD(m), or (right) UD(m), confirming that numerical values correspond to estimator’s quality. The
shaded area represents the 95% quantiles.

Table 4: `D,m(0) vs LD(m): The difference between the optimal LD(m) and the LD(m) that is
calculated for hyper-parameters and transformations that minimize `D,m(0).

Dataset DE-kNN KDE GHP 1NN-kNN 1NN k>1NN kNN-LOO kNN_Ext

MNIST 0.24 0.59 0.00 0.56 0.00 0.06 0.04 0.37
CIFAR10 0.21 0.64 0.00 0.52 0.00 0.11 0.10 0.42
CIFAR100 0.10 0.69 0.00 0.30 0.00 0.05 0.02 0.59
IMDB - 0.01 0.00 0.26 0.01 0.14 0.20 0.33
SST2 0.00 0.50 0.01 0.20 0.00 0.11 0.09 0.30
YELP - 0.09 - - 0.00 0.00 - -

We also note that BER estimators are often performing better on certain type of feature transfor-
mations, as seen in Tables 9–20 in the supplementary materials. E.g., 1NN and kNN perform
better on pre-trained embeddings (supporting [16]), whereas kNN-Extrapolate performs best under
transformations that reduce the dimension, such as a low-dimensional PCA (supporting [19]).

Numerical values and estimator’s quality. A key question is whether the numerical quantities
correspond to the performance: does a lower LD(m) imply a better lower-bound estimator? For
simplicity, in Figure 2 we plot over 3 different dataset, 2 methods each such that one has a high score
and the other has a low score and see that their ability to follow the evolution of the BER differs.
We provide full graphs of each methods over all datasets in Appendix B.2, positively answering the
above question.

Minimizing `D,m(0) vs minimizing LD(m). As described in Section 3, whilst an estimator that
always predicts zero gives a valid lower bound, its behavior is non-informative. However, for some
methods tuning for `D,m(0) might be (close to) optimal for LD(m). Thus, in Table 4, for each
method and over each dataset we report the difference in the optimal LD(m), i.e. the best hyper-
parameters and the best transformation, and the one chosen by hyper-parameters and transformation
that minimize `D,m(0). We observe that 1NN and GHP are the only ones that are fully robust in the
sense that choosing the best hyper-parameters and transformation for `D,m(0) yields close to optimal
LD(m), whereas for every other method we can find examples in which the choice based on `D,m(0)
is significantly suboptimal for LD(m).

4.3 Further Discussion

Influence of SOTA. In general, we observe that our framework works when the SOTA value is
not too weak. This can be seen by comparing the results on YELP (SOTA error of 27.80%) vs
other datasets (SOTA errors of at most 3.92%). For example, on YELP kNN has LD(m) = 0.0
(see Table 3), whilst clearly having difficulties in following the BER evolution (see Figure 7a in
Appendix B.2, top-right). A stronger SOTA would detect such difficulties for kNN on YELP through
a non-zero LD(m). Other datasets involved in this framework satisfy that these have been intensively
studied by the research community, particularly in the last few years, resulting in strong SOTA values.

8

Figure 3: Sensitivity of FeeBee with respect to changes in the SOTA values for (left) LD(m), and
(right) UD(m). Strong SOTA values are robust to changes (CIFAR10, CIFAR100), whereas weak
SOTA values suffer from greater uncertainty (YELP).

Sensitivity to changes in SOTA. In order to study FeeBee’s robustness with respect to changes
in SOTA values, we perform additional experiments by altering SOTA. In Figure 3 we show
three examples in which SOTA values inserted into the framework are SOTA ± �· SOTA, for
� 2 {0, 0.05, 0.1, 0.25}, which, we believe, represent realistic improvements in the near future. On
datasets which have strong SOTAs (all but YELP), we see that modifying the values has almost
no impact on FeeBee’s insights (kNN and kNN-LOO perform best on CIFAR10 and CIFAR100,
followed by 1NN and GHP, cf. Table 3). By comparing CIFAR10 and CIFAR100 we see that the
robustness is further improved with stronger SOTA values. Therefore, we conclude that FeeBee is
rather robust to small changes in the values when SOTA is relatively strong. On the other hand, when
the SOTA value is weak, as in the case of YELP, Figure 3 implies that the sensitive of SOTA value
starts to increase, introducing significantly more uncertainty than in the other datasets. However, we
remark that the insights are still useful and preserved even in this difficult case.

Alternative flipping strategies. One could create noisy labels in many different ways. For example,
by assigning different flipping probabilities to different classes, or by conditioning on certain features
and flipping differently on these features (e.g., different probabilities for day vs night images). In most
of these cases one could produce an analogue of Lemma 3.1 which would provide foundations for an
alternative framework. However, each such method would put certain constraints on the applicable
datasets which makes the task of constructing a framework inherently more difficult. Having in mind
that FeeBee in this simplest form is already successful in distinguishing existing estimators, and our
belief that it will stay successful in the future, we opt for using the simplest such framework.

GHP vs 1NN. When looking at the derivation of both the upper and lower bounds of GHP (Theorem
1 in [18]), we see that, asymptotically, this method averages the number of dichotomous edges
connecting a sample from two different classes, on the minimum spanning tree (MST) that is
connecting all the samples in Euclidean space. The 1NN-LOO estimator implicitly performs the
same task over the 1-nearest-neighbor graph, instead of the MST. Intuitively, the 1-nearest-neighbor
graph should lead to a slightly lower error rate when compared to the MST. In particular, 1NN-LOO
should outperform GHP if the feature transformation forms well-separable clusters of samples from
the same class. Nevertheless, showing this is beyond the scope of this work and left for future work.

kNN estimator for k > 1. Due to its success in minimizing LD(m), whilst being inferior to 1NN
and GHP in choosing hyper-parameters and transformations based on `D,m(0), we further examine
the kNN estimator. In Figure 4a we plot 1NN and kNN for k 2 {3, 5, 7, 9} on two representing
datasets and over transformations that are minimizing LD(m), with corresponding values in Table 5.
We see that increasing k increases LD,/(m), which makes kNN a worse lower-bound BER estimator
since it provides a less informative lower bound. We believe that the reason for such a behavior lies
in the fact that for k > 1 the only relevant bounds are given in the case when C = 2, by Devroye [7],
whereas for C > 2 and k > 1 there are no known bounds as strong as the one of Cover and Hart [5]
for k = 1. This results in a larger gap between the BER and the lower bound in the asymptotic
regime. In the finite regime, at the moment this is mitigated by the bias that feature transformations
introduce, however, in the future we expect this bias to decrease and, thus, kNN might further suffer
from these loose bounds.

9

(a) (b)

Figure 4: (a) kNN estimator for k > 1: Increasing k increases LD,/(kNN). (b) Logistic regression
(LR) as BER estimator: Larger scaling decreases UD(m) further, but increases LD,/(m).

Table 5: Impact of k > 1 and LR Model with different constants vs 1NN.
Dataset Method Transformation UD,.(m) LD(m) LD,.(m) LD,/(m)

1NN EfficientNet-B7 0.37 0.05 0.05 0.00
3NN EfficientNet-B7 0.28 0.04 0.01 0.03

CIFAR10 5NN EfficientNet-B7 0.21 0.11 0.01 0.11
7NN EfficientNet-B7 0.18 0.14 0.01 0.14
9NN EfficientNet-B7 0.16 0.16 0.01 0.15

1NN USE 0.60 0.26 0.25 0.01
3NN USE 0.52 0.30 0.12 0.17

IMDB 5NN USE 0.48 0.27 0.14 0.13
7NN USE 0.45 0.26 0.15 0.11
9NN USE 0.43 0.25 0.16 0.09

1NN USE 0.38 0.03 0.03 0.00
YELP LR Model (0.8) USE 0.10 0.08 0.00 0.08

LR Model (0.95) USE 0.10 0.06 0.05 0.01

Improved upper bounds. In Table 3, we see that BER estimators are better at minimizing LD(m)
than UD(m). Even though any classifier can be used as an upper-bound BER estimator, to the best of
our knowledge, the estimators 1NN and kNN from Equations 2 and 3 are the only classifier-based
estimators for which one has theoretical guarantees ([5] for 1NN and [7] for kNN) for the lower
bound on the BER. However, one can construct a lower-bound estimator by scaling the accuracy of
the estimator by some constant c 2 (0, 1). We test the simplest such estimator – logistic regression
(LR) on top of the frozen representations, and several scaling constants. In Figure 4b we observe that
even though LR yields a significantly better estimator of the upper bound than 1NN, it has worse
LD(m) even for the best scaling constant. Furthermore, we note that increasing the scaling, in order
to reduce LD,.(m), further increases LD,/(m), yielding a less informative lower-bound estimator,
also visible in Table 5.

5 Conclusion

In this work, we introduced FeeBee, the first system to systematically evaluate lower and upper
bound estimators of the BER on real-world data. By providing a thorough analysis of existing
estimators using FeeBee, we observe that GHP and 1NN are consistently outperforming the other
lower bound estimators whilst enabling easy hyper-parameter selection on a single point estimate. We
also observe that currently there does not exist an estimator that is able to simultaneously outperform
other estimators on both lower and upper bound. We are open-sourcing the framework which is easily
extendable with any new BER estimator, and hope to further motivate and enable progress in building
better and more practical methods in the future.

10

Acknowledgements
CZ and the DS3Lab gratefully acknowledge the support from the Swiss National Science Foundation (Project
Number 200021_184628, and 197485), Innosuisse/SNF BRIDGE Discovery (Project Number 40B2-0_187132),
European Union Horizon 2020 Research and Innovation Programme (DAPHNE, 957407), Botnar Research
Centre for Child Health, Swiss Data Science Center, Alibaba, Cisco, eBay, Google Focused Research Awards,
Kuaishou Inc., Oracle Labs, Zurich Insurance, and the Department of Computer Science at ETH Zurich.

References
[1] V. Berisha et al. “Empirically Estimable Classification Bounds Based on a Nonparametric

Divergence Measure”. In: IEEE Transactions on Signal Processing 64.3 (2016), pp. 580–591.
[2] L. J. Buturovic and M. Z. Markovic. “Improving k-nearest neighbor Bayes error estimates”. In:

Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference

B: Pattern Recognition Methodology and Systems. 1992, pp. 470–473.
[3] A. Byerly, T. Kalganova, and I. Dear. “No Routing Needed Between Capsules”. In: Neurocom-

puting (2021).
[4] G. Cherubin. “Bayes, not Naïve: Security Bounds on Website Fingerprinting Defenses”. In:

Proceedings on Privacy Enhancing Technologies 4 (2017), pp. 135–151.
[5] T. M. Cover and P. A. Hart. “Nearest neighbor pattern classification”. In: IEEE Transactions

on Information Theory 13.1 (1967), pp. 21–27.
[6] P. A. Devijver. “A multiclass, k-NN approach to Bayes risk estimation”. In: Pattern Recognition

Letters 3.1 (1985), pp. 1–6.
[7] L. Devroye. “On the asymptotic probability of error in nonparametric discrimination”. In: The

Annals of Statistics 9.6 (1981), pp. 1320–1327.
[8] A. Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at

scale”. In: arXiv preprint arXiv:2010.11929 (2020).
[9] P. Foret et al. “Sharpness-aware Minimization for Efficiently Improving Generalization”. In:

International Conference on Learning Representations. 2020.
[10] K. Fukunaga and L. Hostetler. “k-nearest-neighbor Bayes-risk estimation”. In: IEEE Transac-

tions on Information Theory 21.3 (1975), pp. 285–293.
[11] K. Fukunaga and D. M. Hummels. “Bayes Error Estimation Using Parzen and k-NN Proce-

dures”. en. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 9.5 (May
1987), pp. 634–643.

[12] K. Fukunaga and D. Kessell. “Nonparametric Bayes error estimation using unclassified sam-
ples”. In: IEEE Transactions on Information Theory 19.4 (1973), pp. 434–440.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks”. In: Advances in Neural Information Processing Systems 25 (2012), pp. 1097–
1105.

[14] T. Pham-Gia, N. Turkkan, and A. Bekker. “Bounds for the Bayes Error in Classification: A
Bayesian Approach Using Discriminant Analysis”. In: Statistical Methods & Applications

16.1 (June 2007), pp. 7–26.
[15] C. Renggli et al. “Ease.ml/snoopy in Action: Towards Automatic Feasibility Analysis for

Machine Learning Application Development”. In: Proceedings of the VLDB Endowment 13.12
(2020).

[16] L. Rimanic et al. “On Convergence of Nearest Neighbor Classifiers over Feature Transforma-
tions”. In: Advances in Neural Information Processing Systems. Vol. 33. 2020.

[17] G. Saon and M. Padmanabhan. “Minimum Bayes error feature selection for continuous speech
recognition”. In: Advances in Neural Information Processing Systems 13 (2000), pp. 800–806.

[18] S. Y. Sekeh, B. L. Oselio, and A. O. Hero. “Learning to bound the multi-class Bayes error”. In:
IEEE Transactions on Signal Processing (2020).

[19] R. R. Snapp, D. Psaltis, and S. S. Venkatesh. “Asymptotic slowing down of the nearest-neighbor
classifier”. In: Advances in Neural Information Processing Systems. 1991, pp. 932–938.

[20] R. R. Snapp and T. Xu. “Estimating the Bayes risk from sample data”. In: Advances in Neural

Information Processing Systems. 1996, pp. 232–238.
[21] Z. Yang et al. “Xlnet: Generalized autoregressive pretraining for language understanding”. In:

Advances in Neural Information Processing Systems. 2019, pp. 5754–5764.

11

	Introduction
	Preliminaries
	Evaluation Framework
	Analysis of Existing Estimators
	Setup
	Main Results
	Further Discussion

	Conclusion
	Feature Transformations
	Extended Results
	No Transformation / Raw
	Optimal LD(m) and UD(m).
	Further Example Plots

	Tables
	Optimal LD(m).
	Optimal UD(m).

