
Accelerating statistical inferences in astrophysics with Neural Networks and
Hamiltonian Monte Carlo

Diego Gonzalez-Hernandez 1 Molly Wolfson 1 Joseph F. Hennawi 1 2

Abstract
We present an approach to accelerate statistical
inferences in astrophysics by using a combina-
tion of neural networks and Hamiltonian Monte
Carlo. The neural networks are used to create
high-fidelity surrogates of computationally expen-
sive models, while Hamiltonian Monte Carlo ac-
celerates the inferences by more efficiently ex-
ploring the parameter space. We demonstrate the
potential of this approach by applying it to a real-
istic model for the Epoch of Reionization.

1. Introduction
One of the main objectives of the natural sciences is to
formulate models m(θ) that explain physical phenomena,
and to test their validity by comparing these models with
observational data. In astrophysics, this is typically done
by obtaining observational data d, and then constraining the
model parameters θ with Bayes theorem:

P (θ|d) = L(d|θ)P (θ)

P (d)
(1)

With this framework, the posterior distribution P (θ|d) is
calculated given that we assume both a likelihood function
L(d|θ), and a prior distribution P (θ), and that we can calcu-
late the evidence of the model P (d). In most applications,
however, P (d) is intractable. Therefore, sampling algo-
rithms designed to approximate the posterior distribution
are usually employed. In general, Markov Chain Monte
Carlo (MCMC) and Nested Sampling (NS) methods are
used for parameter estimation problems in physics and other
sciences. The Metropolis-Hastings algorithm (and its varia-
tions) is the most commonly used MCMC algorithm (Lewis

*Equal contribution 1Department of Physics, University of
California, Santa Barbara, CA 93106, USA 2Leiden Observatory,
Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands.
Correspondence to: Diego Gonzalez-Hernandez <dgonzalezher-
nandez@ucsb.edu>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

& Bridle, 2002; Foreman-Mackey et al., 2013; Karamanis
et al., 2022), while multi-modal and sliced-based NS algo-
rithms are also widely employed (Feroz & Hobson, 2008;
Feroz et al., 2009; Handley et al., 2015).

Unfortunately, applying standard MCMC and NS algo-
rithms can become too computationally expensive to feasi-
bly perform parameter inference. The most obvious prob-
lem is that these algorithms typically require multiple model
m(θ) evaluations. Consequently, complex models that incur
in large computational costs can significantly slow down
parameter estimation. Furthermore, these algorithms can
struggle to efficiently explore high-dimensional parame-
ter spaces, reducing the number of parameters that we are
feasibly allowed to vary. To overcome these challenges,
we propose using a combination of neural emulators and
Hamiltonian Monte Carlo. The structure of this article is
follows. In Section 2 we explain the approach of using
neural networks alongside Hamiltonian Monte Carlo to ac-
celerate parameter inferences. We then show an application
of this method in Section 3. We discuss the results of this
application in Section 4 and finish with our conclusions in
Section 5.

2. The NN + HMC method
2.1. Neural Networks

The main goal of an emulator is to provide a high-fidelity
approximation of a computationally expensive model that is
fast to compute. There are different approaches for creating
emulators (Walther et al., 2019; Heitmann et al., 2014; Eu-
clid Collaboration et al., 2019), but neural networks (NN)
have become an increasingly popular choice due to their
flexibility and ease of use (Piras & Spurio Mancini, 2023;
Gong et al., 2023; Nygaard et al., 2023; Ruiz-Zapatero et al.,
2024). The specifics of the neural networks (such as the
choice of architecture and hyper-parameters) that each ap-
plication requires may vary depending on the problem itself
(see Section 3 for an example). However, we generally ex-
pect the neural networks to take the model parameters θ as
input, and output some model m(θ) dependent observable
or summary statistic.

1

Submission and Formatting Instructions for ICML 2024

This work presents acceleration of these steps

Develop and
train Neural
Emulators

Data

Model
Accelerate

sampling with
HMC

New
constraints

promotes creation of better models

promotes better usage of data

Figure 1. Flow chart that shows the usual workflow of typical inference problems found in astrophysics, emphasizing the challenges that
are addressed by employing neural emulators and Hamiltonian Monte Carlo.

2.2. Hamiltonian Monte Carlo

A viable alternative to accelerate sampling is to use gradient-
based algorithms. Among these, a popular choice is Hamil-
tonian Monte Carlo (HMC), a gradient-based modification
of the Metropolis-Hastings algorithm. HMC improves the
efficiency of the parameter space exploration by proposing
samples that have a higher probability of being accepted
(Duane et al., 1987). To do so, HMC formulates the problem
by creating an analogy between the exploration of the pa-
rameter space and the dynamic evolution of a particle living
in a phase space defined by the particle’s position (chosen
to be equal to θ) and momentum p. Typically, this particle
is assigned the following Hamiltonian H(θ,p):

H(θ,p) =
1

2
pTM−1p+U(θ) (2)

Where M is referred as the mass matrix, and U(θ) is the
particle’s potential energy. The choice of U(θ) can depend
on the specific application, but the following is generally
used:

U(θ) = −ln
(
L(d|θ)P (θ)

)
(3)

Intuitively, this choice for U(θ) causes the regions of high
density in the posterior P (θ|d) to be located in the regions
with low potential energy U(θ) (see Equation 1). HMC
then increases the efficiency of the standard Metropolis-
Hastings algorithm by proposing samples that correspond to
low energy levels of H(θ,p), which have a higher chance
of being accepted. Therefore, the momentum p is randomly
sampled from a multivariate Gaussian distribution with zero
mean and a covariance matrix given by M at the beginning
of every step of the chain, forcing the hypothetical particle
to spend more time exploring the parameter space in regions

of low U(θ). It is known that for a target distribution with
D dimensions, the cost of an independent sample that HMC
produces scales as O(D5/4), a significant improvement over
the scaling of O(D2) that the standard Metropolis-Hastings
algorithm has (Neal, 2011).

Unfortunately, adopting HMC in most problems is unfea-
sible. This is because the numerical integration that is
performed at every step of HMC requires L(d|θ) (and
in turn, the model evaluations) to be fully differentiable
within the parameter space that is being explored, which
is typically not the case in most inference problems. How-
ever, replacing the models with neural emulators solves
this problem, because we can evaluate their derivatives via
auto-differentiation (Rumelhart et al., 1986; Piras & Spu-
rio Mancini, 2023). This allows us to fully take advantage
of HMC.

2.3. Pipeline

Figure 1 summarizes the main points of our approach.
Since this approach is problem agnostic, creating a flex-
ible pipeline is possible. To this end, we have started the
development of a pipeline that facilitates the application of
this approach. To ensure that the auto-differentiation evalua-
tions of the networks are efficient, we opt to use JAX as the
main backbone for this pipeline. JAX is a high-performance
Python package that is mainly designed to work as a ma-
chine learning framework (Bradbury et al., 2018). Our
pipeline is built to perform the following:

Training and hyper-parameter tuning: Given a dataset
with pairs of (θ,m(θ)), the pipeline trains the required
emulators and performs their hyper-parameter tuning. We
use Flax to create the neural networks (Heek et al., 2023),
and Optuna to perform the hyper-parameter tuning (Akiba
et al., 2019).

2

Submission and Formatting Instructions for ICML 2024

Parameter inference: Given a set of observations d, the
pipeline performs the statistical inference for θ using the
trained emulators. For the HMC, we use the implementation
of the No-U-Turns algorithm (Hoffman & Gelman, 2011)
in the Numpyro package (Phan et al., 2019).

Inference test: If the ground truth of θ is known for d (as
is the case with mock observations), then the pipeline is
able to produce a coverage plot that evaluates the validity
of the statistical setup, and allows for a comparison of the
performance of this approach against other methods. See
Section 4.3 for more details on this.

To demonstrate the use of this approach, we apply it in the
context of parameter inference for models of the Epoch
of Reionization that consider fluctuating ultra-violet back-
grounds, as explained in the following section.

3. Application: Constraining the EoR
The Epoch of Reionization (EoR) is the period of time in the
evolution of the universe during which the neutral hydrogen
in the inter-galactic medium (IGM) transitioned from being
fully neutral (HI) to fully ionized (HII). A detailed discus-
sion of the EoR and its study is outside the scope of this
paper, but its characterization remains an important chal-
lenge in modern cosmology (Zaroubi, 2013; Shimabukuro
et al., 2023). Among various different probes, the Lyman-
alpha forest (LAF) is typically used to study the state of
the IGM at the later stages of the EoR, as it is a series of
redshifted absorption features caused by the presence of HI
along the line of sight of observed quasar spectra.

Unfortunately, modeling the LAF is computationally expen-
sive, which prohibits a proper quantitative comparison of
the wide range of reionization scenarios that still need to be
considered. In a typical setup, for instance, high-resolution
hydrodynamical simulations are used to model the LAF and
its observables for the different stages of the EoR (Doughty
et al., 2023). Further post-processing of these simulations is
usually done to consider different ultra-violet backgrounds
(UVB). The high computational cost of these models makes
statistical inferences using standard methods unfeasible, a
problem that only worsens with more flexible models that
have higher-dimensional parameter spaces. As an initial
test of our approach, we replicate some of the results from
a previous study (Wolfson et al., 2023), where the LAF is
modeled for the case of an inhomogeneous UVB. We will
refer to this study as W23 for the remainder of this article.
To perform the parameter inference, W23 employs a com-
bination of Nearest Grid-Point (NGP) interpolation and the
standard Metropolis-Hastings algorithm. For this, a grid of
∼ 550 models of both ξm and Σm as a function of λmfp and
⟨F ⟩ for each redshift z that is being considered is generated,
and is used to perform inferences on real data. We refer to

this approach as the NGP + MH method for the remainder
of this article. Replicating the results of W23 with the NN +
HMC method serves as a non-trivial test of this technique.

3.1. Models of EoR

We refer the reader to W23 for a detailed description of the
astrophysics and the meaning of the models described in
this section. As a brief summary, the model in W23 uses
the mean autocorrelation function of the LAF ξm as a sum-
mary statistic to constrain two physical parameters related
to the EoR: the mean-free path of ionizing photons λmfp
(responsible for ionizing the HI in the IGM), and the mean
flux ⟨F ⟩ of the flux skewers that are used to calculate ξm.
To obtain ξm, a series of hydrodynamical simulations are
used to model the LAF. Independent fluctuating UVBs are
obtained with a semi-numerical method, and are then used
to post-process the output from the simulations. For each
simulation, a thousand mock Lyman-alpha flux skewers are
forward-modeled, which are then used to calculate indi-
vidual mock LAF autocorrelation functions ξi. Lastly, the
mean autocorrelation function of the LAF ξm is obtained
by averaging over all the individual mock autocorrelation
functions. Additionally, model-dependent covariance ma-
trices Σm are calculated given the statistical setup that is
used (see Section 3.2). These are calculated by using the
following:

Σm =
1

Nmocks

Nmocks∑
i=1

(ξi − ξm)(ξi − ξm)T (4)

Where Nmocks = 500000. In summary, this model allows us
to calculate ξm as a function of λmfp and ⟨F ⟩, as well as
their corresponding, model-dependent covariance matrices
Σm.

3.2. Parameter inference

To constrain λmfp and ⟨F ⟩ from a mock observa-
tion ξi, the following multivariate Gaussian likelihood
L(ξi|λmfp, ⟨F ⟩) is assumed:

L = κ exp
(
− (ξi − ξm))TΣ−1

m (ξi − ξm)

2

)
(5)

Where κ is given by:

κ =
1√

det(Σm)(2π)n
(6)

The proper adoption of this Gaussian likelihood requires a
careful consideration of the covariance matrices Σm that are
used when evaluating the likelihood. Ideally, the covariance

3

Submission and Formatting Instructions for ICML 2024

matrix is obtained directly from the observed data. With
this approach, a noisy approximation of Σm is calculated
by partitioning the data with bootsrapping or jacknifing,
and subsequently recombining the samples. This has the
advantage that the obtained estimate of Σm is agnostic to
any underlying assumptions of the model that is being con-
sidered, since it is being determined empirically (Shirasaki
et al., 2017; Alam et al., 2017; Hamana et al., 2020). Unfor-
tunately, there is not enough high-quality data to do this for
the autocorrelation function of the LAF at the redshifts in
which we are interested. An alternative is to calculate Σm

from mock observations (Gruen et al., 2015; Krause et al.,
2017; Martinet et al., 2018), as explained in Section 3.1.

3.3. Emulating ξm

We first need to construct an emulator for ξm. This em-
ulator needs to take the two input model parameters, and
output an emulated mean autocorrelation function of the
LAF. We choose to employ a fully connected, feed-forward
neural network. For the training, we use the mean absolute
percentage error (MAPE) as a loss function. For a single
autocorrelation function, the MAPE is calculated by:

MAPE =
1

nb

nb∑
i=1

|ξi − ξ̂i|
ξi

(7)

Where ξ is the truth, ξ̂ is its emulation, and nb is the number
of velocity bins that an individual autocorrelation function
has, and over which the mean error is calculated. Even
though the training dataset is normalized before training (as
is typically done in ML applications), the loss is calculated
with the un-scaled autocorrelation functions. This improves
the interpretability of the emulation error, as the calculated
loss after training gives us a relative error calculated in terms
of the original, astrophysical units.

3.4. Emulating Σm

Emulating Σm requires more careful consideration, as co-
variance matrices are symmetric. We take advantage of
Cholesky decomposition to satisfy this requirement, as it
allows us to obtain a lower triangular matrix L (known as a
Cholesky factor) for each Σm, such that Σm = LLT . To
further simplify the emulation, the Cholesky factors are re-
ordered into 1D arrays that we name the flattened Cholesky
factors Lflat. We opt to also use a fully connected, feed-
forward neural network to emulate Lflat, which can then
be used to reconstruct an emulated Σm. For training, we
also use an MAPE loss (Eq. 7) calculated on the un-scaled
Lflat for each covariance matrix in the data set. Figure 5 in
Appendix A shows an example of an emulated covariance
matrix.

Figure 2. Example of an inference done on a single mock obser-
vation. It shows the overlaid corner plot obtained using the three
distinct methods: NGP + MH using all 549 models, NN + HMC
with Ntrain+Nval = 500, and NN + HMC with Ntrain+Nval = 100.
The red line shows the true parameters of this mock observation,
which are λmfp = 52.5Mpc and ⟨F ⟩ = 0.1564.

4. Results
For the final test, we decided to use a dataset of the models
described in Section 3.1 at a redshift of z = 5.1. This
dataset includes Ntotal = 549 models, which are split into
Ntrain = 450 models for training, Nval = 50 for validating,
and Ntest = 49 for testing.

4.1. Emulation performance

Hyper-parameter tuning was performed for both emulators
using Optuna (see Section 2.3) to explore different archi-
tecture and training parameters. Table 1 in Appendix B
shows the results of the hyper-parameter tuning. We used
the average MAPE calculated on the test set to evaluate the
performance of the two emulators. For the ξm emulator,
the error was calculated with the un-scaled ξm (the same
as during training), and was found to be 0.0034. For the
Σm, the error was calculated with the covariance matrices
(different from training, see Section 3.4), and was found
to be 0.016. This means that both emulators produce sub
2% error on average. Figure 6 in Appendix B shows the
distribution of these errors for both emulators.

4.2. Inference on mock observations

For comparison purposes, we performed parameter infer-
ence on 500 randomly selected mock observations of the

4

Submission and Formatting Instructions for ICML 2024

NGP + MH NN + HMC

0.2

0.4

0.6

0.8

1.0

1.2

E
ff
ec

ti
v
e

sa
m

p
le

s
p
er

 m
s

Figure 3. Box plot showing the distribution of the calculated num-
ber of effective samples per millisecond (ms). The green line
represents the median, the top and bottom edges of the box rep-
resent the first quartile (Q1) and third quartile (Q3) of the data
respectively, while whiskers extend from the box to the farthest
data point lying within 1.5x the inter-quartile range from the box.

autocorrelation function ξi using both the NGP + MH and
the NN + HMC methods. For each inference, we set the
HMC (MH) to have 16 chains (walkers), taking 3500 steps
each and removing 500 steps of each chain (walker) as a
burn-in. Figure 2 shows an example of the inference results
for a typical model using both of these methods, with two
variations of the NN + HMC approach (see Section 4.4).
An extensive discussion of the inference results is beyond
the scope of this paper, and we refer the reader to W23 for
further details. Visually inspecting the results of all 500
inferred posterior distributions suggest that both methods
produce similar results.

As a way to compare the gain in efficiency that using HMC
provides, we calculated the number of effective samples
per millisecond neff/ms using the ArviZ python package
(Kumar et al., 2019) for all 500 parameter inferences ob-
tained with both methods. Figure 3 shows the results of
this calculation, showing that the median of neff/ms for the
NGP + MH and the NN + HMC methods are 0.57 and 0.75
respectively. Such a marginal gain in efficiency is to be
expected given that the problem that we have tested it on
has a small dimensional space (2 parameters), but we expect
this gain to be more significant as the number of parameters
increases (see Section 2.2).

4.3. Inference test

To further validate our results, we perform an inference
test by creating coverage plots for both methods. Coverage
plots are used to test the fidelity of the inference framework

that is being employed, and it allows to test the validity of
any assumptions that are done during inference (Prangle
et al., 2013; Sellentin & Starck, 2019). M23 found that
this statistical setup (see Section 3.2) leads to overconfident
posteriors, which is likely caused by the assumption of a
Gaussian likelihood. Since we performed all the inferences
on mock observations (where we know the ground truth), it
is possible for us to make a direct comparison of the cover-
age that our method produces. Figure 4 shows a comparison
of the coverage obtained with the NGP + MH and the NN
+ HMC methods. As we can see, our method is able to re-
produce the same coverage, providing strong evidence that
the neural emulators and their application with HMC are
producing posterior distributions that have similar statistical
behavior to the previous method.

0.0 0.2 0.4 0.6 0.8 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

C
(α

)

NGP + MH, N=549

NN + HMC, N=500

NN + HMC, N=100

Figure 4. Comparison of coverage plots between different methods.
We can see that using the full dataset for training the emulators
produces similar results to the original method from M23, and that
using a reduced dataset produces competitvely similar results (with
a small degradation), at a significant decrease of computational
cost.

4.4. Reducing the training set

As a last test to our method, we experimented with decreas-
ing the size of the training and validation data sets to see
how the inference would perform. For this, a reduced train-
ing and validation sets with Ntest = 65 and Nval = 35 were
created by randomly selecting from the original sets. After
hyper-parameter tuning, the performance of the emulators
was tested with the same testing set as in Section 4.1. Both
emulators obtained a sub 2% error on average, with the ξm

5

Submission and Formatting Instructions for ICML 2024

emulator obtaining an MAPE of 0.0046, and the Σm an
error of 0.014. The inference on the same 500 mocks was
then performed using this new emulators for comparison,
and a coverage plot was also produced. Figure 2 shows the
results of doing the inference with these emulators on a typ-
ical mock, and Figure 4 shows the coverage plot. As we can
observe, there is a noticeable degradation in performance
in the inference, likely caused by having significantly less
models in the training and validation sets. However, the re-
sults are competitive, and provide evidence on how the NN
+ HMC method can further reduce the overall computational
cost of this inference task by requiring significantly fewer
models.

5. Conclusions
We started the development of a pipeline that is able to apply
the NN + HMC method and then tested it in the context
of cosmological parameter inference. We demonstrated
the potential that this method has to accelerate statistical
inferences while also reducing the overall computational
cost. In future work, we will continue the development of
our software, and apply it to a more complex problem with
a higher dimensional parameter space that will better show
the advantages of this approach.

Acknowledgements
We acknowledge helpful conversations with the ENIGMA
group at UC Santa Barbara and Leiden University. JFH
acknowledges support from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 885301) and
from the National Science Foundation under Grant No.
1816006. This work made use of NumPy (Harris et al.,
2020), SciPy (Virtanen et al., 2020), sklearn (Pedregosa
et al., 2011), Astropy (Astropy Collaboration et al., 2013;
2018; 2022), h5py (Collette, 2013), Matplotlib (Hunter,
2007), corner.py (Foreman-Mackey, 2016), and IPython
(Pérez & Granger, 2007).

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Alam, S., Ata, M., Bailey, S., Beutler, F., Bizyaev, D.,
Blazek, J. A., Bolton, A. S., Brownstein, J. R., Burden,
A., Chuang, C.-H., Comparat, J., Cuesta, A. J., Daw-
son, K. S., Eisenstein, D. J., Escoffier, S., Gil-Marı́n, H.,
Grieb, J. N., Hand, N., Ho, S., Kinemuchi, K., Kirkby, D.,

Kitaura, F., Malanushenko, E., Malanushenko, V., Maras-
ton, C., McBride, C. K., Nichol, R. C., Olmstead, M. D.,
Oravetz, D., Padmanabhan, N., Palanque-Delabrouille,
N., Pan, K., Pellejero-Ibanez, M., Percival, W. J., Pe-
titjean, P., Prada, F., Price-Whelan, A. M., Reid, B. A.,
Rodrı́guez-Torres, S. A., Roe, N. A., Ross, A. J., Ross,
N. P., Rossi, G., Rubiño-Martı́n, J. A., Saito, S., Salazar-
Albornoz, S., Samushia, L., Sánchez, A. G., Satpathy, S.,
Schlegel, D. J., Schneider, D. P., Scóccola, C. G., Seo,
H.-J., Sheldon, E. S., Simmons, A., Slosar, A., Strauss,
M. A., Swanson, M. E. C., Thomas, D., Tinker, J. L.,
Tojeiro, R., Magaña, M. V., Vazquez, J. A., Verde, L.,
Wake, D. A., Wang, Y., Weinberg, D. H., White, M.,
Wood-Vasey, W. M., Yèche, C., Zehavi, I., Zhai, Z., and
Zhao, G.-B. The clustering of galaxies in the completed
SDSS-III Baryon Oscillation Spectroscopic Survey: cos-
mological analysis of the DR12 galaxy sample. , 470(3):
2617–2652, September 2017. doi: 10.1093/mnras/stx721.

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T.,
Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzen-
dorf, W. E., Conley, A., Crighton, N., Barbary, K., Muna,
D., Ferguson, H., Grollier, F., Parikh, M. M., Nair, P. H.,
Unther, H. M., Deil, C., Woillez, J., Conseil, S., Kramer,
R., Turner, J. E. H., Singer, L., Fox, R., Weaver, B. A.,
Zabalza, V., Edwards, Z. I., Azalee Bostroem, K., Burke,
D. J., Casey, A. R., Crawford, S. M., Dencheva, N.,
Ely, J., Jenness, T., Labrie, K., Lim, P. L., Pierfed-
erici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat,
M., and Streicher, O. Astropy: A community Python
package for astronomy. , 558:A33, October 2013. doi:
10.1051/0004-6361/201322068.

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,
Günther, H. M., Lim, P. L., Crawford, S. M., Conseil, S.,
Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A.,
Vand erPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de
Val-Borro, M., Aldcroft, T. L., Cruz, K. L., Robitaille,
T. P., Tollerud, E. J., Ardelean, C., Babej, T., Bach, Y. P.,
Bachetti, M., Bakanov, A. V., Bamford, S. P., Barentsen,
G., Barmby, P., Baumbach, A., Berry, K. L., Biscani,
F., Boquien, M., Bostroem, K. A., Bouma, L. G., Bram-
mer, G. B., Bray, E. M., Breytenbach, H., Buddelmeijer,
H., Burke, D. J., Calderone, G., Cano Rodrı́guez, J. L.,
Cara, M., Cardoso, J. V. M., Cheedella, S., Copin, Y.,
Corrales, L., Crichton, D., D’Avella, D., Deil, C., De-
pagne, É., Dietrich, J. P., Donath, A., Droettboom, M.,
Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy, T.,
Fox, R. T., Garrison, L. H., Gibbons, S. L. J., Goldstein,
D. A., Gommers, R., Greco, J. P., Greenfield, P., Groener,
A. M., Grollier, F., Hagen, A., Hirst, P., Homeier, D.,
Horton, A. J., Hosseinzadeh, G., Hu, L., Hunkeler, J. S.,
Ivezić, Ž., Jain, A., Jenness, T., Kanarek, G., Kendrew,
S., Kern, N. S., Kerzendorf, W. E., Khvalko, A., King, J.,

6

Submission and Formatting Instructions for ICML 2024

Kirkby, D., Kulkarni, A. M., Kumar, A., Lee, A., Lenz,
D., Littlefair, S. P., Ma, Z., Macleod, D. M., Mastropietro,
M., McCully, C., Montagnac, S., Morris, B. M., Mueller,
M., Mumford, S. J., Muna, D., Murphy, N. A., Nelson,
S., Nguyen, G. H., Ninan, J. P., Nöthe, M., Ogaz, S.,
Oh, S., Parejko, J. K., Parley, N., Pascual, S., Patil, R.,
Patil, A. A., Plunkett, A. L., Prochaska, J. X., Rastogi,
T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert,
M., Sherbert, L. E., Sherwood-Taylor, H., Shih, A. Y.,
Sick, J., Silbiger, M. T., Singanamalla, S., Singer, L. P.,
Sladen, P. H., Sooley, K. A., Sornarajah, S., Streicher,
O., Teuben, P., Thomas, S. W., Tremblay, G. R., Turner,
J. E. H., Terrón, V., van Kerkwijk, M. H., de la Vega, A.,
Watkins, L. L., Weaver, B. A., Whitmore, J. B., Woillez,
J., Zabalza, V., and Astropy Contributors. The Astropy
Project: Building an Open-science Project and Status of
the v2.0 Core Package. , 156(3):123, September 2018.
doi: 10.3847/1538-3881/aabc4f.

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,
Earl, N., Starkman, N., Bradley, L., Shupe, D. L., Patil,
A. A., Corrales, L., Brasseur, C. E., N”othe, M., Do-
nath, A., Tollerud, E., Morris, B. M., Ginsburg, A., Vaher,
E., Weaver, B. A., Tocknell, J., Jamieson, W., van Kerk-
wijk, M. H., Robitaille, T. P., Merry, B., Bachetti, M.,
G”unther, H. M., Aldcroft, T. L., Alvarado-Montes, J. A.,
Archibald, A. M., B’odi, A., Bapat, S., Barentsen, G.,
Baz’an, J., Biswas, M., Boquien, M., Burke, D. J., Cara,
D., Cara, M., Conroy, K. E., Conseil, S., Craig, M. W.,
Cross, R. M., Cruz, K. L., D’Eugenio, F., Dencheva, N.,
Devillepoix, H. A. R., Dietrich, J. P., Eigenbrot, A. D.,
Erben, T., Ferreira, L., Foreman-Mackey, D., Fox, R.,
Freij, N., Garg, S., Geda, R., Glattly, L., Gondhalekar, Y.,
Gordon, K. D., Grant, D., Greenfield, P., Groener, A. M.,
Guest, S., Gurovich, S., Handberg, R., Hart, A., Hatfield-
Dodds, Z., Homeier, D., Hosseinzadeh, G., Jenness, T.,
Jones, C. K., Joseph, P., Kalmbach, J. B., Karamehme-
toglu, E., Kaluszy’nski, M., Kelley, M. S. P., Kern, N.,
Kerzendorf, W. E., Koch, E. W., Kulumani, S., Lee, A.,
Ly, C., Ma, Z., MacBride, C., Maljaars, J. M., Muna,
D., Murphy, N. A., Norman, H., O’Steen, R., Oman,
K. A., Pacifici, C., Pascual, S., Pascual-Granado, J., Patil,
R. R., Perren, G. I., Pickering, T. E., Rastogi, T., Roulston,
B. R., Ryan, D. F., Rykoff, E. S., Sabater, J., Sakurikar,
P., Salgado, J., Sanghi, A., Saunders, N., Savchenko,
V., Schwardt, L., Seifert-Eckert, M., Shih, A. Y., Jain,
A. S., Shukla, G., Sick, J., Simpson, C., Singanamalla,
S., Singer, L. P., Singhal, J., Sinha, M., SipHocz, B. M.,
Spitler, L. R., Stansby, D., Streicher, O., Sumak, J., Swin-
bank, J. D., Taranu, D. S., Tewary, N., Tremblay, G. R.,
Val-Borro, M. d., Van Kooten, S. J., Vasovi’c, Z., Verma,
S., de Miranda Cardoso, J. V., Williams, P. K. G., Wilson,
T. J., Winkel, B., Wood-Vasey, W. M., Xue, R., Yoachim,
P., Zhang, C., Zonca, A., and Astropy Project Contrib-

utors. The Astropy Project: Sustaining and Growing a
Community-oriented Open-source Project and the Latest
Major Release (v5.0) of the Core Package. , 935(2):167,
August 2022. doi: 10.3847/1538-4357/ac7c74.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Collette, A. Python and HDF5. O’Reilly, 2013.

Doughty, C. C., Hennawi, J. F., Davies, F. B., Lukić, Z., and
Oñorbe, J. Convergence of small scale Ly α structure
at high-z under different reionization scenarios. , 525
(3):3790–3805, November 2023. doi: 10.1093/mnras/
stad2549.

Duane, S., Kennedy, A., Pendleton, B. J., and
Roweth, D. Hybrid monte carlo. Physics Let-
ters B, 195(2):216–222, 1987. ISSN 0370-2693.
doi: https://doi.org/10.1016/0370-2693(87)91197-X.
URL https://www.sciencedirect.com/
science/article/pii/037026938791197X.

Euclid Collaboration, Knabenhans, M., Stadel, J., Marelli,
S., Potter, D., Teyssier, R., Legrand, L., Schneider, A.,
Sudret, B., Blot, L., Awan, S., Burigana, C., Carvalho,
C. S., Kurki-Suonio, H., and Sirri, G. Euclid preparation:
II. The EUCLIDEMULATOR - a tool to compute the
cosmology dependence of the nonlinear matter power
spectrum. , 484(4):5509–5529, April 2019. doi: 10.1093/
mnras/stz197.

Feroz, F. and Hobson, M. P. Multimodal nested sampling:
an efficient and robust alternative to Markov Chain Monte
Carlo methods for astronomical data analyses. , 384(2):
449–463, February 2008. doi: 10.1111/j.1365-2966.2007.
12353.x.

Feroz, F., Hobson, M. P., and Bridges, M. MULTINEST: an
efficient and robust Bayesian inference tool for cosmol-
ogy and particle physics. , 398(4):1601–1614, October
2009. doi: 10.1111/j.1365-2966.2009.14548.x.

Foreman-Mackey, D. corner.py: Scatterplot matrices in
python. The Journal of Open Source Software, 1(2):
24, jun 2016. doi: 10.21105/joss.00024. URL https:
//doi.org/10.21105/joss.00024.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Good-
man, J. emcee: The mcmc hammer. Publications
of the Astronomical Society of the Pacific, 125(925):
306, feb 2013. doi: 10.1086/670067. URL https:
//dx.doi.org/10.1086/670067.

7

http://github.com/google/jax
https://www.sciencedirect.com/science/article/pii/037026938791197X
https://www.sciencedirect.com/science/article/pii/037026938791197X
https://doi.org/10.21105/joss.00024
https://doi.org/10.21105/joss.00024
https://dx.doi.org/10.1086/670067
https://dx.doi.org/10.1086/670067

Submission and Formatting Instructions for ICML 2024

Gong, Z., Halder, A., Barreira, A., Seitz, S., and Friedrich,
O. Cosmology from the integrated shear 3-point cor-
relation function: simulated likelihood analyses with
machine-learning emulators. , 2023(7):040, July 2023.
doi: 10.1088/1475-7516/2023/07/040.

Gruen, D., Seitz, S., Becker, M. R., Friedrich, O., and
Mana, A. Cosmic variance of the galaxy cluster weak
lensing signal. , 449(4):4264–4276, June 2015. doi:
10.1093/mnras/stv532.

Hamana, T., Shirasaki, M., Miyazaki, S., Hikage, C., Oguri,
M., More, S., Armstrong, R., Leauthaud, A., Mandel-
baum, R., Miyatake, H., Nishizawa, A. J., Simet, M.,
Takada, M., Aihara, H., Bosch, J., Komiyama, Y., Lup-
ton, R., Murayama, H., Strauss, M. A., and Tanaka, M.
Cosmological constraints from cosmic shear two-point
correlation functions with HSC survey first-year data. ,
72(1):16, February 2020. doi: 10.1093/pasj/psz138.

Handley, W. J., Hobson, M. P., and Lasenby, A. N. poly-
chord: nested sampling for cosmology. , 450:L61–L65,
June 2015. doi: 10.1093/mnrasl/slv047.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020. doi: 10.
1038/s41586-020-2649-2. URL https://doi.org/
10.1038/s41586-020-2649-2.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2023. URL http://
github.com/google/flax.

Heitmann, K., Lawrence, E., Kwan, J., Habib, S., and Hig-
don, D. The Coyote Universe Extended: Precision Emula-
tion of the Matter Power Spectrum. , 780(1):111, January
2014. doi: 10.1088/0004-637X/780/1/111.

Hoffman, M. and Gelman, A. The no-u-turn sampler: Adap-
tively setting path lengths in hamiltonian monte carlo.
Journal of Machine Learning Research, 15, 11 2011.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

Karamanis, M., Beutler, F., Peacock, J. A., Nabergoj,
D., and Seljak, U. Accelerating astronomical and cos-
mological inference with preconditioned Monte Carlo.
Monthly Notices of the Royal Astronomical Society,

516(2):1644–1653, 08 2022. ISSN 0035-8711. doi:
10.1093/mnras/stac2272. URL https://doi.org/
10.1093/mnras/stac2272.

Krause, E., Eifler, T. F., Zuntz, J., Friedrich, O., Troxel,
M. A., Dodelson, S., Blazek, J., Secco, L. F., MacCrann,
N., Baxter, E., Chang, C., Chen, N., Crocce, M., DeRose,
J., Ferte, A., Kokron, N., Lacasa, F., Miranda, V., Omori,
Y., Porredon, A., Rosenfeld, R., Samuroff, S., Wang, M.,
Wechsler, R. H., Abbott, T. M. C., Abdalla, F. B., Allam,
S., Annis, J., Bechtol, K., Benoit-Levy, A., Bernstein,
G. M., Brooks, D., Burke, D. L., Capozzi, D., Carrasco
Kind, M., Carretero, J., D’Andrea, C. B., da Costa, L. N.,
Davis, C., DePoy, D. L., Desai, S., Diehl, H. T., Diet-
rich, J. P., Evrard, A. E., Flaugher, B., Fosalba, P., Frie-
man, J., Garcia-Bellido, J., Gaztanaga, E., Giannantonio,
T., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez,
G., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K.,
Kuhlmann, S., Lahav, O., Lima, M., Maia, M. A. G.,
March, M., Marshall, J. L., Martini, P., Menanteau, F.,
Miquel, R., Nichol, R. C., Plazas, A. A., Romer, A. K.,
Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R.,
Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-
Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C.,
Tarle, G., Tucker, D. L., Vikram, V., Walker, A. R., and
Weller, J. Dark Energy Survey Year 1 Results: Multi-
Probe Methodology and Simulated Likelihood Analyses.
arXiv e-prints, art. arXiv:1706.09359, June 2017. doi:
10.48550/arXiv.1706.09359.

Kumar, R., Carroll, C., Hartikainen, A., and Martin,
O. Arviz a unified library for exploratory analysis of
bayesian models in python. Journal of Open Source Soft-
ware, 4(33):1143, 2019. doi: 10.21105/joss.01143. URL
https://doi.org/10.21105/joss.01143.

Lewis, A. and Bridle, S. Cosmological parameters from
cmb and other data: A monte carlo approach. Phys. Rev.
D, 66:103511, Nov 2002. doi: 10.1103/PhysRevD.66.
103511. URL https://link.aps.org/doi/10.
1103/PhysRevD.66.103511.

Martinet, N., Schneider, P., Hildebrandt, H., Shan, H.,
Asgari, M., Dietrich, J. P., Harnois-Déraps, J., Erben,
T., Grado, A., Heymans, C., Hoekstra, H., Klaes, D.,
Kuijken, K., Merten, J., and Nakajima, R. KiDS-
450: cosmological constraints from weak-lensing peak
statistics - II: Inference from shear peaks using N-body
simulations. , 474(1):712–730, February 2018. doi:
10.1093/mnras/stx2793.

Neal, R. MCMC Using Hamiltonian Dynamics. In Hand-
book of Markov Chain Monte Carlo, pp. 113–162. 2011.
doi: 10.1201/b10905.

Nygaard, A., Holm, E. B., Hannestad, S., and Tram, T.
CONNECT: a neural network based framework for emu-

8

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://github.com/google/flax
http://github.com/google/flax
https://doi.org/10.1093/mnras/stac2272
https://doi.org/10.1093/mnras/stac2272
https://doi.org/10.21105/joss.01143
https://link.aps.org/doi/10.1103/PhysRevD.66.103511
https://link.aps.org/doi/10.1103/PhysRevD.66.103511

Submission and Formatting Instructions for ICML 2024

lating cosmological observables and cosmological pa-
rameter inference. , 2023(5):025, May 2023. doi:
10.1088/1475-7516/2023/05/025.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pérez, F. and Granger, B. E. IPython: a system for in-
teractive scientific computing. Computing in Science
and Engineering, 9(3):21–29, May 2007. ISSN 1521-
9615. doi: 10.1109/MCSE.2007.53. URL https:
//ipython.org.

Phan, D., Pradhan, N., and Jankowiak, M. Composable
effects for flexible and accelerated probabilistic program-
ming in numpyro. arXiv preprint arXiv:1912.11554,
2019.

Piras, D. and Spurio Mancini, A. Cosmopower-jax: high-
dimensional bayesian inference with differentiable cos-
mological emulators. The Open Journal of Astrophysics,
6, 6 2023. doi: 10.21105/astro.2305.06347.

Prangle, D., Blum, M. G. B., Popovic, G., and Sisson,
S. A. Diagnostic tools of approximate Bayesian com-
putation using the coverage property. arXiv e-prints, art.
arXiv:1301.3166, January 2013. doi: 10.48550/arXiv.
1301.3166.

Ruiz-Zapatero, J., Alonso, D., Garcı́a-Garcı́a, C., Nicola,
A., Mootoovaloo, A., Sullivan, J. M., Bonici, M., and
Ferreira, P. G. LimberJack.jl: auto-differentiable methods
for angular power spectra analyses. The Open Journal of
Astrophysics, 7:11, February 2024. doi: 10.21105/astro.
2310.08306.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Sellentin, E. and Starck, J.-L. Debiasing inference with
approximate covariance matrices and other unidentified
biases. , 2019(8):021, August 2019. doi: 10.1088/
1475-7516/2019/08/021.

Shimabukuro, H., Hasegawa, K., Kuchinomachi, A., Yajima,
H., and Yoshiura, S. Exploring the cosmic dawn and
epoch of reionization with the 21 cm line. , 75:S1–S32,
February 2023. doi: 10.1093/pasj/psac042.

Shirasaki, M., Takada, M., Miyatake, H., Takahashi, R.,
Hamana, T., Nishimichi, T., and Murata, R. Robust covari-
ance estimation of galaxy-galaxy weak lensing: valida-
tion and limitation of jackknife covariance. , 470(3):3476–
3496, September 2017. doi: 10.1093/mnras/stx1477.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Walther, M., Oñorbe, J., Hennawi, J. F., and Lukić, Z. New
Constraints on IGM Thermal Evolution from the Lyα
Forest Power Spectrum. , 872(1):13, February 2019. doi:
10.3847/1538-4357/aafad1.

Wolfson, M., Hennawi, J. F., Davies, F. B., and Oñorbe, J.
Forecasting constraints on the mean free path of ionizing
photons at z ≥ 5.4 from the Lyman-α forest flux autocor-
relation function. , 521(3):4056–4073, May 2023. doi:
10.1093/mnras/stad701.

Zaroubi, S. The Epoch of Reionization. In Wiklind, T.,
Mobasher, B., and Bromm, V. (eds.), The First Galaxies,
volume 396 of Astrophysics and Space Science Library,
pp. 45, January 2013. doi: 10.1007/978-3-642-32362-1
2.

9

https://ipython.org
https://ipython.org

Submission and Formatting Instructions for ICML 2024

A. Example of Covariance Matrix Emulation

0 5 10 15 20

No. of velocity bin

0

5

10

15

20

N
o.

 o
f
v
el

oc
it
y
 b

in

0 5 10 15 20

No. of velocity bin

0

5

10

15

20

0 5 10 15 20

No. of velocity bin

0

5

10

15

20

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

T
ru

e
C

or
re

la
ti
on

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

E
m

u
la

te
d
 C

or
re

la
ti
o
n

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

E
rr

o
r

Figure 5. Example of an emulation of a covariance matrix, visualized as correlation matrices. The left correlation matrix represents the
true covariance matrix, the middle one shows the corresponding emulated covariance matrix, and the right shows a color map of the
relative error.

As explained in Section 3.4, emulating covariance matrices require special attention given that they are symmetric. Taking
advantage of Cholesky decomposition and reordering the resulting lower triangular matrices into 1D arrays allows us to
employ a simple architecture for the neural network. To visualize a covariance matrix Σ , we first convert it into a correlation
matrix C using the following:

Ci,j =
Σi,j√
Σi,iΣj,j

Where the i and j subscripts refer the the element in the ith and jth element in the covariance matrix. Figure 5 shows an
example of a typical covariance matrix from the model explained in Section 3.1, its corresponding emulated covariance
matrix, and the emulation error.

B. Performance of emulators
B.1. Hyper-parameter tuning

The hyper-parameter tuning is carried out with Optuna, as explained in Section 2.3. For the application in Section 3, the
hyper-parameters that were varied for both emulators were the number of hidden layers, the number of perceptrons in each
hidden layer, the number of epochs, and the starting learning rate (for this application, both emulators were trained with a
cosine scheduler for the learning rate). Table 1 shows the results of the hyper-parameter tuning for both emulators.

Table 1. Results of the hyper parameter-tuning for both emulators.

EMULATOR LAYERS PERCEPTRONS STARTING LEARNING RATE EPOCHS

ξm 5 [4, 8, 12, 16, 20] 0.03523 750
Σm 6 [4, 8, 8, 8, 16, 20] 0.0393 1500

10

Submission and Formatting Instructions for ICML 2024

B.2. Distribution of Errors

0.000 0.002 0.004 0.006 0.008 0.010

Error

0

2

4

6

8

10

12

C
ou

n
ts

0.00 0.01 0.02 0.03 0.04 0.05

Error

0

1

2

3

4

5

6

C
o
u
n
ts

Figure 6. Distribution of errors calculated on the test set (Ntest = 49) to evaluate the performance of the emulators trained with
Ntrain +Nval = 500. Left: Distribution of MAPE calculated with the ξm emulator. Right: Distribution of MAPE calculated for the
Σm emulator.

11

