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Abstract Large models have accelerated the develop-
ment of intelligent interpretation in remote sensing.
Many remote sensing foundation models (RSFM)
have emerged in recent years, sparking a new
wave of deep learning in this field. Fine-tuning
techniques serve as a bridge between remote sensing
downstream tasks and advanced foundation models. As
RSFMs become more powerful, fine-tuning techniques
are expected to lead the next research frontier
in numerous critical remote sensing applications.
Advanced fine-tuning techniques can reduce the data
and computational resource requirements during the
downstream adaptation process. Current fine-tuning
techniques for remote sensing are still in their early
stages, leaving a large space for optimization and
application. To elucidate the current development
and future trends of remote sensing fine-tuning
techniques, this survey offers a comprehensive overview
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of recent research. Specifically, this survey summarizes
the applications and innovations of each work
and categorizes recent remote sensing fine-tuning
techniques into six types: adapter-based, prompt-based,
reparameterization-based, hybrid methods, partial
tuning, and improved tuning. In the final section, this
survey suggests nine areas worth exploring in this field.
Remote sensing fine-tuning methods in this survey
can be found at https://github.com/DongshuoYin/
Remote-Sensing-Tuning-A-Survey.
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1 Introduction

Driven by the rapid development of big data and
large model technologies, remote sensing research
is undergoing a profound transformation [1, 2].
Recent advances in large language models [3] and
vision foundation models [4] have underscored the
importance of efficiently leveraging big data, which
is as crucial as designing advanced models for
deep learning tasks. Inspired by progress in natural
language processing (NLP) and computer vision (CV),
recent research hotspots in remote sensing are shifting
from model designs to foundation models [1, 2] and
fine-tuning techniques [19, 20]. Currently, there are
over 50 research works on remote sensing foundation
models (RSFM) covering various modalities and
tasks through different pre-training methods [1].
Combined with advanced fine-tuning techniques,
RSFMs will significantly enhance the performance of
deep learning technologies in critical applications such as
land surveying [5], agricultural monitoring [6], weather
forecasting [7], and maritime navigation [8].

Fine-tuning techniques [9, 10] are designed
to transfer the broad comprehension capabilities
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of foundation models to permit generalization
by task-specific models. Figure 1 indicates the
significant role of fine-tuning techniques in remote
sensing. Research in NLP [11] and CV [12] has
demonstrated that advanced fine-tuning techniques
can significantly reduce data requirements and
enhance model performance in few-shot scenarios.
In fact, there are many few-shot objects, such
as landfills [13] and power plants [14], in remote
sensing images, which present challenges for remote
sensing research [15]. Advanced fine-tuning techniques
can accelerate the deployment of RSFM to remote
sensing downstream tasks and enhance performance
in few-shot scenarios. Furthermore, some fine-tuning
techniques can impressively reduce memory and time
requirements for hardware resources during training
[16, 20], thus lowering costs for researchers conducting
fine-grained studies in remote sensing.

This paper provides a comprehensive survey of
recent fine-tuning work in remote sensing, including
designs of fine-tuning methods for remote sensing
scenarios and applications of advanced fine-tuning
techniques to fine-grained remote sensing tasks. Based
on the relationships between tuned parameters and
models, we categorize existing remote sensing fine-
tuning research into six types: adapter tuning, prompt

tuning, reparameterized tuning, hybrid tuning, partial
tuning, and improved tuning. Figure 2 presents the
structural differences between five of these categories,
omitting hybrid tuning. Table 1 summarizes the basic
concepts of these six categories and associated work
in remote sensing. The main contributions of this
paper are as follows:
• a systematic review of fine-tuning research

in remote sensing and a summary of the
technical design and innovative application of
each study, enabling researchers to quickly grasp
the development of fine-tuning techniques in
remote sensing,

• a classification of fine-tuning research in remote
sensing based on the relationship between tuned
parameters and the model, helping researchers to
clearly understand the development trajectory of
fine-tuning technologies in remote sensing, and

• suggestions for future research directions for fine-
tuning in remote sensing.

2 Background

2.1 Remote sensing foundation models

Earth observation is important to contemporary
society [13, 17]. Remote sensing technology [18]

Fig. 1 In the era of large models, fine-tuning serves as the bridge connecting remote sensing foundation models and downstream tasks, and
also acts as a catalyst for optimizing many remote sensing applications.

Fig. 2 Structural differences between the five paradigms.
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Table 1 Brief description of the six categories of remote sensing fine-tuning

Category Description Related works

Adapter tuning
Inserting micro adapter structures into the backbone network
to adapt it to downstream tasks

[19–34]

Prompt tuning
Adding learnable patches to the input or implicit layers
to change the feature distribution of the backbone network

[35–49]

Reparameterized tuning
Fine-tuning the low-dimensional space of some parameters
in the backbone network to fit downstream tasks without
adding extra structures

[50–58]

Hybrid tuning Methods based on at least two fine-tuning paradigms [59–64]

Partial tuning Fine-tuning some of the parameters in the backbone network [65–68]

Improved tuning Optimizing traditional fine-tuning in some way [69–72]

not only facilitates a comprehensive understanding
of changes on the Earth’s surface, but also
plays an essential role in disaster prevention,
environmental monitoring, urban planning, and
agricultural surveillance. As the volume of remote
sensing data proliferates and the complexity of
tasks intensifies, traditional processing methods
are increasingly insufficient to meet the demands
of modern remote sensing applications. Remote
sensing foundation models (RSFM) [1, 2], developed
through the integration of extensive multimodal data,
enhance both the efficiency of training processes
and the accuracy of predictions for downstream
tasks. Furthermore, RSFMs enable the sharing and
transfer of knowledge across diverse tasks, thereby
significantly increasing the versatility and practicality
of remote sensing applications.

In recent years, the field of remote sensing
has experienced a period of rapid growth in the
development of RSFMs. By June 2024, over 51 studies
on RSFMs had been documented [1, 2]. Table 2
presents a summary of the RSFMs reported in recent
reviews [1]. Representative works include RVSA [73],
which focuses on architectural designs tailored for
remote sensing images, RSP [74] and SatMAE [75]
for supervised or self-supervised pre-training, MTP
[76] for multitask learning, HyperSIGMA [77] for
hyperspectral image processing, and GeoChat [78]
for vision-text cross-modal understanding. These
existing models exhibit considerable diversity in
several ways, including architecture, data, tasks, and
training paradigms. The relationship between RSFMs
and fine-tuning methods is indispensable. During
the pre-training phase, RSFMs assimilate knowledge
from vast amounts of remote sensing data, thereby

acquiring robust general understanding capabilities.
Due to the variability of specific application scenarios,
RSFMs often require fine-tuning with downstream
data to optimize their performance for specific tasks.
Fine-tuning methods are tools to refine RSFMs,
enabling them to better address the particular needs
of diverse tasks, thereby enhancing the models’
accuracy and effectiveness. Consequently, it is crucial
to study fine-tuning methods for remote sensing tasks.
Better remote sensing tuning methods not only fully
leverage the potential of foundation models, but
also promote the extensive application and in-depth
development of remote sensing technology.

2.2 Fine tuning

Prior to the emergence of large models, numerous
traditional fine-tuning approaches were already in
practice. Huang et al. [79] were the first to introduce
the paradigm of pre-training combined with fine-
tuning for synthetic aperture radar (SAR) image
object classification, marking a significant step in
applying fine-tuning techniques to remote sensing
tasks. Subsequently, Liu et al. [80] developed a
fine-tuning method that successfully facilitated the
transfer of learning from computer vision to remote
sensing. Researchers such as Bazi et al. [81], Zhang
et al. [82], and Wu et al. [83] advanced this field
by designing task-specific loss functions, thereby
enhancing both the efficiency and performance of
models during the fine-tuning process for remote
sensing applications. Moreover, Huang et al. [84] and
Zhao et al. [85] proposed highly efficient two-stage
fine-tuning strategies tailored for few-shot object
detection. Kim et al. [86] rethought the fine-tuning of
feature backbones for remote sensing object detection.
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Table 2 Existing remote sensing foundation models. SC/SS/OD/CD represent scene classification, semantic segmentation, object detection,
and change detection, respectively. This table is adapted from Ref. [1]. The first column shows when they were first made public

Date Architecture Model name Publication Tasks
2021 Jun ResNet-50 CMC-RSSR [91] CVPRW2021 SC
2021 Oct ResNet-50 SeCo [92] ICCV2021 SC/CD
2021 Oct ResNet-50 GeoKR [93] TGRS2022 SC/SS/OD
2021 Dec ResNet-34 MATTER [94] CVPR2022 SC/SS/CD
2022 Mar ResNet-50 GASSL [95] ICCV2021 SC/SS/OD
2022 May ViTAEv2-S RSP [74] TGRS2023 SC/SS/OD/CD
2022 Jun ViT-S/8 DINO-MM [96] IGRSS2022 SC
2022 Jun Swin Transformer Scheibenreif et al. [97] CVPRW2022 SC/SS
2022 Jul ViT/Swin Transformer RingMo [98] TGRS2023 SC/SS/OD/CD
2022 Aug ResNet-50 GeCO [99] TGRS2022 SC/SS/OD
2022 Sep BYOL RS-BYOL [100] JSTAR2022 SC/SS
2022 Nov ViT-B CSPT [101] RS2022 SC/OD
2022 Nov ViT RVSA [102] TGRS2023 SC/SS/OD
2023 Jan MAE-based Framework SatMAE [75] NeurIPS2022 SC/SS
2023 Apr TOV TOV [103] JSTAR2023 SC/SS/OD
2023 Apr Teacher–student Self-distillation CMID [104] TGRS2023 SC/SS/OD/CD
2023 Jun CACo CACo [105] CVPR2023 SC/SS/CD
2023 Jun ResNet-18 IaI-SimCLR [106] CVPRW2023 SC
2023 Jul EVA/Vicuna/Q-former RSGPT [107] arXiv2023 Visual-Language
2023 Aug Teacher–Student GFM [108] ICCV2023 SC/SS/CD
2023 Aug Swim Transformer SatLasPretrain [109] ICCV2023 SC/SS
2023 Sep Multi-Branch RingMo-Sense [110] TGRS2023 SS
2023 Sep ViT Scale-MAE [111] ICCV2023 SC/SS
2023 Sep CNN-Transformer RingMo-lite [112] arXiv2023 SC/SS/OD/CD
2023 Sep Multimodal SSL DeCUR [113] arXiv2023 SC/SS
2023 Oct MSFE+MMFH Feng et al. [114] IGRSS2023 SC/SS/OD/CD
2023 Oct ViT FG-MAE [115] JSTAR2024 SC/SS
2023 Oct ViTAEv2-S SAMRS [116] NeurIPS2023 SS
2023 Nov ViT Prithvi [117] arXiv2023 SS
2023 Nov Multimodal Encoder CROMA [118] NeurIPS2023 SC/SS
2023 Nov CLIP-ViT/Vicuna-v1.5 GeoChat [78] CVPR2024 Visual-Language
2023 Dec ViT USat [119] arXiv2023 SC
2024 Jan EVA-CLIP/LLaMA2-chat SkyEyeGPT [52] ISPRS2024 Visual-Language
2024 Jan ViT-B Cross-Scale MAE [120] arXiv2023 SC/SS
2024 Jan Unet+Transformer U-BARN [121] JSTAR2024 SC/SS
2024 Jan Autoregressive Transformer EarthPT [122] arXiv2023 SC
2024 Jan Teacher–Student Network GeRSP [123] TGRS2024 SC/SS/OD
2024 Jan Dual-Branch SwiMDiff [124] TGRS2024 SC/CD
2024 Jan Generative ConvNet SMLFR [125] TGRS2024 SS/OD
2024 Feb 3D GPT SpectralGPT [126] TPAMI2024 SC/SS/CD
2024 Feb MAE-based Framework Presto [127] arXiv2024 SS
2024 Mar SatMAE SatMAE++ [128] CVPR2024 SC
2024 Mar Joint-Embedding Predictive Architecture SAR-JEPA [129] ISPRS2024 SC
2024 Mar ViT FoMo-Bench [130] arXiv2023 SC/SS/OD
2024 Mar Factorized Multi-Modal Spatiotemporal Encoder SkySense [131] CVPR2024 SC/SS/OD/CD
2024 Mar Multi-Modules UPetu [132] TGRS2024 SC/SS/CD
2024 Apr Swin Transformer msGFM [133] CVPR2024 SC/SS
2024 Apr DINO DINO-MC [134] CVPRW2024 SC/CD
2024 May OFA-Net OFA-Net [135] IGARSS2024 SC/SS
2024 May Shared Encoder, Task-Specific Decoders MTP [76] JSTAR2024 SC/SS/OD/CD
2024 May ViT BFM [136] JSTAR2024 SS/OD
2024 May MP-MAE MMEarth [137] arXiv2024 SC/SS
2024 May ViT CtxMIM [138] arXiv2023 SC/SS/OD
2024 May HiViT SARATR-X [139] arXiv2024 SC/OD
2024 May LeMeViT LeMeViT [140] IJCAI2024 SC/SS/OD/CD
2024 Jun Dynamic OFA DOFA [141] arXiv2024 SC
2024 Jun ViT HyperSIGMA [77] arXiv2024 SC/SS/OD/CD
2024 Mar CLIP-ViT/Vicuna-v1.5 SkySenseGPT [131] arXiv2024 Visual-Language
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Drawing inspiration from knowledge distillation [87],
Zhang et al. [88] utilized the insights gained from
large datasets through a teacher model to accelerate
the fine-tuning of a student model with limited data.
Additionally, Zhang et al. [89] applied fine-tuning
techniques to UAV-based forest image classification,
while Zhang et al. [90] optimized fine-tuning methods
for diffusion models to significantly improve dehazing
performance. Our paper primarily investigates new
fine-tuning paradigms or optimization methods that
have emerged in remote sensing in recent years.

2.3 Related surveys

In this section, we review relevant survey works.
Ref. [142] introduced the development of parameter-
efficient fine-tuning (PEFT) across general domains.
Refs. [11, 143, 144] cataloged PEFT studies in
natural language processing. Refs. [12, 145] examined
fine-tuning methods within the domain of general
vision research. Refs. [9, 146] systematically evaluated
the performance and efficiency of various PEFT
methods in language models. Ref. [147] discussed
reparameterization techniques in language models.
Ref. [148] outlined studies on prompt and adapter
methods in vision-language tasks. Furthermore, Ref.
[149] briefly explored the application of PEFT in areas
such as text generation, medical imaging, protein
modeling, and speech synthesis. Existing fine-tuning
surveys primarily focused on domains other than
remote sensing. To our knowledge, this is the first
comprehensive survey on fine-tuning within the field
of remote sensing. To clarify the development of
existing fine-tuning techniques in remote sensing,
this survey categorizes these methods and further
considers their technical approaches. Also, this paper
outlines the developmental history of typical technologies
along a timeline and presents future directions.

2.4 Notation and formalization

2.4.1 Notation
This section represents the processes of pre-training
and fine-tuning using formulae. After the fine-tuning
formula, we explain the specific forms of fine-tuning
paradigms within the formula. Table 3 presents the
notation used, with explanations of the symbols. In
remote sensing, Dpre generally refers to large datasets
or their combinations. Fpre can be models like ResNet
[150], ViT [151], Swin Transformer [152], etc. Tpre(·)
includes supervised and self-supervised methods.

Table 3 Symbols used in formalization

Symbol Definition

Dft Data for fine-tuning
Dpre Data for pre-training
Fft Framework for fine-tuning
Fpre Framework for pre-training
Mft Fine-tuned model
Mpre Pre-trained model
Mf Frozen part of the model
Mt Fine-tuned part of the model
P All parameters in fine-tuning
P0 Parameters for pre-training
PN New parameters in fine-tuning
P F

N Parameters in the new framework
P PEFT

N Parameters of the PEFT module
Tft(·) Training algorithm for fine-tuning
Tpre(·) Training algorithm for pre-training

Mpre may contain some classification head parameters
and mask parameters, which may be discarded by some
fine-tuning algorithms. Dft is the target data. Fft can
be detection, segmentation, or multimodal frameworks.
PN includes adapters, prompts, LoRA modules, and
parameters in neck/head parts. Tft(·) fine-tunes some or
all pre-trained parameters, depending on the fine-tuning
paradigm. Mft can be used for downstream tasks.
2.4.2 Pre-training
With the above notation, the training process can be
represented as

Mpre = Tpre(Fpre(P0),Dpre) (1)
where P0 represents parameters for pre-training.
2.4.3 Fine-tuning
During the fine-tuning process, the parameters in the
pre-trained model can be divided into a frozen part
Mf and a fine-tuned part Mt, thus Mpre = {Mf ,Mt}.
The new parameters in fine-tuning can be divided into
the parameters of the parameter-efficient fine-tuning
module PPEFT

N and the parameters within the new
framework PF

N (such as head, neck, etc.). Similarly,
all parameters in fine-tuning can be divided into a
frozen part Pf and a fine-tuned part Pt. Based on
the above definitions, the fine-tuning process can be
uniformly represented by Formula (2):

Mft = Tft[Fft (P) ,Dft]
= Tft[Fft (Pf , Pt) ,Dft]
= Tft {Fft[(PN ,Mt) ,Mf ],Dft}

= Tft

{
Fft[
(
PPEFT
N , PFN ,Mt

)
,Mf ],Dft

}
(2)
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In fine-tuning paradigms, methods based on
adapters, prompts, and reparameterization generally
fix Mpre during training and fine-tune only PN .
Their training process can be simplified to the
representation in Eq. (3):

Mft = FTDft,Mpre

(
PPEFT
N , PFN

)
(3)

where FT(·) represents the simplified forward and
training processes. Partial tuning generally does not
include additional PEFT modules, and its training
process can be simplified as Formula (4):

Mft = FTDft,Mf

(
Mt, P

F
N

)
(4)

Hybrid tuning combines the above methods.

3 Remote sensing tuning

3.1 Overview

Here, we first consider the timeline and technological
development of fine-tuning techniques in remote
sensing. Figure 3 shows the timeline of development
of typical fine-tuning methods in remote sensing,
including those introducing new paradigms and those
obtaining significant conclusions. Figure 4 presents
a taxonomical tree diagram, which introduces
the developmental routes of different fine-tuning
paradigms in remote sensing in terms of aspects
such as design, optimization, and application. The
remainder of this section will summarize and
introduce existing fine-tuning work in remote sensing.

3.2 Adapter tuning

3.2.1 Concepts
Adapter tuning is a representative parameter-efficient
fine-tuning method in the era of large models

[144]. Adapters have their early origins in NLP.
Houlsby et al. [153] proposed a simple yet effective
simple adapter architecture that achieved excellent
performance on several typical NLP tasks. Owing
to its exceptional generalization capability, simple
adapters have garnered significant interest within the
realms of computer vision [154], remote sensing [19],
medical imaging [155], and multi-modal learning [156].
The simple adapter’s structure mainly consists of two
linear projection layers, a nonlinear activation layer,
and a skip-connection. Assuming that the input of the
adapter is x and its output is y, the computational
process of the adapter can be represented as Eq. (5):

y = U(σ(D(x))) + x (5)
where D(·) and U(·) represent down-projection and
up-projection respectively, and σ(·) denotes the
activation function. The projection process can be
expressed as

y = Wx+ b (6)

which means most parameters are in the W matrix.
Adapters are usually inserted into the pre-trained

backbone network during training and inference
phases. During the fine-tuning process, most works fix
the parameters of the backbone network outside the
adapters, while other work argues that fine-tuning all
parameters gives better results. Both paradigms occur
in the methods presented. In remote sensing, existing
adapter fine-tuning techniques can be primarily
divided into three branches. Methods like AiRs [19]
and ACTNet [22] focus on designing more efficient
adapters for remote sensing scenarios. Methods like
SCD-SAM [21] and TEA [20] optimize existing
adapter structures or tuning frameworks. Methods

Fig. 3 Timeline of the emergence of several remote sensing fine-tuning paradigms.
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Fig. 4 Taxonomy of fine-tuning methods in remote sensing.

such as YOLO-adapter [32] and FreqDiMDFT [34]
directly apply existing adapter structures to remote
sensing tasks. We next present existing adapter tuning
techniques in remote sensing.
3.2.2 AiRs
AiRs [19] is a customized adapter scheme for common
remote sensing vision tasks, which goes beyond
full fine-tuning on tasks such as object detection,
semantic segmentation, scene classification, etc. As
Fig. 5 shows, AiRs includes two independent adapter
structures for remote sensing tasks, a spatial context
adapter (SCA) and a semantic response adapter
(SRA). AiRs freezes the pre-trained parameters
during the training process. The computational
process of the two adapter structures of AiRs can be
represented as Eqs. (7) and (8):

h0, h1 = S(Wdown(y)) (7)
y = Wup(γφ

(
C
(
FSCA/SRA (h1) , h0

))
) + y (8)

where γ is a scaling factor, and S(·) and C(·) are the
split and concatenation operations. h0, h1 are two
split matrices, and the activation function is GeLU.
FSCA/SRA(·) is the internal operation of SCA or SRA,

and W (·) denotes a down or up projection operation.
AiRs reduces the parameter size of adapters by the
split and concatenation operations.

Specifically, SCA introduces a separable convo-
lution structure to change the bias of the pre-trained
backbone network’s understanding of remote sensing
knowledge. The specific calculations used in its
internal structure are as Eq. (9):

FSCA(h1) = sFDWConv (h1,Wk) + h1 (9)
where s is a scaling factor, Wk is the parameter
of separable convolution, and FDWConv(·) is the
separable convolution operation. SRA utilizes an
inverted bottleneck-like operator to optimize the
feature extraction process on the pre-trained layer,
and the computational performed by its internal
structure is as Eq. (10):
FSRA (h1) = W SRA

down(sφ
(
W SRA

up (LN (h1))
)

) + h1

(10)
where s is a scaling factor and W SRA

down/up is a small
bottleneck structure inside the SRA structure.

AiRs systematically and experimentally illustrates
that full fine-tuning is no longer optimal for remote
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Fig. 5 Framework of AiRs. (a) Insertion position of the SCA and
SRA. (b) Overview of AiRs modules. Reproduced with permission
from Ref. [19], c© IEEE 2024.

sensing visual tasks. Furthermore, the authors also
claim that AiRs performs less well on dense small
object scenes and datasets with fine-grained semantic
labels.
3.2.3 TEA
Hu et al. [20] presented a training-efficient fine-tuning
paradigm, TEA, which is able to achieve impressive
performance while saving more than 57% of training
memory. TEA avoids the gradient computation
process for the pre-trained layer by use of a gradient
highway, which is motivated by E3VA [16]. Unlike
E3VA, TEA tailors the adapter structure and fine-
tuning process specifically for the characteristics
of remote sensing imagery, thereby improving the
performance of training-efficient tuning methods on
remote sensing tasks. TEA replaces the traditional
adapter with GhostNetV2 [157]. Hu et al. analyzed
the redundancy of the traditional adapter fine-tuning
paradigm in gradient backpropagation and designed
a parallel framework based on the gradient chain rule.
The new framework can prevent adapter gradients
from passing into the pre-trained layer. The authors
also elaborate on this efficient training paradigm
through mathematical derivations.

Furthermore, a top–down guidance mechanism is
provided for TEA, considering the performance of the
parallel structure. The authors argue that background
information in remote sensing images helps the model
to understand foreground objects. In other words, the
performance of adapter tuning is enhanced if the
model can capture high-level semantic information
from the image using a larger receptive field. TEA
borrows the idea of methods such as FPN [158].
Features from multiple stages of the backbone are
fused and sent to the adapters for learning. This
approach successfully improves the performance of
TEA on several remote sensing visual tasks, including
object detection, rotated object detection, semantic
segmentation, and image classification.
3.2.4 SCD-SAM
Remote sensing images often exhibit substantial
inter-class similarity and significant intra-class
variation, which can lead to pronounced performance
degradation when directly applying the segment
anything model (SAM) [159] to semantic change
detection (SCD) tasks in remote sensing imagery. To
alleviate this limitation, SCD-SAM [21] introduces a
semantic adapter designed to aggregate semantically
oriented information about changing objects, thereby
pioneering the adaptation of MobileSAM [160] to the
SCD domain.

Specifically, SCD-SAM uses semantic adapters
to optimize input processing, refine overlapping
patch embeddings, and integrate multi-scale semantic
features. The input image size is reduced by half
from its original dimensions of 1024 × 1024 with a
corresponding reduction in the patch stride, thus
augmenting the model’s capacity for fine-grained
semantic understanding and its sensitivity to semantic
information along patch boundaries. The adapter
restructures the original feature representation
derived from MobileSAM to better preserve the
spatial and semantic information necessary for
downstream tasks. In addition, SCD-SAM adapts the
MobileSAM encoder into a four-stage architecture,
enabling the extraction of multi-scale semantic
change features, enhancing its capacity to detect and
differentiate semantic variations for diverse land cover
types. The necessity and efficacy of the proposed
semantic adapter are rigorously demonstrated
through ablation experiments, which highlight its
contributions to performance improvements.
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Experimental results underscore the effectiveness
of SCD-SAM, showcasing its potential to migrate
powerful vision foundation models to remote sensing
applications and significantly advancing the field of
SCD.
3.2.5 ACTNet
ACTNet [22] introduces ResAttn to accelerate training
convergence of the Swin Transformer [152] when
segmenting high-resolution remote sensing images.
ResAttn uses a dual-branch attention mechanism to
model the interdependencies between feature sets,
thereby improving the model’s global representation
capabilities. This mechanism also mitigates the risk of
vanishing gradients in deeper networks and enhances
the model’s sensitivity to small objects.

Integrating the concept of residual structure,
ResAttn first generates tokens and queries by
combining the outputs from the current Swin
Transformer block and the preceding ResAttn
module. These features are then fused and fed into
a self-attention module, employing a multi-head
self-attention mechanism. The outputs from the
two branches are concatenated and subsequently
passed through a feed-forward network (FFN). The
FFN consists of two linear layers interspersed
with activation functions, which augment the
query representations to further refine feature
embeddings. To preserve the structural integrity
of the Swin Transformer, ResAttn employs the
same downsampling strategy, thereby optimizing
computational efficiency within the adapter module.

Experimental results demonstrate that ResAttn
incurs only a minimal increase in training time, yet
it significantly enhances the model’s performance on
downstream tasks. However, it is noteworthy that the
paper also highlights that ACTNet’s inference time
is longer than the baseline.
3.2.6 ClassWise-SAM-Adapter
ClassWise-SAM-Adapter (CWSAM) [23] introduces
a lightweight adapter designed for parameter-efficient
fine-tuning of the SAM model on land cover
classification tasks using satellite-borne SAR images.

Inspired by AdaptFormer [161], CWSAM integrates
several simple yet effective adapters into individual
blocks within the Vision Transformer (ViT) archi-
tecture. A lightweight adapter is incorporated after
the multi-head attention (MHA) module, introducing
a skip connection that merges with the initial features

prior to the second MLP sub-block. Within the second
MLP sub-block, an additional adapter operates in
parallel with the original MLP layer to refine and
enhance the output representations. Both adapters
are simple adapters, denoted Adapter(·). The feature
extraction process of the Transformer block in the
i-th layer can be represented as{

x′i = Adapter(Attention(LN(xi−1))) + xi−1

xi = MLPsam(LN(x′i)) + Adapter(LN(x′i)) + x′i
(11)

Here xi and xi−1 denote the output features of
consecutive Transformer blocks, while x′i represents
the intermediate features from the first sub-block
in the Transformer block. The function Attention(·)
refers to the attention mechanism within the
Transformer block, and LN(·) represents the Layer
Normalization operation. MLPsam(·) is the MLP
block within the Transformer block.

By embedding these adapter structures, CWSAM
enables the SAM model to transfer its representation
capabilities from natural scenes to SAR imagery,
thereby providing meaningful features for subsequent
mask decoding.
3.2.7 DFSA-Net
DFSA-Net [24] introduces the disentangled low-
rank adapter (DLA) to address two challenges in
generalized few-shot semantic segmentation (GFS-
Seg): degradation of base class performance and
overfitting to new classes during fine-tuning. This
approach safeguards the pretrained base parameters
to mitigate base class degradation, while adaptively
fine-tuning low-rank parameters to accommodate the
representations of novel classes.

The DLA architecture ensures that the parameters
of the backbone network and the pretrained base
branch remain frozen, introducing a trainable
adapter branch that facilitates efficient adaptation.
This adapter branch restructures conventional
convolutional layers by replacing the FPN, FAM,
and semantic decoder modules by a low-rank
adaptation layer. The learnable kernel weights K̃ are
approximated via a low-rank matrix decomposition,
which can be mathematically expressed as

K̃ = reshape(X1Y1 �X2Y2) (12)
Here, X1 ∈ RCout×r1 , X2 ∈ RCout×r2 , Y1 ∈
Rr1×(Cin×k×k), and Y2 ∈ Rr2×(Cin×k×k). The low-
rank approximation of the learnable kernel K̃ is
computed inRCout×Cin×k×k as r1, r2 � min(Cin,Cout).
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Then output features can be computed as
Foutput = Conv(K̃, Finput) + Conv(K, Finput) (13)

where Finput ∈ RCin×h×w and Foutput ∈ RCout×h×w.
To enhance the model’s capacity to learn new

classes, the DLA integrates a salience suppression
mechanism during fine-tuning. This technique reduces
the foreground salience of the base class while
enabling the extraction of foreground features for
the novel class branch by computing the difference
between the predicted output and the foreground
mask of the base class. This process is mathematically
formulated as

Mnovel
fg = δada

(
F ′ada

)
− δ
(
F ′
)

(14)
where δada and F ′ada correspond to the adapter branch
for the novel classes, while δ and F ′ are derived from
the original convolutional branch for the base classes.
3.2.8 BAN
Li et al. [25] introduced the bi-temporal adapter
network (BAN), a novel approach that harnesses
knowledge priors from foundational models to
enhance change detection tasks. Specifically, BAN
extracts high-level features from frozen foundational
models (e.g., CLIP [162]) and employs a bridging
module to efficiently select, align, and integrate these
features into the bi-temporal adapter branch (Bi-
TAB).

The bi-temporal adapter branch (Bi-TAB) presents
a model-agnostic framework designed to extract
both domain-specific and task-specific features. In
addition to utilizing the original dual-time-phase
images, the base model contributes an expansive
generalized feature library, from which Bi-TAB can
dynamically extract pertinent features. Using its
Siamese architecture, Bi-TAB seamlessly integrates
information from the base model into its backbone for
the corresponding time phase, thereby enabling the
use of virtually any remote sensing change detection
(RSCD) model as a foundational element for Bi-TAB.
To effectively select and align generic features with
domain- or task-specific ones, the bridging module
resamples the generalized domain knowledge via
cross-domain dot-product attention, and subsequently
injects the refined features into the RSCD domain
representations.
3.2.9 CloudformerV3
CloudformerV3 [26] utilizes a multi-scale adapter to
incorporate a priori knowledge from diverse channels

into the model’s backbone, thereby augmenting its
ability to capture both foundational information and
intricate multi-scale details within remote sensing
imagery for cloud detection.

The conventional adapter [163] consists of three
core components: spatial prior module, injector,
and extractor. However, traditional adapters are ill-
suited to hierarchical network architectures, limiting
the model’s capacity to effectively extract multi-
scale features. To overcome this constraint, this
work enhances the model’s multi-scale perceptual
capability by introducing a downsampling layer
between the extractor and injector of the conventional
adapter. Specifically, the features extracted by
the extractor are first partitioned into multiple
resolution levels via split and reshape operations,
denoted Split(·) and Reshape(·). These features
are subsequently downsampled using patch merging
layers [164], denoted PatchMerging(·), which reduce
both their spatial length and width. Finally, the
downsampled features are flattened and concatenated
by the functions Flatten(·) and Concat(·), preparing
them for subsequent fusion. This modified adapter
structure allows the model to more effectively
assimilate image information relevant to cloud
detection. Furthermore, the use of adapters facilitates
the seamless integration of downstream tasks and
supplementary a priori information into the model.
The whole process can be formulated as

F isp1, F
i
sp2, F

i
sp3 = Reshape

(
Split(F isp)

)
(15)

F̂ ispj = PatchMerging(Fspj), j ∈ {1, 2, 3} (16)

F̂ isp = Flatten
(

Concat(F̂ isp1, F̂
i
sp2, F̂

i
sp3)

)
(17)

where F isp represents original features and F̂ isp denotes
enhanced features.
3.2.10 Cai et al. module
Existing dehazing models often underperform in
severe haze conditions due to their inability to
effectively capture fine-grained details. To mitigate
this limitation, Cai et al. [27] introduced an auxiliary
self-attention module designed to enhance the
model’s capacity for fine detail extraction, while also
incorporating an adapter to optimize the model’s
adaptability to additional structural components.

In this work, two self-attention modules are
preceded by an adapter module, which functions
as an initial mechanism to evaluate the haze
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intensity within the image. This preliminary asse-
ssment allows for dynamic adjustment of the
information flow, ensuring a more refined alignment
with the subsequent processing stages. The pro-
posed adapter module employs a convolutional
layer for preprocessing, effectively alleviating the
computational burden that would typically arise in
directly applying fully connected layers to image data.
Following this step, the processed features are passed
through a ReLU activation function before being
directed into the subsequent attention computation
modules. Experimental results validate that the
integration of the adapter module enables the model
to more seamlessly adapt to the new architecture,
thereby enhancing overall dehazing performance.
3.2.11 SAM-CD
SAM-CD [28] introduces a convolutional adapter
designed to extract task-specific change information,
thereby fine-tuning FastSAM [165] to focus on distinct
ground objects within the context of remote sensing
image change detection. This approach leverages
the powerful visual perception capabilities of vision
foundation models to enhance the performance
of high-resolution remote sensing image change
detection.

In alignment with FastSAM’s convolution-based
architecture, SAM-CD is similarly constructed using
convolutional operations. Upon obtaining multi-scale
features extracted by FastSAM, the features undergo
processing according to the procedure outlined by
Eq. (18):

f∗i = α(fi) = γ
{
bn
[
conv(fi)

]}
(18)

where conv(·) denotes a 1×1 conv layer, bn[·] denotes
a batch normalization function, and γ(·) is a ReLU
function.

Given that remote sensing images typically involve
fewer categories, the number of feature channels is
reduced to mitigate feature redundancy. Moreover,
since low-level features are particularly crucial for
object segmentation, feature fusion is performed using
a structure akin to UNet [166]:
d1 = f1, di+1 = conv

[
fi+1, upsample(di)

]
(19)

where upsample(·) represents the upsampling layer,
[·; ·] denotes concatenation along the channel
dimension and di is the i-th feature layer.
3.2.12 Li et al. module
Li et al. [29] applied the ViT-Adapter [167] to
algal bed area segmentation from remote sensing

imagery, demonstrating favorable results across
several ecological regions.

The adapter architecture is composed of three
primary components: the spatial prior (SP) module,
the spatial feature injector (SFI) module, and the
multi-scale feature extractor (MFE). The SP module
first captures spatial features from the input remote
sensing images. Subsequently, the SFI module injects
these spatial features into the Vision Transformer
architecture, allowing the model to incorporate crucial
spatial information. The output from the ViT is then
passed to the MFE, which generates hierarchical
features at multiple scales. These components of the
ViT-Adapter architecture enable the model to adapt
effectively to varying algal bed states, illumination
conditions, and diverse coastal ecosystems, thereby
significantly enhancing the segmentation accuracy
of the model. This method can help evaluate the
potential of an algal bed for CO2 sequestration,
contributing to blue carbon initiatives and efforts
to combat climate change.
3.2.13 HarMA
Huang [30] introduced the Harmonized Transfer
Learning and Modal Alignment (HarMA) framework,
which enables multi-modal transfer learning to
simultaneously satisfy task constraints, modality
alignment, and intra-modal unified alignment. It also
reduces training overhead through parameter-efficient
fine-tuning.

Inspired by the human brain’s use of shared regions
for processing visual and linguistic stimuli, HarMA
designs hierarchical multi-modal adapters to model
the visual-linguistic semantic space from bottom–
up. The proposed multi-modal adapters inherit the
alignment of multi-modal contextual representations
by sharing the weights of I-MSA and MM-MSA,
while also introducing a dynamic gating mechanism.
Distinct features are first enhanced through the I-
MSA module to refine their representations, and
then passed into the shared-parameter-weighted
MMS-Adapter for further interaction. HarMA’s
simplicity allows it to be seamlessly integrated into
most models. By leveraging efficient fine-tuning,
the framework significantly improves multi-modal
retrieval performance, even surpassing the results of
full fine-tuning.
3.2.14 PanAdapter
To overcome the constraints imposed by limited
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dataset size in the task of pan-sharpening,
PanAdapter [31] introduces a sophisticated two-
stage fine-tuning framework for domain adaptation,
facilitating a more efficient exploitation of the high-
level semantic information encapsulated within the
pre-trained models in the domain of image restoration.
By leveraging the remarkable generalization prowess
of these pre-trained models in conjunction with the
fine-tuning strategy, PanAdapter achieves cutting-
edge performance across a range of benchmark pan-
sharpening datasets.

In the first phase, PanAdapter refines the
pre-trained convolutional neural network (CNN)
architecture by integrating a local prior extraction
block at various intermediate stages, thereby
capturing spectral and spatial priors at multiple
hierarchical levels. During the second phase, a
cascaded dual-branch adapter is employed to fuse
the spatial and spectral priors derived from the first
stage through multi-scale feature interaction. These
enriched priors are subsequently injected into the pre-
trained ViT model for additional fine-tuning, thereby
enhancing the model’s performance.
3.2.15 YOLO-Adapter
YOLO-Adapter [32] introduces a lightweight multi-
modal adapter designed to dynamically facilitate
multimodal alignment and confidence estimation.
This model addresses the challenge of misalignment in
visible-infrared object detection, specifically tackling
complex biases such as translation, scaling, and
rotation.

The adapter consists of several compact yet
efficient layers, seamlessly integrated between the
shallow feature representations of the visible and
infrared branches. These layers are engineered to
concurrently predict the alignment parameters and
confidence weights across the two modalities. In
particular, this work designed a simple mapping
operation and proposed a feature contrastive learning
loss that imposes a regularizing constraint on
the learning process. This loss function serves to
minimize discrepancies between visible and infrared
features within the hyperbolic geometric space,
thereby diminishing the representational divergence
between the modalities. Results substantiate that
YOLO-Adapter achieves substantial performance
improvements in the visible-infrared object detection
task.

3.2.16 Yuan et al. module
Yuan et al. [33] introduced a highly efficient fine-
tuning framework tailored for remote sensing image-
text retrieval. The proposed multimodal remote
sensing adapter, MRS-Adapter, in conjunction with
the hybrid multimodal contrastive (HMMC) learning
objective, substantially enhances the performance
of fine-tuning models for remote sensing image-
text retrieval, offering novel insights and approaches
for tasks pertaining to remote sensing image–text
correspondence.

In particular, the MRS-Adapter refines the cross-
modal adapter architecture by removing the skip
connection and linking it solely in parallel with
the FFN module. It operates on the feature
representations obtained from the transformer
blocks of both modalities following the MHA
operation. The MRS-Adapter employs the traditional
adapter framework of down-projection, nonlinear
activation, and up-projection. To enable efficient
cross-modal parameter sharing, a modality-shared
upward projection is introduced, which bridges
the modality-specific linear layers of the original
projections, facilitating shared information transfer
between modalities.
3.2.17 FreqDiMFT
To address the limitations of existing multimodal
fine-tuning strategies, which predominantly focus on
natural scene datasets, Zhang et al. [34] proposed
a frequency-based multimodal fine-tuning strategy
(FreqDiMFT). Specifically, the strategy incorporates
local–global frequency distribution information
within the visual branch to adapt it to the high
inter-class similarity and intra-class diversity inherent
in remote sensing images. To further enhance the
model’s generalization ability, FreqDiMFT introduces
an adaptive feature refinement module designed for
transformers, which filters out redundant features
induced by domain discrepancies.

The frequency distribution integration module,
designated FreqDiMFT, first maps the features to
the amplitude-frequency domain. It then employs
distributed average pooling techniques to reshape the
features into a two-dimensional vector format. Finally,
a fully connected layer and bottleneck structure are
used to transform the distribution features into the
feature space of CLIP. This work provided a novel
paradigm for multimodal fine-tuning in the remote
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sensing domain, inspiring future design approaches
in this field.
3.2.18 Summary
At the architectural optimization level, AiRs [19]
constructs dual adapters for spatial context and
semantic response, reducing parameter redundancy
via feature splitting mechanisms, TEA [20] innovates
a gradient highway structure combined with multi-
stage feature fusion to significantly enhance training
efficiency, and ACTNet [22] embeds separable
convolutions within Swin Transformer to enhance
small-target perception capabilities. For multimodal
adaptation, CWSAM [23] achieves cross-modal
migration of SAM to SAR images through a
lightweight dual-branch architecture, HarMA [30]
employs hierarchical dynamic gating mechanisms
to optimize visual-linguistic feature alignment,
FreqDiMFT [34] pioneers a frequency-domain inte-
gration module, leveraging amplitude-frequency
mapping to strengthen domain adaptability. In
task-oriented design, BAN [25] develops a dual-
temporal feature alignment network for precise
temporal change detection, CloudformerV3 [26]
enhances cloud layer detail characterization through
multiscale adapters, and Li’s algal bed segmentation
method [29] improves coastline segmentation accu-
racy via spatial prior modules. For real-time
optimization, SAM-CD [21] inherites FastSAM’s
lightweight advantages while balancing detection
speed and precision through UNet-style feature fusion,
and YOLO-Adapter [32] establishes a cross-modal
dynamic alignment framework using hyperbolic
space contrastive learning. Additionally, DFSA-
Net [24] proposes decoupled low-rank adaptation
strategies, PanAdapter [31] builds a two-stage
spectral-spatial prior optimization framework, and
Yuan’s method [33] develops parameter-shared up-
projection mechanisms, collectively expanding the
application boundaries of adapter technology through
feature decoupling, multiscale interaction, and cross-
modal compression.
3.3 Prompt tuning

3.3.1 Concepts
Early prompt tuning techniques showed impressive
performance in NLP by introducing a few parameters
into the input or hidden layers, enabling pre-trained
language models to modify their outputs based on
few-shot data [168]. VPT [10] pioneered parameter-

efficient visual fine-tuning. Shallow VPT introduced
trainable patches as prompts for the new task into the
input, altering the input distribution. This approach
allows the pre-trained visual model to adjust the
output feature distribution based on few-shot image
data, thereby enhancing the performance on new
tasks. Deep VPT incorporated trainable parameters
into the hidden layers of the model, gradually altering
the visual feature distribution to better adapt to few-
shot data.

Letm image patches
{
Ij ∈ R3×h×w|j ∈ N,16j6m

}
be the input to the Vision Transformer [151], which
become hidden space vectors after embedding:

ej0 = Embed(Ij) (20)
Let the embedding output of the i-th layer be denoted
Ei =

{
eji ∈ R|j ∈ N,1 6 j 6m

}
, which serves as the

input to the (i + 1)-th layer Li+1. Along with an
additional learnable class label [CLS], the entire
Transformer can be represented as Eq. (21):{

[xi,Ei] = Li([xi−1,Ei−1])
y = Head(xN)

(21)

where xi denotes the i-th embedding of [CLS], and
Head represents the trainable classification head
structure. Shallow VPT only introduces learnable
parameters P into the first layer, while keeping other
backbone parameters fixed. The calculation process
can be expressed as Eq. (22):

[x1,Z1,E1] = L1([x0, P,E0])
[xi,Zi,Ei] = Li([xi−1,Zi−1,Ei−1])
y = Head(xN)

(22)

where Z denotes the hidden vectors of P in different
layers. Deep VPT adds learnable parameters Pi in
each layer. The calculation process can be expressed
as Eq. (23):{

[xi, ,Ei] = Li([xi−1, Pi−1,Ei−1])
y = Head(xN)

(23)

In remote sensing images, the positions of many
objects are unpredictable, and the cost of data
acquisition is high. As a result, there are many few-
shot tasks in remote sensing. Recent studies claim
that prompt tuning is better suited for few-shot data
[169], so is beneficial for few-shot scenarios in remote
sensing. We now focus on the application of prompt
tuning in remote sensing.
3.3.2 RingMo-SAM
The multimodal remote sensing segmentation model
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RingMo-SAM [35] elevates the performance of SAM
in segmenting arbitrary objects within both optical
and SAR imagery. This is achieved through the design
of an encoder that supports multiple bounding box
prompts and SAR feature prompts, followed by the
fine-tuning of these parameters. The proposed method
helps to improve segmentation accuracy and object
classification. The proposed model investigates the
potential of utilizing remote sensing image features as
prompts, thereby enhancing the performance of vision
foundation models in multimodal remote sensing
tasks through fine-tuning.

In the proposed framework, multiple prompt
boxes are seamlessly integrated into the sparse
encoding process, working collaboratively to enhance
the decoding phase and optimize segmentation
precision. Additionally, RingMo-SAM incorporates
SAR polarization decomposition prompts, where
the extracted polarization features provide essential
object-related information. These features are
strategically utilized in the prompt encoding,
significantly boosting the model’s segmentation
capabilities.
3.3.3 Immanuel and Sinulingga module
Immanuel and Sinulingga [36] introduced a learnable
prompt to fine-tune SegGPT [170] to adapt it to few-
shot new classes in segmentation tasks. Considering
the multi-scale characteristics inherent in remotely
sensing objects, they devised patch-level predictions
and proposed a patch stitching technique to mitigate
the issue of boundary discontinuities between adjacent
patches.

The model’s parameters are frozen after training
on the base classes, and only the learnable prompt
Z undergoes optimization. A distinct prompt set,
{Zi}Ni=1 is then generated for N new classes, with
each prompt being explicitly associated with its
corresponding class and trained by sampling from
the respective class examples. This method not only
preserves segmentation performance on the base
classes but also reduces the number of additional
parameters. During inference on new classes, the
model merely integrates the relevant prompt into
the framework, enabling efficient predictions without
necessitating further retraining.
3.3.4 SPT
SPT [37] represents the pioneering approach to
adapting visual-language models for the joint

classification of remote sensing hyperspectral and
LiDAR imagery. By integrating spectral-driven visual
prompts into the visual encoder and employing
learnable textual prompts, the model is fine-tuned
to bolster the generalization capacity of the visual-
language framework.

In remote sensing images, features often exhibit
spatial similarity, which means extracting spatial
features alone is insufficient for accurately classifying
complex ground objects. To leverage the spectral
vectors in hyperspectral imagery, the spectral prompt
learner (SPL) utilizes 1D-CNN to process the spectral
vectors of each pixel vi, generating independent
sampled spectral prompt vectors (SPVs).

P
(S)
i = fθ(SPL)(vi) (24)

where θ(SPL) denotes the learnable parameters of SPL.
These SPVs are then injected into the visual encoder
alongside the visual embeddings, enabling SPT to
extract spatial-spectral fused features that cater to
different modality preferences based on downstream
tasks.

Moreover, recognizing that using only category
names for text embedding is inadequate to fully
capture the class descriptions, SPT provides a
learnable and class-related textual prompt to enrich
the representation of each class.
3.3.5 Gao et al. module
Gao et al. [38] pioneered the exploration of source-free
adaptation segmentation for remote sensing images
by combining vision foundation models with prompt
learning. To more effectively transfer prior knowledge
from vision foundation models to diverse target
remote sensing tasks, they proposed an attention-
guided prompt fine-tuning strategy to transfer model
priors that are most relevant to downstream tasks
across different layers and locations.

This approach utilizes attention matrices to
dynamically adjust the correlation between the
prompt and the layers, thereby mining features that
are more relevant and discriminative to the task.
Specifically, learnable prompts initialized using the
Xavier method are denoted P = {p1, · · · , pN} ∈
RN×D, and the classification token is denoted zcls. In
the l-th layer, the input and output prompt tokens
are denoted Zl−1

p and Z̃l
p. The attention matrix is

represented as W = {w1, · · · ,wL−1} where L is the
total number of layers. The entire attention-guided
prompt fine-tuning process can be formalized as



Remote sensing tuning: A survey 15

[
zlcls, Z̃

l
p,Z

l
]

= Layerl
([
zl−1

cls ,Z
l−1
p ,Zl−1

])
(25)

Zl
p = wl �Zl−1

p +
(
1−wl

)
� Z̃l

p (26)
where the symbol � denotes element-wise multi-
plication.
3.3.6 APPLeNet
Singha et al. [39] proposed the visual attention
parameterized prompts learning network (APPLeNet)
to address the few-shot generalization task for
remote sensing images. This framework leverages the
multi-scale features extracted by the CLIP encoder,
decoupling the visual style and content priors within the
domain generalization task. Additionally, it introduces
an attention-driven lightweight injection module to
better exploit both visual features and style elements.

Given the multi-scale features fv, the model first
compresses the spatial dimensions of each channel
using global average pooling (GAP), resulting in a
compact representation f̂ lv(x̂) ∈ RC×1 where C is
the number of channels. These compressed features
are then concatenated to form the input F̂(x) =
[f̂1
v (x); · · · ; f̂ L̂v (x)]. The average feature estimate is

utilized to capture the style elements of a specific
domain, producing a representation that encompasses
both multi-scale content and style elements µi =
fv(Xi). The attention module within each block of
the layer is denoted Aq(·) where q is the number of
attention blocks. Therefore, the output feature for
each layer can be computed as Eq. (27):

Oq =
{
F(x)�Aq(F(x)) + F(x), if q = 1
Oq−1 �Aq(Oq−1) +Oq−1, otherwise

(27)

After passing through M lightweight mapping layers,
M visual tokens {v1, · · · , vM} are obtained. Upon
fusing each with the corresponding m-th language
token cm, the result yields a learnable prompt:

ty = {[v1 + c1], · · · , [vM + cM], [CLSy]} (28)
where [CLSy] denotes the word embeddings for class y.
3.3.7 DP-RSCap
DP-RSCap [40] proposes an entity-concept prompt
extractor to capture entity information from images,
along with a scene-class prompt generator to predict
scene categories and obtain scene-relevant semantic
information. Based on these two prompts, DP-RSCap
facilitates the exchange and alignment of information
across different modalities, thereby improving the
quality of remote sensing image interpretation.

The entity-concept prompt extractor initially
employs NLTK (a grammar tool) to construct a

preselected entity space, which is then organized
into prompts of the form “An image contains {entity
concept}”. Subsequently, the CLIP encoder is utilized
to obtain the visual representation of the image Fv,
as well as the textual representation of the prompt Ft.
The correlation between these two representations is
assessed to identify M entity concepts, from which
the entity prompt “There are v1, · · · , vM in the image”
is constructed.

The scene class prompt generator uses the output
of the final layer of the CLIP visual encoder and
applies downsampling to obtain multi-scale visual
features V v = {V1, · · · , VL}. These visual features are
then enhanced using a simple transformer block and
MHA mechanisms: V en = {V en

1 , · · · , V en
L }. Finally, a

global semantic representation is obtained via average
pooling, which is subsequently used to predict the
probability value of scene category Pcls:

Vg = FC (cascade(V1,g, . . . , VL,g)) (29)
Pcls = Softmax (FC (dropout(Vg))) (30)

where cascade(·, ·) denotes the cascade operation.
3.3.8 RSPrompter
RSPrompter [41] introduces an automated framework
for generating category-specific prompts tailored
to individual instances, thereby enhancing the
performance of SAM in remote sensing instance
segmentation. The method uses a multiscale feature
enhancer to augment the visual features extracted by
the SAM encoder. Based on these enriched semantic
features, the anchor-based prompter constructs
prompt embeddings for the SAM mask decoder.

After obtaining the multiscale-enhanced feature
representations, the anchor-based prompter employs
an anchor-based region proposal network (RPN) to
generate candidate object bounding boxes. These
proposals are subsequently subjected to RoI pooling,
yielding refined feature representations. From these
representations, three perceptual heads are derived:
the semantic head, the localization head, and the
prompt head. The prompt head is dedicated to
generating the prompt embeddings required by the
SAM mask decoder. The whole process is shown in
Fig. 6.

The paper also introduces a query-based prompter
to streamline the process of the anchor-based
prompter, which is composed of a transformer encoder
and decoder. The encoder is employed to extract high-
dimensional semantic features, while the decoder is
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Fig. 6 Anchor-based prompter and query-based prompter in RSPrompter. Reproduced with permission from Ref. [41], c© IEEE 2024.

responsible for transforming the pre-defined learnable
queries into prompt embeddings.
3.3.9 CPSeg
Li [42] proposed a framework for semantic
segmentation of remote sensing images based on
vision-language models (VLMs): chain-of-thought
language prompting for finer-grained semantic
segmentation (CPSeg). By sequentially and logically
prompting the vision-language model, this approach
encourages a chain-of-thought reasoning process,
thereby enhancing the model’s performance in
semantic segmentation tasks.

The method begins by querying the model as to
whether a specific object exists within the image. If
the model detects the object, the next query focuses
on determining how many of that object are in
the image. The text prompts generated throughout
this reasoning process are then consolidated into
a text encoder to guide the segmentation model
to better understand the image. Specifically, this
work constructs a chain of thought as follows: C =
c1, · · · , cm. Each thought ci corresponds to a sentence
si, and each reasoning step involves a text encoder
T (ci) and a pixel-level segmentation function fci(pi),
ultimately generating m segmentation decisions
D = d1, · · · , dm. It is noteworthy that this model
demonstrates promising results exclusively on flood
disaster analysis tasks, and its transferability to and
efficacy on other datasets have yet to be thoroughly
assessed.
3.3.10 Lan et al. module
Directly fine-tuning VLMs for fine-grained ship
classification in remote sensing (RS-FGSC) tasks
may lead to overfitting on the base class, resulting
in suboptimal performance when classifying a
new class. To address this issue, Lan et al. [43]
proposed a hierarchical, multi-granularity prompt
fine-tuning approach that integrates prior knowledge

of ship information extracted by a lightweight
model as a bias term. This strategy enhances the
model’s generalization ability and facilitates better
discrimination of complex backgrounds.

The framework employs a hierarchical, multi-
granularity tri-class prompt to optimize the CLIP text
prompt: ci = {cpi , csi , c

f
i }, thereby guiding the model

to achieve a more granular perception of the image.
Building upon this, M context vectors are introduced
as learnable text prompts: V = {v1, · · · , vM}. These
vectors are fused with the feature vectors encoded
by a lightweight remote sensing encoder, creating a
comprehensive representation:

vm(x) = vm + δ (31)
This fusion enables the context vectors to encapsulate
both the features encoded by the CLIP model and the
prior knowledge of ships in remote sensing images.
3.3.11 Zhao et al. module
Zhao et al. [44] explored the feasibility of using prompt
learning for continual learning in remote sensing scene
classification tasks. They also investigated the effects
of prefix tuning, prompt tuning, and other fine-tuning
components on the effectiveness of prompt learning.

The proposed Pro-T model introduces the prompt
parameter before the input tokens, effectively adding
p to the queries, keys, and values hQ, hK , and hV
within the MHA layers:
fPro−T
p (p, h) = MSA

(
[p;hQ], [p;hK ], [p;hV ]

)
(32)

Here, the operation [·; ·] denotes concatenation in the
sequence length dimension. In contrast, the Pre-T
model splits p into pK , pV ∈ RLp/2×Drespectively,
while keeping unchanged:

fPre−T
p (p, h) = MSA

(
hQ, [p;hK ], [p;hV ]

)
(33)

Experimental results demonstrate that the prompt
provides essential information, assisting the model to
better understand the image content and overcoming
the issue of catastrophic forgetting.
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3.3.12 MVP
To address the overfitting and storage issues
associated with full fine-tuning in the remote sensing
domain, meta visual prompt (MVP) tuning [45]
integrates the concept of prompt tuning into a meta-
learning framework and applies it to few-shot remote
sensing scene classification tasks.

Consistent with VPT [10], a set of prompt tokens
is incorporated into the input of ViT layers; the ViT
structure can be represented as

[CLSi, Pi, Ei] = Li ([CLSi−1, Pi−1, Ei−1]) (34)
fθ′(x) = CLSN (35)

where θ′ denotes the parameters of ViT. During both
meta-training and meta-finetuning, only the prompt
parameters θp are updated. Finally, the classification
task is formulated as

θ∗ = argmaxθP

∑
x

log p
(
y|fθ′(x); θP

)
(36)

where θ∗ represents the optimal value for prompt
parameters θp. Results demonstrate that this method
achieves impressive performance across various
experimental configurations.
3.3.13 IVP
Instance-aware visual prompting (IVP) [46] repre-
sents the first application of prompt learning to
remote sensing scene classification. IVP utilizes
an instance-level prompt generator, Meta-Net,
to aggregate contextual information from the
image after it has been embedded into patches.
This aggregated information is then combined
with the image’s patch embeddings and fed
into a pretrained model for encoding, thereby
facilitating the extraction of instance-specific
features with enhanced precision.

Specifically, the IVP-shadow approach begins by
passing the image tokens through a GAP layer to
adapt it to variations in the data distribution:

G(k) = AveragePooling
(
e

(k)
1 , · · · , e(k)

N

)
(37)

Subsequently, a bottleneck-structured feedforward
layer is employed to extract relevant feature
representations:
Ĝ(k) = Wup

(
ReLU

(
WdownG

(k) + b1

))
+ b2 (38)(

p
(k)
l , · · · , p(k)

M

)
= Reshape

(
Ĝ(k)

)
(39)

Then, these representations, along with the original
image features and class tokens, are input into a
transformer layer to obtain:

(
c(k+1), p

(k+1)
1 , · · · , p(k+1)

M , e
(k+1)
1 , · · · , e(k+1)

N

)
= Lk

(
c(k), p

(k)
1 , · · · , p(k)

M , e
(k)
1 , · · · , e(k)

N

)
(40)

Furthermore, the IVP-deep method uses an adaptive
max-pooling layer to optimize Meta-Net, thereby
reducing computational overhead:(
ê

(k)
1 , · · · , ê(k)

N

)
=ReLU

(
Wdown

(
e

(k)
1 , · · · , e(k)

N

)
+b1

)
(41)(

p̂
(k)
1 , · · · , p̂(k)

M

)
= AdaptiveMaxPool

(
ê

(k)
1 , · · · , ê(k)

N

)
(42)(

p
(k)
1 , · · · , p(k)

M

)
= Wup

(
p̂

(k)
1 , · · · , p̂(k)

M

)
+ b2 (43)

3.3.14 PromptCC
PromptCC [47] decouples the task of remote sensing
image change captioning into two distinct problems:
whether a change has occurred and where the change
has occurred. To more effectively address the latter
issue, PromptCC integrates prompt learning into
a pretrained large language model and employs
a multi-prompt learning strategy. This strategy
generates unified prompts, along with class-specific
prompts based on the image classification results.
By leveraging these prompts and the extracted
visual features, the LLM can produce more accurate
descriptions of changes within the image.

In the multi-prompt learning strategy, the unified
prompts can be regarded as global, task-dependent
prompts that are applicable at any stage of the
inference process. The class-specific prompts, derived
by fusing two learnable prompt embeddings PC0 ∈
R1×dT and PC1 ∈ R1×dT where dT is the dimension of
the textual embedding, assist the LLM in determining
whether a change is present. Results show the robust
performance of PromptCC, as well as the effectiveness
of its decoupling paradigm.
3.3.15 PAT
Inspired by human visual perception, Bi et al. [48]
proposed a novel prompt-driven paradigm, prompt
and transfer (PAT). It constructs a dynamic, class-
aware prompting framework, which enables the
precise transfer of class-related semantic information
from the image to the prompt, allowing the model’s
encoder to focus on the target class of the current task.

PAT leverages a traditional pre-trained vision-
language model to encode class information,
embedding it into several randomly initialized
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embeddings, thereby ensuring that the prompt
is initially category-aware for the specific task.
PAT also introduces two key components: semantic
prompt transfer (SPT) and a part mask generator
(PMG) to further enhance the category awareness
of the prompt. SPT establishes a semantic transfer
between feature tokens and the prompt, enabling
effective communication of semantic information.
PAT achieves competitive performance in few-shot
segmentation within the remote sensing domain and
also performs well on several other tasks.
3.3.16 Osco et al. module
To augment the model’s performance, Osco et al.
[49] introduced a sophisticated automated technique
that synergistically combines a text-prompt-derived
general exemplar with one-shot learning. This
innovative strategy enables the model to leverage
pre-existing knowledge encoded in VFMs, thereby
achieving efficient task adaptation with minimal
task-specific annotations. Specifically, the one-shot
learning framework facilitates rapid model adaptation
by utilizing a single reference example to fine-tune the
prompt, reducing the dependency on large annotated
datasets. This approach has significant advantages in
tasks with restricted samples.
3.3.17 Summary
In the development of prompt-based tuning tech-
niques for remote sensing, researchers have advanced
multimodal understanding, few-shot adaptation, and
task-specific optimization through three key technical
directions. Cross-modal prompt fusion strategies
integrate diverse data sources: RingMo-SAM [35]
combines optical/SAR polarization decomposition
prompts for arbitrary object segmentation, while
SPT [37] embeds hyperspectral/LiDAR features
into vision-language frameworks to enhance land
cover classification. Dynamic prompt generation
mechanisms leverage attention guidance and meta-
learning: Gao et al. [38] employed attention-weighted
layer correlation to mine task-relevant features,
while MVP [45] dynamically generates prompts via
meta-features for few-shot scene classification. Task-
driven architectures address specialized challenges:
RSPrompter [41] uses anchor/query dual prompters
for instance-level SAM adaptation, CPSeg [42]
implements chain-of-thought language prompting
for explainable fine-grained segmentation, and
PromptCC [47] develops unified and class-specific

prompts to optimize change captioning consistency.
Few-shot optimization breakthroughs include Lan
et al.’s method [43], which integrates lightweight
ship priors for cross-domain classification, and Osco
et al.’s approach [49], which automates prompt
generation through one-shot learning. Additionally,
interpretability enhancement is achieved via PAT’s
[48] category-aware semantic transfer and IVP’s [46]
instance-specific feature pooling.
3.4 Reparameterized tuning

Reparameterized tuning is one of the most popular
efficient fine-tuning paradigms in recent years. LoRA
[171], representative of reparameterized tuning, made
significant progress in NLP fine-tuning tasks and has
been widely applied to computer vision [172], remote
sensing [173], medicine [174], and multimodal tasks
[175]. It is worth noting that the trainable structure
of LoRA can be merged into the original backbone
network after training. Therefore, LoRA does not
introduce additional computational costs due to new
structures during inferencing, which is an advantage
over most adapter-based and prompt-based fine-
tuning methods. LoRA trains a structure that merges
into the pre-trained matrix W0 ∈ Rd×k. The LoRA
structure mainly comprises two matrices: a matrix
A ∈ Rr×k initialized by a Gaussian distribution, and
a matrix B ∈ Rd×r initialized to zero, where r is the
internal dimension. Assuming the input is X ∈ Rk
and the output is Y ∈ Rd, the reparameterization
process of LoRA can be expressed as Eq. (44):

y = W0x+ ∆Wx = W0x+BAx (44)
The concept of reparameterization is similar to
residual connections [150], and its design is simple yet
effective. Reparameterization methods can achieve
good performance in visual tasks with relatively
small sample sizes [169], and remote sensing scenarios
often involve few-shot situations. Next, we introduce
reparameterization fine-tuning techniques in remote
sensing, most of which are applications of LoRA or
its variants.
3.4.1 LoRA-NIR
LoRA-NIR [50] leverages the LoRA technique to
fine-tune a ViT pre-trained on the RGB domain
for application to the near-infrared (NIR) spectrum.
This approach advances the use of NIR images,
enhancing crop semantic segmentation and enabling
more accurate plant health monitoring.

LoRA effectively addresses the domain adaptation
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challenge between the RGB and NIR domains. In
this approach, LoRA layers are applied to the query
and value projection layers of each transformer
block to fine-tune the backbone model. Experimental
results demonstrate that the model fine-tuned with
LoRA in the NIR domain outperforms its RGB
domain counterpart, highlighting LoRA’s potential
as a powerful technique for fine-tuning in NIR-based
segmentation tasks.
3.4.2 Xue et al. module
Xue et al. [51] introduced a novel application of LoRA
for transferring the SAM model to aerial imagery,
aiming to address the task of land cover classification.
While the integration of the SAM encoder inevitably
introduces some inference latency, this work pioneers
an efficient fine-tuning methodology for adapting
vision foundation models to remote sensing tasks
involving aerial imagery.

Specifically, the authors integrate LoRA layers
into each transformer block of the SAM encoder,
enabling fine-tuning with a reduced parameter set
while tailoring the model to the downstream tasks
associated with aerial image analysis. The approach
yields promising results on the ISPRS Vaihingen
and Potsdam datasets [176], demonstrating the model’s
superior performance and highlighting its potential for
advancing land cover classification in remote sensing.
3.4.3 SkyEyeGPT
SkyEyeGPT [52] introduced a sophisticated multi-
modal large model tailored for remote sensing
language-vision comprehension, accompanied by a
meticulously designed remote sensing multimodal fine-
tuning dataset that incorporates both single-task and
multi-task dialogue instructions.

In the training process, the authors use LoRA
to fine-tune the alignment layers of the model,
thereby optimizing the coalescence of remote sensing
visual features derived from the vision encoder with
linguistic features from the large language model. In
addition, the model’s language decoder is fine-tuned
to further enhance its efficacy in adapting to a range
of downstream tasks. Experiments systematically
explored the effect of LoRA’s rank on the results,
providing lessons for similar studies.
3.4.4 SkySenseGPT
To comprehend the intricate semantic relationships
within complex remote sensing scenarios, Luo
et al. [53] introduced a fine-grained, large-scale

instruction-tuning dataset, FIT-RS. Beyond image
understanding tasks, this dataset encompasses multi-
tiered challenges, spanning from object relationship
inference to scene image generation, thereby
holistically augmenting the fine-grained, multi-
dimensional interpretative capabilities of remote
sensing multimodal large models.

Building upon this dataset, the authors also
proposed SkySenseGPT, a model comprising a
visual encoder, a multimodal projector, and a large
language model. During the instruction-tuning phase,
the parameters of the visual encoder are frozen,
the projector undergoes fine-tuning, and LoRA is
employed to optimize the LLM.
3.4.5 DebLoRA
Due to the inherent class imbalance in remote sensing
datasets, fine-tuned models often exhibit pronounced
class bias, leading to suboptimal performance across
different categories. To mitigate this issue, Tian et
al. [54] introduced De-biased LoRA (DebLoRA) to
address class bias and seamlessly integrate with any
LoRA variant.

Building on the foundations of LoRA and
cLoRA [177], DebLoRA employs an unsupervised
strategy to cluster the biased feature space Z.
Specifically, the method uses K-means clustering
to identify K distinct cluster centers within the
feature space. The representations of the tail classes
are then reformulated as a weighted combination
of these cluster centers, effectively reducing the
influence of bias. Following this, each tail class is
recalibrated within the de-biased feature space Z ′,
which is subsequently used to train the DebLoRA
module. This approach demonstrates substantial
improvements in both head and tail class performance
across tasks, including the transfer from natural
images to optical remote sensing images, and from
optical to multispectral remote sensing images.
By mitigating class bias, DebLoRA enables more
balanced and accurate model performance across all
class distributions.
3.4.6 ESAM-CD
ESAM-CD [55] employs LoRA-based fine-tuning of
the EfficientSAM encoder to enhance its performance
in remote sensing image change detection tasks.
Specifically, LoRA layers are inserted into the query
and key projection layers of the transformer blocks,
thereby influencing the attention mechanism’s score
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to direct the model’s focus towards areas with
significant changes. This approach may be formalized as

Att(Q,K, V ) = Softmax
(
QKT/

√
d
)

(45)

Q = MqFSAM +BqAqFSAM (46)

K = MkFSAM (47)

V = MvFSAM +BvAvFSAM (48)
where Mq, Mk, and Mv represent the weight matrices
of the frozen mapping layers in EfficientSAM, FSAM
denotes the features extracted by EfficientSAM, and
Bq, Aq, Bv, and Av are the trainable LoRA layer
parameters.

Through this method, the robust image under-
standing capabilities of EfficientSAM are preserved,
and the model is able to better capture remote
sensing characteristics. Results on the WHU-CD
[178] and LEVIR-CD [179] change detection datasets
demonstrate that ESAM-CD performs better than
many weakly supervised methods.
3.4.7 SAM-MLoRAF

As Fig. 7 shows, the SAM-MLoRAF [56] framework
employs multiple LoRA fine-tuning modules to
transfer the SAM model to urban man-made object
extraction, effectively harnessing the segmentation
capabilities of SAM on remote sensing datasets.
Through the integration of a limited number of
trainable parameters and the employment of both
supervised and unsupervised fine-tuning strategies,
this approach adeptly transfers the segmentation

capabilities of the SAM model to remote sensing
datasets.

To alleviate the overfitting challenges commonly
encountered with high-rank LoRA in conventional
frameworks, the SAM-MLoRAF architecture employs
an approximation of high-rank LoRA through the
integration of multiple LoRA components. This
strategy not only sustains the fine-tuning efficacy
of SAM, but also reduces the parameter overhead
introduced by the LoRA layers. Specifically, SAM-
MLoRAF strategically incorporates LoRA blocks in
parallel within the self-attention and MLP layers of
the ViT architecture, enhancing both efficiency and
adaptability.
3.4.8 SSDiff
SSDiff [57] addresses the pansharpening problem by
decomposing the generalized sharpening process into
two subspaces: spatial and spectral components. This
decomposition facilitates the independent learning of
spatial details and spectral features. Building upon
this framework, SSDiff introduces an alternating
projection fusion module (APFM) to fuse the
features extracted by the two branches, and a
frequency modulation inter-branch module (FMIM)
to equilibrate the frequency distribution between the
two branches.

However, maintaining a balanced training process
between the two branches proves to be a significant
challenge. To overcome this, SSDiff proposes an
innovative solution that uses LoRA to alternately

Fig. 7 Encoder and decoder of SAM-MLoRAF . Reproduced with permission from Ref. [56], c© IEEE 2024.
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fine-tune the two branches: when the spatial branch
is fine-tuned, gradient backpropagation for the
spectral branch’s parameters is decoupled; conversely,
when the spectral branch is fine-tuned, gradient
backpropagation for the spatial branch is separated.
This block-wise gradient decoupling mechanism
effectively ensures a balanced fine-tuning process for
both branches.
3.4.9 LoRA-Det
LoRA-Det [58] is specifically designed to address
the bandwidth limitations inherent in satellite
onboard object detection systems, where extensive
model updates are often impractical. This approach
facilitates highly efficient fine-tuning by updating
only a minimal subset of the model’s parameters,
thereby reducing computational overhead—a crucial
factor for real-time image processing in space-borne
environments.

The primary innovation of LoRA-Det lies in its
hybrid fine-tuning strategy, which synergistically
integrates PEFT with full fine-tuning. This strategy
enables the model to achieve 97%–100% of the
performance of full fine-tuning while updating only
12.4% of the overall parameters. By incorporating
LoRA into both the transformer backbone and
the detection head, the method not only preserves
detection accuracy but also minimizes computational
burdens. Additionally, a low-rank approximation
technique is employed to optimally select the rank of
the LoRA matrices, further enhancing the efficiency
of the adaptation process.

Empirical evaluations conducted across various
remote sensing datasets demonstrate that LoRA-
Det achieves a substantial reduction in the
number of trainable parameters, while maintaining
near-optimal detection accuracy. This efficiency
accelerates the model’s training iterations and
bolsters its generalization capabilities, making LoRA-
Det particularly suitable for satellite systems
operating under strict computational and bandwidth
constraints. The proposed approach offers a scalable
and resource-efficient solution that is adept at
balancing performance and computational efficiency
for real-time remote sensing image interpretation.
3.4.10 Summary
Reparameterized tuning has proved to be useful
in remote sensing. Existing approaches can be
categorized into key areas spanning cross-domain

adaptation, multimodal integration, class imbalance
mitigation, task-specific innovation, and resource-
aware optimization. Cross-domain adaptation is
exemplified by LoRA-NIR [50], where LoRA layers
inserted into ViT’s query and value projections
enable effective migration from RGB to near-infrared
(NIR) domains for crop health monitoring, while
Xue et al. [51] demonstrated SAM’s adaptation
to aerial imagery via LoRA-enhanced transformer
blocks. Multimodal integration is addressed in
SkyEyeGPT [52] and SkySenseGPT [53], which
leverage LoRA to align remote sensing visual
features with linguistic embeddings, supporting
instruction-driven fine-grained interpretation. For
class imbalance mitigation, DebLoRA [54] introduces
unsupervised clustering to recalibrate tail-class
representations within a de-biased feature space,
achieving balanced performance across optical and
multispectral domains. Task-specific innovations
include ESAM-CD [55], which integrates LoRA into
EfficientSAM’s attention layers to prioritize change-
sensitive regions, and SAM-MLoRA-F [56], which
approximates high-rank adaptation through parallel
low-rank modules to prevent overfitting in urban
object extraction. Resource-aware optimization is
exemplified by SSDiff [57]’s gradient-decoupled LoRA
tuning for spatial-spectral pansharpening and LoRA-
Det [58]’s hybrid strategy for satellite-based detection
under bandwidth constraints.

3.5 Hybrid tuning

3.5.1 Combinations
The aforementioned methods represent different fine-
tuning paradigms, each with its own characteristics.
Various combinations of these paradigms can yield
impressive results for specific tasks. This section
introduces several hybrid methods in remote sensing.
We finish by summarizing existing and non-existent
hybrid methods.
3.5.2 Upetu
As Fig. 8 shows, UPetu [59] introduces a unified
PEFT framework tailored for dense prediction tasks
in remote sensing, addressing the limitations of
current PEFT methods that are mainly designed
for classification tasks. One key component of this
framework is the efficient quantization adapter
module (EQAM), which strengthens the alignment
between fine-grained feature representations and task-
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Fig. 8 Framework of UPetu. Reproduced with permission from Ref. [59], c© IEEE 2024.

specific knowledge prior through the incorporation
of a quantized linear (Q-Linear) layer alongside a
nonlinear activation function. Another key component
of this framework is the context-aware prompt module
(CAPM), which integrates learnable prompts into
multi-scale features, enabling the model to extract
richer contextual information.

The proposed EQAM consists of two Q-Linear
layers with a ReLU activation in between, along
with flattening, scaling, and reshaping operations.
Specifically, the Q-Linear layer within EQAM is
designed to achieve an optimal trade-off between
efficiency and accuracy. EQAM employs a clustering-
based quantization strategy to minimize the bit
width of the linear layer weights. Assuming the
weight matrix follows a Gaussian distribution,
denormalization restores quantized weights to their
original mean and variance, preserving feature
representation fidelity:

w′i = wi − µ
σ

(49)

ŵ′i = Q(w′i) = cj , if w′i ∈ Uj (50)

ŵi = ŵ′i · σ + µ (51)

where {c1, · · · , cn} and {U1, · · · ,Un} represent the
codebook and the partitioned subsets of the real
number space respectively, µ = MEAN({wi}mi=1), σ =
STD({wi}mi=1). Q(·) is the quantization function.
Within the quantization process, only the quanti-
zation operation Q(·) is non-differentiable. To address
this, the paper employs a straight-through estimator
(STE) to approximate the gradients.

To address the limitations of VPT in complex
remote sensing scenarios, where contextual infor-
mation and inter-feature relationships are not
sufficiently considered, CAPM first compresses the
feature map F ∈ RH×W×C to obtain prompt weights:
ε = [ε1, · · · , εL] = Softmax(Linear(GAP(F2)))

(52)
These weights are then incorporated into the prompt
components to derive Pw, which dynamically adjusts
according to the input:

Pw =
L∑
l=1

εlPl (53)

Finally, through an upsampling operation and skip
connections, the prompts are fused back into the
original feature:

F ′2 = F2 + Conv1×1(Upsample(Pw)) (54)
This process facilitates the extraction of task-relevant
features, thereby enhancing the model’s learning
capacity.
3.5.3 MSF-SAM
Song et al. [60] proposed MSF-SAM, a sophisticated
multistage fine-tuning methodology for SAM tailored
to multispectral remote sensing crop detection. This
approach surpasses other contemporary state-of-
the-art techniques across a range of segmentation
performance metrics for diverse crop types.

MSF-SAM incorporates a prefix adapter in its
first stage, which is comprised of head convolution,
depthwise convolution, and point-wise convolution.
This adapter efficiently extracts salient crop
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features and low-level semantic representations
from multispectral imagery. These features are
then compressed into three-channel, low-dimensional
embeddings to align with the requirements of
subsequent image encoding and the fine-tuning
of the model’s encoder. Notably, the depthwise
convolution utilizes large kernel sizes to capture global
spatial dependencies more effectively, while the point-
wise convolution fosters inter-channel integration,
enhancing feature interaction between the different
spectral channels.

The low-level semantic information extracted in
the first stage is used to guide the low-rank fine-
tuning process in the second stage. In the second
stage, LoRA layers are inserted into each transformer
block within the image encoder. These LoRA-based
fine-tuning layers encourage the model to focus
more on high-level semantic information related
to the crops while also reducing inferencing latency.
Additionally, the authors claim that MAF-SAM
exhibits strong temporal transferability, achieving
good segmentation performance across different
growth stages of crops.
3.5.4 SAM-RSIS
The application of SAM to remote sensing tasks
encounters three prominent challenges: substantial
domain divergence, SAM’s limited capacity to model
geographic and semantic information, and inadequate
segmentation of complex and smaller objects.

To overcome these challenges, SAM-RSIS [61]
performs fine-tuning at both the feature extraction
and mask decoding stages to thoroughly adapt SAM
to the instance segmentation task in remote sensing
images. Specifically, in the first stage, inspired by ViT-
Adapter [167], SAM-RSIS introduces a multi-scale
adapter designed to effectively address the multi-scale
object problem inherent in remote sensing images.
This adapter integrates a spatial prior module to
encode spatial information, along with four distinct
scale extractors that collaborate with the ViT to
more effectively capture multi-scale features in remote
sensing imagery. In the second stage, the method
fine-tunes the mask decoder using the prompt boxes
generated by an object detector and the multi-scale
features output by the adapter. Extensive empirical
evidence underscores the superiority of the proposed
fine-tuning approach over other SAM-based methods,
demonstrating enhanced performance and robust
generalization capacity.

3.5.5 Water-Adapter
The surface water extraction (SWE) task at ultra-
high resolution poses considerable challenges due
to the inherent multispectral variability of water
surfaces. To mitigate this, Feng et al. proposed the
Water-Adapter [62] to fine-tune the SAM for the
SWE task. They incorporate learnable adapters into
the SAM encoder, enabling SAM to capture domain-
specific knowledge from remote sensing images. They
also employ an explicit visual prompting (EVP)
mechanism to integrate low-frequency components in
water bodies.

In particular, the Water-Adapter introduces a
series of simple yet effective adapter blocks within
a ViT architecture. Borrowing from the approach in
AdaptFormer [161], one adapter is inserted in parallel
with the MLP, while another adapter is positioned
subsequent to the MHA mechanism. This strategic
placement allows for the fine-tuning of the output
following the attention process, further refining the
model’s representation and enabling more precise
extraction of domain-specific information. In addition,
the EVP module leverages an adapter to integrate
the features obtained after patch embedding with
the low-frequency features extracted in the previous
stage, which can be formulated as Eq. (55):
P i = MLPup(GELU(MLPitune(Fpe + Flfc))) (55)

Here, Fpe denotes the output from patch embedding
tuning, while Flfc represents the result obtained
from tuning the low-frequency components. The
activation function used is GELU. The component
MLPitune is a linear layer responsible for generating
distinct prompts within each adapter. Meanwhile,
MLPup serves as a shared up-projection layer, applied
uniformly across all adapters. P i is the output
prompt.
3.5.6 RoadSAM
In addition to the aforementioned Water-Adapter,
Fang et al. [63] also applied the approach to
road extraction tasks and introduced RoadSAM.
Experiments on two road extraction datasets
validated the effectiveness of RoadSAM.

Unlike Water-Adapter, RoadSAM explores multiple
adapter insertion strategies: serial adapter, parallel
adapter, and mixed adapter. These adapters share
the same structure but differ in their insertion
methods. Another difference lies in the information
requirements of the tasks: while the SWE task
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relies more on low-frequency information from water
surfaces, high-frequency information is more critical
for road extraction. Therefore, the low-frequency
component in the EVP mechanism was replaced by
high-frequency information to better aggregate the
high-frequency features of roads in remote sensing
images.
3.5.7 EarthMaker
EarthMaker [64] was the first large multimodal
language model in the remote sensing domain to
support visual prompting. It enables multi-granularity
remote sensing image interpretation, including image-
level, region-level, and point-level analysis. This
paper also introduced RSVP, a multimodal, fine-
grained, visual prompting dataset for remote sensing,
extending the scope of existing datasets.

EarthMaker employs a unified visual encoder,
integrating DINOv2-ViT L/14 [180] and CLIP-
ConvNeXt [162] with a mixture of visual experts
(MoV) [181], utilized for encoding multi-scale images
and visual prompts, facilitating better understanding
of the relationship between the two. To align the
dimensionality of the prompts with that of the images,
the prompts are repeated three times, after which the
transformed prompts are encoded through MoV.

To support EarthMaker in performing image
interpretation at varying levels of granularity, the
authors also proposed a cross-domain, multi-stage
training strategy. In the final stage, LoRA is
applied to fine-tune the MHA mechanism within the
transformer blocks, enabling the model to focus more
effectively on user instructions.
3.6 Partial tuning

3.6.1 Approach
The above methods introduce new structures during
the fine-tuning process. In certain scenarios, fine-
tuning parts of the pre-trained model’s parameters
(such as the last few layers, biases, normalization
layers, etc.) can also achieve good performance. Here,
we introduce several partial tuning methods existing
in remote sensing.
3.6.2 Zhang et al. module
Zhang et al. [65] tackled the challenge of few-
shot automatic object recognition in SAR imagery,
a field traditionally hindered by significant data
dependency. To address this, the authors proposed
a transfer learning-based approach to enhance
performance with limited samples. The method

begins by generating SAR-style image data using
a style conversion model, enabling cross-domain data
augmentation to mitigate the lack of SAR training
data. During model training, the deep Brownian
distance covariance pooling layer is introduced to
refine feature representation by measuring differences
in joint and marginal distributions of features. For
fine-tuning, only the classifier is updated using a
small amount of new data, while the model structure
remains frozen. A knowledge distillation technique
further strengthens the model by iteratively refining
learned representations. Experimental results on the
MSTAR dataset [182] demonstrate 80% accuracy in
a 10-way 10-shot scenario.
3.6.3 Dastour and Hassan module
Dastour and Hassan [66] focused on leveraging
deep transfer learning to tackle challenges in land
use/land cover (LULC) classification, particularly
the limitations posed by insufficient and imbalanced
training data in remote sensing applications. The
authors fix the backbone network during training and
only train the new head structures. A comprehensive
evaluation was performed on thirty-nine deep
transfer learning models to assess their performance
under consistent conditions. Among them, ResNet50,
EfficientNetV2B0, and ResNet152 achieved superior
results in terms of accuracy and kappa scores.
ResNet50 also attains an impressive f1-score of
0.967 on the test set. These findings underscore the
potential of deep transfer learning in enhancing LULC
classification accuracy, offering practical guidance for
future research in this domain.
3.6.4 MAFDN
The morphologically augmented fine-tuned DenseNet-
121 (MAFDN) [67] employs advanced morphological
techniques–such as erosion, dilation, blurring, and
contrast enhancement to automate high-resolution
LULC classification in IoT-enabled smart cities. By
addressing challenges like noisy and heterogeneous
data, MAFDN improves spatial pattern extraction
and expands the training dataset. During fine-
tuning, the pre-trained DenseNet-121 undergoes a
key modification: the final fully connected layer,
originally designed for 1000-class classification, is
replaced by a new fully connected layer for 15
classes, optimized using the ADAM algorithm. This
change significantly boosts the model’s performance
for LULC classification. Comparative results with
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state-of-the-art methods show that MAFDN not
only improves classification accuracy but also holds
great potential for sustainable resource management
and more personalized, data-driven urban planning
services.
3.6.5 Huber et al. module
Huber et al. [68] applied deep transfer learning
for yield prediction using remote sensing data,
overcoming the challenge of limited ground truth
by transferring knowledge from data-rich to data-
scarce regions. The proposed framework includes
unique histogram-based preprocessing and fine-
tuning techniques, such as L2-SP, BSS, and layer
freezing, which optimize the loss function to address
issues like catastrophic forgetting. L2-SP and BSS
work by refining the model through targeted loss
function adjustments, allowing the model to focus
more effectively on relevant features while avoiding
overfitting. Additionally, the method employs the
Optuna hyperparameter optimization framework
[183] to tune hyperparameters, ensuring an optimal
configuration for better model performance. Gaussian
processes are also used to capture spatiotemporal
patterns. The method improved soybean yield
prediction in Argentina, achieving a 19% reduction
in RMSE and a 39% increase in R2 compared to
models without transfer learning, demonstrating its
potential for accurate yield forecasting, particularly
in developing countries.

3.7 Improved tuning

3.7.1 Topic
This section introduces several special fine-tuning
optimization approaches, including metric learning
and data filtering. In addition to the methods
mentioned here, there are many interesting
optimization strategies waiting to be explored.
3.7.2 Zhang et al. module
Zhang et al. [69] proposed a two-stage fine-tuning
method in generalized few-shot scenarios. In the
first stage, they train all the parameters of the base
detector on the base class sub-datasets to better
establish general knowledge. In the second stage, they
continue to fine-tune on few-shot datasets. Faster
RCNN is chosen as the detection framework and
initialized according to TFA [184]. The authors find
that fine-tuning only the detector while freezing
other parts performs poorly on few-shot datasets,

so they chose to freeze only the backbone network
and fine-tune the RPN and detector. Considering
the limited samples in the second stage, the
authors designed a metric-based discriminative loss
to optimize the fine-tuning process. Additionally, the
authors introduced dynamic freezing mechanisms and
knowledge distillation techniques to overcome the
catastrophic forgetting problem when introducing
new tasks. The proposed method achieved significant
improvements in multiple remote sensing few-shot
tasks. This work demonstrates that optimizing
training settings, such as freezing mechanisms and
loss functions, during fine-tuning, can further enhance
performance.
3.7.3 Ren et al. module
Ren et al. [70] optimized the fine-tuning process from
a data perspective. The authors believed that data
quality significantly impacts fine-tuning. Anomalous
data affects performance, while redundant data
increases the time needed for fine-tuning. They
proposed a method that used only one-third of the
remote sensing data for fine-tuning, but performance
metrics only decreased by 1%, while the training time
was reduced by nearly 70%.

Additionally, Wei et al. [185] achieved better results
using only 6% of the data compared to methods using
100% in language tasks. Data greatly influences fine-
tuning results. Optimizing the fine-tuning process
from a data perspective can lead to impressive results
and conclusions.

Additionally, some methods optimized models for
natural vision scenes based on boundary constraints
[71] or the multi-scale characteristics of remote
sensing [72]. These concepts can be widely applied in
further fine-tuning scenarios.

3.8 Comparison of paradigms

After introducing several fine-tuning paradigms, we
summarize the differences between them here. Full
fine-tuning trains all the parameters of the backbone,
causing significant changes to the foundation model.
For large pre-trained models, full fine-tuning may
weaken their original general understanding ability
and even lead to overfitting to the new data.
Adapter tuning introduces more modules and
parameters than other parameter-efficient fine-tuning
methods, thus bringing more inferencing costs, but
achieving relatively better performance. Prompt
tuning introduces fewer new parameters and has
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minimal impact on the model structure. It can
bring impressive results in multimodal tasks, but its
performance improvement is limited in single-modal
tasks. The biggest advantage of reparameterized
tuning is that it has no additional inferencing cost,
making it cost-effective for developers. However, its
performance improvement in visual tasks is limited.
Hybrid tuning can combine the advantages of multiple
fine-tuning methods but also introduces additional
computational costs. Partial tuning has very low
training costs (e.g., only training the last few layers
of the backbone network) but usually performs
poorly. Improved tuning can only be used in certain
scenarios.

4 Datasets and metrics

4.1 Datasets and applications

Table 4 presents a summary of commonly used
datasets in remote sensing fine-tuning. The first
column details the modality distribution of all
datasets. For modality, remote sensing fine-tuning
works focus mainly on optical satellite images, SAR
images, and multimodal data. Additionally, this
field involves panchromatic images, point clouds,
multispectral, and hyperspectral modalities. The
third column outlines the tasks associated with these
datasets. Most datasets used in remote sensing fine-
tuning are geared towards tasks such as classification,
object detection, semantic segmentation, change
detection, and instance segmentation. Beyond these
common tasks, some works also address cloud removal,
image description, and pansharpening. The fourth
and fifth columns show the number of categories
and instances contained in all datasets. While some
datasets have a small number of instances suitable for
fine-grained studies in the few-shot domain, others
have extremely uneven sample distributions across
various classes, highlighting the need for research
into long-tail distribution methods. The sixth column
shows the resolution of the datasets. Some datasets
have a limited resolution distribution, restricting the
generalization ability of fine-tuned models, whereas
others span a broad range of resolutions. Designing
efficient tuning methods to leverage the advantages
of multi-resolution data is a significant challenge.
Most existing works on remote sensing fine-tuning are
conducted on a single modality or a single task type.

However, with the development of remote sensing
foundation models, research into cross-modality and
cross-task fine-tuning is expected to show higher
generality and practicality.

4.2 Metrics

4.2.1 Targets
Evaluation metrics for fine-tuning algorithms
primarily focus on three issues: performance,
number of parameters, and computational cost. This
subsection elaborates on each aspect.
4.2.2 Performance
Performance metrics quantify the practical effecti-
veness of fine-tuning algorithms. As these algorithms
are typically task-specific, the selection of evaluation
metrics depends on the application. For instance,
object detection tasks commonly employ the average
precision (AP) metric for bounding box evaluation,
semantic segmentation utilizes mean intersection over
union (mIoU), and image classification adopts top-k
accuracy as standard benchmarks.
4.2.3 Number of parameters
Parameter efficiency represents a critical focus in
parameter-efficient fine-tuning research, significantly
influencing algorithmic performance, computational
costs, and comparative fairness. Key metrics in this
dimension include: (i) parameter count for additional
architectural components (and their proportion
relative to the base model), (ii) number of trainable
parameters (and their proportion), and (iii) total
parameter count for the full model. Additional
architectural parameters typically refer to those
introduced by structures like adapters or prompts.
Trainable parameters encompass all modifiable
elements during fine-tuning, including both parameter-
efficient components (e.g., LoRA matrices) and partially
adjusted pretrained parameters.
4.2.4 Computational cost
For large-scale models or high-concurrency deploy-
ment scenarios, computational cost constitutes a
primary concern for researchers and developers. This
dimension comprises two components: (i) training
cost: time taken and GPU memory consumption
during optimization, and (ii) inferencing cost:
latency and memory requirements during deployment.
Different fine-tuning methods exhibit distinct cost
profiles. Partial-tuning approaches may reduce
training costs by 50% compared to full fine-tuning
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Table 4 A summary of datasets used in existing remote sensing tuning works, including modalities, tasks, and details of each dataset

Modality Dataset Task Classes Images Resolution

Optical satellite imagery

Haze1K [186] Cloud removal 3 1200 3.2 m
RICE1 [187] Cloud removal 2 500 —
RICE2 [187] Cloud removal 3 450 —
LEVIR-CD [179] Change detection 20 637 0.5 m
LandSAT-CD [188] Change detection 4 2385 30 m
S2Looking [189] Change detection 2 5000 0.5 m–0.8 m
WHU-CD [178] Change detection 2 7620 0.2 m
NWPU-RESISC45 [190] Classification 45 31,500 0.2 m–30 m
UCM [191] Classification 21 2100 0.3 m
ISPRS [176] Classification 6 71 —
EuroSAT [192] Classification 10 2700 0 m–10 m
AID [193] Classification 30 10,000 30 m
NWPU-VHR10 [194] Instance segmentation 10 800 0.5 m–2 m
WHU Aerial Building Dataset [178] Instance segmentation 6 8189 0.3 m
DIOR [195] Object detection 20 23,463 0.5 m–30 m
DOTA [196] Object detection 15 2806 —
HRSC [197] Object detection 4 1061 0.4 m–2 m
UCAS-AOD [198] Object detection 3 310 30 m
NWPU-VHR10 [194] Object detection 10 800 0.5 m–2 m
ISPRS Potsdam [176] Semantic segmentation 5 38 GSD=5 cm
ISPRS Vaihingen [176] Semantic segmentation 5 33 GSD=9 cm
LoveDA Urban [199] Semantic segmentation 7 5987 0.3m
NWPU-VHR10 [194] Semantic segmentation 10 800 0.5 m–2 m
NWPU-RESISC [190] Semantic segmentation 45 31,500 0.2 m–30 m
iSAID [200] Semantic segmentation 15 2806 —

Synthetic aperture radar
(SAR) imagery

MSTAR [182] Classification 10 17,658 0.3 m
FUSAR-Ship [201] Classification 15 5000+ 0.5 m–500 m
SRSDD [202] Classification 6 30 1 m
FUSAR-Map1.0 [203] Classification 12 610 1 m–4 m
FUSAR-Map2.0 [204] Classification 10 738 1 m
SSDD [205] Instance segmentation 1 1160 1 m–15 m
FUSAR-Ship [201] Object detection 15 5000+ 0.5 m–500 m
SRSDD [202] Object detection 6 666 1 m
AIR-PolSAR-Seg [206] Semantic segmentation 6 2000 8 m
PolSAR-ZG [207] Semantic segmentation 6 6 5 m
FUSAR-Map1.0 [203] Semantic segmentation 12 610 1 m–4 m
FUSAR-Map2.0 [204] Semantic segmentation 10 738 1 m

Text & imagery

FloodNet [208] Semantic segmentation 9 3200 1.5 cm (UAV)
AID [193] Image caption 30 10,000 30 m
MMBench [209] Image caption 1 2974 questions —
MME [210] Image caption 2 2194 questions —
SEEDBench [211] Image caption 4 24,371 questions —
Fit-RS [53] Image caption 11 1800.8k —
SkyEye-968k [52] Image caption 2 968k —
RSICD [212] Image caption 30 10,921 —
RSITMD [213] Image caption 32 4743 30 m
UCM [191] Image caption 21 2100 0.3 m

Panchromatic (PAN) imagery Pancollection [214] Pansharpening 3 26,107 0.3 m–2 m

Point cloud
Harbor of Tobermory [215] Classification 7 7,181,982 —
University of Houston [215] Classification 7 4,436,470 —

Multi-spectral imagery
DSTL [216] Semantic segmentation 10 — 0.31 m–1.24 m
RIT-18 [217] Semantic segmentation 18 21 0.047 m (UAV)

Hyper-spectral imagery
Houston 2013 Dataset [218] Classification 15 15,029 —
MUUFL Dataset [219] Classification 11 53,587 —
Trento Dataset [220] Classification 6 30,214 —
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while maintaining equivalent inferencing costs. LoRA-
based methods achieve training costs comparable
to adapter-based approaches, yet demonstrate
significantly lower inferencing overhead. Task-specific
requirements substantially influence the prioritization
of these cost factors. Research applications might
emphasize training efficiency, whereas production
systems typically prioritize inferencing costs.

5 Future directions

5.1 Few-shot scenarios

Previous studies [154] have suggested that advanced
fine-tuning techniques can effectively leverage
foundation models to address few-shot issues. In
remote sensing, categories such as landfills [13],
wildfires [221], power plants [14], and slums [222]
commonly face few-shot problems. Most existing fine-
tuning work in remote sensing has been conducted on
multi-category datasets, while in-depth exploration
of specific categories (e.g., water [62]) is relatively
rare. However, many remote sensing studies focusing
on a single category, like wildfires [223, 224], have
achieved significant successes. By applying fine-
tuning techniques, we can enhance the automatic
identification efficiency of specific objects and further
explore the potential correlations between the spatial
and temporal distributions of these objects and social
and economic factors.

Additionally, the relationship between sample size
and fine-tuning efficiency is also worth exploring.
Capturing and annotating many remote sensing
objects are both very costly. Therefore, achieving
improved performance with as little data as possible
is crucial. Currently, there is no systematic research
in remote sensing that specifically addresses this issue.
Research in this area can effectively reduce the data
requirements for fine-tuning on downstream tasks
and lower the computational costs during the model
training process.

5.2 Further remote sensing tasks

Existing fine-tuning efforts in remote sensing largely
focus on common tasks such as classification,
detection, segmentation, and change detection.
Additionally, there are numerous other tasks in the
field that require advanced fine-tuning algorithms,
including super-resolution [225], image restoration
[226], cloud removal [227], image registration [228],

object tracking [229], and trajectory prediction
[230]. With the advent of powerful remote sensing
foundation models (RSFMs), fine-tuning techniques
have the potential to revolutionize many more remote
sensing tasks in the future.

5.3 Validation on more RSFMs

Many fine-tuning efforts have utilized foundation
models trained on general image datasets such as
ImageNet. In the past two years, numerous foundation
models specifically designed for remote sensing have
been proposed. Theoretically, RSFMs can achieve
better performance on remote sensing tasks than
general foundation models. When combined with
advanced fine-tuning techniques, the advantages of
RSFMs are expected to be further amplified. We
encourage researchers to conduct more testing on and
optimization of various RSFMs.

5.4 Design with remote sensing characteristics

Our investigation shows that many remote sensing
fine-tuning works directly apply existing parameter-
efficient fine-tuning (PEFT) techniques to remote
sensing tasks. In fact, most existing fine-tuning
techniques were designed for specific scenarios, such
as plain adapters [153] and LoRA [171] in NLP,
and Mona [169] in CV. These existing techniques
cannot leverage the prior characteristics of remote
sensing images, leading to limited performance. For
example, optical remote sensing images feature
characteristics such as small objects, high density, and
large scale, while SAR images have unique scattering
properties. Fine-tuning techniques designed with
these characteristics should demonstrate stronger
performance.

5.5 Further fine-tuning paradigms

Remote sensing fine-tuning techniques are currently
at an early and rapidly developing stage. Existing
works are mostly based on paradigms such as adapters,
prompts, and reparameterization. NLP and CV fields
have seen the emergence of new fine-tuning techniques,
including parameter selection [231, 232], PEFT pruning
[233], PEFT quantization [234], and PEFT knowledge
distillation [235, 236]. These novel techniques may offer
new insights for remote sensing tasks.

5.6 Further hybrid methods

In Fig. 9, we present both existing and unex-
plored hybrid methods. Currently, there are three
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Fig. 9 Existing and unexplored hybrid tuning methods. Purple thick
lines represent existing hybrids, and gray thin lines represent those
yet to be explored.

combined approaches: adapters+reparameterization,
adapters+prompts, and prompts+reparameterization.
Each fine-tuning paradigm has its own strengths and
weaknesses. New hybrid methods may significantly
impact specific remote sensing tasks in the future.

5.7 Theoretical analysis of PEFT

The principles by which PEFT techniques surpass
full fine-tuning are currently not well understood.
Previous work [9] systematically analyzed the
theoretical principles of PEFT in NLP across more
than 100 tasks, yielding significant research findings.
There are also hundreds of important tasks in the
remote sensing field. It is worthwhile to explore the
unique theoretical principles of remote sensing PEFT
methods in the future.

5.8 Setting optimization

PEFT methods are sensitive to settings, including
optimizers, learning rates, and loss functions. It is
essential to investigate how to better harness the
potential of PEFT methods in remote sensing tasks.
Additionally, PEFT techniques contain numerous
hyperparameters, such as the intermediate dimensions
of adapters and the rank in LoRA, which can influence
the performance gains of RSFM in downstream tasks.
We encourage researchers to design a series of detailed
settings that can improve the performance of PEFT
methods in general remote sensing scenarios.

5.9 Scaling law

The concept of scaling law [237, 238] has frequently
been mentioned in the domain of large models
recently, emphasizing the correlation between
performance and the size of models and amount
of data. In remote sensing, robust foundation
models need to demonstrate their performance on
downstream tasks through fine-tuning techniques.

Therefore, performance is influenced not only by the
foundation models themselves, but also by the fine-
tuning techniques. Investigating the scaling laws of
remote sensing foundation models with fine-tuning
techniques is an interesting and significant area for
future research.

6 Conclusions

In the era of large models and big data, foundation
models and fine-tuning techniques are leading new
trends in remote sensing research. This survey has
systematically reviewed fine-tuning techniques in
remote sensing. Existing techniques are categorized
based on the relationship between the tuned
parameters and the pre-trained models to help
readers understand the technological trajectory. The
survey concludes by highlighting nine directions worth
exploring in this field. We hope this survey encourages
researchers to utilize fine-tuning techniques to
improve their deep learning results across various
remote sensing tasks. We also hope researchers
discover more interesting directions for remote sensing
fine-tuning through this survey.
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