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Abstract

Event detection from social streams is an essen-
tial component of monitoring real-world inci-
dents with applications in disaster monitoring,
health surveillance and public opinion analy-
sis, among others. Social media generates in-
formation streams containing heterogeneous
attributes, such as names, places, and times,
which often exhibit noise as the same entities
may belong to different events, making detec-
tion challenging. The present paper introduces
an unsupervised event detection model DEMO
(Heterogeneous Multilayer Density infused
Entropy-Modularity Optimization). DEMO
judiciously optimize both entropy and modular-
ity to deal with the noise arising from multiple
heterogeneous interactions. This allows bet-
ter classification of events from social streams.
The method is aided by a community detec-
tion algorithm, mCOMM, which infuses het-
erogeneous multilayered density-based commu-
nity participation information into the optimiza-
tion pipeline. Extensive experiments support
our model’s superior performance, surpassing
SOTA methodologies with a maximum gain of
110.7% in ARI, 20.2% in AMI and 19.7% in
NMI for publicly available datasets.'

1 Introduction

Social events represent occurrences of real-world
noteworthy happenings involving specific times,
locations, people, and contexts. Palisades Forest
fire’ and 2021 Indian farmers’ protest’, are re-
cent examples. These real-world events triggered
an overwhelming number of messages on social
media platforms. Event detection identifies any
such real-world activities by observing the patterns
in the messages. Event detection can be used for
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disaster monitoring (Saini et al., 2024) and public
opinion analysis (Mao et al., 2024) among others
in the domain of healthcare (Paganelli et al., 2022),
sentiment analysis (PETRESCU et al., 2024), en-
terprise risk management (Zhang et al., 2022) and
political agenda fake news (Rajora et al., 2025).
Detecting social events presents unique chal-
lenges. Social platforms continuously generate a
stream of messages, ensuing events to evolve with
new developments and old events to be phased out.
The method should adopt this dynamic environ-
ment. Messages contain heterogeneous elements
or attributes such as locations, tagged users, organi-
zations, dates, and times. Moreover, text with sim-
ilar entities can belong to different events. These
introduce noises that a text clustering model cannot
effectively discern to distinguish events. The exist-
ing methods (Liu et al., 2020; Cao et al., 2021; Ren
et al., 2024; Peng et al., 2023) require supervision.
However, manual annotation of social messages
is very costly, hence, an unsupervised event de-
tection model addressing all the aforementioned
challenges is a necessity. In this paper, we propose
DEMO, an unsupervised heterogeneous multilayer
density-infused entropy-modularity optimization
event detection model. We construct a time-ordered
sequence of heterogeneous multilayered blocks that
retains recent events for handling evolving mes-
sages. We design a fast heterogeneous multilayer
algorithm, mCOMM, for detecting communities us-
ing density from heterogeneous multilayer blocks.
Further, DEMO uses simultaneous optimization
of entropy and modularity to deal with the noise
arising from multiple heterogeneous interactions.
Entropy is known to identify the knowledge from
noisy data, making it suitable to identify impor-
tant interactions. Lower entropy indicates more
homogeneous event groups, while higher entropy
reflects greater disorder, signalling the need for fur-
ther refinement or separation. This endows it with
the requisite faculties to be used for identifying
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1: A powerful earthquake struck Japan today.

2:Japan is hit by a strong earthquake causing damages.

3: Tsunami warning issued after earthquake in Japan, flights postponed.
4: Cricket match is postponed due to rain.

5: Storm in Japan causes travel disruption in multiple cities.

6: Several flooding reported after storm.

7: Heavy rain ensues as storm moves towards cities.

Communities
Modularity: {1,2,3}, {4,5,6,7} or {1,2,3,4},{5.6,7}
Entropy: {1,2}, {5,6}, {47}, {3} or {1,2,3}, {5,6}, {4,7}

Entropy+Modularity: {1,2,3}, {5,6,7}, {4}

Figure 1: An example showing the importance of both
modularity and entropy in event detection.

clusters that signify real-world events. Modularity
evaluates the strength of division in networks by
comparing the density of edges within an event
to the expected density in a random distribution
(Newman, 2006b). High modularity signifies well-
defined event groups with strong internal connec-
tions and minimal overlap with other event groups.
When used together, entropy and modularity pro-
vide complementary insights. For instance, Figure
1 illustrates that connecting tweets based on shared
words can introduce noisy edges e.g., tweets 4 and
7 both mention "rain" but discuss different events.
The colored nodes denote ground truth communi-
ties in the figure. Using only modularity or entropy
can lead to suboptimal community assignments.
However, jointly minimizing entropy and maximiz-
ing modularity helps distinguish such cases better
separating weakly connected tweets like 4, while
grouping strongly connected ones like 5, 6, and 7.
Entropy manages intra-cluster diversity, while mod-
ularity ensures inter-cluster separation, resulting in
more robust and scalable event detection models.
Our method leverages community participation in-
formation from proposed heterogeneous multilayer
community detection mCOMM for better feature
generation. Our contributions are as follows

1. We create a time-ordered heterogeneous multi-
layered graph (HMG) from tweets with layers
representing heterogeneous interactions.

2. We propose a novel density-based algorithm,
namely, mCOMM, that finds communities in
HMG.

3. We propose a GNN-based model with an en-
tropy and modularity-driven objective func-
tion, leveraging cluster information from
mCOMM for event detection.

4. We conduct extensive experiments on two pub-
licly available datasets consisting of two lan-
guages with a detailed ablation study.

2 Heterogeneous Multilayer Streaming
Community Detection (imCOMM)

Inspired by Gupta and Kundu (2025), we propose a
community detection algorithm for heterogeneous
multilayer graph streams. Please note that all no-
tations used hereafter are listed in Table 2 in the
Appendix.
Heterogeneous Multilayer Graph (HMG):(Chat-
terjee et al., 2024) An HMG is defined as
H = (V, E, ET, L, {REET, RETL, RVL}) where
V,E C V xV x L, Ep, and L is the set of
nodes, edges, edge types and layers respectively.
Here, each layer corresponds to one edge type.
The functions are defined as Rgg, : £ — Er,
RETLzET —>LandRVL : V—>2L\¢.
Formally, the task of a streaming community de-
tection for a heterogeneous multilayer graph stream
H is to mine a set of communities {ci,...,c;}
based on its heterogeneous interactions without
storing it in memory. Before presenting the com-
munity detection algorithm, let us define:
Density in a HMG: Given two communities ¢y, co,
with nodes n1, ny and edges my, mo spread across
L layers with m2 edges connecting nodes from c;
to ¢, inner density (p;y,) is the sum of fractions of
number of edges of a community to the number of
possible edges within that community across all lay-
ers. On the other hand, outer density (poy¢) is the
sum of fractions of the number of outer edges con-
necting two communities to the number of possible
outer edges connecting two communities across all
layers. Mathematically,

( ) 1 N N 2 X my,
pin(en) = L 3 w25
o |L’ lEL,w nll‘(nll - 1)
1 my2,
Pout(c1, C2) = " > w p—
leLw L2

)]

Here, w1, wa, . .., wy represent constant values as-
signed according to the weightage of each layer.
The sum of all weights must be equal to 1. The



mCOMM

Heterogeneous Multilayer
Graph

o0—0

L

Y o—o0

—_— o—-o0 —_—

Le 65

L, 0
0—o0

date | S>>

Community Sketch

Forest

Merge

QO O O OO
O O OmO)|
O O DOm0

Sparse C10) >
Matrix pmn( 1,2) 2

a x (pin(c1) + pin(c2))

Messages

Pre-Processing
’ N,

:'@‘; | f%

¢ =L,UL, UL,

AN ~o—
l Graph
Encoder
Adjacency _
" Matrix .
o ¥ N
Text e 8 e
LEncoder X 9. F
@

k=3, CE.COMM)

¥  Entropy-Modularity Optimization

& Lentropy

Lnodularity

Event3:
Nobel Prize Obama

® Eventl:
Nobel Prize in Literature
Event2: Event4:

SE

Nobel Prize in Economics President Debate Obama

Figure 2: Block diagram showing the methodology of DEMO. Here, a heterogeneous multilayer graph H is
constructed where L,,, L., L,, represent layers with each showing interactions between nodes based on common
words, entities, and mentions, respectively. This H is passed to mCOMM to determine the community participation

information (number of clusters, k and cluster assignment matrix, C&

mCOMM) "Then, all layers of H are projected

to G', and the messages are encoded using a text encoder represented as X'. G', learnable matrix M and X are
then passed to the graph encoder &5, which optimizes cluster assignments through entropy and modularity using

information from mCOMM.

terms m;, and nj, represent the number of edges
and nodes belonging to the layer /; in the commu-
nity c;.

2.1 Algorithm

We initialize a community sketch Cj using the
makeSketch() function. It observes an HMG stream
and any new edge e(u,v,[) triggers onReceive()
function. The sketch is first updated by updateS-
ketch() function to ensure the nodes are added to
appropriate communities before any community
merger take place by mergeCommunity() function.
The communities are merged when the outer den-
sity of the communities becomes larger or equal
than the a times the cumulative inner density of
the communities nodes v and v are added with.
The function onQuery() returns all communities
observed in the stream up to the time of the query.
The detailed algorithm is shown in Algorithm 1.
Kindly note that our algorithm considers all nodes
to be in all layers.

mCOMM is designed to extract communities
solely based on the graph structure, without consid-
ering node features. In the next Section, we identify
event partitions by incorporating both node features
and the graph structure, with mCOMM playing a
crucial role in providing community information.
A detailed analysis of mCOMM can be found in

the ablation study and the Appendix.

3 Entropy and Modularity based
Unsupervised Event Detection

First, we define a social message, a social mes-
sage stream, an event, and the problem of event
detection as follows:

Social message: A social message s is a set
{text,users, stamp}. Here text, users, stamp
denote the text message, the sender of the message
with the mentioned users and the timestamp of the
message.

Social Message Stream: A social message stream
(S5) is a time ordered sequence of message blocks
By, ..., By, B4, . .., where block By is a collec-
tion of social messages that arrive within the time
interval [t, ¢+ 1).

Event: An event is a set of social messages that are
about the same real-world phenomenon. A social
message can only belong to one event.

Event Detection: Given a social message block By,
the objective of event detection is to learn a model
fo : By — S&; where 0 is the model parameter.
Here S&; is the set of all events in a block.

3.1 Methodology

We convert a block B; to an HMG H,; using the
definition in Section 2. A node in H; represents



Algorithm 1 Streaming Community Detection for HMG
Input:

A HMG edge stream, merge threshold o

// Intialize Community Sketch
CommunitySketch C, = makeSketch()

// Receive Function

def onReceive(e € F, a):
Cr.updateSketch(e = (u, v,1))
¢y = Cr.community(u)
¢y = Cr.community(v)

Calculate outer density pout(cu, ¢v) and inner density
pin(cu) & pin(cy) of ¢, and ¢, using Eq. 1.

if Pout (Cua Cv) > a X (pzn (Cu) + pin (Cv)) then
Cr.mergeCommunity(c, ¢y)
end if

// Query Function
def onQuery():
return Cy,. f

def community(node):
while node != node.parent:
node.parent, node := node.parent.parent, node.parent
return node

def makeSketch(node):
Cy. = forest f, sparseMatrix mat
return Cy,

def updateSketch(e = (node1, nodez, 1)):

n1, ng = Cx.community(node; ), Cx.community(nodez)

if (n1 && n2): {#when both nodes exist}
Cr.mat(ni,no,l).e += 1

elif (In1 && nz): {# when both nodes do not exist}
n =n1 if node; < nodes else no
n1, ng = Cx. f.add(node1), Cx. f.add(nodez)
ni.parent, no.parent = n
Cr.mat(n,n,-).n, Cx.mat(n,n,l).e= 2, 1

else: {# when one of them exists}
n,ne = N1, ne if Ing else ne, n1
n =Cy.f.add(n), n.parent = n
Ck.mat(n,n,-).n, Cy.mat(n,n,l).e=1,0
Cr.mat(ne,n,l).e=1

def mergeCommunity(P,,, Py, ):
P, Py=P,,, P,, if Cy.mat(P,, ,Py,,l).n >
Cr.mat(Pp,,Pn,.l).nelse Pp,, Py,
foreach lin L:
Cr.mat(Py,Py,l).n += C.mat(Py,Py,l).n
Cr.mat(Py,Py.l).e += Ci.mat(Py,P,.l).e +
Cr.mat(Py,Py.l).e
Cy.mat.remove(FPy), P,.parent = P,
Cr.mat.replaceRef(Py) < Py

a social message s and is present in all the layers.

Two nodes in a layer can either be connected based
on common entities, words or mentions. This H;
is passed to mCOMM in order to get the number
of communities used later. Further, we generated
a projection graph where nodes are connected if

they have connections in any of the layers in H;.

We represent this as G!(V;, E}) and use it for our

method described next. A visual representation of
the methodology is shown in Figure 2.

A simplified definition (Liu et al., 2019) of en-
tropy () for a given graph G! with partitions

{617...703'} is

intra; intra; + inter;
lo 2
O = Z BT P g )

Here intra; and inter; refers to the edges with
both the endpoints and either endpoint in partition
c; respectively. Minimizing entropy helps in identi-
fying homogeneous groups in a graph.

The definition of entropy mandates partition in-
formation. So our first objective is to design an
encoder that finds a partition assignment matrix for
G! with node features X’ as,

E5(GhX) = {P1, Py, Ps,...,P,} €Cg  (3)

Given that input matrix contains k partitions the
assignment matrix is of |V;| x k dimension where
(Cg)i; = 1 when node ¢ belongs to partition P;.
Each row of the matrix is a one-hot encoded vec-
tor, and we consider disjoint node partitioning. In
our solution we use a GC'N encoder (Kipf and
Welling, 2016) with residual skip connections and
SeLU nonlinearity denoted by S (Eq. 4). 0, are
learnable weight matrices, D is diagonal degree
matrix and M is the undirected adjacency matrix.

F =Su(MF10, 4+ F716s),
FO=X M=D2MD? +M

“)

We add the normalized adjacency matrix M with
a learnable adjacency matrix M and use it as in-
put for the GCN. This addresses the randomness
present in real word graphs (Jin et al., 2020) thus
helping in event separation. Now with node fea-
tures F, 03 as a learnable matrix, cluster assign-
ment matrix from mCOMM (Cg‘COMM), and S, as
softmax, we construct cluster assignment matrix
Cg as

Cg = Sy (F .03 + CHOMM) (5)

Finally, after getting Cg, we can write the entropy
as a loss function (using the earlier definition) with
T representing matrix trace and ® as Hadamard
product as

et ncg

Lo= T(—_
Z\Vt\ Zthl\ M;;

Tiujvy MCg )
Ologo | ===
<2'Vt‘ L i)
©)



We use L, instead of ¢ to represent entropy loss.
To further increase the feature similarity within the
same event group and separability among event
groups, we use the DBI index (Davies and Bouldin,
1979) defined as

L= % S Mayyy (55
Gij

i<k

) (N

&, is the mean distance between the feature vector
of each member in partition P; from the mean fea-
ture vector of all the nodes in the partition (F;) and
Cij 1s the difference between the mean embeddings
of cluster P; and P;.

Ecgmzlfp €= 1
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For the robustness of the generated features, we
use JF to predict the adjacency matrix of the input
graph gé and include this in our final entropy loss
as

Lo(GLF,Cq, M, M)

©)
= Lo+ Ly + |Se(F.F") - M|I%

Here S, represents sigmoid activation. Now, that
we have defined the loss function for minimizing
the entropy, let us design a loss function for maxi-
mizing modularity. Modularity maximization im-
proves clustering by optimizing the division of a
network into communities that have dense internal
connections and sparse external ones. We know
that modularity optimization is an NP-hard prob-
lem (Brandes et al., 2008), and it is non-trivial to
incorporate it as an optimization objective for our
model. We have used the spectral definition of
(Newman, 2006a) where the definition of modu-
larity loss can be converted to a series of matrix
operations as

1
Lo = 5T (C5BCg)

= (10)
2| Ef|

where B = M — Zgﬁ
matrix; D is the deg;ee vector that contains the
degree of every node identified by its index. As
modularity also requires partition information we
use the partition assignment matrix from Eq. 5.

Thus,

represents the modularity

T(CEBCg) =~ T(CEMCg — DD Cg) (11)

A trivial solution to the problem is to assign all
nodes in a single cluster and must be avoided.
There are methods (Bansal et al., 2018) that use
an orthogonality regularizer, however, these are
seen to dominate the modularity objective func-
tion which is again not desirable (Tsitsulin et al.,
2024). We use the collapse regularizer from (Tsit-
sulin et al., 2024) to avoid the trivial solution as

k
CalCo M) = ~Lq + VRIS 12

Here, the regularizer adds a penalty of vk if
all nodes are assigned to a single cluster. Now
that we have defined the modularity and entropy
loss separately, we combine both of these objective
functions together as

L= 51[,() + BzﬁQ (13)

Here all the learnable parameters 6, € 6. We train
the encoder £ and update all model parameters
based on L. The final events S&; are extracted from
trained &. Note that variable k used in different
equations of the loss function is an hyperparameter
and is extracted along with matrix CECOMM from
onQuery() function in proposed mCOMM.

4 Experiments and Results

Data Sets: Our experiments leverage two pub-
licly available large-scale datasets Event2012 (En-
glish) and Event2018 (French) (Peng et al., 2023),
designed to evaluate streaming social event detec-
tion. Event2012 comprises 68,841 manually la-
beled tweets spanning 503 event classes over 29
days. Event2018 with 64, 516 labeled tweets across
257 event classes, covering 23 days, is used for
cross-lingual experiments. Three relations com-
mon entities, common words, and user mentions
are used as the schema for constructing a heteroge-
neous multilayer graph. The evolving social mes-
sages are split into blocks by date, according to the
paper (Peng et al., 2023). We evaluate our model us-
ing a set of metrics, including ARI (Adjusted Rand
Index), Normalized Mutual Information (NMI),
and Adjusted Mutual Information (AMI).

Baselines: We evaluate our model with various
other models specifically used for message repre-
sentation learning, and similarity measuring. The
baselines for comparison are BERT (Devlin et al.,
2019), BiLSTM (Graves and Schmidhuber, 2005),
EventX (Liu et al., 2020), KPGNN (Cao et al.,



Table 1: Event Detection performance for various methods in terms of ARI across different blocks.

Block BERT BiLSTM EventX KPGNN KPGNN; FinEventy, CLKD HISEvent HyperSED DEMO
Event 2012
B 0.03 £ .00 0.15 4 .00 0.02 £+ .00 0.02 4+ .01 0.03 £ .02 0.05 £ .02 0.04+.00 0.10£.00 0.25+.01 0.43 +.03
B, 024+.00 0.02+.00 000+.01 0.60+.02 065+.03 068+.01 0.69+.01 069+.00 008+.02 0.81+.03
B3 0.11 £.00 0.08 £+ .00 0.42 £ .00 0.44 £ .03 0.50 .01 0.52 £.00 0.56+.02 088+.00 0.07=£.02 0.69 £ .02
Bi  002+.00 001+.00 004+.00 0.22+.02 024+.02 027+.01 022+.01 045+.00 016+.01 0.40+.04
Bs 0.02 &= .00 0.06 £+ .00 0.03 = .00 0.32 £ .01 0.36 = .02 0.49 £ .00 0.324+.03  0.73+£.00 0.11+£.02 0.57 £+ .02
Bg 0.02 % .00 0.02 £ .00 0.09 % .00 0.46 & .01 0.61 .04 0.51 £ .01 0.624+.01 0.60+£.00 0.26£.03 0.74 £+ .02
By —0.02+.00 0.14+£.00 0.10 +£ .01 0.06 £+ .01 0.06 .02 0.08 £+ .01 0.07+.01 0.284+.00 0.184+.02 0.59 +.02
Bsg 0.09 £ .00 0.02 £ .00 0.00 £ .00 0.46 £+ .04 0.50 .01 0.56 £ .02 0.46 £.01  0.40+.00 0.144.03 0.68 + .03
By 001£.00 0.18£.00 0.09+.01 0.28+.02 030£.03 039£.0L 059+.01 070£.00 0.16£.02 073+.05
Bio 0.04 &= .00 0.01 £.00 0.06 & .00 0.57 £.02 0.50 = .01 0.56 £ .00 0.52+.02 0.67+.00 0.214+.02 0.83 +.01
B —0.02+£.00 0.04+.00 0.07 .00 0.43 £ .01 0.37 + .02 0.34 & .01 0.36 & .01 0.60+.00  0.28 £.02 0.84 + .02
B2 0.10 &= .00 0.03 £ .00 0.04 £+ .00 0.26 £+ .01 0.32 +£.03 0.38 £ .01 0.34+.01 080+.00 0.03+£.02 0.57 £+ .02
Bis 0.01 £ .00 0.04 £ .00 0.03 £+ .00 0.30 £ .02 0.22 £ .02 0.17 £+ .00 0.33+.00 0.52+.00 0.30+£.01 0.75 £ .02
Bia 0.08 & .00 0.02 £+ .00 0.01 .00 0.22 £+ .02 0.21 4+ .01 0.35 £ .01 0.22 + .01 0.75+.00 0.07+.03 0.64 £ .02
Bis 0.01 £.00 0.03 £ .00 0.03 .00 0.10 £.01 0.07 £ .03 0.16 £ .01 0414£.02 0.19+£.00 0.31%+.02 0.64 + .03
Bis  0.00£.00 0.03£.00 001+£.00 044+.01 045+.01 048+.00 057£.02 075+£.00 022+.03 089 £.02
Bi7 0.00 £+ .00 0.03 £ .00 0.04 + .01 0.31£.02 0.31+.02 0.32 £.02 0.36 £.02 0.61+.00 0.10+.02 0.78 £+ .02
Bis 0.01 £ .00 0.03 £ .00 0.02 % .00 0.20 £ .03 0.22 + .01 0.35 % .01 0.384+.01 0.72+.00 0.07£.02 0.54 £ .02
Big 0.01 +.00 0.02 £+ .00 0.03 .00 0.26 £+ .02 0.24 + .01 0.48 £ .01 0.35+.02 0.624+.00 0.144.02 0.79 +.02
Bao 0.02 £+ .00 0.02 £ .00 0.03 £+ .00 0.37 £ .02 0.34 £ .03 0.40 £ .00 0.344+.02 052+.00 0.25+.02 0.51 4+ .01
B 003+.00  0.03+£.00 004+.00 011%.01 010+.02 022+.02 037+.01 0.33+.00 009+.03 038=.01
Event 2018
By 0.01+£0.00 0.02+0.01 0.01+£0.00 0.28+0.02 0.28£0.02 0.33£0.01 0.29+£0.04 0.55+.00 0.02+0.02 0.82 =+ 0.00
B> 0.044+0.00 0.03+£0.00 0.004+0.00 0.314+0.01 0.30£0.03 0.34+£0.04 0.33£0.03 0.61+.00 0.044+0.01 0.74 £ 0.04
By 0024000 001+001 001+001 0354001 0344001 0374001 049+0.02 049+.00 0.04+0.03 0.79+0.02
By 0.034+0.00 0.01+0.01 0.01+0.00 0.294+0.02 043+0.02 0.23+£0.02 0.29+0.03 0.47+.00 0.06+0.01 0.69 =+ 0.01
Bs  0.08£0.00 0.02£000 001£0.01 0.37£0.02 0.30£001 034£001 038001 05L£.00 004002 0.58=0.04
Bs  0.034£000 0.02+001 003+0.00 017002 0.20+0.03 0.18+000 040+0.03 0.61=+.00 0.04=+0.03 0.80+0.04
Bz 0.054+0.00 0.08+0.01 0.01+0.01 0.2940.02 0.22£0.03 0.23+£0.01 0.35+£0.01 0.624+.00 0.004+0.00 0.81 4+ 0.03
By 0.05+0.00 0.10£0.00 0.01£0.01 0.224+0.02 0.22+0.01 0.32+£0.03 0.384+0.03 0.79+.00 0.04+0.01 0.58 £+ 0.02
By 0.034+0.00 0.03+£0.00 0.024+0.01 0.224+0.02 0.12£0.04 0.18+£0.01 0.27+£0.02 0.43+.00 0.084+0.02 0.61 =+ 0.00
Bio 0074000 0014001 001+0.00 018+001 019+£001 0.27+0.01 0404004 053+.00 0.07+0.01 0.55+ 0.1
B 0.06 +£0.00 0.06+0.00 0.024+0.01 0.16+0.02 0.23+0.02 0.18+£0.03 0.25+0.01 0.56+.00 0.07+0.03 0.61+ 0.03
Bip  0.08£0.00 0.02+£0.00 0.01+001 026+0.03 023+0.04 0.28+002 057£002 077£.00 0.01+0.02 0.71+0.02
Biz  0.02+0.00 0054+000 0.02£0.00 017+001 0224001 0.20+0.03 0374003 0.74+.00 0.03+0.01 0.75=0.01
Bia 0.024+0.00 0.01+£0.00 0.01+0.00 0.16+0.02 0.33+£0.02 0.31+£0.04 0.54+£0.02 0.78+.00 0.034+0.02 0.79 & 0.02
Bis  0.01+0.00 0024001 0.03£0.00 024+0.04 028+0.03 0.36+0.02 0544003 0.69£.00 0.02+0.03 0.74+0.00
2021), FinEvent (Peng et al., 2023), and CLKD Insights: We are underperforming in NMI due

(Ren et al., 2024). For more details on the dataset,
metrics, and reproducibility of the baselines and
our model we request the reader to refer to the
Appendix.

Results: We show the results of our experiments
in Tables 1, 3 and 4 for the metrics ARI, NMI and
AMI respectively (Tables 3 and 4 are present in
the Appendix). The standard deviations are re-
ported after running each model 5 times. It is
evident from the tables that our method outper-
forms other models in 14 out of 21 blocks for the
Event2012 dataset and in 13 out of 15 blocks for the
Event2018 dataset. We have an average improve-
ment of 15.48% when compared to the second-best
results for Event2012. We see an average improve-
ment of 18% when compared to the second-best
results for the Event2018 dataset. For NMI, we
see an improvement in 8 blocks for the Event2012
dataset with a mean increase of 6% in these blocks.
For the Event2018 dataset we are 14% behind the
highest result on average. Now, moving to AMI,
we see an improvement in 6 blocks with an average
increase of 7% for the Event2012 dataset. For the
Event2018 dataset we are 16% behind on average
from the highest result.

to the presence of inherent class imbalance in the
datasets, especially in the Event2018 dataset. In
the case of class imbalance, supervised models and
models minimizing higher order entropy (like HI-
SEvent) are shown to perform better (Das et al.,
2022; Cao et al., 2024). It must be noted that we
have incorporated a simpler 1-D entropy for our
loss function, whereas HISEvent uses 2-D entropy,
which is better at capturing higher-order structures,
thus enhancing cluster separation. In spite of a sim-
pler version of entropy, we have outperformed HI-
SEvent in many Blocks for various metrics across
the datasets. On further inspection, we found that
we obtain a lower AMI and NMI as our method
cannot always match the ground truth clusters with
the actual number of clusters, and AMI is sensitive
to the number of clusters. The number of clusters is
provided by mCOMM in our method, which does
not take higher-order entropy into account. As we
have already mentioned, higher order entropy is al-
ready a better representative of the clusters, which
is empirically found to be true, especially in the
case of the Event2018 dataset, thus explaining the
better results of HISEvent.
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Figure 3: The above figures indicate the change in NMI, AMI and ARI for a change in entropy and modularity in
the loss. Rows 1 and 2 are for Blocks By and By respectively.
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4.1 Ablation Study

Modularity vs Entropy: We vary and adjust the
weights assigned to modularity and entropy in the
loss function, observing the resulting impact on
ARI. This is done by changing the parameters 3;
and (> of Eq. 13. By analyzing the interplay be-
tween modularity, we aim to understand their in-
dividual and combined effects on the model’s per-
formance. The results for two random blocks of
Event2012 are shown in Figure 3. We can deter-
mine that row 1 benefits from a high modularity
with low entropy whereas the row 2 benefits from
high entropy even in scenarios where the modu-

larity is comparatively lower. This shows the ad-
vantages of both entropy and modularity in certain
conditions.

Analysis of mCOMM with varying a: We
conduct an analysis by varying the parameter o
and evaluating its impact on the performance of
mCOMM for event detection using the Event2012
dataset across all blocks, as illustrated in Figure 4.
From the figure, it is evident that a lower value of
« leads to improved performance across all evalu-
ation metrics. However, as « increases, a gradual
decline in performance is observed. This suggests
that lower values of « contribute to a more effective
identification of events, whereas higher values may
reduce the discriminative capability of the model.
We have provided a more detailed explanation of
the parameter « in the Appendix H.4.

Importance of mCOMM: What if mCOMM is
directly used for event detection? What if we use
any other clustering algorithm? In this experiment,
we compare the results of mCOMM with DBSCAN
and with the proposed model DEMO. We use DB-
SCAN for comparison with mCOMM, as both of
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Figure 5: Comparison of DEMO with mCOMM and
DBSCAN with X" Features

them do not require the number of clusters to be
known beforehand. Figure 5 shows the obtained
result across the blocks for Event2012 data. It is
evident that mCOMM without the use of features
can produce better results than DBSCAN. It shows
the effectiveness of using mCOMM with HMG.
This motivated us to use the proposed mCOMM
for adding cluster information to DEMO, which
obtained the best results here. When we use DB-
SCAN with DEMO, we obtain lower results as the
clusters identified by DBSCAN are not up to the
mark (as Figure 5 already highlights).

4.2 Time Analysis

mCOMM processes each edge only once, i.e., time
complexity is linear to the size of the stream, where
density calculation and checking merging condition
take O(|L|) time. Thus, the overall time complex-
ity of onReceive(e) function is O (| E'| x |L|), where
F and L are the edge set and layers in the whole
stream, respectively. Complexity of onQuery()
function is constant O(1), which returns the pointer
to all communities. The time complexity for creat-
ing each block H is of the order O(|E|).

The time complexity of GNN for each block H
is O(K(d|E| + d?|V'|)) where K is the number of
layers in the GNN, d is the feature dimension (we
consider the input and output dimension to be the
same for convenience), |V'| is the number of nodes
in a block and |E| is the number of edges.

5 Related Work

Social event detection methods can be broadly
classified into three areas of work, namely term-
commonness, topic modelling and online event
detection-based approaches. In term-commonness,
the top-most occurring words are detected within
a time frame. Some notable works using com-
monness are (Li et al., 2012; Marcus et al., 2011).
Topic modelling-based approaches for event detec-
tion operate by assigning each tweet a probabilistic
distribution over multiple latent topics. Some rele-
vant works are (Xie et al., 2013; Zhou et al., 2015;
You et al., 2013). These approaches are primarily
designed to work in an offline setting and struggle
with event detection in real-time Twitter data due
to the need to predefine the number of clusters.
GNNs have been used in the context of event
detection quite frequently (Cao et al., 2021; Peng
et al., 2023; Ren et al., 2024), but these methods
require supervision. Entropy (Kenley and Cho,
2011) and modularity (Weng and Lee, 2021) are
commonly used metrics for graph clustering (Weng
and Lee, 2021), each offering unique advantages
in capturing the structure and organization of com-
plex networks. However, these methods have not
addressed unsupervised event detection. Here, we
propose a novel unsupervised method that com-
bines modularity and entropy for event detection,
harnessing the strengths of both metrics. For a
detailed related work, kindly refer to Appendix B.

6 Conclusion

We have introduced DEMO, a novel heterogeneous
multilayer density-infused entropy-modularity op-
timization event detection model, designed to ef-
fectively identify events while handling noise from
heterogeneous attributes. From this study, it is evi-
dent that the trade-off between minimizing entropy
and maximizing modularity helps our model dis-
tinguish between different event groups’ features
more effectively. Additionally, we also propose
a streaming community detection algorithm for
HMG (mCOMM), capable of processing millions
of messages efficiently and providing the commu-
nity participation information using density calcula-
tion. One can note that our study not only provides
a solution for event detection but also has broader
implications for various NLP applications. For
example, the use of the proposed DEMO is not lim-
ited to event detection only. One may use wherever
better clusters among different classes are required.



7 Limitations

We have mentioned the advantages of the proposed
method in the previous sections. Here we acknowl-
edge and discuss some of its limitations.

mCOMM: In the current form of the algorithm,
we have given equal weightage to edges in each
layer for deciding communities. We did not achieve
significant improvements with different weight val-
ues for each layer, though we have not exhaustively
searched every possible weight configuration. We
acknowledge that this does not take into account the
variable contributions of each type of relation, and
whether each edge should be given equal weightage.
In the future, we would like to improve upon this by
figuring out a way to use learnable (or dynamically
updatable) weights for each type of relation.

DEMO: We have already shown how we have
improved upon existing works with our proposed
model. There are some cases where our model does
not perform better than the existing unsupervised
method, HISEvent. We hypothesize that this is pri-
marily due to the lack of a higher-order entropy in
our 1-D entropy-based optimization function. This
affects our performance, especially in metrics NMI
and AMI, as already discussed in our results sec-
tion. In our future works, we would like to improve
upon this by incorporating a higher-order entropy
in our model that captures hierarchical relation-
ships, resulting in better cluster separation.
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A Implementation Details

A.1 [Initial Feature Generation

We extract word embeddings for each word of a
tweet after removal of all rare and common words
from the tweet using a pre-trained word embed-
ding model (Mikolov et al., 2013). In addition,
each tweet contains time stamp information, which
we encode into a vector representation (Cao et al.,
2021). The encoded vector representation of the
timestamp is concatenated with the textual repre-
sentation of the tweet to get the final feature X of
a tweet.

A.2 Reproducibility

In this Section, we provide the detailed configura-
tion for the proposed method and all the baselines
used in the experiments. We use identical features
(including timestamp encoding) for all methods.
Also, we use the same hyperparameters across the
models for comparison. In case a hyperparameter

is unique to a model, we use the default settings for
that model.

BERT: The results for BERT are obtained after
clustering the BERT encodings of the tweets with
DBSCAN clustering method. We use the respective
language encoders for each data set (English for
Event2012 and French for Event2018).

BiLSTM: BiLSTM model is trained using
Triplet Loss with learning rate of 0.001, batch
size of 1000, dropout of 0.8, output dimension of
64, one LSTM bidirectional layer, 20 epochs and
KMeans with the actual number of clusters. We
use KMeans here as it gives better results.

EventX: We train this with a minimum number
of co-occurrences threshold set to 2, conditional
probability threshold for occurrence of words set to
0.15 and the minimum number of node threshold
to stop graph splitting set to 3 as suggested in (Cao
et al., 2021) and (Liu et al., 2020).

Table 2: Notation Table

7777777777777777777777

,,,,,,,,,,,,,,,,,,,,,

' s | Asocial message |
| By | A homogeneous message block |
\ SS i Social Stream \
: Ci | Event Class :
: S& : Set of event classes in a block ¢ :
\ H, 1 Heterogeneous Multilayered Block \
: Pin " Inner Density :
: Pout : Outer Density :
\ o i Merge Threshold \
| Ck, | Community Sketch |
' Gl ! Homogeneous projectionof #,
\ X i Initial Features !
: fo : Function for social event detection :
| O " Entropy |
| Q i Modularity |
: Sy : Activation Fn SeLLU :
. FLE 1 - Final node features from GCN, features in intermediate layers |
! Se I Activation Fn Sigmoid !
| So " Softmax |
M, M, M ' Raw, learnable and normalized Adjacency Matrix |
! T | Matrix Trace !
: Cg : Partition assignment matrix :
| Es ' Encoder with parameter § |
| B | Modularity Matrix |
| B1 i Weight to control entropy loss |
| Ba | Weight to control modularity loss |
! k i Number of partitions !



KPGNN: We use a window size of 3, batch size
of 2000, learning rate of 0.001, latest message strat-
egy, output dimension of 32, GAT model with 4
attention heads and residual connections. The num-
ber of epochs are 15. All these parameters are
the default parameters used in the KPGNN im-
plementation mentioned in the paper (Cao et al.,
2021). We use KMeans with the actual number
of clusters as this produces best results and is the
default choice for the default KPGNN implementa-
tion. The KPGNN;, uses the global-local pair loss
mentioned in the paper (Cao et al., 2021). The rest
of the parameters are the same as KPGNN.

FinEvent: = We use a window size of 3, batch
size of 100, learning rate of 0.001, GAT model
with 4 attention heads and residual connections
and output dimension of 64. The step size of RL-0
for statel and state3 are 0.02. The initial value of
epsilon for state2 is set as 0.001 with a step size
of 0.02. All the parameters are taken from the
authors implementation with the paper (Peng et al.,
2023). In the case of Event2018 dataset we use the
FinEvent, setting reported in the paper.

CLKD: We train for 15 epochs using a window
size of 3, batch size of 2000, learning rate of 0.001,
latest message strategy, output dimension of 32,
GAT model with 4 attention heads and residual
connections. For the Event2012 dataset we use
mode 1 as the teacher and student are the same
language. For Event2018 we report the results on
the mode 2 with linear cross-lingual knowledge
distillation with English as the teacher model and
French as the student model.

DEMO: In case of our model, we use GCN en-
coder with one hidden layer with a dimension of
1024, number of epochs to 200, learning rate to
0.001, @ = 0.5 and 8 = 0.5. We initialize all the
learnable parameters 6 and weights M for the adja-
cency matrix from a standard normal distribution.
We set 31 = 82 = 1. In the case of DEMO, we use
the weights of the k-1th block GNN for initializing
the weights of the kth layer GNN.

HISEvent: We use the minimum group n = 10
for smaller initial clusters that have possibility to
merge into bigger clusters. The choice of n does not
affect the performance of HISEvent significantly
as shown in the paper but taking a lower value of n
avoids the deadlock situation as suggested by (Yu
etal., 2024).
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HyperSED: We use the default settings of Hy-
perSED as provided in the repository of the paper.

A.3 Metrics

In clustering tasks, evaluating the quality of the
resulting partitions is crucial for comparing models
and ensuring reliable results. Three widely used
metrics for this purpose are Normalized Mutual
Information (NMI) (Estevez et al., 2009), Adjusted
Mutual Information (AMI) (Vinh et al., 2010), and
Adjusted Rand Index (ARI) (Vinh et al., 2010).
NMI measures the amount of information shared
between the predicted and true clusters, normal-
ized to ensure values between O and 1, where 1
indicates perfect clustering. AMI improves upon
NMI by adjusting for chance, penalizing random
assignments, and ensuring that the metric remains
unbiased regardless of the number of clusters. ARI,
on the other hand, assesses the similarity between
predicted and ground-truth labels by computing
the ratio of correctly paired samples, adjusting for
chance to mitigate the impact of random cluster as-
signments. Together, these metrics provide a robust
framework for evaluating clustering performance,
capturing different aspects of cluster alignment and
ensuring a comprehensive assessment of model
effectiveness. In this work we use all the three met-
rics for a rigorous analysis as suggested by some
earlier works (Cao et al., 2021; Peng et al., 2023;
Ren et al., 2024), ensuring that clustering quality
is assessed from multiple perspectives, reinforcing
the robustness and credibility of the results.

B Related Work

Social event detection can be broadly classified
in three areas of work namely term commonness,
topic modeling and online event detection based
approaches. In term commonness the top most
occurring words are detected within a time frame,
clusters of messages containing such words are de-
tected and the clusters are ranked. Some notable
works following this approach are (Marcus et al.,
2011; Li et al., 2012; Gaglio et al., 2016; Math-
ioudakis and Koudas, 2010; Alvanaki et al., 2011;
Cataldi et al., 2010; Parikh and Karlapalem, 2013;
Weng and Lee, 2021; Zhang et al., 2015; Stilo and
Velardi, 2016; Gupta and Kundu, 2023). Topic
modeling-based approaches for event detection op-
erate by assigning each tweet a probabilistic dis-
tribution over multiple latent topics, enabling the
extraction of hidden semantic structures from large



Table 3: Event detection performance for various methods in terms of NMI across different blocks.

Block BERT BiLSTM EventX KPGNN KPGNN; FinEventy, CLKD HISEvent  HyperSED DEMO
Event 2012
By 0.34+.00 0.27+.00 0.62+.00 0244+.01 0.25+.00 0.40+.00 0.284+.04 0.40+£0.00 0.30+£0.01 0.47+.01
B, 028£.00 0.40+£.00 0.22+.00 0.67+.02 0.70%*. 0.80£.00 0.69+.01 0.78£0.00 0.43+£0.02 0.83£.02
Bs 0444+.00 0.32+.00 0.63+.00 0.62+.01 0.66+. 0.80+.00 0.76+.00 0.86+0.00 0.42+0.04 0.81+.02
By, 031£.00 0.36£.00 0.59+.00 0.58+.01 0.574+.00 0.68+.01 0.57£.02 0.77+0.00 0.51+£0.00 0.74+.02
Bs 033+£.00 0.28+.00 0.58+.00 0.57+.01 0.604+.00 0.73+.01 0.58+.01 0.81+0.00 0.47+0.03 0.74+.02
Bs 036£.00 0.23£.00 0.58+.00 0.72+.00 0.76+.00 0.81+.00 0.86=+.00 0.74+0.00 0.71£0.05 0.83+.03
By 039+£.00 0.30+£.00 0.66+.00 0.40+.00 0.41+. 0.52+.02 0.38+.02 0.59+£0.00 0.41+0.01 0.50+.04
Bs 027£.00 0.23£.00 0.42+£.00 0.70+.01 0.714+.00 0.82+.01 0.69£.00 0.64+0.00 0.68£0.02 0.85%+.01
By 036+£.00 0.30+.00 0.67+.00 0.60+.02 0.61+. 0.73+.00 0.78+.01 0.79+0.00 0.62+0.00 0.82+.01
Bip 036+.00 030+.00 0.63£.00 0.71£.00 0.71+£.00 0.81+.00 0.70+.01 0.76+=0.00 0.65+0.03 0.86 + .00
Bii 036+£.00 0.24+£.00 0.62+.00 0.62+.01 0.61+. 0.69+.02 0.60+.02 0.78+0.00 0.60+0.05 0.81+.01
B2 035£.00 0.224+.00 0.58+£.00 049+.01 0.51£.00 0.67+.00 0.63+.00 0.84+0.00 0.314+0.04 0.72+.02
Bis 026+.00 0.28+.00 0.59+.00 0.62+.00 0.594+.00 0.67+.00 0.63+£.00 0.77+0.00 0.53+0.02 0.75+.00
Bis 034£.00 0.33+.00 049+.00 048+.01 0.48+.00 0.70+.01 0.47+.02 0.80+0.00 0.354+0.01 0.72+.02
Bis 028+.00 0.20+£.00 0.54+.00 0.40+.01 0.39+. 0.59+.02 0.64+.00 0.66+0.00 0.50+0.03 0.63+.02
Big 026+.00 028+.00 046=£.00 0.68£.01 0.67+. 0.75+.01 0.73+£.03 0.76 £0.00 0.644+0.04 0.91+.01
By 034£.00 0.28+£.00 0.55+.00 0.54+.01 0.54%+. 0.70£.00 0.56 +.00 0.80+0.00 0.37+0.00 0.79 £ .01
Bigs 032£.00 0.28+.00 0.51£.00 0.46+.00 0.46=+.00 0.64+.02 0.64+.02 0.79+£0.00 0.40+0.05 0.70=+.00
Bis 020£.00 0.27£.00 0.54+.00 0.54+.00 0.52+. 0.74+.02 0.56+.02 0.83+0.00 0.50+0.02 0.87 £ .01
By 0.324+.00 0.28+.00 0.57£.00 0.60£.01 0.62+. 0.71+.01 0.61+.01 0.66+0.00 0.71+0.01 0.73+.02
Bs;  0.284+.00 0.27+.00 0.63+£.00 0.38+£.00 0.41+. 0.61+.01 0.59+.02 0.59+£0.00 0.34£0.03 0.57+.02
Event 2018
Bi  0.16£0.00 0.114+0.01 0.34£0.00 0.454+0.02 0.42+£0.02 0.56+0.01 0.56 £0.04 0.78+0.00 0.11 £0.01 0.72 4+ 0.00
B> 0.16+0.00 0.09+0.00 0.37£0.00 0.49+0.01 0.46 £0.03 0.57+0.04 0.55+0.03 0.77 £0.00 0.19 £0.04 0.69 £ 0.04
Bs 0.19+£0.00 0.094+0.01 0.37£0.01 0.46+0.01 0.45+0.01 0.59+0.01 0.64+0.02 0.75+0.00 0.19+0.02 0.71 +0.02
By 0.23+0.00 0.124+0.01 0.39+£0.00 0.42+0.02 0.48+0.02 0.48+0.02 0.524+0.03 0.72+0.00 0.19 £0.03 0.65+ 0.01
Bs 0.29+£0.00 0.224+0.00 0.53£0.01 0.554+0.02 0.50£0.01 0.57+0.01 0.61+£0.01 0.77+0.00 0.25+0.01 0.68 +0.04
Bs 0.26 +0.00 0.174+0.01 0.44£0.00 0.35+0.02 0.40+£0.03 0.51+0.00 0.65+0.03 0.81+0.00 0.18 £0.02 0.73 £0.04
B7; 0.214+0.00 0.16 +£0.01 0.41+0.01 0.45+0.02 0.37+0.03 0.48+0.01 0.66+0.01 0.80+0.00 0.18 £0.05 0.77 +0.03
Bs 0.26 £0.00 0.20+0.00 0.53+£0.01 0.39+£0.02 0.40+£0.01 0.54+0.03 0.61+0.03 0.86+0.00 0.34 £0.01 0.72+0.02
By 0.26 £0.00 0.16+0.00 0.45+0.01 0.34 £0.02 0.27£0.04 0.43+0.01 0.54+0.02 0.72+£0.00 0.29 £0.03 0.58 & 0.00
Bip 0.30£0.00 0.25+0.01 0.524+0.00 0.39 +£0.01 0.43+£0.01 0.60=£0.01 0.63+£0.04 0.80=+0.00 0.34+0.02 0.67 £0.01
Bii 0.28+£0.00 0.19+0.00 0.484+0.01 0.38+0.02 0.38£0.02 0.51+£0.03 0.59+0.01 0.83+0.00 0.29 +0.04 0.66 +0.03
Biz 0.25+£0.00 0.22+0.00 0.51+0.01 0.414+0.03 0.46+0.04 0.52+£0.02 0.72+£0.02 0.85+0.00 0.21+0.01 0.72 +0.02
Biz 0.17+£0.00 0.13+0.00 0.44+0.00 0.34 £0.01 0.37 £0.01 0.47+0.03 0.64+0.03 0.86+0.00 0.19+0.05 0.73 +0.02
Bis 0.24+£0.00 0.16 +0.00 0.524+0.00 0.40+0.02 0.47£0.02 0.53£0.04 0.72+£0.02 0.88+0.00 0.24 +0.03 0.80 £ 0.03
Bis 0.26+£0.00 0.20+0.01 0.49+0.00 0.45+0.04 0.44+0.03 0.58£0.02 0.75+0.03 0.83+0.00 0.22+0.02 0.73 +0.00

tweet corpora. These methods leverage advanced
probabilistic models to infer latent topics, which
serve as the foundational framework for identify-
ing and characterizing events within the data. For
example TwiCal (Ritter et al., 2012) constructs an
open-domain calendar by extracting and catego-
rizing significant events from Twitter data using
Conditional Random Fields (Lafferty et al., 2001)
and latent variable models. Events are ranked by
entity-date association, though the method strug-
gles with unexpected or low-significance events.
Some other notable works in this area are (Xie et al.,
2013; Zhou et al., 2015; You et al., 2013; Xie et al.,
2014; Cai et al., 2015; Shepard, 2014; Madani et al.,
2015). The aforementioned approaches are primar-
ily designed to work in an offline setting and they
struggle with event detection in real-time Twitter
data due to the need to predefine the number of
clusters. This is challenging because the volume
and variety of topics are unpredictable. Incremen-
tal clustering strategies are used to dynamically
detect events without requiring a fixed number of
clusters. For example, TwitterNews+ (Hasan et al.,
2016) detects events by first identifying bursts of
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similar tweets and then clustering them incremen-
tally using tf-idf and cosine similarity. Some other
works that focus on incremental event detection
are (Osborne et al., 2014; Becker et al., 2021; Phu-
vipadawat and Murata, 2010).

GNNs have been used in the context of event
detection quite frequently (Ren et al., 2022; Tong
etal., 2023; Cao et al., 2021; Peng et al., 2023; Ren
et al., 2024). Some of these works focus on the
offline setting where the number of events and mes-
sages are predefined. For example in the case of
(Ren et al., 2022) they consider long tailed nature
of event distribution by adding temporal informa-
tion in the message passing of the GNN. Similarly,
(Tong et al., 2023) uses a GAT (Velickovi¢ et al.,
2018) with contrastive learning. But (Tong et al.,
2023) does not consider the feature pivots between
text messages thus misplacing messages into wrong
and sometimes isolated clusters. To address online
event clustering there are several supervised meth-
ods such as (Cao et al., 2021; Peng et al., 2023;
Ren et al., 2024). In (Cao et al., 2021) the authors
construct time temporal message graphs based on
common feature pivots such as common entities



Table 4: Event detection performance for various methods in terms of AMI across different blocks.

Block BERT BiLSTM EventX KPGNN KPGNN; FinEventy, CLKD HISEvent HyperSED  DEMO
EVENT 2012
By 0.17+£.00 0.16+.00 0.294+.00 0.224+.01 0.23+.00 0.394+.00 0.26+.00 0.39+.00 0.28+.02 0.45 £ 0.02
By 0.224+.00 0.114+.00 0.06+.00 0.644+.02 0.68+.01 0.78+.00 0.67+.00 0.78+.00 0.38+.01 0.80 £ 0.02
Bz 033+£.00 0.10+.00 040£.00 0.59+.01 063+£.01 0.78+.00 0.65+.00 0.85+.00 0.36+.03 0.79 £ 0.03
By 015£.00 0.114+.00 0.26+£.00 0.544+.01 0.52+£.00 0.67+.00 0.53+.00 0.75+.00 0.45+.02 0.68 £ 0.03
Bs 0.17+£.00 0.094+.00 0.25+.01 0.554+.01 057+.00 0.734+.00 0.55+.00 0.80+.00 0.42+.01 0.70 £ 0.02
Bs 0.23+£.00 0.084+.00 0.30+£.00 0.68+.00 0.72+.00 0.784+.00 0.75+.00 0.72+.00 0.65+.03 0.81 =+ 0.01
B; 0.18+.00 0.154+.00 0.384+.00 0.36+.02 0.37+.02 0.524+.01 0.34+.00 0.57+.00 0.37+.02 0.48 +0.02
Bs 0.18+£.00 0.094+.00 0.14+.00 064+.01 065+.00 081+.00 0.64+.00 0.62+.00 0.61+.01 0.78 +0.03
By 0.17£.00 0.18+.00 0.32+.01 0.554+.02 056+.01 0.69+.03 0.63+.00 0.77+.00 0.56 £.03 0.78 & 0.02
By 020£.00 0.07+.00 0.31+£.00 0.68+.00 0.67+£.00 0.78+.00 0.66%+.00 0.754.00 0.60+.02 0.83 £ 0.03
B 0.18+.00 0.10£.00 0.30£.00 0.57+.01 0.57+£.01 0.65+.00 0.56%+.00 0.77+.00 0.55+.01 0.78 £ 0.02
B 0.22+£.00 0.07+.00 0.27£.00 045+.01 047£.00 0.65+.00 0.48+.00 0.83+.00 0.26£.03 0.68 £ 0.04
Bys  0.124+.00 0.124+.00 0.23+.00 0.58+.00 0.554+.00 0.64+.00 0.59+.00 0.75+.00 0.48+.01 0.72+0.04
Byy 0.194+.00 0.05+.00 0.214+.00 0454+.01 0.444+.00 0.67+.00 0.444+.00 0.79+.00 0.31+.02 0.70 £ 0.02
Bis 016+£.00 0.08+.00 0.22+£.00 0.35+.01 0.34+£.01 057+.00 0.51+.00 0.63+.00 0.45+.03 0.58 £ 0.02
Big 0.15£.00 0.124+.00 0.17£.00 0.65+.01 063+£.01 0.744+.00 0.70+.00 0.744.00 0.60+.01 0.89 £ 0.02
Bz 0.18+.00 0.124+.00 0.24+.00 0.51+.01 051+.01 0.68+.00 0.53+.00 0.80+.00 0.33+.02 0.76 £ 0.02
Bis 020+£.00 0.114+.00 0.23+.00 0.42+.00 042+.00 0.63+.00 0.52+.00 0.78+.00 0.35+.01 0.67 £ 0.03
By 0.114+.00 0.124+.00 0.18+.00 0.50+.00 0.494+.01 0.77+.00 0.53+.00 0.82+.00 0.46+.03 0.82+ 0.02
By 0.19+£.00 0.124+.00 0.22+.00 0.53+.01 056+.01 0.68+.00 0.55+.00 0.63+.00 0.66+.02 0.66 £ 0.02
By 0.13+.00 0.124+.00 0.24+.00 0.35+.00 0.37+.01 0.61+.00 044+.00 0.57+.00 0.29+.01 0.53 £ 0.02
EVENT 2018
By 0.11+£0.00 0.06£0.01 0.10+£0.00 0.44+0.02 0.41+£0.02 0.56£0.01 0.55+£0.04 0.77+£.00 0.09+.01 0.71+0.00
B> 0.11+£0.00 0.03+£0.00 0.12+0.00 0.48+0.01 0.45+0.03 0.56+0.04 0.54+£0.03 0.77+.00 0.17+.02 0.68 £ 0.04
Bz 0.13+£0.00 0.03+0.01 0.11+0.01 0.45+0.01 0.44+£0.01 0.58+0.01 0.62+0.02 0.75+.00 0.17+.01 0.70 £+ 0.02
Bs; 0.16+£0.00 0.05+£0.01 0.14+0.00 0.41+0.02 0.47+£0.02 0.47+0.02 0.51+£0.03 0.71+.00 0.17+.03 0.64 £ 0.01
Bs 0.18+0.00 0.08£0.00 0.244+0.01 0.53+0.02 0.48+0.01 0.56+0.01 0.59+0.01 0.75+.00 0.21+.02 0.65+0.04
Bs 0.194+0.00 0.09+0.01 0.154+0.00 0.34+0.02 0.39+0.03 0.49+0.00 0.62+0.03 0.80+.00 0.16+.01 0.72+0.04
B7; 0.14+£0.00 0.08£0.01 0.12+0.01 0.43+0.02 0.36£0.03 0.47+0.01 0.65+£0.01 0.80+.00 0.15+.03 0.76 & 0.03
Bs 0.154+0.00 0.06+0.00 0.214+0.01 0.37+0.02 0.37+0.01 0.52+0.03 0.59+0.03 0.85+.00 0.30£.02 0.68 £ 0.02
By 0.184+0.00 0.05+0.00 0.16+0.01 0.32+0.02 0.25+0.04 0.41+0.01 0.47+0.02 0.71+.00 0.26 £.01 0.54 £+ 0.00
Bip 0.20+0.00 0.08+£0.01 0.19£0.00 0.35+0.01 0.40£0.01 0.58+0.01 0.61+0.04 0.79+.00 0.30£.03 0.65+0.01
Bi1 0.18+0.00 0.05£0.00 0.18£0.01 0.35+0.02 0.36 £0.02 0.49+0.03 0.57£0.01 0.82+.00 0.25+.02 0.63 £ 0.03
Bi2 0.154+0.00 0.09+£0.00 0.20£0.01 0.39+0.03 0.44+£0.04 0.50%+0.02 0.68£0.02 0.84+.00 0.17+.01 0.71+0.02
Biz 0.10£0.00 0.05£0.00 0.15+0.00 0.32+0.01 0.35+0.01 0.45+0.03 0.63+0.03 0.85+.00 0.16£.03 0.71+0.02
By 0.15+£0.00 0.04+£0.00 0.22+0.00 0.38+0.02 0.45+0.02 0.51+0.04 0.71+£0.02 0.87+.00 0.20+.02 0.78 +0.03
Bis 0.154+0.00 0.09+0.01 0.22+0.00 0.43+0.04 0.42+0.03 0.56+0.02 0.72+0.03 0.82+.00 0.18+.01 0.72+0.00

and common words, aggregate the node features
using GAT and triplet loss followed by Kmeans or
DBSCAN clustering. This is followed by (Peng
et al., 2023) where the authors use GNN along with
RL for assigning weights to each type of edge be-
tween two messages. The node features are aggre-
gated similarly to KPGNN, and then an RL-based
DBSCAN algorithm, namely DRL-DBSCAN, is
used to cluster the node features. Also, FinEvent
shows the result of cross-lingual evaluation on the
French dataset. Prior to this work, most works
were focused on social messages in the English lan-
guage. Further works like (Ren et al., 2024) extend
KPGNN to work for multiple languages (termed
as low resource languages in the paper) other than
English. For the low resource languages in the pa-
per, the authors use a knowledge distillation (KD)
based approach (Ren et al., 2024). In the KD ap-
proach, a teacher model is trained for incremental
event detection on English tweets, and a student
model extracts knowledge from the teacher model
and applies it to the target low-resource language.
This process improves the clustering results for the
tweets in the target language.
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Entropy (Kenley and Cho, 2011) and modularity
(Weng and Lee, 2021) are commonly used met-
rics for clustering graphs (Weng and Lee, 2021),
each offering unique advantages in capturing the
structure and organization of complex networks.
Entropy measures the uncertainty or randomness
within cluster assignments, promoting diverse and
balanced clusters, while modularity evaluates the
strength of division by comparing the density of
edges within clusters to those between clusters,
effectively highlighting community structures. Re-
cently, GNN-based methods for graph clustering
have gained attention. For example, the authors
of (Wang et al., 2023) introduce an unsupervised
approach that learns node representations by mod-
eling graph perturbations and derives an intrinsic
graph using entropy. Similarly, (Tsitsulin et al.,
2024) shifts focus from node pooling to modular-
ity optimization for clustering. However, these
methods have not addressed unsupervised event
detection. In this paper, we propose a novel un-
supervised method that combines modularity and
entropy for incremental event detection, harnessing
the strengths of both metrics.



Table 5: Practical runtime (in seconds) comparison of
DEMO with other unsupervised event detection models

Blocks # Tweets HISEvent HyperSED DEMO

mCOMM  Mod+Ent Total

Event2012
180
44
51
58
25
41
166
50
37
35
37
86
35

8722
1491
1835
2010
1834
1276
5278
1560
1363
1096
1232
3237
1972
2956
2549
910
2676
1887
1399
893
2410

19025
482
484
696
398
303
5142
447
402
268
381
1100
715
1060
607
239
1298
1073
331
218
1124

w

747
32
31
31
29
24

217
27
26
24
23
55
35
49
36
21
45
31
25
22
34

31
67
Event2018
178
90
70
82
66
104

m o s e e e s OGN = e e e
I
8]

5356
3186
2644
3179
2662
4200
3454
2257
3669
2385
2802
2927
4884
3065
2411

5023
951
546
1552
499
1903
1353
340
1508
424
725
511
2604
778
500

=]
@
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C Comparing the runtime of proposed
DEMO with unsupervised methods
HISEvent and HyperSED

We compare the runtime of individual components
our proposed method with existing unsupervised
methods HISEvent and HyperSED as shown in
Table 5. It is clearly evident from the Table that we
are faster (in terms of combined performance) than
existing unsupervised methods in 16 of 21 blocks

for Event 2012 and 12 of 15 blocks for Event 2018.

D DEMO under noisy input

We check the robustness of our model by adding
noisy edges to the input graph and then running
DEMO. We add 20% noisy edges to each block
of the Event2012 dataset randomly and see how
DEMO performs in these scenarios. We show the
variance in the results of DEMO with noisy edges
in Figure 6. We set the value of & = 0.5 and the
value of 31 = (82 = 0.5. The results show that the
variance is very small, even with the addition of

noisy edges, thus showing our model’s robustness.
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E Qualitative Study

We show the qualitative results of DEMO showing
the predicted communities by DEMO for HMG
By of Event2012 dataset (in Figure 7b) and com-
pare our results with ground truth communities (in
Figure 7a). We can see that the number of ground
truth communities is 34, and our model predicts 30
communities, which are very comparable, as is also
evident visually. One of the primary mistakes our
model makes is in detecting the very small com-
munities. It merges these small communities with
bigger communities.

F Extending DEMO to a streaming
scenario

The proposed algorithm mCOMM is a fully stream-
ing algorithm which does not store the graph at any
point in time. We have also shown that mCOMM
provides comparable results in terms of various
metrics for event detection. The remaining part
of DEMO requires some form of the graph to be
stored at any time instant. Given this, we can eas-
ily convert DEMO to a streaming scenario if we
construct message graphs hourly or per minute and
then extract the latest events from these graphs. We
can combine the current events with past events us-
ing the merge operation of mCOMM as defined in
Algorithm 1. Specifically, we assume that we have
the graph and tweets of two time instances ¢ and
t — 1 saved in memory. We also consider that we
have the inner and outer densities of communities
available from Cg, ,. Now, given that DEMO finds
Cg, events for a HMG at time step ¢ and we have
Cg,_, events from time step ¢t — 1 (as well as the
graph and tweets from both the time steps), we can
merge them using the merge operation of mCOMM.
We start by creating inter edges (based on the same
criteria as mentioned above) between the tweets in
communities Cg, , and communities Cg,, we call
these edges F;. We also include the inter com-
munity edges already present in the communities
of Cg, (call them as E) and the inter community
edges already present in the communities of Cg, ,
(call them as E3). We combine all these edges and
call them E. We create Cj, by merging the commu-
nities in Cg, , and Cg,. Also, based on the edgeset
FE we update the outer density of every community.
Now, with this information available, the edgeset £/
is then streamed to mCOMM. The mCOMM algo-
rithm creates a final set of communities by merging
communities from Cg, , and Cg,. At time step 1,
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Figure 6: Change in variance of DEMO with the addition of noisy edges. Here each of the boxes represent the
variance in NMI, AMI or ARI.

(b) Predicted Events

Figure 7: Qualitative Study showing predicted communities by DEMO for HMG By compared with ground truth
communities.

the merging step is trivial. For time step 2, we  consecutive time steps. In all these scenarios, we
will have the inter and intra community densities of ~ store a homogeneous graph for time steps ¢ and
communities that evolved in time step 1, and these ¢ — 1.

will be updated in time step 2 and so on. Thus, we

will not be required to keep data for more than two
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G Scaling DEMO to large datasets

We have shown mCOMM to be very fast compared
to existing methods (Table 7), along with its scal-
ability to bigger graphs. Our learning pipeline in
DEMO can handle large-scale data efficiently by
leveraging parallel processing, which is already
popular in deep neural networks. Since DEMO pri-
marily does not mandate an incremental setting, we
can divide the original message graph into smaller
subgraphs, which can then be processed in parallel.
In real-world scenarios, such as real-time traffic
updates or event detection, social streams are of-
ten pre-processed by region or topic and filtered to
reduce noise. These filtered message graphs typ-
ically stay compact (e.g., covering only the past
hour’s activity) to support rapid decision-making
(Cao et al., 2024). DEMO’s architecture makes
it well-suited for real-time monitoring tasks like
crisis alerts, urban mobility tracking, or social sen-
timent analysis, offering value to first responders,
municipal agencies, and media analysts.

H Further details on mCOMM

H.1 Detailed Explanation of mCOMM
(Algorithm 1)

Algorithm 1 describes the process of community
detection for heterogeneous multilayer streaming
data. When an edge e(u, v, 1) is received, the al-
gorithm first initializes a community sketch data
structure, which consists of a forest f and a sparse
triangular matrix mat, using the makeSketch() func-
tion. Next, the updateSketch() function is called
to check the membership of nodes u and v in ex-
isting communities. If both nodes belong to the

same community, the edge count within the com-
munity is increased. If the nodes belong to different
communities, the edge count between the commu-
nities is updated. If only one of the nodes is part
of an existing community, a new single-node com-
munity is created, with the other node serving as
its community representative. If neither node be-
longs to any community, a new community with
two nodes is formed, assigning the node with the
lower value as the community representative and
the other node as its child. The sparse triangu-
lar matrix mat is updated with the information of
the newly formed or modified community. The
algorithm then calculates the outer and inner den-
sities of the communities based on edge and node
counts across different layers from mat. If the
outer density is greater than the o (user-defined
parameter) times sum of inner density of both com-
munities, they are merged using the mergeCom-
munity() function. Finally, the onQuery() function
retrieves all communities observed in the stream
till the query is made. Detailed description of
functions namely community(-), makeSketch(-),
updateSketch(-), and mergeCommunity(-) is pro-
vided below:

community(node): It returns a community rep-
resentative of a community where node belongs.
In other words, it returns the root node of a tree
where a node lies.

makeSketch(): It initializes a community sketch
Cy, with a forest f and a sparse matrix mat.

updateSketch(e = (nodej,nodea,l)): The
function updates the Community Sketch with a
new edge e arrival. It checks if both nodes be-
long to existing communities. If they belong to

Edge a=0.1,L=3w=[0.33,0.33,0.33] P
(1,2,0) | &1 ={1,2}
(2,3,0) | €1 = {1,2},C5 = {3} "=CS) 0 11 2.3} pin(C1) = 011, pin(Cs) = 0.0, pout(C1, Cs) = 0.06
(3,4,0) | ¢ = {1,2,3},0; = {4} ==, 00 = (1,2,3,4} pin(C1) = 0.07, pin(Cs) = 0.0, poue (€1, Cs) = 0.04
(4,1,0) | €1 = {1,2,3,4}
(5,6,1) | ¢, = {1 2,3, 4} Cs = {5,6}
(6,7,1) (5,6}, Cr = {7} "ECCD 00 (5 6.7} | pun(C) = 011, pin(Cr) = 0.0, pout (Ca,Cs) = 0.06
(7,5,1) {5,6,7}
(4,5,0) {5,6,
(4,5,1) ={1,2,3, (5,6,7) ML) 00 (19.3.4.5,6,7} | pin(C1) = 0.07, pin(Cs) = 0.1, poue (€. Cs) = 0.02
(45.2) | & = {1,2,3.4,5,6,7}
Edge @ =03,L =3 w=0.33,0.33,0.33] »
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(3,4,0) | €1 = {1,2,3},0; = {4} ==, 00 = (1,2,3,4) pin(Cr) = 0.07, pin(Ca) = 0.0, pout(C1, Ca) = 0.04

19 ! (4,1,0) cl—{123 4}

/ (5,6,1) 43,05
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Figure 8: Working demo of mCOMM.
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Table 6: Statistics of real networks from SNAP datasets.

Graph Type Nodes Edges Average Degree | Ground Truth Communities
Amazon Co-purchasing | 334,863 925,872 2.76 311,782
DBLP Co-citation 317,080 1,049,866 3.31 1,449,666
Youtube Social 1,134,890 | 2,987,624 2.63 8,455,253
LiveJournal Social 3,997,962 | 34,681,189 8.67 137,177
Orkut Social 3,072,441 | 117,185,083 38.14 49,732

Table 7: Comparison with state-of-the-art algorithms in terms of 1) NMI 2) F1-Score 3) Weighted Community
Clustering (WCC) 4) Execution Time (ET) (in seconds) and 5) Execution Memory (EM) (in GBs).

Graph/Algorithm Amazon DBLP Youtube LiveJournal Orkut
NMI F1 WCC ET EM|NMI F1 WCC ET EM|NMI F1 WCC ET EM|NMI F1 WCC ET EM |NMI F1 WCC ET EM

Infomap(Rosvall and Bergstrom, 2008)| .16 .31 .00 47.6 .56| .00 .09 .01 455 .60|.00 .01 .00 191.4 2.02| .01 .04 .00 2908.3 14.51| .00 .04 .00 4165.2 101.59
Leiden (Traag et al., 2019) 20 33 .01 21.8 43| .11 .17 .00 246 .47|.04 .10 .00 77.6 1.49| .01 .18 .00 8949 13.56| .01 .09 .00 3940.7 42.06
FastLPA (Traag and Subelj, 2023) 28 48 20 176 .29|.13 .31 .18 196 .32|.01 .05 .01 947 99|.03 .05 .02 176521 7.81|.06 .17 .00 5902.9 22.69
Louvain (Blondel et al., 2008) 14 28 .01 935 .61(.06 .13 .01 2029 .67|.00 .00 .00 436.42.19| .02 .08 .01 12111.4 15.02| - - - - -

Walktrap (Pons and Latapy, 2005) 27 44 .13 12915 42| .10 29 .16 2747.6 47| - - - - - - - - - - - - - - -

SCODA (Hollocou et al., 2017) 11 .37 09 34 .19].04 22 .10 38 .21|.06 .21 .01 162 .67|.06 .23 .01 190.7 4.96 .16 .36 .00 6959 14.39
SAOCD (Li et al., 2020) .14 38 .10 82 .23|.06 24 .12 93 27|.03 .15 .00 313 .80|.02 .13 .01 3504 8.23|.06 .29 .00 1677.3 27.19
Proposed mCOMM .16 .40 20 32 .18|.09 29 .16 3.67 .20| .05 20 .02 154 .68 |.03 .16 .03 1832 6.34|.28 43 .02 7119 17.83

the same community, the edge count within the
community is increased. If they belong to different
communities, the edge count between communities
is increased. If only one of the nodes is part of an
existing community, a new single-node community
is created with the remaining node as its represen-
tative. If both nodes are not part of any community,
a new community with two nodes is created, with
the node having the lower value assigned as the
community representative and the other node as its
child node. The sparse triangular matrix mat is
updated with the information of the newly formed
or modified community.

mergeCommunity(P,,, P,,): This method
merges communities represented by P, and P,
based on the size of the communities, and the
smaller community is linked to the larger commu-
nity representative. The sparse triangular matrix
mat is updated after the merge, and entries of the
merged community are removed and references are
updated to the new community.

H.2 Working Demo of mCOMM

We show the working of mCOMM (Figure 8) in a
streaming setting, highlighting the edge merging
process under different values of o (merging param-
eter that controls merging in mCOMM). The figure
demonstrates the relation graph where there can be
edges between two nodes at different layers. The
value on the edges denotes the layer in which it be-
longs. We consider three layers L = {0, 1,2}. The
table details the edge merging process under differ-
ent @ = {0.1,0.3} values. For & = 0.1, it can be
observed that merging occurs at edge (4, 5, 1), but
no merging occurs for o« = 0.3. It is evident from
the Figure that « values play a crucial role in the
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merging of communities, which results in different
outcomes for the same edge stream. Specifically,
we can see that for « = 0.1, merging occurs at
edge (4,5, 1), but there is no merging when we set
the alpha value to o = 0.3.

H.3 Convergence of mCOMM

We have designed mCOMM for streaming commu-
nity detection, and it only terminates at the end of
the stream. For each incoming edge, we make a de-
terministic decision to put its nodes in a particular
community (which is highlighted in detail in the
working example of Figure 8), always ensuring a
well-separated community for a query (onQuery()
function in the Algorithm 1) at any time step in the
stream. The same is empirically visible in terms of
modularity in Figure 9. This shows that mCOMM
always converges to a set of communities.

H.4 Choice of o for mCOMM

We have already done an ablation study (Section
4.1) showing the change in the results of mCOMM
(NMI, AMI, ARI) with the change in . We
had mentioned that o determines when we should
merge communities. In the case of the Twitter
datasets used here, sometimes two tweets talking
about the same events have weak connections with
just a single common word. We have used a low
a value of 0.5 in the case of our experiments to
accommodate such weakly connected nodes in a
community. This does not affect nodes that are
strongly connected, as they will be merged anyway.
This idea works well with the Twitter dataset, as is
indicated in Figure 4 of the paper. It must be noted,
though, that setting o too low causes a dip in the
NMI value. In case we set « to 0, we get connected



components as communities. This is because a 0
value of « concatenates all connected nodes into a
single community by eliminating the merging re-
strictions. We obtain a balanced result across the
metrics with « set to 0.5.

H.5 Performance of mCOMM on varied
datasets

We show the performance of mCOMM in terms of
various metrics for various homogeneous datasets
from SNAP (Leskovec and Krevl, 2014) like Ama-
zon, DBLP, Youtube, LiveJournal and Orkut. The
dataset statistic is shown in Table 6. We can see
from the Table 7 that mCOMM has comparable
performance for Amazon in NMI and F1 and best
result for WCC (Weighted clustering co-efficient),
ET (Execution Time in seconds) and EM (Execu-
tion Memory in GBs) for the Amazon dataset. We
have the best result for ET and EM in DBLP and
the best result for WCC and ET for the LiveJournal
dataset. For the Orkut dataset we have the best
result for NMI, F1 and WCC. It must be noted
that we have comparable results for all the metrics
across the datasets in cases when we do not have
the best results.

Intuition for using density in mCOMM: Pure
modularity-based measures (Louvian) suffer from
problems like the resolution limit problem, which
density-based approaches avoid (Kim et al., 2022).
This also restricts modularity-based methods to
detect smaller communities that exist in the dataset,
as shown in Fig. 3 in FinEvent (Peng et al., 2023).
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H.6 Theoretical Analysis of mCOMM

Lemma H.1. Given a heterogeneous multilayer graph stream S = {e1, ez, ..., e}, where each edge
e = (i,7,1) arrives in some layer l, the modularity Q) is defined based on Equation (2) from (Hanteer and
Magnani, 2020) as:

Q=0 |3 X @y P+ Y Wiy aiad)

CeCis,jseC CeCis,jreC
s€l s,r€l
Intralayer contribution Interlayer contribution

where, Afj is the adjacency matrix in layer s. P is the null model in layer s, e.g., I;rgk E W*" is the
coupling matrix that describes the interlayer edges between layers s and r. The term W7 corresponds
to the coupling strength w;j, which is the weight assigned to the interlayer edge connectmg node i in
layer s and node j in layer r. 0(is, jr) = 1 if is and j, refer to the same actor, otherwise it equals 0.
e = D oep 2| B —1—21-78# w;". C is the community structure. Find the change in modularity Ag, at time t.

Proof: Let us derive the change in modularity Ag, incrementally:
Att = 0: No edges exist.
Qo=0; AQo =0
Att = 1: Edge e; = (1, ], s) arrives. Edge appears in layer s. No interlayer contribution is present.
Only intralayer contribution exists.

1
— —— [(As — P3)Y] -
Ql 2/'61 [( ij z])]v
Ag, =C@1— Qo
1 S S
= TM(AU - Pij) —Ag,

Att = 2: Now we consider different scenarios occur in mnCOMM depending on the nature of the second
edge es.

Case 1:¢9 = (i, k, s)- Only one node exists (Same node, same layer)
Intralayer contribution: (Aj; — P) + (A, — Pj)
Interlayer contribution: 0

1
Q2 = U [(Afj — Pj) + (Af — %))
1 S S S S S S
=Q2— Q1= s (A3 — P5) + (Aj, — Pi)] — 2M (47 — P)
1
= o (045~ P + (43— P — B, — By

Case 2: ex = (i, k,r)- Only one node exists (Same node, different layer). Nodes i spans layers s and T,
introducing interlayer contribution for i.
Intralayer contribution: (Aj; — Pf) + (A, — Pj))
Interlayer contribution: wg . 5(15, i) = w0 0(is, i) =1

1 S S I8 T ST
Q2 = s (A5 — P5) + (Afy, — Ph) +wil |
1 S S T ST S S
Ag,=Q2— Q1= 203 [(A = Pj) + (Aj — Pjj) +wjj ]_72/11(14 - Pj)
1 S S T ' ST
= Ut [(Aij_Pij)+( = Ph) +wil] — Ag, — Ag,
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Case 3: e2 = (p, q, s/r)- Both nodes do not exist (New node-pair in same/different layer)
Intralayer contribution: (Af; — Pj) + (Af,ér - P]fq/ N
Interlayer contribution: 0

1 S T T
Q2= [(A5 = Py) + (437~ B
1 S S S/T S/T ]' S S
Bgu=Q2 = Q=g (A5 ~ By + (43 = B = 5 (45, = B)
1 S S S/Tr S/T
= 2% [(Aij - Pj) + (Apé - qu/ )} —Ag, —Aq

Case 4: ex = (i,7,7)- Both nodes exist (Same node-pair, different layer). Now nodes i and j span layers s
and r, introducing interlayer contribution for i and j.
Intralayer contribution: (Aj; - PZ) + (AL, — PZ}C) o o
Interlayer contribution: Wi .0(is,i,) + wj;.é(js,ﬁ) =wj Fwiis 0(is,ir) = 0(js, jr) = 1

1
Q2 = Uts [(A5; = P5) + (A}, — P) + wif +wii]
1 : : 1
Ag, =Q2— Q1= % [(A5; — P5) + (A}, — P) +wif +wif] — 271(14% - Bj)
1
=% (A3 = P5) + (A}, — Pj) +wif +wif] — A, — Ag,

Furthermore, Ag, - - - Ag,_, will be derived recursively using the previous changes in modularity. Each
new edge will fall into one of the cases discussed above fort = 2.
.". The modularity change at time t is:

t—1
Bo= o |3 S (- + e -3 A, (14)
7=0

pu— T
Mt |\ Ceci, joec i€V,
s€l s#r
— t sr
p = E 2|Eg| + E Wi
s€l 1€V
S#T

Remark H.1. Considering the mCOMM algorithm, if both nodes from an incoming edge do not exist
(irrespective of the layer), then we fall back to the modularity (QQ1) at t = 1. This will always be the
condition on the arrival of the first edge. Now there are four possibilities. In the first possibility, one
node may already exist (in any layer), and the other may be a new node in the same layer. In that case,
the modularity can be calculated from Case 1 at ((Q2,t = 2). The second possibility can be an edge
between two nodes where one node exists, say in layer s, but the new node is in layer r. In this case,
the modularity can be calculated from Case 2 at (Q2,t = 2). In the third possibility, both nodes can
already exist, say in layer s, but the edge between them is in another layer, say layer r. In this case, the
modularity can be calculated from Case 4 at (QQ2,t = 2). The final possibility is an edge between two new
nodes in the same or different layer, where the modularity can be represented using Case 3 at (QQ2,t = 2).
Specifically, for possibility 1, Ag, = 0 as the new node will always be assigned to a new community,
therefore (A3, — Pp.) = 0. Similarly, in the case of possibility 2, (A}, — P},) = 0, as i and k will always
belong to different communities. So, AQ2 = wjj. One must note that w;; = 0 in our case, as we do not
consider any coupling between the same nodes in two different layers.
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H.7 Practical analysis of change in
modularity for mCOMM.

We conduct an empirical study to show the change
in modularity of mCOMM for block B, of the
Event2012 dataset. In the Figure 9, the x-axis is in-
dicative of the number of incoming edges. Initially,
there is a decrease in modularity due to the pres-
ence of isolated communities. However, we can see
that after 20000 incoming edges, the merge opera-
tions start, and we get an increase in the modularity
of the communities, indicating that the proposed
algorithm generates well-separated communities.
We can see that the change in modularity is well
supported by the Lemma explained above.

Modularity

o
N

0 20000 40000 60000 80000 100000
Number of edges

Figure 9: Modularity based analysis of mCOMM on By
block of Event2012 dataset.
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