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Abstract001

Event detection from social streams is an essen-002
tial component of monitoring real-world inci-003
dents with applications in disaster monitoring,004
health surveillance and public opinion analy-005
sis, among others. Social media generates in-006
formation streams containing heterogeneous007
attributes, such as names, places, and times,008
which often exhibit noise as the same entities009
may belong to different events, making detec-010
tion challenging. The present paper introduces011
an unsupervised event detection model DEMO012
(Heterogeneous Multilayer Density infused013
Entropy-Modularity Optimization). DEMO014
judiciously optimize both entropy and modular-015
ity to deal with the noise arising from multiple016
heterogeneous interactions. This allows bet-017
ter classification of events from social streams.018
The method is aided by a community detec-019
tion algorithm, mCOMM, which infuses het-020
erogeneous multilayered density-based commu-021
nity participation information into the optimiza-022
tion pipeline. Extensive experiments support023
our model’s superior performance, surpassing024
SOTA methodologies with a maximum gain of025
110.7% in ARI, 20.2% in AMI and 19.7% in026
NMI for publicly available datasets.1027

1 Introduction028

Social events represent occurrences of real-world029

noteworthy happenings involving specific times,030

locations, people, and contexts. Palisades Forest031

fire2 and 2021 Indian farmers’ protest3, are re-032

cent examples. These real-world events triggered033

an overwhelming number of messages on social034

media platforms. Event detection identifies any035

such real-world activities by observing the patterns036

in the messages. Event detection can be used for037

1Code repository: https://anonymous.4open.science/r/DEMO-
3B2F/README.md

2https://en.wikipedia.org/wiki/2023_Odisha_
train_collision

3https://en.wikipedia.org/wiki/2020-2021_
Indian_farmers%27_protest

disaster monitoring (Saini et al., 2024) and public 038

opinion analysis (Mao et al., 2024) among others 039

in the domain of healthcare (Paganelli et al., 2022), 040

sentiment analysis (PETRESCU et al., 2024), en- 041

terprise risk management (Zhang et al., 2022) and 042

political agenda fake news (Rajora et al., 2025). 043

Detecting social events presents unique chal- 044

lenges. Social platforms continuously generate a 045

stream of messages, ensuing events to evolve with 046

new developments and old events to be phased out. 047

The method should adopt this dynamic environ- 048

ment. Messages contain heterogeneous elements 049

or attributes such as locations, tagged users, organi- 050

zations, dates, and times. Moreover, text with sim- 051

ilar entities can belong to different events. These 052

introduce noises that a text clustering model cannot 053

effectively discern to distinguish events. The exist- 054

ing methods (Liu et al., 2020; Cao et al., 2021; Ren 055

et al., 2024; Peng et al., 2023) require supervision. 056

However, manual annotation of social messages 057

is very costly, hence, an unsupervised event de- 058

tection model addressing all the aforementioned 059

challenges is a necessity. In this paper, we propose 060

DEMO, an unsupervised heterogeneous multilayer 061

density-infused entropy-modularity optimization 062

event detection model. We construct a time-ordered 063

sequence of heterogeneous multilayered blocks that 064

retains recent events for handling evolving mes- 065

sages. We design a fast heterogeneous multilayer 066

algorithm, mCOMM, for detecting communities us- 067

ing density from heterogeneous multilayer blocks. 068

Further, DEMO uses simultaneous optimization 069

of entropy and modularity to deal with the noise 070

arising from multiple heterogeneous interactions. 071

Entropy is known to identify the knowledge from 072

noisy data, making it suitable to identify impor- 073

tant interactions. Lower entropy indicates more 074

homogeneous event groups, while higher entropy 075

reflects greater disorder, signalling the need for fur- 076

ther refinement or separation. This endows it with 077

the requisite faculties to be used for identifying 078
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1: A powerful earthquake struck Japan today.
2: Japan is hit by a strong earthquake causing damages.
3: Tsunami warning issued after earthquake in Japan, flights postponed.
4: Cricket match is postponed due to rain.
5: Storm in Japan causes travel disruption in multiple cities.
6: Several flooding reported after storm.
7: Heavy rain ensues as storm moves towards cities.

Modularity: {1,2,3}, {4,5,6,7} or  {1,2,3,4}, {5,6,7}

Entropy: {1,2}, {5,6}, {4,7}, {3} or {1,2,3}, {5,6}, {4,7}

Entropy+Modularity: {1,2,3}, {5,6,7}, {4}
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Figure 1: An example showing the importance of both
modularity and entropy in event detection.

clusters that signify real-world events. Modularity079

evaluates the strength of division in networks by080

comparing the density of edges within an event081

to the expected density in a random distribution082

(Newman, 2006b). High modularity signifies well-083

defined event groups with strong internal connec-084

tions and minimal overlap with other event groups.085

When used together, entropy and modularity pro-086

vide complementary insights. For instance, Figure087

1 illustrates that connecting tweets based on shared088

words can introduce noisy edges e.g., tweets 4 and089

7 both mention "rain" but discuss different events.090

The colored nodes denote ground truth communi-091

ties in the figure. Using only modularity or entropy092

can lead to suboptimal community assignments.093

However, jointly minimizing entropy and maximiz-094

ing modularity helps distinguish such cases better095

separating weakly connected tweets like 4, while096

grouping strongly connected ones like 5, 6, and 7.097

Entropy manages intra-cluster diversity, while mod-098

ularity ensures inter-cluster separation, resulting in099

more robust and scalable event detection models.100

Our method leverages community participation in-101

formation from proposed heterogeneous multilayer102

community detection mCOMM for better feature103

generation. Our contributions are as follows104

1. We create a time-ordered heterogeneous multi-105

layered graph (HMG) from tweets with layers106

representing heterogeneous interactions.107

2. We propose a novel density-based algorithm,108

namely, mCOMM, that finds communities in109

HMG.110

3. We propose a GNN-based model with an en- 111

tropy and modularity-driven objective func- 112

tion, leveraging cluster information from 113

mCOMM for event detection. 114

4. We conduct extensive experiments on two pub- 115

licly available datasets consisting of two lan- 116

guages with a detailed ablation study. 117

2 Heterogeneous Multilayer Streaming 118

Community Detection (mCOMM) 119

Inspired by Gupta and Kundu (2025), we propose a 120

community detection algorithm for heterogeneous 121

multilayer graph streams. Please note that all no- 122

tations used hereafter are listed in Table 2 in the 123

Appendix. 124

Heterogeneous Multilayer Graph (HMG):(Chat- 125

terjee et al., 2024) An HMG is defined as 126

H = (V,E,ET , L, {REET
, RETL, RV L}) where 127

V , E ⊂ V × V × L, ET , and L is the set of 128

nodes, edges, edge types and layers respectively. 129

Here, each layer corresponds to one edge type. 130

The functions are defined as REET
: E → ET , 131

RETL : ET → L and RV L : V → 2L \ ϕ. 132

Formally, the task of a streaming community de- 133

tection for a heterogeneous multilayer graph stream 134

H is to mine a set of communities {c1, . . . , cj} 135

based on its heterogeneous interactions without 136

storing it in memory. Before presenting the com- 137

munity detection algorithm, let us define: 138

Density in a HMG: Given two communities c1, c2, 139

with nodes n1, n2 and edges m1,m2 spread across 140

L layers with m12 edges connecting nodes from c1 141

to c2, inner density (ρin) is the sum of fractions of 142

number of edges of a community to the number of 143

possible edges within that community across all lay- 144

ers. On the other hand, outer density (ρout) is the 145

sum of fractions of the number of outer edges con- 146

necting two communities to the number of possible 147

outer edges connecting two communities across all 148

layers. Mathematically, 149

ρin(c1) =
1

|L|
∗

∑
l∈L,w

wl ∗
2×m1l

n1l .(n1l − 1)

ρout(c1, c2) =
1

|L|
∗

∑
l∈L,w

wl ∗
m12l

n1l .n2l

(1)

150

Here, w1, w2, . . . , wk represent constant values as- 151

signed according to the weightage of each layer. 152

The sum of all weights must be equal to 1. The 153
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Figure 2: Block diagram showing the methodology of DEMO. Here, a heterogeneous multilayer graph H is
constructed where Lw, Le, Lm represent layers with each showing interactions between nodes based on common
words, entities, and mentions, respectively. This H is passed to mCOMM to determine the community participation
information (number of clusters, k and cluster assignment matrix, CmCOMM

G ). Then, all layers of H are projected
to Gl, and the messages are encoded using a text encoder represented as X . Gl, learnable matrix M̄ and X are
then passed to the graph encoder Eδ, which optimizes cluster assignments through entropy and modularity using
information from mCOMM.

terms mjli
and njli

represent the number of edges154

and nodes belonging to the layer li in the commu-155

nity cj .156

2.1 Algorithm157

We initialize a community sketch Ck using the158

makeSketch() function. It observes an HMG stream159

and any new edge e(u, v, l) triggers onReceive()160

function. The sketch is first updated by updateS-161

ketch() function to ensure the nodes are added to162

appropriate communities before any community163

merger take place by mergeCommunity() function.164

The communities are merged when the outer den-165

sity of the communities becomes larger or equal166

than the α times the cumulative inner density of167

the communities nodes u and v are added with.168

The function onQuery() returns all communities169

observed in the stream up to the time of the query.170

The detailed algorithm is shown in Algorithm 1.171

Kindly note that our algorithm considers all nodes172

to be in all layers.173

mCOMM is designed to extract communities174

solely based on the graph structure, without consid-175

ering node features. In the next Section, we identify176

event partitions by incorporating both node features177

and the graph structure, with mCOMM playing a178

crucial role in providing community information.179

A detailed analysis of mCOMM can be found in180

the ablation study and the Appendix. 181

3 Entropy and Modularity based 182

Unsupervised Event Detection 183

First, we define a social message, a social mes- 184

sage stream, an event, and the problem of event 185

detection as follows: 186

Social message: A social message s is a set 187

{text, users, stamp}. Here text, users, stamp 188

denote the text message, the sender of the message 189

with the mentioned users and the timestamp of the 190

message. 191

Social Message Stream: A social message stream 192

(SS) is a time ordered sequence of message blocks 193

B1, . . . , Bt, Bt+1, . . . , where block Bt is a collec- 194

tion of social messages that arrive within the time 195

interval [t, t+ 1). 196

Event: An event is a set of social messages that are 197

about the same real-world phenomenon. A social 198

message can only belong to one event. 199

Event Detection: Given a social message block Bt, 200

the objective of event detection is to learn a model 201

fθ : Bt → SE t where θ is the model parameter. 202

Here SE t is the set of all events in a block. 203

3.1 Methodology 204

We convert a block Bt to an HMG Ht using the 205

definition in Section 2. A node in Ht represents 206
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Algorithm 1 Streaming Community Detection for HMG
Input: A HMG edge stream, merge threshold α

// Intialize Community Sketch
CommunitySketch Ck = makeSketch()

// Receive Function
def onReceive(e ∈ E, α):
Ck.updateSketch(e = (u, v, l))
cu = Ck.community(u)
cv = Ck.community(v)

Calculate outer density ρout(cu, cv) and inner density
ρin(cu) & ρin(cv) of cu and cv using Eq. 1.

if ρout(cu, cv) ⩾ α× (ρin(cu) + ρin(cv)) then
Ck.mergeCommunity(cu, cv)

end if

// Query Function
def onQuery():

return Ck.f

def community(node):
while node != node.parent:
node.parent, node := node.parent.parent, node.parent

return node

def makeSketch(node):
Ck = forest f , sparseMatrix mat
return Ck

def updateSketch(e = (node1, node2, l)):
n1, n2 = Ck.community(node1), Ck.community(node2)
if (n1 && n2): {#when both nodes exist}
Ck.mat(n1,n2,l).e += 1

elif (!n1 && !n2): {# when both nodes do not exist}
n = n1 if node1 < node2 else n2

n1, n2 = Ck.f .add(node1), Ck.f .add(node2)
n1.parent, n2.parent = n
Ck.mat(n,n,·).n, Ck.mat(n,n,l).e= 2, 1

else: {# when one of them exists}
n, ne = n1, n2 if !n1 else n2, n1

n = Ck.f .add(n), n.parent = n
Ck.mat(n,n,·).n, Ck.mat(n,n,l).e= 1, 0
Ck.mat(ne,n,l).e = 1

def mergeCommunity(Pn1 ,Pn2 ):
Px, Py = Pn1 , Pn2 if Ck.mat(Pn1 ,Pn1 ,l).n >

Ck.mat(Pn2 ,Pn2 ,l).n else Pn2 , Pn1

for each l in L:
Ck.mat(Px,Px,l).n += Ck.mat(Py ,Py ,l).n
Ck.mat(Px,Px,l).e += Ck.mat(Py ,Py ,l).e +

Ck.mat(Px,Py ,l).e
Ck.mat.remove(Py), Py .parent = Px

Ck.mat.replaceRef(Py)← Px

a social message s and is present in all the layers.207

Two nodes in a layer can either be connected based208

on common entities, words or mentions. This Ht209

is passed to mCOMM in order to get the number210

of communities used later. Further, we generated211

a projection graph where nodes are connected if212

they have connections in any of the layers in Ht.213

We represent this as Gl
t(Vt, E

l
t) and use it for our214

method described next. A visual representation of 215

the methodology is shown in Figure 2. 216

A simplified definition (Liu et al., 2019) of en- 217

tropy (♢) for a given graph Gl
t with partitions 218

{c1, . . . , cj} is 219

♢ =
∑
ci

intrai

2|El
t|
log2

intrai + interi

2|El
t|

(2) 220

Here intrai and interi refers to the edges with 221

both the endpoints and either endpoint in partition 222

ci respectively. Minimizing entropy helps in identi- 223

fying homogeneous groups in a graph. 224

The definition of entropy mandates partition in- 225

formation. So our first objective is to design an 226

encoder that finds a partition assignment matrix for 227

Gl
t with node features X as, 228

Eδ(Gl
t,X ) → {P1, P2, P3, ..., Pk} ∈ CG (3) 229

Given that input matrix contains k partitions the 230

assignment matrix is of |Vt| ∗ k dimension where 231

(CG)ij = 1 when node i belongs to partition Pj . 232

Each row of the matrix is a one-hot encoded vec- 233

tor, and we consider disjoint node partitioning. In 234

our solution we use a GCN encoder (Kipf and 235

Welling, 2016) with residual skip connections and 236

SeLU nonlinearity denoted by SU (Eq. 4). θ∗ are 237

learnable weight matrices, D is diagonal degree 238

matrix and M is the undirected adjacency matrix. 239

F = SU (M̄F ℓ−1
1 θ1 + F ℓ−1

1 θ2),

F 0
1 = X , M̄ = D

−1
2 MD

−1
2 + Ṁ

(4) 240

We add the normalized adjacency matrix M̄ with 241

a learnable adjacency matrix Ṁ and use it as in- 242

put for the GCN. This addresses the randomness 243

present in real word graphs (Jin et al., 2020) thus 244

helping in event separation. Now with node fea- 245

tures F , θ3 as a learnable matrix, cluster assign- 246

ment matrix from mCOMM (CmCOMM
G ), and Sσ as 247

softmax, we construct cluster assignment matrix 248

CG as 249

CG = Sσ(F .θ3 + CmCOMM
G ) (5) 250

Finally, after getting CG , we can write the entropy 251

as a loss function (using the earlier definition) with 252

T representing matrix trace and ⊙ as Hadamard 253

product as 254

L♢ = T
(

CTG M̄CG∑|Vt|
i=1

∑|Vt|
j=1 M̄ij

⊙ log2

( 1k∗|Vt|M̄CG∑|Vt|
i=1

∑|Vt|
j=1 M̄ij

))
(6)

255
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We use L♢ instead of ♢ to represent entropy loss.256

To further increase the feature similarity within the257

same event group and separability among event258

groups, we use the DBI index (Davies and Bouldin,259

1979) defined as260

LI =
1

k

∑
i<k

Maxi ̸=j(
ξi + ξj
ζij

) (7)261

ξi is the mean distance between the feature vector262

of each member in partition Pi from the mean fea-263

ture vector of all the nodes in the partition (F̄i) and264

ζij is the difference between the mean embeddings265

of cluster Pi and Pj .266

F̄i =

∑
CGpi=1Fp

|Pi|
, ξi = (

1

|Pi|
∑

CGpi=1

|Fp −Fi|2)
1
2

ζij = (|F̄i − F̄j |2)
1
2

(8)

267

For the robustness of the generated features, we268

use F to predict the adjacency matrix of the input269

graph Gl
t and include this in our final entropy loss270

as271

L♢(Gl
t,F , CG ,M, M̄)

= L♢ + LI + ||Se(F .FT )−M ||2F
(9)272

Here Se represents sigmoid activation. Now, that273

we have defined the loss function for minimizing274

the entropy, let us design a loss function for maxi-275

mizing modularity. Modularity maximization im-276

proves clustering by optimizing the division of a277

network into communities that have dense internal278

connections and sparse external ones. We know279

that modularity optimization is an NP-hard prob-280

lem (Brandes et al., 2008), and it is non-trivial to281

incorporate it as an optimization objective for our282

model. We have used the spectral definition of283

(Newman, 2006a) where the definition of modu-284

larity loss can be converted to a series of matrix285

operations as286

LQ =
1

2|El
t|
T (CT

G BCG) (10)287

where B = M − DDT

2|El
t|

represents the modularity288

matrix; D is the degree vector that contains the289

degree of every node identified by its index. As290

modularity also requires partition information we291

use the partition assignment matrix from Eq. 5.292

Thus,293

T (CT
G BCG) ≈ T (CT

GMCG − CT
GDDTCG) (11)294

A trivial solution to the problem is to assign all 295

nodes in a single cluster and must be avoided. 296

There are methods (Bansal et al., 2018) that use 297

an orthogonality regularizer, however, these are 298

seen to dominate the modularity objective func- 299

tion which is again not desirable (Tsitsulin et al., 300

2024). We use the collapse regularizer from (Tsit- 301

sulin et al., 2024) to avoid the trivial solution as 302

LQ(CG ,M) = −LQ +

√
k

|Vk|
∥
∑
i

(CG)Ti ∥ (12) 303

Here, the regularizer adds a penalty of
√
k if 304

all nodes are assigned to a single cluster. Now 305

that we have defined the modularity and entropy 306

loss separately, we combine both of these objective 307

functions together as 308

L = β1L♢ + β2LQ (13) 309

Here all the learnable parameters θ∗ ∈ θ. We train 310

the encoder Eθ and update all model parameters 311

based on L. The final events SE t are extracted from 312

trained Eθ. Note that variable k used in different 313

equations of the loss function is an hyperparameter 314

and is extracted along with matrix CmCOMM
G from 315

onQuery() function in proposed mCOMM. 316

4 Experiments and Results 317

Data Sets: Our experiments leverage two pub- 318

licly available large-scale datasets Event2012 (En- 319

glish) and Event2018 (French) (Peng et al., 2023), 320

designed to evaluate streaming social event detec- 321

tion. Event2012 comprises 68, 841 manually la- 322

beled tweets spanning 503 event classes over 29 323

days. Event2018 with 64, 516 labeled tweets across 324

257 event classes, covering 23 days, is used for 325

cross-lingual experiments. Three relations com- 326

mon entities, common words, and user mentions 327

are used as the schema for constructing a heteroge- 328

neous multilayer graph. The evolving social mes- 329

sages are split into blocks by date, according to the 330

paper (Peng et al., 2023). We evaluate our model us- 331

ing a set of metrics, including ARI (Adjusted Rand 332

Index), Normalized Mutual Information (NMI), 333

and Adjusted Mutual Information (AMI). 334

Baselines: We evaluate our model with various 335

other models specifically used for message repre- 336

sentation learning, and similarity measuring. The 337

baselines for comparison are BERT (Devlin et al., 338

2019), BiLSTM (Graves and Schmidhuber, 2005), 339

EventX (Liu et al., 2020), KPGNN (Cao et al., 340
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Table 1: Event Detection performance for various methods in terms of ARI across different blocks.

Block BERT BiLSTM EventX KPGNN KPGNNt FinEventk CLKD HISEvent HyperSED DEMO
Event 2012

B1 0.03± .00 0.15± .00 0.02± .00 0.02± .01 0.03± .02 0.05± .02 0.04± .00 0.10± .00 0.25± .01 0.43± .03
B2 0.24± .00 0.02± .00 0.00± .01 0.60± .02 0.65± .03 0.68± .01 0.69± .01 0.69± .00 0.08± .02 0.81± .03
B3 0.11± .00 0.08± .00 0.42± .00 0.44± .03 0.50± .01 0.52± .00 0.56± .02 0.88± .00 0.07± .02 0.69± .02
B4 0.02± .00 0.01± .00 0.04± .00 0.22± .02 0.24± .02 0.27± .01 0.22± .01 0.45± .00 0.16± .01 0.40± .04
B5 0.02± .00 0.06± .00 0.03± .00 0.32± .01 0.36± .02 0.49± .00 0.32± .03 0.73± .00 0.11± .02 0.57± .02
B6 0.02± .00 0.02± .00 0.09± .00 0.46± .01 0.61± .04 0.51± .01 0.62± .01 0.60± .00 0.26± .03 0.74± .02
B7 −0.02± .00 0.14± .00 0.10± .01 0.06± .01 0.06± .02 0.08± .01 0.07± .01 0.28± .00 0.18± .02 0.59± .02
B8 0.09± .00 0.02± .00 0.00± .00 0.46± .04 0.50± .01 0.56± .02 0.46± .01 0.40± .00 0.14± .03 0.68± .03
B9 0.01± .00 0.18± .00 0.09± .01 0.28± .02 0.30± .03 0.39± .01 0.59± .01 0.70± .00 0.16± .02 0.73± .05
B10 0.04± .00 0.01± .00 0.06± .00 0.57± .02 0.50± .01 0.56± .00 0.52± .02 0.67± .00 0.21± .02 0.83± .01
B11 −0.02± .00 0.04± .00 0.07± .00 0.43± .01 0.37± .02 0.34± .01 0.36± .01 0.60± .00 0.28± .02 0.84± .02
B12 0.10± .00 0.03± .00 0.04± .00 0.26± .01 0.32± .03 0.38± .01 0.34± .01 0.80± .00 0.03± .02 0.57± .02
B13 0.01± .00 0.04± .00 0.03± .00 0.30± .02 0.22± .02 0.17± .00 0.33± .00 0.52± .00 0.30± .01 0.75± .02
B14 0.08± .00 0.02± .00 0.01± .00 0.22± .02 0.21± .01 0.35± .01 0.22± .01 0.75± .00 0.07± .03 0.64± .02
B15 0.01± .00 0.03± .00 0.03± .00 0.10± .01 0.07± .03 0.16± .01 0.41± .02 0.19± .00 0.31± .02 0.64± .03
B16 0.00± .00 0.03± .00 0.01± .00 0.44± .01 0.45± .01 0.48± .00 0.57± .02 0.75± .00 0.22± .03 0.89± .02
B17 0.00± .00 0.03± .00 0.04± .01 0.31± .02 0.31± .02 0.32± .02 0.36± .02 0.61± .00 0.10± .02 0.78± .02
B18 0.01± .00 0.03± .00 0.02± .00 0.20± .03 0.22± .01 0.35± .01 0.38± .01 0.72± .00 0.07± .02 0.54± .02
B19 0.01± .00 0.02± .00 0.03± .00 0.26± .02 0.24± .01 0.48± .01 0.35± .02 0.62± .00 0.14± .02 0.79± .02
B20 0.02± .00 0.02± .00 0.03± .00 0.37± .02 0.34± .03 0.40± .00 0.34± .02 0.52± .00 0.25± .02 0.51± .01
B21 0.03± .00 0.03± .00 0.04± .00 0.11± .01 0.10± .02 0.22± .02 0.37± .01 0.33± .00 0.09± .03 0.38± .01

Event 2018
B1 0.01± 0.00 0.02± 0.01 0.01± 0.00 0.28± 0.02 0.28± 0.02 0.33± 0.01 0.29± 0.04 0.55± .00 0.02± 0.02 0.82± 0.00
B2 0.04± 0.00 0.03± 0.00 0.00± 0.00 0.31± 0.01 0.30± 0.03 0.34± 0.04 0.33± 0.03 0.61± .00 0.04± 0.01 0.74± 0.04
B3 0.02± 0.00 0.01± 0.01 0.01± 0.01 0.35± 0.01 0.34± 0.01 0.37± 0.01 0.49± 0.02 0.49± .00 0.04± 0.03 0.79± 0.02
B4 0.03± 0.00 0.01± 0.01 0.01± 0.00 0.29± 0.02 0.43± 0.02 0.23± 0.02 0.29± 0.03 0.47± .00 0.06± 0.01 0.69± 0.01
B5 0.08± 0.00 0.02± 0.00 0.01± 0.01 0.37± 0.02 0.30± 0.01 0.34± 0.01 0.38± 0.01 0.51± .00 0.04± 0.02 0.58± 0.04
B6 0.03± 0.00 0.02± 0.01 0.03± 0.00 0.17± 0.02 0.20± 0.03 0.18± 0.00 0.40± 0.03 0.61± .00 0.04± 0.03 0.80± 0.04
B7 0.05± 0.00 0.08± 0.01 0.01± 0.01 0.29± 0.02 0.22± 0.03 0.23± 0.01 0.35± 0.01 0.62± .00 0.00± 0.00 0.81± 0.03
B8 0.05± 0.00 0.10± 0.00 0.01± 0.01 0.22± 0.02 0.22± 0.01 0.32± 0.03 0.38± 0.03 0.79± .00 0.04± 0.01 0.58± 0.02
B9 0.03± 0.00 0.03± 0.00 0.02± 0.01 0.22± 0.02 0.12± 0.04 0.18± 0.01 0.27± 0.02 0.43± .00 0.08± 0.02 0.61± 0.00
B10 0.07± 0.00 0.01± 0.01 0.01± 0.00 0.18± 0.01 0.19± 0.01 0.27± 0.01 0.40± 0.04 0.53± .00 0.07± 0.01 0.55± 0.01
B11 0.06± 0.00 0.06± 0.00 0.02± 0.01 0.16± 0.02 0.23± 0.02 0.18± 0.03 0.25± 0.01 0.56± .00 0.07± 0.03 0.61± 0.03
B12 0.08± 0.00 0.02± 0.00 0.01± 0.01 0.26± 0.03 0.23± 0.04 0.28± 0.02 0.57± 0.02 0.77± .00 0.01± 0.02 0.71± 0.02
B13 0.02± 0.00 0.05± 0.00 0.02± 0.00 0.17± 0.01 0.22± 0.01 0.20± 0.03 0.37± 0.03 0.74± .00 0.03± 0.01 0.75± 0.01
B14 0.02± 0.00 0.01± 0.00 0.01± 0.00 0.16± 0.02 0.33± 0.02 0.31± 0.04 0.54± 0.02 0.78± .00 0.03± 0.02 0.79± 0.02
B15 0.01± 0.00 0.02± 0.01 0.03± 0.00 0.24± 0.04 0.28± 0.03 0.36± 0.02 0.54± 0.03 0.69± .00 0.02± 0.03 0.74± 0.00

2021), FinEvent (Peng et al., 2023), and CLKD341

(Ren et al., 2024). For more details on the dataset,342

metrics, and reproducibility of the baselines and343

our model we request the reader to refer to the344

Appendix.345

Results: We show the results of our experiments346

in Tables 1, 3 and 4 for the metrics ARI, NMI and347

AMI respectively (Tables 3 and 4 are present in348

the Appendix). The standard deviations are re-349

ported after running each model 5 times. It is350

evident from the tables that our method outper-351

forms other models in 14 out of 21 blocks for the352

Event2012 dataset and in 13 out of 15 blocks for the353

Event2018 dataset. We have an average improve-354

ment of 15.48% when compared to the second-best355

results for Event2012. We see an average improve-356

ment of 18% when compared to the second-best357

results for the Event2018 dataset. For NMI, we358

see an improvement in 8 blocks for the Event2012359

dataset with a mean increase of 6% in these blocks.360

For the Event2018 dataset we are 14% behind the361

highest result on average. Now, moving to AMI,362

we see an improvement in 6 blocks with an average363

increase of 7% for the Event2012 dataset. For the364

Event2018 dataset we are 16% behind on average365

from the highest result.366

Insights: We are underperforming in NMI due 367

to the presence of inherent class imbalance in the 368

datasets, especially in the Event2018 dataset. In 369

the case of class imbalance, supervised models and 370

models minimizing higher order entropy (like HI- 371

SEvent) are shown to perform better (Das et al., 372

2022; Cao et al., 2024). It must be noted that we 373

have incorporated a simpler 1-D entropy for our 374

loss function, whereas HISEvent uses 2-D entropy, 375

which is better at capturing higher-order structures, 376

thus enhancing cluster separation. In spite of a sim- 377

pler version of entropy, we have outperformed HI- 378

SEvent in many Blocks for various metrics across 379

the datasets. On further inspection, we found that 380

we obtain a lower AMI and NMI as our method 381

cannot always match the ground truth clusters with 382

the actual number of clusters, and AMI is sensitive 383

to the number of clusters. The number of clusters is 384

provided by mCOMM in our method, which does 385

not take higher-order entropy into account. As we 386

have already mentioned, higher order entropy is al- 387

ready a better representative of the clusters, which 388

is empirically found to be true, especially in the 389

case of the Event2018 dataset, thus explaining the 390

better results of HISEvent. 391
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(a) NMI (b) AMI (c) ARI

(d) NMI (e) AMI (f) ARI

Figure 3: The above figures indicate the change in NMI, AMI and ARI for a change in entropy and modularity in
the loss. Rows 1 and 2 are for Blocks B2 and B4 respectively.

Figure 4: mCOMM with different parameter values of
merge threshold (α)

4.1 Ablation Study392

Modularity vs Entropy: We vary and adjust the393

weights assigned to modularity and entropy in the394

loss function, observing the resulting impact on395

ARI. This is done by changing the parameters β1396

and β2 of Eq. 13. By analyzing the interplay be-397

tween modularity, we aim to understand their in-398

dividual and combined effects on the model’s per-399

formance. The results for two random blocks of400

Event2012 are shown in Figure 3. We can deter-401

mine that row 1 benefits from a high modularity402

with low entropy whereas the row 2 benefits from403

high entropy even in scenarios where the modu-404

larity is comparatively lower. This shows the ad- 405

vantages of both entropy and modularity in certain 406

conditions. 407

Analysis of mCOMM with varying α: We 408

conduct an analysis by varying the parameter α 409

and evaluating its impact on the performance of 410

mCOMM for event detection using the Event2012 411

dataset across all blocks, as illustrated in Figure 4. 412

From the figure, it is evident that a lower value of 413

α leads to improved performance across all evalu- 414

ation metrics. However, as α increases, a gradual 415

decline in performance is observed. This suggests 416

that lower values of α contribute to a more effective 417

identification of events, whereas higher values may 418

reduce the discriminative capability of the model. 419

We have provided a more detailed explanation of 420

the parameter α in the Appendix H.4. 421

Importance of mCOMM: What if mCOMM is 422

directly used for event detection? What if we use 423

any other clustering algorithm? In this experiment, 424

we compare the results of mCOMM with DBSCAN 425

and with the proposed model DEMO. We use DB- 426

SCAN for comparison with mCOMM, as both of 427
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Figure 5: Comparison of DEMO with mCOMM and
DBSCAN with X Features

them do not require the number of clusters to be428

known beforehand. Figure 5 shows the obtained429

result across the blocks for Event2012 data. It is430

evident that mCOMM without the use of features431

can produce better results than DBSCAN. It shows432

the effectiveness of using mCOMM with HMG.433

This motivated us to use the proposed mCOMM434

for adding cluster information to DEMO, which435

obtained the best results here. When we use DB-436

SCAN with DEMO, we obtain lower results as the437

clusters identified by DBSCAN are not up to the438

mark (as Figure 5 already highlights).439

4.2 Time Analysis440

mCOMM processes each edge only once, i.e., time441

complexity is linear to the size of the stream, where442

density calculation and checking merging condition443

take O(|L|) time. Thus, the overall time complex-444

ity of onReceive(e) function is O(|E|×|L|), where445

E and L are the edge set and layers in the whole446

stream, respectively. Complexity of onQuery()447

function is constant O(1), which returns the pointer448

to all communities. The time complexity for creat-449

ing each block H is of the order O(|E|).450

The time complexity of GNN for each block H451

is O(K(d|E|+ d2|V |)) where K is the number of452

layers in the GNN, d is the feature dimension (we453

consider the input and output dimension to be the454

same for convenience), |V | is the number of nodes455

in a block and |E| is the number of edges.456

5 Related Work 457

Social event detection methods can be broadly 458

classified into three areas of work, namely term- 459

commonness, topic modelling and online event 460

detection-based approaches. In term-commonness, 461

the top-most occurring words are detected within 462

a time frame. Some notable works using com- 463

monness are (Li et al., 2012; Marcus et al., 2011). 464

Topic modelling-based approaches for event detec- 465

tion operate by assigning each tweet a probabilistic 466

distribution over multiple latent topics. Some rele- 467

vant works are (Xie et al., 2013; Zhou et al., 2015; 468

You et al., 2013). These approaches are primarily 469

designed to work in an offline setting and struggle 470

with event detection in real-time Twitter data due 471

to the need to predefine the number of clusters. 472

GNNs have been used in the context of event 473

detection quite frequently (Cao et al., 2021; Peng 474

et al., 2023; Ren et al., 2024), but these methods 475

require supervision. Entropy (Kenley and Cho, 476

2011) and modularity (Weng and Lee, 2021) are 477

commonly used metrics for graph clustering (Weng 478

and Lee, 2021), each offering unique advantages 479

in capturing the structure and organization of com- 480

plex networks. However, these methods have not 481

addressed unsupervised event detection. Here, we 482

propose a novel unsupervised method that com- 483

bines modularity and entropy for event detection, 484

harnessing the strengths of both metrics. For a 485

detailed related work, kindly refer to Appendix B. 486

6 Conclusion 487

We have introduced DEMO, a novel heterogeneous 488

multilayer density-infused entropy-modularity op- 489

timization event detection model, designed to ef- 490

fectively identify events while handling noise from 491

heterogeneous attributes. From this study, it is evi- 492

dent that the trade-off between minimizing entropy 493

and maximizing modularity helps our model dis- 494

tinguish between different event groups’ features 495

more effectively. Additionally, we also propose 496

a streaming community detection algorithm for 497

HMG (mCOMM), capable of processing millions 498

of messages efficiently and providing the commu- 499

nity participation information using density calcula- 500

tion. One can note that our study not only provides 501

a solution for event detection but also has broader 502

implications for various NLP applications. For 503

example, the use of the proposed DEMO is not lim- 504

ited to event detection only. One may use wherever 505

better clusters among different classes are required. 506
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7 Limitations507

We have mentioned the advantages of the proposed508

method in the previous sections. Here we acknowl-509

edge and discuss some of its limitations.510

mCOMM: In the current form of the algorithm,511

we have given equal weightage to edges in each512

layer for deciding communities. We did not achieve513

significant improvements with different weight val-514

ues for each layer, though we have not exhaustively515

searched every possible weight configuration. We516

acknowledge that this does not take into account the517

variable contributions of each type of relation, and518

whether each edge should be given equal weightage.519

In the future, we would like to improve upon this by520

figuring out a way to use learnable (or dynamically521

updatable) weights for each type of relation.522

DEMO: We have already shown how we have523

improved upon existing works with our proposed524

model. There are some cases where our model does525

not perform better than the existing unsupervised526

method, HISEvent. We hypothesize that this is pri-527

marily due to the lack of a higher-order entropy in528

our 1-D entropy-based optimization function. This529

affects our performance, especially in metrics NMI530

and AMI, as already discussed in our results sec-531

tion. In our future works, we would like to improve532

upon this by incorporating a higher-order entropy533

in our model that captures hierarchical relation-534

ships, resulting in better cluster separation.535
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A Implementation Details873

A.1 Initial Feature Generation874

We extract word embeddings for each word of a875

tweet after removal of all rare and common words876

from the tweet using a pre-trained word embed-877

ding model (Mikolov et al., 2013). In addition,878

each tweet contains time stamp information, which879

we encode into a vector representation (Cao et al.,880

2021). The encoded vector representation of the881

timestamp is concatenated with the textual repre-882

sentation of the tweet to get the final feature X of883

a tweet.884

A.2 Reproducibility885

In this Section, we provide the detailed configura-886

tion for the proposed method and all the baselines887

used in the experiments. We use identical features888

(including timestamp encoding) for all methods.889

Also, we use the same hyperparameters across the890

models for comparison. In case a hyperparameter891

is unique to a model, we use the default settings for 892

that model. 893

BERT: The results for BERT are obtained after 894

clustering the BERT encodings of the tweets with 895

DBSCAN clustering method. We use the respective 896

language encoders for each data set (English for 897

Event2012 and French for Event2018). 898

BiLSTM: BiLSTM model is trained using 899

Triplet Loss with learning rate of 0.001, batch 900

size of 1000, dropout of 0.8, output dimension of 901

64, one LSTM bidirectional layer, 20 epochs and 902

KMeans with the actual number of clusters. We 903

use KMeans here as it gives better results. 904

EventX: We train this with a minimum number 905

of co-occurrences threshold set to 2, conditional 906

probability threshold for occurrence of words set to 907

0.15 and the minimum number of node threshold 908

to stop graph splitting set to 3 as suggested in (Cao 909

et al., 2021) and (Liu et al., 2020). 910

Table 2: Notation Table

Notations Meaning
s A social message
Bt A homogeneous message block
SS Social Stream
ci Event Class
SE t Set of event classes in a block t
Ht Heterogeneous Multilayered Block
ρin Inner Density
ρout Outer Density
α Merge Threshold
Ck Community Sketch
Gl
t Homogeneous projection of Ht

X Initial Features
fθ Function for social event detection
♢ Entropy
Q Modularity
SU Activation Fn SeLU

F , F l
1 Final node features from GCN, features in intermediate layers

Se Activation Fn Sigmoid
Sσ Softmax

M , Ṁ , M̄ Raw, learnable and normalized Adjacency Matrix
T Matrix Trace
CG Partition assignment matrix
Eδ Encoder with parameter δ
B Modularity Matrix
β1 Weight to control entropy loss
β2 Weight to control modularity loss
k Number of partitions

13



KPGNN: We use a window size of 3, batch size911

of 2000, learning rate of 0.001, latest message strat-912

egy, output dimension of 32, GAT model with 4913

attention heads and residual connections. The num-914

ber of epochs are 15. All these parameters are915

the default parameters used in the KPGNN im-916

plementation mentioned in the paper (Cao et al.,917

2021). We use KMeans with the actual number918

of clusters as this produces best results and is the919

default choice for the default KPGNN implementa-920

tion. The KPGNNt uses the global-local pair loss921

mentioned in the paper (Cao et al., 2021). The rest922

of the parameters are the same as KPGNN.923

FinEvent: We use a window size of 3, batch924

size of 100, learning rate of 0.001, GAT model925

with 4 attention heads and residual connections926

and output dimension of 64. The step size of RL-0927

for state1 and state3 are 0.02. The initial value of928

epsilon for state2 is set as 0.001 with a step size929

of 0.02. All the parameters are taken from the930

authors implementation with the paper (Peng et al.,931

2023). In the case of Event2018 dataset we use the932

FinEventg setting reported in the paper.933

CLKD: We train for 15 epochs using a window934

size of 3, batch size of 2000, learning rate of 0.001,935

latest message strategy, output dimension of 32,936

GAT model with 4 attention heads and residual937

connections. For the Event2012 dataset we use938

mode 1 as the teacher and student are the same939

language. For Event2018 we report the results on940

the mode 2 with linear cross-lingual knowledge941

distillation with English as the teacher model and942

French as the student model.943

DEMO: In case of our model, we use GCN en-944

coder with one hidden layer with a dimension of945

1024, number of epochs to 200, learning rate to946

0.001, α = 0.5 and β = 0.5. We initialize all the947

learnable parameters θ and weights Ṁ for the adja-948

cency matrix from a standard normal distribution.949

We set β1 = β2 = 1. In the case of DEMO, we use950

the weights of the k-1th block GNN for initializing951

the weights of the kth layer GNN.952

HISEvent: We use the minimum group n = 10953

for smaller initial clusters that have possibility to954

merge into bigger clusters. The choice of n does not955

affect the performance of HISEvent significantly956

as shown in the paper but taking a lower value of n957

avoids the deadlock situation as suggested by (Yu958

et al., 2024).959

HyperSED: We use the default settings of Hy- 960

perSED as provided in the repository of the paper. 961

A.3 Metrics 962

In clustering tasks, evaluating the quality of the 963

resulting partitions is crucial for comparing models 964

and ensuring reliable results. Three widely used 965

metrics for this purpose are Normalized Mutual 966

Information (NMI) (Estevez et al., 2009), Adjusted 967

Mutual Information (AMI) (Vinh et al., 2010), and 968

Adjusted Rand Index (ARI) (Vinh et al., 2010). 969

NMI measures the amount of information shared 970

between the predicted and true clusters, normal- 971

ized to ensure values between 0 and 1, where 1 972

indicates perfect clustering. AMI improves upon 973

NMI by adjusting for chance, penalizing random 974

assignments, and ensuring that the metric remains 975

unbiased regardless of the number of clusters. ARI, 976

on the other hand, assesses the similarity between 977

predicted and ground-truth labels by computing 978

the ratio of correctly paired samples, adjusting for 979

chance to mitigate the impact of random cluster as- 980

signments. Together, these metrics provide a robust 981

framework for evaluating clustering performance, 982

capturing different aspects of cluster alignment and 983

ensuring a comprehensive assessment of model 984

effectiveness. In this work we use all the three met- 985

rics for a rigorous analysis as suggested by some 986

earlier works (Cao et al., 2021; Peng et al., 2023; 987

Ren et al., 2024), ensuring that clustering quality 988

is assessed from multiple perspectives, reinforcing 989

the robustness and credibility of the results. 990

B Related Work 991

Social event detection can be broadly classified 992

in three areas of work namely term commonness, 993

topic modeling and online event detection based 994

approaches. In term commonness the top most 995

occurring words are detected within a time frame, 996

clusters of messages containing such words are de- 997

tected and the clusters are ranked. Some notable 998

works following this approach are (Marcus et al., 999

2011; Li et al., 2012; Gaglio et al., 2016; Math- 1000

ioudakis and Koudas, 2010; Alvanaki et al., 2011; 1001

Cataldi et al., 2010; Parikh and Karlapalem, 2013; 1002

Weng and Lee, 2021; Zhang et al., 2015; Stilo and 1003

Velardi, 2016; Gupta and Kundu, 2023). Topic 1004

modeling-based approaches for event detection op- 1005

erate by assigning each tweet a probabilistic dis- 1006

tribution over multiple latent topics, enabling the 1007

extraction of hidden semantic structures from large 1008
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Table 3: Event detection performance for various methods in terms of NMI across different blocks.

Block BERT BiLSTM EventX KPGNN KPGNNt FinEventk CLKD HISEvent HyperSED DEMO
Event 2012

B1 0.34± .00 0.27± .00 0.62± .00 0.24± .01 0.25± .00 0.40± .00 0.28± .04 0.40± 0.00 0.30± 0.01 0.47± .01
B2 0.28± .00 0.40± .00 0.22± .00 0.67± .02 0.70± .01 0.80± .00 0.69± .01 0.78± 0.00 0.43± 0.02 0.83± .02
B3 0.44± .00 0.32± .00 0.63± .00 0.62± .01 0.66± .01 0.80± .00 0.76± .00 0.86± 0.00 0.42± 0.04 0.81± .02
B4 0.31± .00 0.36± .00 0.59± .00 0.58± .01 0.57± .00 0.68± .01 0.57± .02 0.77± 0.00 0.51± 0.00 0.74± .02
B5 0.33± .00 0.28± .00 0.58± .00 0.57± .01 0.60± .00 0.73± .01 0.58± .01 0.81± 0.00 0.47± 0.03 0.74± .02
B6 0.36± .00 0.23± .00 0.58± .00 0.72± .00 0.76± .00 0.81± .00 0.86± .00 0.74± 0.00 0.71± 0.05 0.83± .03
B7 0.39± .00 0.30± .00 0.66± .00 0.40± .00 0.41± .02 0.52± .02 0.38± .02 0.59± 0.00 0.41± 0.01 0.50± .04
B8 0.27± .00 0.23± .00 0.42± .00 0.70± .01 0.71± .00 0.82± .01 0.69± .00 0.64± 0.00 0.68± 0.02 0.85± .01
B9 0.36± .00 0.30± .00 0.67± .00 0.60± .02 0.61± .01 0.73± .00 0.78± .01 0.79± 0.00 0.62± 0.00 0.82± .01
B10 0.36± .00 0.30± .00 0.63± .00 0.71± .00 0.71± .00 0.81± .00 0.70± .01 0.76± 0.00 0.65± 0.03 0.86± .00
B11 0.36± .00 0.24± .00 0.62± .00 0.62± .01 0.61± .01 0.69± .02 0.60± .02 0.78± 0.00 0.60± 0.05 0.81± .01
B12 0.35± .00 0.22± .00 0.58± .00 0.49± .01 0.51± .00 0.67± .00 0.63± .00 0.84± 0.00 0.31± 0.04 0.72± .02
B13 0.26± .00 0.28± .00 0.59± .00 0.62± .00 0.59± .00 0.67± .00 0.63± .00 0.77± 0.00 0.53± 0.02 0.75± .00
B14 0.34± .00 0.33± .00 0.49± .00 0.48± .01 0.48± .00 0.70± .01 0.47± .02 0.80± 0.00 0.35± 0.01 0.72± .02
B15 0.28± .00 0.20± .00 0.54± .00 0.40± .01 0.39± .01 0.59± .02 0.64± .00 0.66± 0.00 0.50± 0.03 0.63± .02
B16 0.26± .00 0.28± .00 0.46± .00 0.68± .01 0.67± .01 0.75± .01 0.73± .03 0.76± 0.00 0.64± 0.04 0.91± .01
B17 0.34± .00 0.28± .00 0.55± .00 0.54± .01 0.54± .01 0.70± .00 0.56± .00 0.80± 0.00 0.37± 0.00 0.79± .01
B18 0.32± .00 0.28± .00 0.51± .00 0.46± .00 0.46± .00 0.64± .02 0.64± .02 0.79± 0.00 0.40± 0.05 0.70± .00
B19 0.20± .00 0.27± .00 0.54± .00 0.54± .00 0.52± .01 0.74± .02 0.56± .02 0.83± 0.00 0.50± 0.02 0.87± .01
B20 0.32± .00 0.28± .00 0.57± .00 0.60± .01 0.62± .01 0.71± .01 0.61± .01 0.66± 0.00 0.71± 0.01 0.73± .02
B21 0.28± .00 0.27± .00 0.63± .00 0.38± .00 0.41± .01 0.61± .01 0.59± .02 0.59± 0.00 0.34± 0.03 0.57± .02

Event 2018
B1 0.16± 0.00 0.11± 0.01 0.34± 0.00 0.45± 0.02 0.42± 0.02 0.56± 0.01 0.56± 0.04 0.78± 0.00 0.11± 0.01 0.72± 0.00
B2 0.16± 0.00 0.09± 0.00 0.37± 0.00 0.49± 0.01 0.46± 0.03 0.57± 0.04 0.55± 0.03 0.77± 0.00 0.19± 0.04 0.69± 0.04
B3 0.19± 0.00 0.09± 0.01 0.37± 0.01 0.46± 0.01 0.45± 0.01 0.59± 0.01 0.64± 0.02 0.75± 0.00 0.19± 0.02 0.71± 0.02
B4 0.23± 0.00 0.12± 0.01 0.39± 0.00 0.42± 0.02 0.48± 0.02 0.48± 0.02 0.52± 0.03 0.72± 0.00 0.19± 0.03 0.65± 0.01
B5 0.29± 0.00 0.22± 0.00 0.53± 0.01 0.55± 0.02 0.50± 0.01 0.57± 0.01 0.61± 0.01 0.77± 0.00 0.25± 0.01 0.68± 0.04
B6 0.26± 0.00 0.17± 0.01 0.44± 0.00 0.35± 0.02 0.40± 0.03 0.51± 0.00 0.65± 0.03 0.81± 0.00 0.18± 0.02 0.73± 0.04
B7 0.21± 0.00 0.16± 0.01 0.41± 0.01 0.45± 0.02 0.37± 0.03 0.48± 0.01 0.66± 0.01 0.80± 0.00 0.18± 0.05 0.77± 0.03
B8 0.26± 0.00 0.20± 0.00 0.53± 0.01 0.39± 0.02 0.40± 0.01 0.54± 0.03 0.61± 0.03 0.86± 0.00 0.34± 0.01 0.72± 0.02
B9 0.26± 0.00 0.16± 0.00 0.45± 0.01 0.34± 0.02 0.27± 0.04 0.43± 0.01 0.54± 0.02 0.72± 0.00 0.29± 0.03 0.58± 0.00
B10 0.30± 0.00 0.25± 0.01 0.52± 0.00 0.39± 0.01 0.43± 0.01 0.60± 0.01 0.63± 0.04 0.80± 0.00 0.34± 0.02 0.67± 0.01
B11 0.28± 0.00 0.19± 0.00 0.48± 0.01 0.38± 0.02 0.38± 0.02 0.51± 0.03 0.59± 0.01 0.83± 0.00 0.29± 0.04 0.66± 0.03
B12 0.25± 0.00 0.22± 0.00 0.51± 0.01 0.41± 0.03 0.46± 0.04 0.52± 0.02 0.72± 0.02 0.85± 0.00 0.21± 0.01 0.72± 0.02
B13 0.17± 0.00 0.13± 0.00 0.44± 0.00 0.34± 0.01 0.37± 0.01 0.47± 0.03 0.64± 0.03 0.86± 0.00 0.19± 0.05 0.73± 0.02
B14 0.24± 0.00 0.16± 0.00 0.52± 0.00 0.40± 0.02 0.47± 0.02 0.53± 0.04 0.72± 0.02 0.88± 0.00 0.24± 0.03 0.80± 0.03
B15 0.26± 0.00 0.20± 0.01 0.49± 0.00 0.45± 0.04 0.44± 0.03 0.58± 0.02 0.75± 0.03 0.83± 0.00 0.22± 0.02 0.73± 0.00

tweet corpora. These methods leverage advanced1009

probabilistic models to infer latent topics, which1010

serve as the foundational framework for identify-1011

ing and characterizing events within the data. For1012

example TwiCal (Ritter et al., 2012) constructs an1013

open-domain calendar by extracting and catego-1014

rizing significant events from Twitter data using1015

Conditional Random Fields (Lafferty et al., 2001)1016

and latent variable models. Events are ranked by1017

entity-date association, though the method strug-1018

gles with unexpected or low-significance events.1019

Some other notable works in this area are (Xie et al.,1020

2013; Zhou et al., 2015; You et al., 2013; Xie et al.,1021

2014; Cai et al., 2015; Shepard, 2014; Madani et al.,1022

2015). The aforementioned approaches are primar-1023

ily designed to work in an offline setting and they1024

struggle with event detection in real-time Twitter1025

data due to the need to predefine the number of1026

clusters. This is challenging because the volume1027

and variety of topics are unpredictable. Incremen-1028

tal clustering strategies are used to dynamically1029

detect events without requiring a fixed number of1030

clusters. For example, TwitterNews+ (Hasan et al.,1031

2016) detects events by first identifying bursts of1032

similar tweets and then clustering them incremen- 1033

tally using tf-idf and cosine similarity. Some other 1034

works that focus on incremental event detection 1035

are (Osborne et al., 2014; Becker et al., 2021; Phu- 1036

vipadawat and Murata, 2010). 1037

GNNs have been used in the context of event 1038

detection quite frequently (Ren et al., 2022; Tong 1039

et al., 2023; Cao et al., 2021; Peng et al., 2023; Ren 1040

et al., 2024). Some of these works focus on the 1041

offline setting where the number of events and mes- 1042

sages are predefined. For example in the case of 1043

(Ren et al., 2022) they consider long tailed nature 1044

of event distribution by adding temporal informa- 1045

tion in the message passing of the GNN. Similarly, 1046

(Tong et al., 2023) uses a GAT (Veličković et al., 1047

2018) with contrastive learning. But (Tong et al., 1048

2023) does not consider the feature pivots between 1049

text messages thus misplacing messages into wrong 1050

and sometimes isolated clusters. To address online 1051

event clustering there are several supervised meth- 1052

ods such as (Cao et al., 2021; Peng et al., 2023; 1053

Ren et al., 2024). In (Cao et al., 2021) the authors 1054

construct time temporal message graphs based on 1055

common feature pivots such as common entities 1056
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Table 4: Event detection performance for various methods in terms of AMI across different blocks.

Block BERT BiLSTM EventX KPGNN KPGNNt FinEventk CLKD HISEvent HyperSED DEMO
EVENT 2012

B1 0.17± .00 0.16± .00 0.29± .00 0.22± .01 0.23± .00 0.39± .00 0.26± .00 0.39± .00 0.28± .02 0.45± 0.02
B2 0.22± .00 0.11± .00 0.06± .00 0.64± .02 0.68± .01 0.78± .00 0.67± .00 0.78± .00 0.38± .01 0.80± 0.02
B3 0.33± .00 0.10± .00 0.40± .00 0.59± .01 0.63± .01 0.78± .00 0.65± .00 0.85± .00 0.36± .03 0.79± 0.03
B4 0.15± .00 0.11± .00 0.26± .00 0.54± .01 0.52± .00 0.67± .00 0.53± .00 0.75± .00 0.45± .02 0.68± 0.03
B5 0.17± .00 0.09± .00 0.25± .01 0.55± .01 0.57± .00 0.73± .00 0.55± .00 0.80± .00 0.42± .01 0.70± 0.02
B6 0.23± .00 0.08± .00 0.30± .00 0.68± .00 0.72± .00 0.78± .00 0.75± .00 0.72± .00 0.65± .03 0.81± 0.01
B7 0.18± .00 0.15± .00 0.38± .00 0.36± .02 0.37± .02 0.52± .01 0.34± .00 0.57± .00 0.37± .02 0.48± 0.02
B8 0.18± .00 0.09± .00 0.14± .00 0.64± .01 0.65± .00 0.81± .00 0.64± .00 0.62± .00 0.61± .01 0.78± 0.03
B9 0.17± .00 0.18± .00 0.32± .01 0.55± .02 0.56± .01 0.69± .03 0.63± .00 0.77± .00 0.56± .03 0.78± 0.02
B10 0.20± .00 0.07± .00 0.31± .00 0.68± .00 0.67± .00 0.78± .00 0.66± .00 0.75± .00 0.60± .02 0.83± 0.03
B11 0.18± .00 0.10± .00 0.30± .00 0.57± .01 0.57± .01 0.65± .00 0.56± .00 0.77± .00 0.55± .01 0.78± 0.02
B12 0.22± .00 0.07± .00 0.27± .00 0.45± .01 0.47± .00 0.65± .00 0.48± .00 0.83± .00 0.26± .03 0.68± 0.04
B13 0.12± .00 0.12± .00 0.23± .00 0.58± .00 0.55± .00 0.64± .00 0.59± .00 0.75± .00 0.48± .01 0.72± 0.04
B14 0.19± .00 0.05± .00 0.21± .00 0.45± .01 0.44± .00 0.67± .00 0.44± .00 0.79± .00 0.31± .02 0.70± 0.02
B15 0.16± .00 0.08± .00 0.22± .00 0.35± .01 0.34± .01 0.57± .00 0.51± .00 0.63± .00 0.45± .03 0.58± 0.02
B16 0.15± .00 0.12± .00 0.17± .00 0.65± .01 0.63± .01 0.74± .00 0.70± .00 0.74± .00 0.60± .01 0.89± 0.02
B17 0.18± .00 0.12± .00 0.24± .00 0.51± .01 0.51± .01 0.68± .00 0.53± .00 0.80± .00 0.33± .02 0.76± 0.02
B18 0.20± .00 0.11± .00 0.23± .00 0.42± .00 0.42± .00 0.63± .00 0.52± .00 0.78± .00 0.35± .01 0.67± 0.03
B19 0.11± .00 0.12± .00 0.18± .00 0.50± .00 0.49± .01 0.77± .00 0.53± .00 0.82± .00 0.46± .03 0.82± 0.02
B20 0.19± .00 0.12± .00 0.22± .00 0.53± .01 0.56± .01 0.68± .00 0.55± .00 0.63± .00 0.66± .02 0.66± 0.02
B21 0.13± .00 0.12± .00 0.24± .00 0.35± .00 0.37± .01 0.61± .00 0.44± .00 0.57± .00 0.29± .01 0.53± 0.02

EVENT 2018
B1 0.11± 0.00 0.06± 0.01 0.10± 0.00 0.44± 0.02 0.41± 0.02 0.56± 0.01 0.55± 0.04 0.77± .00 0.09± .01 0.71± 0.00
B2 0.11± 0.00 0.03± 0.00 0.12± 0.00 0.48± 0.01 0.45± 0.03 0.56± 0.04 0.54± 0.03 0.77± .00 0.17± .02 0.68± 0.04
B3 0.13± 0.00 0.03± 0.01 0.11± 0.01 0.45± 0.01 0.44± 0.01 0.58± 0.01 0.62± 0.02 0.75± .00 0.17± .01 0.70± 0.02
B4 0.16± 0.00 0.05± 0.01 0.14± 0.00 0.41± 0.02 0.47± 0.02 0.47± 0.02 0.51± 0.03 0.71± .00 0.17± .03 0.64± 0.01
B5 0.18± 0.00 0.08± 0.00 0.24± 0.01 0.53± 0.02 0.48± 0.01 0.56± 0.01 0.59± 0.01 0.75± .00 0.21± .02 0.65± 0.04
B6 0.19± 0.00 0.09± 0.01 0.15± 0.00 0.34± 0.02 0.39± 0.03 0.49± 0.00 0.62± 0.03 0.80± .00 0.16± .01 0.72± 0.04
B7 0.14± 0.00 0.08± 0.01 0.12± 0.01 0.43± 0.02 0.36± 0.03 0.47± 0.01 0.65± 0.01 0.80± .00 0.15± .03 0.76± 0.03
B8 0.15± 0.00 0.06± 0.00 0.21± 0.01 0.37± 0.02 0.37± 0.01 0.52± 0.03 0.59± 0.03 0.85± .00 0.30± .02 0.68± 0.02
B9 0.18± 0.00 0.05± 0.00 0.16± 0.01 0.32± 0.02 0.25± 0.04 0.41± 0.01 0.47± 0.02 0.71± .00 0.26± .01 0.54± 0.00
B10 0.20± 0.00 0.08± 0.01 0.19± 0.00 0.35± 0.01 0.40± 0.01 0.58± 0.01 0.61± 0.04 0.79± .00 0.30± .03 0.65± 0.01
B11 0.18± 0.00 0.05± 0.00 0.18± 0.01 0.35± 0.02 0.36± 0.02 0.49± 0.03 0.57± 0.01 0.82± .00 0.25± .02 0.63± 0.03
B12 0.15± 0.00 0.09± 0.00 0.20± 0.01 0.39± 0.03 0.44± 0.04 0.50± 0.02 0.68± 0.02 0.84± .00 0.17± .01 0.71± 0.02
B13 0.10± 0.00 0.05± 0.00 0.15± 0.00 0.32± 0.01 0.35± 0.01 0.45± 0.03 0.63± 0.03 0.85± .00 0.16± .03 0.71± 0.02
B14 0.15± 0.00 0.04± 0.00 0.22± 0.00 0.38± 0.02 0.45± 0.02 0.51± 0.04 0.71± 0.02 0.87± .00 0.20± .02 0.78± 0.03
B15 0.15± 0.00 0.09± 0.01 0.22± 0.00 0.43± 0.04 0.42± 0.03 0.56± 0.02 0.72± 0.03 0.82± .00 0.18± .01 0.72± 0.00

and common words, aggregate the node features1057

using GAT and triplet loss followed by Kmeans or1058

DBSCAN clustering. This is followed by (Peng1059

et al., 2023) where the authors use GNN along with1060

RL for assigning weights to each type of edge be-1061

tween two messages. The node features are aggre-1062

gated similarly to KPGNN, and then an RL-based1063

DBSCAN algorithm, namely DRL-DBSCAN, is1064

used to cluster the node features. Also, FinEvent1065

shows the result of cross-lingual evaluation on the1066

French dataset. Prior to this work, most works1067

were focused on social messages in the English lan-1068

guage. Further works like (Ren et al., 2024) extend1069

KPGNN to work for multiple languages (termed1070

as low resource languages in the paper) other than1071

English. For the low resource languages in the pa-1072

per, the authors use a knowledge distillation (KD)1073

based approach (Ren et al., 2024). In the KD ap-1074

proach, a teacher model is trained for incremental1075

event detection on English tweets, and a student1076

model extracts knowledge from the teacher model1077

and applies it to the target low-resource language.1078

This process improves the clustering results for the1079

tweets in the target language.1080

Entropy (Kenley and Cho, 2011) and modularity 1081

(Weng and Lee, 2021) are commonly used met- 1082

rics for clustering graphs (Weng and Lee, 2021), 1083

each offering unique advantages in capturing the 1084

structure and organization of complex networks. 1085

Entropy measures the uncertainty or randomness 1086

within cluster assignments, promoting diverse and 1087

balanced clusters, while modularity evaluates the 1088

strength of division by comparing the density of 1089

edges within clusters to those between clusters, 1090

effectively highlighting community structures. Re- 1091

cently, GNN-based methods for graph clustering 1092

have gained attention. For example, the authors 1093

of (Wang et al., 2023) introduce an unsupervised 1094

approach that learns node representations by mod- 1095

eling graph perturbations and derives an intrinsic 1096

graph using entropy. Similarly, (Tsitsulin et al., 1097

2024) shifts focus from node pooling to modular- 1098

ity optimization for clustering. However, these 1099

methods have not addressed unsupervised event 1100

detection. In this paper, we propose a novel un- 1101

supervised method that combines modularity and 1102

entropy for incremental event detection, harnessing 1103

the strengths of both metrics. 1104
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Table 5: Practical runtime (in seconds) comparison of
DEMO with other unsupervised event detection models

Blocks # Tweets HISEvent HyperSED DEMO
mCOMM Mod+Ent Total

Event2012
B1 8722 19025 180 13 734 747
B2 1491 482 44 1 31 32
B3 1835 484 51 1 30 31
B4 2010 696 58 1 30 31
B5 1834 398 25 1 28 29
B6 1276 303 41 1 23 24
B7 5278 5142 166 6 211 217
B8 1560 447 50 1 26 27
B9 1363 402 37 1 25 26
B10 1096 268 35 1 23 24
B11 1232 381 37 1 22 23
B12 3237 1100 86 1 54 55
B13 1972 715 35 1 34 35
B14 2956 1060 77 1 48 49
B15 2549 607 66 1 35 36
B16 910 239 25 1 20 21
B17 2676 1298 38 1 44 45
B18 1887 1073 26 1 30 31
B19 1399 331 40 1 24 25
B20 893 218 31 1 21 22
B21 2410 1124 67 1 33 34

Event2018
B1 5356 5023 178 7 219 226
B2 3186 951 90 2 59 61
B3 2644 546 70 1 42 43
B4 3179 1552 82 3 66 69
B5 2662 499 66 1 42 43
B6 4200 1903 104 3 106 109
B7 3454 1353 83 2 77 79
B8 2257 340 57 1 34 35
B9 3669 1508 93 2 79 81
B10 2385 424 59 1 37 38
B11 2802 725 49 1 46 47
B12 2927 511 72 1 49 50
B13 4884 2604 127 4 165 169
B14 3065 778 74 1 55 56
B15 2411 500 58 1 39 40

C Comparing the runtime of proposed1105

DEMO with unsupervised methods1106

HISEvent and HyperSED1107

We compare the runtime of individual components1108

our proposed method with existing unsupervised1109

methods HISEvent and HyperSED as shown in1110

Table 5. It is clearly evident from the Table that we1111

are faster (in terms of combined performance) than1112

existing unsupervised methods in 16 of 21 blocks1113

for Event 2012 and 12 of 15 blocks for Event 2018.1114

D DEMO under noisy input1115

We check the robustness of our model by adding1116

noisy edges to the input graph and then running1117

DEMO. We add 20% noisy edges to each block1118

of the Event2012 dataset randomly and see how1119

DEMO performs in these scenarios. We show the1120

variance in the results of DEMO with noisy edges1121

in Figure 6. We set the value of α = 0.5 and the1122

value of β1 = β2 = 0.5. The results show that the1123

variance is very small, even with the addition of1124

noisy edges, thus showing our model’s robustness.1125

E Qualitative Study 1126

We show the qualitative results of DEMO showing 1127

the predicted communities by DEMO for HMG 1128

B20 of Event2012 dataset (in Figure 7b) and com- 1129

pare our results with ground truth communities (in 1130

Figure 7a). We can see that the number of ground 1131

truth communities is 34, and our model predicts 30 1132

communities, which are very comparable, as is also 1133

evident visually. One of the primary mistakes our 1134

model makes is in detecting the very small com- 1135

munities. It merges these small communities with 1136

bigger communities. 1137

F Extending DEMO to a streaming 1138

scenario 1139

The proposed algorithm mCOMM is a fully stream- 1140

ing algorithm which does not store the graph at any 1141

point in time. We have also shown that mCOMM 1142

provides comparable results in terms of various 1143

metrics for event detection. The remaining part 1144

of DEMO requires some form of the graph to be 1145

stored at any time instant. Given this, we can eas- 1146

ily convert DEMO to a streaming scenario if we 1147

construct message graphs hourly or per minute and 1148

then extract the latest events from these graphs. We 1149

can combine the current events with past events us- 1150

ing the merge operation of mCOMM as defined in 1151

Algorithm 1. Specifically, we assume that we have 1152

the graph and tweets of two time instances t and 1153

t− 1 saved in memory. We also consider that we 1154

have the inner and outer densities of communities 1155

available from CGt−1 . Now, given that DEMO finds 1156

CGt events for a HMG at time step t and we have 1157

CGt−1 events from time step t − 1 (as well as the 1158

graph and tweets from both the time steps), we can 1159

merge them using the merge operation of mCOMM. 1160

We start by creating inter edges (based on the same 1161

criteria as mentioned above) between the tweets in 1162

communities CGt−1 and communities CGt , we call 1163

these edges E1. We also include the inter com- 1164

munity edges already present in the communities 1165

of CGt (call them as E2) and the inter community 1166

edges already present in the communities of CGt−1 1167

(call them as E3). We combine all these edges and 1168

call them E. We create Ck by merging the commu- 1169

nities in CGt−1 and CGt . Also, based on the edgeset 1170

E we update the outer density of every community. 1171

Now, with this information available, the edgeset E 1172

is then streamed to mCOMM. The mCOMM algo- 1173

rithm creates a final set of communities by merging 1174

communities from CGt−1 and CGt . At time step 1, 1175

17



Figure 6: Change in variance of DEMO with the addition of noisy edges. Here each of the boxes represent the
variance in NMI, AMI or ARI.

(a) Ground Truth Events

(b) Predicted Events

Figure 7: Qualitative Study showing predicted communities by DEMO for HMG B20 compared with ground truth
communities.

the merging step is trivial. For time step 2, we1176

will have the inter and intra community densities of1177

communities that evolved in time step 1, and these1178

will be updated in time step 2 and so on. Thus, we1179

will not be required to keep data for more than two1180

consecutive time steps. In all these scenarios, we 1181

store a homogeneous graph for time steps t and 1182

t− 1. 1183
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G Scaling DEMO to large datasets1184

We have shown mCOMM to be very fast compared1185

to existing methods (Table 7), along with its scal-1186

ability to bigger graphs. Our learning pipeline in1187

DEMO can handle large-scale data efficiently by1188

leveraging parallel processing, which is already1189

popular in deep neural networks. Since DEMO pri-1190

marily does not mandate an incremental setting, we1191

can divide the original message graph into smaller1192

subgraphs, which can then be processed in parallel.1193

In real-world scenarios, such as real-time traffic1194

updates or event detection, social streams are of-1195

ten pre-processed by region or topic and filtered to1196

reduce noise. These filtered message graphs typ-1197

ically stay compact (e.g., covering only the past1198

hour’s activity) to support rapid decision-making1199

(Cao et al., 2024). DEMO’s architecture makes1200

it well-suited for real-time monitoring tasks like1201

crisis alerts, urban mobility tracking, or social sen-1202

timent analysis, offering value to first responders,1203

municipal agencies, and media analysts.1204

H Further details on mCOMM1205

H.1 Detailed Explanation of mCOMM1206

(Algorithm 1)1207

Algorithm 1 describes the process of community1208

detection for heterogeneous multilayer streaming1209

data. When an edge e(u, v, l) is received, the al-1210

gorithm first initializes a community sketch data1211

structure, which consists of a forest f and a sparse1212

triangular matrix mat, using the makeSketch() func-1213

tion. Next, the updateSketch() function is called1214

to check the membership of nodes u and v in ex-1215

isting communities. If both nodes belong to the1216

same community, the edge count within the com- 1217

munity is increased. If the nodes belong to different 1218

communities, the edge count between the commu- 1219

nities is updated. If only one of the nodes is part 1220

of an existing community, a new single-node com- 1221

munity is created, with the other node serving as 1222

its community representative. If neither node be- 1223

longs to any community, a new community with 1224

two nodes is formed, assigning the node with the 1225

lower value as the community representative and 1226

the other node as its child. The sparse triangu- 1227

lar matrix mat is updated with the information of 1228

the newly formed or modified community. The 1229

algorithm then calculates the outer and inner den- 1230

sities of the communities based on edge and node 1231

counts across different layers from mat. If the 1232

outer density is greater than the α (user-defined 1233

parameter) times sum of inner density of both com- 1234

munities, they are merged using the mergeCom- 1235

munity() function. Finally, the onQuery() function 1236

retrieves all communities observed in the stream 1237

till the query is made. Detailed description of 1238

functions namely community(·), makeSketch(·), 1239

updateSketch(·), and mergeCommunity(·) is pro- 1240

vided below: 1241

community(node): It returns a community rep- 1242

resentative of a community where node belongs. 1243

In other words, it returns the root node of a tree 1244

where a node lies. 1245

makeSketch(): It initializes a community sketch 1246

Ck with a forest f and a sparse matrix mat. 1247

updateSketch(e = (node1, node2, l)): The 1248

function updates the Community Sketch with a 1249

new edge e arrival. It checks if both nodes be- 1250

long to existing communities. If they belong to 1251

Edge α = 0.1, L = 3, w = [0.33, 0.33, 0.33] ρ

(1, 2, 0) C1 = {1, 2}
(2, 3, 0) C1 = {1, 2}, C3 = {3} merge(C1, C3)−−−−−−−→ C1 = {1, 2, 3} ρin(C1) = 0.11, ρin(C3) = 0.0, ρout(C1, C3) = 0.06

(3, 4, 0) C1 = {1, 2, 3}, C4 = {4} merge(C1, C4)−−−−−−−→ C1 = {1, 2, 3, 4} ρin(C1) = 0.07, ρin(C4) = 0.0, ρout(C1, C4) = 0.04

(4, 1, 0) C1 = {1, 2, 3, 4}
(5, 6, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6}
(6, 7, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6}, C7 = {7} merge(C5, C7)−−−−−−−→ C5 = {5, 6, 7} ρin(C5) = 0.11, ρin(C7) = 0.0, ρout(C5, C6) = 0.06

(7, 5, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7}
(4, 5, 0) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7}
(4, 5, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7} merge(C1, C5)−−−−−−−→ C1 = {1, 2, 3, 4, 5, 6, 7} ρin(C1) = 0.07, ρin(C5) = 0.11, ρout(C1, C5) = 0.02

(4, 5, 2) C1 = {1, 2, 3, 4, 5, 6, 7}
Edge α = 0.3, L = 3, w = [0.33, 0.33, 0.33] ρ

(1, 2, 0) C1 = {1, 2}
(2, 3, 0) C1 = {1, 2}, C3 = {3} merge(C1, C3)−−−−−−−→ C1 = {1, 2, 3} ρin(C1) = 0.11, ρin(C3) = 0.0, ρout(C1, C3) = 0.06

(3, 4, 0) C1 = {1, 2, 3}, C4 = {4} merge(C1, C4)−−−−−−−→ C1 = {1, 2, 3, 4} ρin(C1) = 0.07, ρin(C4) = 0.0, ρout(C1, C4) = 0.04

(4, 1, 0) C1 = {1, 2, 3, 4}
(5, 6, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6}
(6, 7, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6}, C7 = {7} merge(C5, C7)−−−−−−−→ C5 = {5, 6, 7} ρin(C5) = 0.11, ρin(C7) = 0.0, ρout(C5, C6) = 0.06

(7, 5, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7}
(4, 5, 0) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7}
(4, 5, 1) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7} (no merge because α is high.)
(4, 5, 2) C1 = {1, 2, 3, 4}, C5 = {5, 6, 7}

Figure 8: Working demo of mCOMM.
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Table 6: Statistics of real networks from SNAP datasets.

Graph Type Nodes Edges Average Degree Ground Truth Communities
Amazon Co-purchasing 334,863 925,872 2.76 311,782
DBLP Co-citation 317,080 1,049,866 3.31 1,449,666

Youtube Social 1,134,890 2,987,624 2.63 8,455,253
LiveJournal Social 3,997,962 34,681,189 8.67 137,177

Orkut Social 3,072,441 117,185,083 38.14 49,732

Table 7: Comparison with state-of-the-art algorithms in terms of 1) NMI 2) F1-Score 3) Weighted Community
Clustering (WCC) 4) Execution Time (ET) (in seconds) and 5) Execution Memory (EM) (in GBs).

Graph/Algorithm Amazon DBLP Youtube LiveJournal Orkut
NMI F1 WCC ET EM NMI F1 WCC ET EM NMI F1 WCC ET EM NMI F1 WCC ET EM NMI F1 WCC ET EM

Infomap(Rosvall and Bergstrom, 2008) .16 .31 .00 47.6 .56 .00 .09 .01 45.5 .60 .00 .01 .00 191.4 2.02 .01 .04 .00 2908.3 14.51 .00 .04 .00 4165.2 101.59
Leiden (Traag et al., 2019) .20 .33 .01 21.8 .43 .11 .17 .00 24.6 .47 .04 .10 .00 77.6 1.49 .01 .18 .00 894.9 13.56 .01 .09 .00 3940.7 42.06
FastLPA (Traag and Šubelj, 2023) .28 .48 .20 17.6 .29 .13 .31 .18 19.6 .32 .01 .05 .01 94.7 .99 .03 .05 .02 1765.21 7.81 .06 .17 .00 5902.9 22.69
Louvain (Blondel et al., 2008) .14 .28 .01 93.5 .61 .06 .13 .01 202.9 .67 .00 .00 .00 436.4 2.19 .02 .08 .01 12111.4 15.02 - - - - -
Walktrap (Pons and Latapy, 2005) .27 .44 .13 1291.5 .42 .10 .29 .16 2747.6 .47 - - - - - - - - - - - - - - -
SCODA (Hollocou et al., 2017) .11 .37 .09 3.4 .19 .04 .22 .10 3.8 .21 .06 .21 .01 16.2 .67 .06 .23 .01 190.7 4.96 .16 .36 .00 695.9 14.39
SAOCD (Li et al., 2020) .14 .38 .10 8.2 .23 .06 .24 .12 9.3 .27 .03 .15 .00 31.3 .80 .02 .13 .01 350.4 8.23 .06 .29 .00 1677.3 27.19
Proposed mCOMM .16 .40 .20 3.2 .18 .09 .29 .16 3.67 .20 .05 .20 .02 15.4 .68 .03 .16 .03 183.2 6.34 .28 .43 .02 711.9 17.83

the same community, the edge count within the1252

community is increased. If they belong to different1253

communities, the edge count between communities1254

is increased. If only one of the nodes is part of an1255

existing community, a new single-node community1256

is created with the remaining node as its represen-1257

tative. If both nodes are not part of any community,1258

a new community with two nodes is created, with1259

the node having the lower value assigned as the1260

community representative and the other node as its1261

child node. The sparse triangular matrix mat is1262

updated with the information of the newly formed1263

or modified community.1264

mergeCommunity(Pn1 , Pn2): This method1265

merges communities represented by Pn1 and Pn21266

based on the size of the communities, and the1267

smaller community is linked to the larger commu-1268

nity representative. The sparse triangular matrix1269

mat is updated after the merge, and entries of the1270

merged community are removed and references are1271

updated to the new community.1272

H.2 Working Demo of mCOMM1273

We show the working of mCOMM (Figure 8) in a1274

streaming setting, highlighting the edge merging1275

process under different values of α (merging param-1276

eter that controls merging in mCOMM). The figure1277

demonstrates the relation graph where there can be1278

edges between two nodes at different layers. The1279

value on the edges denotes the layer in which it be-1280

longs. We consider three layers L = {0, 1, 2}. The1281

table details the edge merging process under differ-1282

ent α = {0.1, 0.3} values. For α = 0.1, it can be1283

observed that merging occurs at edge (4, 5, 1), but1284

no merging occurs for α = 0.3. It is evident from1285

the Figure that α values play a crucial role in the1286

merging of communities, which results in different 1287

outcomes for the same edge stream. Specifically, 1288

we can see that for α = 0.1, merging occurs at 1289

edge (4, 5, 1), but there is no merging when we set 1290

the alpha value to α = 0.3. 1291

H.3 Convergence of mCOMM 1292

We have designed mCOMM for streaming commu- 1293

nity detection, and it only terminates at the end of 1294

the stream. For each incoming edge, we make a de- 1295

terministic decision to put its nodes in a particular 1296

community (which is highlighted in detail in the 1297

working example of Figure 8), always ensuring a 1298

well-separated community for a query (onQuery() 1299

function in the Algorithm 1) at any time step in the 1300

stream. The same is empirically visible in terms of 1301

modularity in Figure 9. This shows that mCOMM 1302

always converges to a set of communities. 1303

H.4 Choice of α for mCOMM 1304

We have already done an ablation study (Section 1305

4.1) showing the change in the results of mCOMM 1306

(NMI, AMI, ARI) with the change in α. We 1307

had mentioned that α determines when we should 1308

merge communities. In the case of the Twitter 1309

datasets used here, sometimes two tweets talking 1310

about the same events have weak connections with 1311

just a single common word. We have used a low 1312

α value of 0.5 in the case of our experiments to 1313

accommodate such weakly connected nodes in a 1314

community. This does not affect nodes that are 1315

strongly connected, as they will be merged anyway. 1316

This idea works well with the Twitter dataset, as is 1317

indicated in Figure 4 of the paper. It must be noted, 1318

though, that setting α too low causes a dip in the 1319

NMI value. In case we set α to 0, we get connected 1320

20



components as communities. This is because a 01321

value of α concatenates all connected nodes into a1322

single community by eliminating the merging re-1323

strictions. We obtain a balanced result across the1324

metrics with α set to 0.5.1325

H.5 Performance of mCOMM on varied1326

datasets1327

We show the performance of mCOMM in terms of1328

various metrics for various homogeneous datasets1329

from SNAP (Leskovec and Krevl, 2014) like Ama-1330

zon, DBLP, Youtube, LiveJournal and Orkut. The1331

dataset statistic is shown in Table 6. We can see1332

from the Table 7 that mCOMM has comparable1333

performance for Amazon in NMI and F1 and best1334

result for WCC (Weighted clustering co-efficient),1335

ET (Execution Time in seconds) and EM (Execu-1336

tion Memory in GBs) for the Amazon dataset. We1337

have the best result for ET and EM in DBLP and1338

the best result for WCC and ET for the LiveJournal1339

dataset. For the Orkut dataset we have the best1340

result for NMI, F1 and WCC. It must be noted1341

that we have comparable results for all the metrics1342

across the datasets in cases when we do not have1343

the best results.1344

Intuition for using density in mCOMM: Pure1345

modularity-based measures (Louvian) suffer from1346

problems like the resolution limit problem, which1347

density-based approaches avoid (Kim et al., 2022).1348

This also restricts modularity-based methods to1349

detect smaller communities that exist in the dataset,1350

as shown in Fig. 3 in FinEvent (Peng et al., 2023).1351
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H.6 Theoretical Analysis of mCOMM1352

Lemma H.1. Given a heterogeneous multilayer graph stream S = {e1, e2, . . . , et}, where each edge1353

e = (i, j, l) arrives in some layer l, the modularity Q is defined based on Equation (2) from (Hanteer and1354

Magnani, 2020) as:1355

Q =
1

2µ


∑
C∈C

∑
is,js∈C

s∈l

(As
ij − P s

ij)

︸ ︷︷ ︸
Intralayer contribution

+
∑
C∈C

∑
is,jr∈C
s,r∈l

W sr
ij · δ(is, jr)

︸ ︷︷ ︸
Interlayer contribution


1356

where, As
ij is the adjacency matrix in layer s. P s

ij is the null model in layer s, e.g.,
ksi k

s
j

2|Es| . W
sr is the1357

coupling matrix that describes the interlayer edges between layers s and r. The term W sr
ij corresponds1358

to the coupling strength ωij , which is the weight assigned to the interlayer edge connecting node i in1359

layer s and node j in layer r. δ(is, jr) = 1 if is and jr refer to the same actor, otherwise it equals 0.1360

µt =
∑

s∈l 2|Es|+
∑

i,s ̸=r ω
sr
i . C is the community structure. Find the change in modularity ∆Qt at time t.1361

1362

Proof: Let us derive the change in modularity ∆Qt incrementally:1363

At t = 0: No edges exist.1364

Q0 = 0; ∆Q0 = 01365

At t = 1: Edge e1 = (i, j, s) arrives. Edge appears in layer s. No interlayer contribution is present.1366

Only intralayer contribution exists.1367

Q1 =
1

2µ1

[
(As

ij − P s
ij)

]
;1368

∆Q1 = Q1 −Q01369

=
1

2µ1
(As

ij − P s
ij)−∆Q01370

At t = 2: Now we consider different scenarios occur in mCOMM depending on the nature of the second1371

edge e2.1372

Case 1:e2 = (i, k, s)- Only one node exists (Same node, same layer)1373

Intralayer contribution: (As
ij − P s

ij) + (As
ik − P s

ik)1374

Interlayer contribution: 01375

Q2 =
1

2µ2

[
(As

ij − P s
ij) + (As

ik − P s
ik)

]
1376

∆Q2 = Q2 −Q1 =
1

2µ2

[
(As

ij − P s
ij) + (As

ik − P s
ik)

]
− 1

2µ1
(As

ij − P s
ij)1377

=
1

2µ2

[
(As

ij − P s
ij) + (As

ik − P s
ik)

]
−∆Q1 −∆Q01378

Case 2: e2 = (i, k, r)- Only one node exists (Same node, different layer). Nodes i spans layers s and r,1379

introducing interlayer contribution for i.1380

Intralayer contribution: (As
ij − P s

ij) + (Ar
ik − P r

ik)1381

Interlayer contribution: ωsr
ii .δ(is, ir) = ωsr

ii ∵ δ(is, ir) = 11382

Q2 =
1

2µ2

[
(As

ij − P s
ij) + (Ar

ik − P r
ik) + ωsr

ii

]
1383

∆Q2 = Q2 −Q1 =
1

2µ2

[
(As

ij − P s
ij) + (Ar

ik − P r
ik) + ωsr

ii

]
− 1

2µ1
(As

ij − P s
ij)1384

=
1

2µ2

[
(As

ij − P s
ij) + (Ar

ik − P r
ik) + ωsr

ii

]
−∆Q1 −∆Q01385
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Case 3: e2 = (p, q, s/r)- Both nodes do not exist (New node-pair in same/different layer) 1386

Intralayer contribution: (As
ij − P s

ij) + (A
s/r
pq − P

s/r
pq ) 1387

Interlayer contribution: 0 1388

Q2 =
1

2µ2

[
(As

ij − P s
ij) + (As/r

pq − P s/r
pq )

]
1389

∆Q2 = Q2 −Q1 =
1

2µ2

[
(As

ij − P s
ij) + (As/r

pq − P s/r
pq )

]
− 1

2µ1
(As

ij − P s
ij) 1390

=
1

2µ2

[
(As

ij − P s
ij) + (As/r

pq − P s/r
pq )

]
−∆Q1 −∆Q0 1391

Case 4: e2 = (i, j, r)- Both nodes exist (Same node-pair, different layer). Now nodes i and j span layers s 1392

and r, introducing interlayer contribution for i and j. 1393

Intralayer contribution: (As
ij − P s

ij) + (Ar
ik − P r

ik) 1394

Interlayer contribution: ωsr
ii .δ(is, ir) + ωsr

jj .δ(js, jr) = ωsr
ii + ωsr

jj ∵ δ(is, ir) = δ(js, jr) = 1 1395

Q2 =
1

2µ2

[
(As

ij − P s
ij) + (Ar

ij − P r
ij) + ωsr

ii + ωsr
jj

]
1396

∆Q2 = Q2 −Q1 =
1

2µ2

[
(As

ij − P s
ij) + (Ar

ij − P r
ij) + ωsr

ii + ωsr
jj

]
− 1

2µ1
(As

ij − P s
ij) 1397

=
1

2µ2

[
(As

ij − P s
ij) + (Ar

ij − P r
ij) + ωsr

ii + ωsr
jj

]
−∆Q1 −∆Q0 1398

· · · 1399

Furthermore, ∆Q3 · · ·∆Qt−1 will be derived recursively using the previous changes in modularity. Each 1400

new edge will fall into one of the cases discussed above for t = 2. 1401

∴ The modularity change at time t is: 1402

∆Qt =
1

2µt

∑
C∈C

∑
is,js∈C

s∈l

(As
ij − P s

ij) +
∑
i∈Vt
s ̸=r

ωsr
ii

−
t−1∑
τ=0

∆Qτ (14) 1403

µt =
∑
s∈l

2|Et
s|+

∑
i∈Vt
s ̸=r

ωsr
ii 1404

Remark H.1. Considering the mCOMM algorithm, if both nodes from an incoming edge do not exist 1405

(irrespective of the layer), then we fall back to the modularity (Q1) at t = 1. This will always be the 1406

condition on the arrival of the first edge. Now there are four possibilities. In the first possibility, one 1407

node may already exist (in any layer), and the other may be a new node in the same layer. In that case, 1408

the modularity can be calculated from Case 1 at (Q2, t = 2). The second possibility can be an edge 1409

between two nodes where one node exists, say in layer s, but the new node is in layer r. In this case, 1410

the modularity can be calculated from Case 2 at (Q2, t = 2). In the third possibility, both nodes can 1411

already exist, say in layer s, but the edge between them is in another layer, say layer r. In this case, the 1412

modularity can be calculated from Case 4 at (Q2, t = 2). The final possibility is an edge between two new 1413

nodes in the same or different layer, where the modularity can be represented using Case 3 at (Q2, t = 2). 1414

Specifically, for possibility 1, ∆Q2 = 0 as the new node will always be assigned to a new community, 1415

therefore (As
ik − P s

ik) = 0. Similarly, in the case of possibility 2, (Ar
ik − P r

ik) = 0, as i and k will always 1416

belong to different communities. So, ∆Q2 = ωsr
ii . One must note that ωsr

ii = 0 in our case, as we do not 1417

consider any coupling between the same nodes in two different layers. 1418
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H.7 Practical analysis of change in1419

modularity for mCOMM.1420

We conduct an empirical study to show the change1421

in modularity of mCOMM for block B4 of the1422

Event2012 dataset. In the Figure 9, the x-axis is in-1423

dicative of the number of incoming edges. Initially,1424

there is a decrease in modularity due to the pres-1425

ence of isolated communities. However, we can see1426

that after 20000 incoming edges, the merge opera-1427

tions start, and we get an increase in the modularity1428

of the communities, indicating that the proposed1429

algorithm generates well-separated communities.1430

We can see that the change in modularity is well1431

supported by the Lemma explained above.1432

Figure 9: Modularity based analysis of mCOMM on B4

block of Event2012 dataset.
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