DO WE NEED REBALANCING STRATEGIES? A THEORETICAL AND EMPIRICAL STUDY AROUND SMOTE AND ITS VARIANTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Synthetic Minority Oversampling Technique (SMOTE) is a common rebalancing strategy for handling imbalanced tabular data sets. However, few works analyze SMOTE theoretically. In this paper, we prove that SMOTE (with default parameter) tends to copies the original minority samples asymptotically. We also prove that SMOTE exhibits boundary artifacts, thus justifying existing SMOTE variants. Then we introduce two new SMOTE-related strategies, and compare them with state-of-the-art rebalancing procedures. Surprisingly, for most data sets, we observe that applying no rebalancing strategy is competitive in terms of predictive performances, with tuned random forests, logistic regression or LightGBM. For highly imbalanced data sets, our new methods, named CV-SMOTE and Multivariate Gaussian SMOTE, are competitive. Besides, our analysis sheds some lights on the behavior of common rebalancing strategies, when used in conjunction with random forests.

1 INTRODUCTION

029 030 031 032 033 034 035 036 Imbalanced data sets for binary classification are encountered in various fields such as fraud detection [\(Hassan & Abraham, 2016\)](#page-11-0), medical diagnosis [\(Khalilia et al., 2011\)](#page-11-1) and even churn detection [\(Nguyen & Duong, 2021\)](#page-12-0). In our study, we focus on imbalanced data in the context of binary classification on tabular data, for which most machine learning algorithms have a tendency to predict the majority class. This leads to biased predictions, so that several rebalancing strategies have been developed in order to handle this issue, as explained by [Krawczyk](#page-11-2) [\(2016\)](#page-11-2) and Ramyachitra $\&$ [Manikandan](#page-12-1) [\(2014\)](#page-12-1). These procedures can be divided into two categories: model-level and datalevel.

037 038 039 040 041 042 043 044 Model-level approaches modify existing classifiers in order to prevent predicting only the majority class. Among such techniques, Class-Weight (CW) works by assigning higher weights to minority samples. Another related proposed by [Zhu et al.](#page-12-2) [\(2018\)](#page-12-2) assigns data-driven weights to each tree of a random forest, in order to improve aggregated metrics such as F1 score or ROC AUC. Another model-level technique is to modify the loss function of the classifier. For instance, [Cao et al.](#page-10-0) [\(2019\)](#page-10-0) and [Lin et al.](#page-11-3) [\(2017\)](#page-11-3) introduced two new losses, respectively LDAM and Focal losses, in order to produce neural network classifiers that better handle imbalanced data sets. However, model-level approaches are not model agnostic, and thus cannot be applied to a wide variety of machine learning algorithms. Consequently, we focus in this paper on data-level approaches.

045 046 047 048 049 050 051 052 053 Data-level approaches can be divided into two groups: synthetic and non-synthetic procedures. Non-synthetic procedures works by removing or copying original data points. [Mani & Zhang](#page-12-3) [\(2003\)](#page-12-3) explain that Random Under Sampling (RUS) is one of the most used resampling strategy and design new adaptive versions called Nearmiss. RUS produces the prespecified balance between classes by dropping uniformly at random majority class samples. The Nearmiss1 strategy [\(Mani & Zhang,](#page-12-3) [2003\)](#page-12-3) includes a distinction between majority samples by ranking them with their mean distance to their nearest neighbor from the minority class. Then, low-ranked majority samples are dropped until a given balancing ratio is reached. In contrast, Random Over Sampling (ROS) duplicates original minority samples. The main limitation of all these sampling strategies is the fact that they either remove information from the data or do not add new information.

054 055 056 057 058 059 060 061 062 063 064 On the contrary, synthetic procedures generate new synthetic samples in the minority class. One of the most famous strategies in this group is *Synthetic Minority Oversampling Technique* (SMOTE, see Chawla et al., $2002)^{1}$ $2002)^{1}$ $2002)^{1}$. In SMOTE, new minority samples are generated via linear interpolation between an original minority sample and one of its nearest neighbor in the minority class. Other approaches are based on Generative Adversarial Networks (GAN [Islam & Zhang, 2020\)](#page-11-4), which are computationally expensive and mostly designed for specific data structures, such as images. Random Over Sampling Examples (see [Menardi & Torelli, 2014\)](#page-12-4) is a variant of ROS that produces duplicated samples and then add a noise in order to get these samples slightly different from the original ones. This leads to the generation of new samples on the neighborhood of original minority samples. The main difficulty of these strategies is to synthesize relevant new samples, which must not be outliers nor simple copies of original points.

065 066 Contributions We place ourselves in the setting of imbalanced classification on tabular data, which is very common in real-world applications (see [Shwartz-Ziv & Armon, 2022\)](#page-12-5). In this paper:

- We prove that, without tuning the hyperparameter K (usually set to 5), SMOTE asymptotically copies the original minority samples, therefore lacking the intrinsic variability required in any synthetic generative procedure. We provide numerical illustrations of this limitation (Section [3\)](#page-2-0).
- We also establish that SMOTE density vanishes near the boundary of the support of the minority distribution, therefore justifying the introduction of SMOTE variants such as BorderLine SMOTE (Section [3\)](#page-2-0).
- Our theoretical analysis naturally leads us to introduce two SMOTE alternatives, CV-SMOTE and Multivariate Gaussian SMOTE (MGS). In Section [4,](#page-5-0) we evaluate our new strategies and state-of-the-art rebalancing strategies on several real-world data sets using random forests/logistic regression/LightGBM. Through these experiments 2 we show that applying no strategy is competitive for most data sets. For the remaining data sets, our proposed strategies, CV-SMOTE and MGS, are among the best strategies in terms of predictive performances. Our analysis also provides some explanations about the good behavior of RUS, due to an implicit regularization in presence of random forests classifiers.

083

084 085

2 RELATED WORKS

086 087 In this section, we focus on the literature that is the most relevant to our work: long-tail learning, SMOTE variants and theoretical studies of rebalancing strategies.

088 089 090 091 092 093 094 095 096 Long-tailed learning (see, e.g., [Zhang et al., 2023\)](#page-12-6) is a relatively new field, originally designed to handle image classification with numerous output classes. Most techniques in long-tailed learning are based on neural networks or use the large number of classes to build or adapt aggregated predictors. However, in most tabular classification data sets, the number of classes to predict is relatively small, usually equal to two [\(Chawla et al., 2004;](#page-10-2) [He & Garcia, 2009;](#page-11-5) [Grinsztajn et al., 2022\)](#page-11-6). Therefore, long-tailed learning methods are not intended for our setting as (i) we only have two output classes and (ii) state-of-the-art models for tabular data are not neural networks but tree-based methods, such as random forests or gradient boosting (see [Grinsztajn et al., 2022;](#page-11-6) [Shwartz-Ziv & Armon,](#page-12-5) [2022\)](#page-12-5).

097 098 099 100 101 102 103 104 SMOTE has seen many variants proposed in the literrature. Several of them focus on generating synthetic samples near the boundary of the minority class support, such as ADASYN [\(He et al.,](#page-11-7) [2008\)](#page-11-7), SVM-SMOTE [\(Nguyen et al., 2011\)](#page-12-7) or Borderline SMOTE [\(Han et al., 2005\)](#page-11-8). Many other variants exist such as SMOTEBoost [\(Chawla et al., 2003\)](#page-10-3), Adaptive-SMOTE [\(Pan et al., 2020\)](#page-12-8), [Xie et al.](#page-12-9) [\(2020\)](#page-12-9) or DBSMOTE [\(Bunkhumpornpat et al., 2012\)](#page-10-4). From a computational perspective, several synthetic methods are available in the open-source package *imb-learn* (see Lemaître et al., [2017\)](#page-11-9). Several papers study experimentally some specificities of the sampling strategies and the impact of hyperparameter tuning. For example, [Kamalov et al.](#page-11-10) [\(2022\)](#page-11-10) study the optimal sampling ratio for imbalanced data sets when using synthetic approaches. [Aguiar et al.](#page-10-5) [\(2023\)](#page-10-5) realize a survey

¹More than 25.000 papers found in GoogleScholar with a title including "SMOTE" over the last decade.

²All our experiments and our newly proposed methods can be found at [https://github.com/](https://github.com/anonymous8880/smote_study) [anonymous8880/smote_study](https://github.com/anonymous8880/smote_study).

108 109 110 on imbalance data sets in the context of online learning and propose a standardized framework in order to compare rebalancing strategies in this context. Furthermore, [Wongvorachan et al.](#page-12-10) [\(2023\)](#page-12-10) aim at comparing the synthetic approaches (ROS, RUS and SMOTE) on educational data.

111 112 113 114 115 116 117 118 119 120 121 122 123 124 Several works study theoretically the rebalancing strategies. [Xu et al.](#page-12-11) [\(2020\)](#page-12-11) study the weighted risk of plug-in classifiers, for arbitrary weights. They establish rates of convergence and derive a new robust risk that may in turn improve classification performance in imbalanced scenarios. Then, based on this previous work, [Aghbalou et al.](#page-10-6) [\(2024\)](#page-10-6) derive a sharp error bound of the balanced risk for binary classification context with severe class imbalance. Using extreme value theory, [Chaudhuri](#page-10-7) [et al.](#page-10-7) [\(2023\)](#page-10-7) show that applying Random Under Sampling in binary classification framework improve the worst-group error when learning from imbalanced classes with tails. [Wallace & Dahabreh](#page-12-12) [\(2014\)](#page-12-12) study the class probability estimates for several rebalancing strategies before introducing a generic methodology in order to improve all these estimates. [Dal Pozzolo et al.](#page-10-8) [\(2015\)](#page-10-8) focus on the effect of RUS on the posterior probability of the selected classifier. They show that RUS affect the accuracy and the probability calibration of the model. To the best of our knowledge, there are only few theoretical works dissecting the intrinsic machinery in SMOTE algorithm, with the notable exception of [Elreedy & Atiya](#page-10-9) [\(2019\)](#page-10-9) and [Elreedy et al.](#page-11-11) [\(2023\)](#page-11-11) who established the density of synthetic observations generated by SMOTE, the associated expectation and covariance matrix.

125 126

3 A STUDY OF SMOTE

Notations We denote by $\mathcal{U}([a, b])$ the uniform distribution over $[a, b]$. We denote by $\mathcal{N}(\mu, \Sigma)$ the multivariate normal distribution of mean $\mu \in \mathbb{R}^d$ and covariance matrix $\Sigma \in$ $\mathbb{R}^{d \times d}$. For any set A, we denote by $Vol(A)$, the Lebesgue measure of A. For any $z \in \mathbb{R}^d$ and $r > 0$, let $B(z,r)$ be the ball centered at z of radius r. We note $c_d = Vol(B(0,1))$ the volume of the unit ball in \mathbb{R}^d . For any $p, q \in \mathbb{N}$, and any $z \in [0,1]$, we denote by $\mathcal{B}(p,q;z) = \int_{t=0}^{z} t^{p-1}(1-t)^{q-1}dt$ the incomplete beta function.

148 consider continuous input variables only, as SMOTE was originally designed such variables only.

149 150 151 152 153 154 In this section, we study the SMOTE procedure, which generates synthetic data through linear interpolations between two pairs of original samples of the minority class. SMOTE algorithm has a single hyperparameter, K , by default set to 5, which stands for the number of nearest neighbors considered when interpolating. A single SMOTE iteration is detailed in Algorithm [1.](#page-2-1) In a classic machine learning pipeline, SMOTE procedure is repeated in order to obtain a prespecified ratio between the two classes, before training a classifier.

155 156

157

3.2 THEORETICAL RESULTS ON SMOTE

158 159 160 161 SMOTE has been shown to exhibit good performances when combined to standard classification algorithms (see, e.g., [Mohammed et al., 2020\)](#page-12-13). However, there exist only few works that aim at understanding theoretically SMOTE behavior. In this section, we assume that X_1, \ldots, X_n are i.i.d samples from the minority class (that is, $Y_i = 1$ for all $i \in [n]$), with a common density f_X with bounded support, denoted by X .

162 163 164 Lemma 3.1 (Convexity). *Given* f_X *the distribution density of the minority class, with support* \mathcal{X} *, for all* K, n *, the associated SMOTE density* $f_{Z_{K,n}}$ *satisfies*

$$
Supp(f_{Z_{K,n}}) \subseteq Conv(\mathcal{X}).\tag{1}
$$

166 167 168 169 170 By construction, synthetic observations generated by SMOTE cannot fall outside the convex hull of X . Equation equation [1](#page-3-0) is not an equality, as SMOTE samples are the convex combination of only two original samples. For example, in dimension two, if $\mathcal X$ is concentrated near the vertices of a triangle, then SMOTE samples are distributed near the triangle edges, whereas Conv (\mathcal{X}) is the surface delimited by the triangle.

171 172 173 SMOTE algorithm has only one hyperparameter K , which is the number of nearest neighbors taken into account for building the linear interpolation. By default, this parameter is set to 5. The following theorem describes the behavior of SMOTE distribution asymptotically, as $K/n \rightarrow 0$.

174 175 Theorem 3.2. For all Borel sets $B \subset \mathbb{R}^d$, if $K/n \to 0$, as n tends to infinity, we have $\lim_{n \to \infty} \mathbb{P}[Z_{K,n} \in B] = \mathbb{P}[X \in B].$ (2)

176 177 178

165

The proof of Theorem [3.2](#page-3-1) can be found in [B.2.](#page-27-0) Theorem 3.2 proves that the random variables $Z_{K,n}$ generated by SMOTE converge in distribution to the original random variable X, provided that K/n tends to zero. From a practical point of view, Theorem [3.2](#page-3-1) guarantees asymptotically the ability of SMOTE to regenerate the distribution of the minority class. This highlights a good behavior of the default setting of SMOTE $(K = 5)$, as it can create more data points, different from the original sample, and distributed as the original sample. Note that Theorem [3.2](#page-3-1) is very generic, as it makes no assumptions on the distribution of X .

184 185 186 187 188 SMOTE distribution has been derived in Theorem 1 and Lemma 1 in [Elreedy et al.](#page-11-11) [\(2023\)](#page-11-11). We provide here a slightly different expression for the density of the data generated by SMOTE, denoted by $f_{Z_{K,n}}$. Although our proof shares the same structure as that of [Elreedy et al.](#page-11-11) [\(2023\)](#page-11-11), our starting point is different, as we consider random variables instead of geometrical arguments. The proof can be found in Section [B.3.](#page-28-0) When no confusion is possible, we simply write f_Z instead of $f_{Z_{K,n}}$.

189 190 191 Lemma 3.3. Let X_c be the central point chosen in a SMOTE iteration. Then, for all $x_c \in \mathcal{X}$, the *random variable* $Z_{K,n}$ *generated by SMOTE has a conditional density* $f_{Z_{K,n}}(.|X_c = x_c)$ *which satisfies*

192 193

194 195

$$
f_{Z_{K,n}}(z|X_c = x_c) = (n - K - 1) {n - 1 \choose K} \int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)
$$

$$
\times \mathcal{B}(n - K - 1, K; 1 - \beta_{x_c, z, w}) dw,
$$
 (3)

where $\beta_{x_c,z,w} = \mu_X(B(x_c,||z-x_c||/w))$ *and* μ_X *is the probability measure associated to* f_X . *Using the following substitution* $w = ||z - x_c||/r$ *, we have,*

$$
f_{Z_{K,n}}(z|X_c = x_c) = (n - K - 1) \binom{n-1}{K} \int_{r=\|z-x_c\|}^{\infty} f_X\left(x_c + \frac{(z-x_c)r}{\|z-x_c\|}\right)
$$

$$
\times \frac{r^{d-2} \mathcal{B}\left(n - K - 1, K; 1 - \mu_X\left(B\left(x_c, r\right)\right)\right)}{\|z - x_c\|^{d-1}} dr.
$$
(4)

201 202 203

204 205 206

208 209 210 A close inspection of Lemma [3.3](#page-3-2) allows us to derive more precise bounds about the behavior of SMOTE, as established in Theorem [3.5.](#page-3-3)

207 Assumption 3.4. There exists $R > 0$ such that $\mathcal{X} \subset B(0, R)$. Besides, there exist $0 < C_1 < C_2 <$ ∞ such that for all $x \in \mathbb{R}^d$, $C_1 1_{x \in \mathcal{X}} \le f_X(x) \le C_2 1_{x \in \mathcal{X}}$.

Theorem 3.5. *Grant Assumption* [3.4.](#page-3-4) *Let* $x_c \in \mathcal{X}$ *and* $\alpha \in (0, 2R)$ *. For all* $K \leq (n - 1)$ $1)\mu_X$ (B (x_c, α)), we have

$$
\mathbb{P}(\|Z_{K,n} - X_c\|_2 \ge \alpha | X_c = x_c) \le \eta_{\alpha, R, d} \exp\left(-2(n-1)\left(\mu_X\left(B\left(x_c, \alpha\right)\right) - \frac{K}{n-1}\right)^2\right) \tag{5}
$$

$$
\begin{array}{c} 211 \\ 212 \\ 213 \end{array}
$$

$$
\begin{array}{ll}\n\frac{213}{214} & \text{with } \eta_{\alpha,R,d} = C_2 c_d R^d \times \left\{ \begin{array}{l} \ln\left(\frac{2R}{\alpha}\right) & \text{if } d = 1, \\
\frac{1}{d-1} \left(\left(\frac{2R}{\alpha}\right)^{d-1} - 1 \right) & \text{if } d > 1.\n\end{array} \right.\n\end{array}
$$

Consequently, if $\lim_{n\to\infty} K/n = 0$ *, we have, for all* $x_c \in \mathcal{X}$, $Z_{K,n}|X_c = x_c \to x_c$ *in probability.*

269

216 217 218 219 220 221 222 The proof of Theorem [3.5](#page-3-3) can be found in [B.4.](#page-31-0) Theorem [3.5](#page-3-3) establishes an upper bound on the distance between an observation generated by SMOTE and its central point. Asymptotically, when K/n tends to zero, the new synthetic observation concentrates around the central point. Recall that, by default, $K = 5$ in SMOTE algorithm. Therefore, Theorem [3.2](#page-3-1) and Theorem [3.5](#page-3-3) prove that, with the default settings, SMOTE asymptotically targets the original density of the minority class and generates new observations very close to the original ones. The following result establishes the characteristic distance between SMOTE observations and their central points.

Corollary 3.6. *Grant Assumption* [3.4.](#page-3-4) *For all* $d \geq 2$ *, for all* $\gamma \in (0, 1/d)$ *, we have*

$$
\mathbb{P}\left[\|Z_{K,n} - X_c\|_2^2 > 12R(K/n)^{\gamma}\right] \le \left(\frac{K}{n}\right)^{2/d - 2\gamma}.\tag{6}
$$

228 229 230 231 232 233 234 235 The proof of Corollary [3.6](#page-4-0) can be found in [B.5](#page-33-0) and is an adaptation of Theorem 2.4 in [Biau &](#page-10-10) [Devroye](#page-10-10) [\(2015\)](#page-10-10). The characteristic distance between a SMOTE observation and the associated central point is of order $(K/n)^{1/d}$. As expected from the curse of dimensionality, this distance increases with the dimension d. Choosing K that increases with n leads to larger characteristic distances: SMOTE observations are more distant from their central points. Corollary [3.6](#page-4-0) leads us to choose K such that K/n does not tend too fast to zero, so that SMOTE observations are not too close to the original minority samples. However, choosing such a K can be problematic, especially near the boundary of the support, as shown in the following theorem.

Theorem 3.7. *Grant Assumption* [3.4](#page-3-4) *with* $\mathcal{X} = B(0, R)$ *. Let* $\varepsilon \in (0, R)$ *such that* $\left(\frac{\varepsilon}{R}\right)^{1/2} \leq \frac{c_d}{\sqrt{2}dC_2}$ *. Then, for all* $1 \leq K < n$ *, and all* $z \in B(0,R) \setminus B(0, R - \varepsilon)$ *, and for all* $d > 1$ *, we have*

$$
f_{Z_{K,n}}(z) \leq C_2^{3/2} \left(\frac{2^{d+2} c_d^{1/2}}{d^{1/2}}\right) \left(\frac{n-1}{K}\right) \left(\frac{\varepsilon}{R}\right)^{1/4}.\tag{7}
$$

242 243 244 245 246 247 248 249 The proof of Theorem [3.7](#page-4-1) can be found in [B.6.](#page-34-0) Theorem [3.7](#page-4-1) establishes an upper bound of SMOTE density at points distant from less than ε from the boundary of the minority class support. More precisely, Theorem [3.7](#page-4-1) shows that SMOTE density vanishes as $\varepsilon^{1/4}$ near the boundary of the support. Choosing $\varepsilon/R = o((K/n)^4)$ leads to a vanishing upper bound, which proves that SMOTE density is unable to reproduce the original density $f_X \geq C_1$ in the peripheral area $B(0, R) \setminus B(0, R - \varepsilon)$. Such a behavior was expected since the boundary bias of local averaging methods (kernels, nearest neighbors, decision trees) has been extensively studied (see, e.g. [Jones, 1993;](#page-11-12) [Arya et al., 1995;](#page-10-11) [Arlot & Genuer, 2014;](#page-10-12) [Mourtada et al., 2020\)](#page-12-14).

250 251 252 253 254 255 256 257 For default settings of SMOTE (i.e., $K = 5$), and large sample size, this area is relatively small ($\varepsilon =$ $o(n^{-4})$). Still, Theorem [3.7](#page-4-1) provides a theoretical ground for understanding the behavior of SMOTE near the boundary, a phenomenon that has led to introduce variants of SMOTE to circumvent this issue (see Borderline SMOTE in [Han et al., 2005\)](#page-11-8). While increasing K leads to more diversity in the generated observations (as shown in Theorem [3.5\)](#page-3-3), it increases the boundary bias of SMOTE. Indeed, choosing $K = n^{3/4}$ implies a boundary effect in the peripheral area $B(0,R) \setminus B(0, R - \varepsilon)$ for $\varepsilon = o(1/n)$, which may not be negligible. Finally, note that constants in the upper bounds are of reasonable size. Letting $d = 3$, $K = 5$, $X \sim \mathcal{U}(B_d(0, 1))$, the upper bound turns into $0.89n\varepsilon^{1/4}$.

258 259 3.3 NUMERICAL ILLUSTRATIONS

260 261 262 Through Section [3,](#page-2-0) we highlighted the fact that SMOTE asymptotically regenerates the distribution of the minority class, by tending to copy the minority samples. The purpose of this section is to numerically illustrate the theoretical limitations of SMOTE, typically with the default value $K = 5$.

263 264 265 266 267 268 Simulated data In order to measure the similarity between any generated data set $Z =$ ${Z_1, \ldots, Z_m}$ and the original data set $\mathbf{X} = {X_1, \ldots, X_n}$, we compute $C(\mathbf{Z}, \mathbf{X}) = \frac{1}{m} \sum_{i=1}^{m} ||Z_i - X_{(1)}(Z_i)||_2$, where $X_{(1)}(Z_i)$ is the nearest neighbor of Z_i among X_1, \ldots, X_n . Intuitively, this quantity measures how far the generated data set is from the original observations: if the new data are copies of the original ones, this measure equals zero. We apply the following protocol: for each value of n ,

1. Generate **X** composed of *n* i.i.d samples distributed as $\mathcal{U}([-3, 3]^2)$.

- 2. Generate **Z** composed of $m = 1000$ new i.i.d observations by applying SMOTE procedure on the original data set **X**, with different values of K. Compute $C(\mathbf{Z}, \mathbf{X})$.
- 3. Generate $\tilde{\mathbf{X}}$ composed of m i.i.d new samples distributed as $\mathcal{U}([-3,3]^2)$. Compute $C(X, X)$, which is a reference value in the ideal case of new points sampled from the same distribution.

Steps 1-3 are repeated 75 times. The average of $C(Z, X)$ (resp. $C(X, X)$) over these repetitions is computed and denoted by $\overline{C}(\mathbf{Z}, \mathbf{X})$ (resp. $\overline{C}(\mathbf{X}, \mathbf{X})$). We consider the metric $\overline{C}(\mathbf{Z}, \mathbf{X})/\overline{C}(\mathbf{X}, \mathbf{X})$, depicted in Figure [1](#page-5-1) (see also Figure [3](#page-13-0) in Appendix for $\overline{C}(\mathbf{Z}, \mathbf{X})$).

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 Results. Figure [1](#page-5-1) shows the renormalized quantity $\overline{C}(\mathbf{Z}, \mathbf{X})/\overline{C}(\mathbf{X}, \mathbf{X})$ as a function of n. We notice that the asymptotic for $K = 5$ is different since it is the only one where the distance between SMOTE data points and original data points does not vary with n . Besides, this distance is smaller than the other ones, thus stressing out that the SMOTE data points are very close to the original distribution for $K = 5$. Note that, for the other asymptotics in K , the diversity of SMOTE observations increases with *n*, meaning $C(\mathbf{Z}, \mathbf{X})$ gets closer from $\overline{C}(\tilde{\mathbf{X}}, \mathbf{X})$. This behavior in terms of average distance is ideal, since $\ddot{\textbf{X}}$ is drawn from the same theoretical distribution as X. On the contrary, $K = 5$ keeps a lower average distance,

Figure 1: $\bar{C}(\mathbf{Z}, \mathbf{X}) / \bar{C}(\tilde{\mathbf{X}}, \mathbf{X})$ with $\mathcal{U}([-3, 3]^2)$.

296 297 298 299 300 301 showing a lack of diversity of generated points. Besides, this diversity is asymptotically more important for $K = 0.1n$ and $K = 0.01n$. This corroborates our theoretical findings (Theorem [3.2\)](#page-3-1) as these asymptotics do not satisfy $K/n \to 0$. Indeed, when K is set to a fraction of n, the SMOTE distribution does not converge to the original distribution anymore, therefore generating data points that are not simple copies of the original uniform samples. By construction, SMOTE data points are close to central points, which may explain why the quantity of interest in Figure [1](#page-5-1) is smaller than 1.

302 303 304 305 306 307 308 309 Extension to real-world data sets We extended our protocol to a real-world data set by splitting the data into two sets of equal size X and X . The first one is used for applying SMOTE strategies to sample Z and the other set is used to compute the normalization factor $\overline{C}(\mathbf{X}, \mathbf{X})$. More details about this variant of the protocol are available on Appendix [A.](#page-13-1)

310 311 312 313 314 315 316 Results We apply the adapted protocol to Phoneme data set, described in Table [1.](#page-6-0) Fig-ure [2](#page-5-2) displays the quantity $\overline{C}(\mathbf{Z}, \mathbf{X})/\overline{C}(\mathbf{X}, \mathbf{X})$ as a function of the size n of the minority class. As above, we observe in Figure [2](#page-5-2) that the average normalized distance $\overline{C}(\mathbf{Z}, \mathbf{X})/\overline{C}(\mathbf{X}, \mathbf{X})$ increases for all strategies but the one with $K =$

317 318 Figure 2: $\overline{C}(\mathbf{Z}, \mathbf{X})/\overline{C}(\mathbf{X}, \mathbf{X})$ with Phoneme data. 5. The strategies using a value of hyperparameter K such that $K/n \to 0$ seem to converge to a value smaller than all the strategies with K such that $K/n \nrightarrow 0$.

4 PREDICTIVE EVALUATION ON REAL-WORLD DATA SETS

321 322 323

319 320

In this section, we first describe the different rebalancing strategies and the two new ones we propose. Then, we describe our experimental protocol before discussing our results.

324 325 4.1 REBALANCING STRATEGIES

326 327 328 329 Class-weight (CW) [Model-level strategy] The class weighting strategy assigns the same weight (choosen as hyperparameter) to each minority samples. The default setting for this strategy is to choose a weight ρ such that $\rho n = N - n$, where n and $N - n$ are respectively the number of minority and majority samples in the data set.

330 331 332 333 334 Over/Under Sampling strategies [Non-synthetic data-level strategies] Random Under Sampling (RUS) acts on the majority class by selecting uniformly without replacement several samples in order to obtain a prespecified size for the majority class. Similarly, Random Over Sampling (ROS) acts on the minority class by selecting uniformly with replacement several samples to be copied in order to obtain a prespecified size for the minority class.

335 336 337 338 339 340 341 342 343 NearMissOne [Non-synthetic data-level strategy] NearMissOne is an undersampling procedure. For each sample X_i in the majority class, the averaged distance of X_i to its K nearest neighbors in the minority class is computed. Then, the samples X_i are ordered according to this averaged distance. Finally, iteratively, the first X_i is dropped until the given number/ratio is reached. Consequently, the X_i with the smallest mean distance are dropped firstly.

344 345 346 347 348 349 350 351 Borderline SMOTE 1 and 2 [Synthetic data-level strategies] Borderline SMOTE 1 [\(Han et al., 2005\)](#page-11-8) procedure works as follows. For each individual X_i in the minority class, let $m_-(X_i)$ be the number of samples of the majority class among the m nearest neighbors of X_i , where m is a hyperparameter. For all X_i in the minority class such that $m/2 \leq m_-(X_i) < m$, generate q successive sam-

Table 1: Initial data sets.

352 353 354 355 ples $Z = W X_i + (1 - W) X_k$ where $W \sim \mathcal{U}([0, 1])$ and X_k is selected among the K nearestneighbors of X_i in the minority class. In Borderline SMOTE 2 [\(Han et al., 2005\)](#page-11-8), the selected neighbor X_k is chosen from the neighbors of both positive and negative classes, and Z is sampled with $W \sim \mathcal{U}([0, 0.5]).$

356 The limitations of SMOTE highlighted in Section [3](#page-2-0) drive us to two new rebalancing strategies.

357 358 359 360 361 362 363 364 365 CV SMOTE [Synthetic data-level strategy] We introduce a new algorithm, called CV SMOTE, that finds the best hyperparameter K among a prespecified grid via a 5-fold crossvalidation procedure. The grid is composed of the set $\{1, 2, \ldots, 15\}$ extended with the values $[0.01n_{train}]$, $[0.1n_{train}]$, $[0.5n_{train}]$, $[0.7n_{train}]$ and $[\sqrt{n_{train}}]$, where n_{train} is the number of minority samples in the training set. Recall that through Theorem [3.5,](#page-3-3) we show that SMOTE procedure with the default value $K = 5$ asymptotically copies the original samples. The idea of CV SMOTE is then to test several (larger) values of K in order to avoid duplicating samples, therefore improving predictive performances. CV SMOTE is one of the simplest ideas to solve some SMOTE limitations, which were highlighted theoretically in Section [3.](#page-2-0)

366 367 368 369 370 371 372 373 Multivariate Gaussian SMOTE(K) (MGS) [Synthetic data-level strategy] We introduce a new oversampling strategy in which new samples are generated from the distribution $\mathcal{N}(\hat{\mu}, \Sigma)$, where the empirical mean $\hat{\mu}$ and covariance matrix Σ are estimated using the K neighbors and the central point (see Algorithm [2](#page-7-0) for details). By default, we choose $K = d + 1$, so that estimated covariance matrices can be of full rank. MGS produces more diverse synthetic observations than SMOTE as they are spread in all directions (in case of full-rank covariance matrix) around the central point. Besides, sampling from a normal distribution may generate points outside the convex hull of the nearest neighbors.

374

376

375 4.2 PRELIMINARY RESULTS

377 Initial data sets We employ classical tabular data sets already used in [Grinsztajn et al.](#page-11-6) [\(2022\)](#page-11-6). We also used some data sets from UCI Irvine (see [Dua & Graff, 2017;](#page-10-13) [Grinsztajn et al.,](#page-11-6) **378 379 380 381** [2022\)](#page-11-6) and other public data sets such as Phoneme [\(Alinat, 1993\)](#page-10-14) and Credit Card [\(Dal Poz](#page-10-8)[zolo et al., 2015\)](#page-10-8). All data sets are described in Table [1](#page-6-0) and we call them *initial data sets*. As we want to compare several rebalancing methods including SMOTE, originally designed to handle continuous variables only, we have removed all categorical variables in each data set.

382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 Protocol We compare the different rebalancing strategies on the initial data sets of Table [1.](#page-6-0) We employ a 5-fold stratified cross-validation, and apply each rebalancing strategy on four training folds, in order to obtain the same number of minority/majority samples. Then, we train a Random Forest classifier (showing good predictive performance, see [Grinsztajn et al., 2022\)](#page-11-6) on the same folds, and evaluate its performance on the remaining fold, via the ROC AUC. Results are averaged over the five test folds and over 20 repetitions of the cross-validation. We use the RandomForestClassifier module in *scikit-learn* [\(Pedregosa et al., 2011\)](#page-12-15) and tune the tree depth (when desired) via nested cross-

Algorithm 2 Multivariate Gaussian SMOTE iteration.

Input: Minority class samples X_1, \ldots, X_n , number K of nearest-neighbors. Select uniformly X_c among X_1, \ldots, X_n . Denote by I the set composed of the $K + 1$ nearest-neighbors of X_c among X_1, \ldots, X_n including X_c (w.r.t. L_2 norm). $\hat{\mu} \leftarrow \frac{1}{K+1} \sum$ x∈I \boldsymbol{x} $\hat{\Sigma} \leftarrow \frac{1}{K+1} \sum_{\mathbf{q}}$ x∈I $(x-\hat{\mu})^T(x-\hat{\mu})$ Sample $Z \sim \mathcal{N}(\hat{\mu}, \hat{\Sigma})$ Return Z

397 398 validation [Cawley & Talbot](#page-10-15) [\(2010\)](#page-10-15). We use the implementation of *imb-learn* (Lemaître et al., 2017) for the state-of-the-art rebalancing strategies (see Appendix [A.2](#page-13-2) for implementation details).

399 400 401 402 403 404 405 406 407 408 None is competitive for low imbalanced data sets For 10 initial data sets out of 13, applying no strategy is the best, probably highlighting that the imbalance ratio is not high enough or the learning task not difficult enough to require a tailored rebalancing strategy. Therefore, considering only continuous input variables, and measuring the predictive performance with ROC AUC, we observe that dedicated rebalancing strategies are not required for most data sets. While the performance without applying any strategy was already perceived in the literature (see, e.g., [Han et al., 2005;](#page-11-8) [He](#page-11-7) [et al., 2008\)](#page-11-7), we believe that our analysis advocates for its broad use in practice, at least as a default method. Note that for these 10 data sets, qualified as low imbalanced, applying no rebalancing strategy is on par with the CW strategy, one of the most common rebalancing strategies (regardless of tree depth tuning, see Table [5](#page-16-0) and Table [7\)](#page-17-0).

- **409**
- **410 411**

412

4.3 EXPERIMENTS ON HIGHLY IMBALANCED DATA SETS

413 414 415 416 417 418 419 420 421 422 Strengthening the imbalance To analyze what could happen for data sets with higher imbalance ratio, we subsample the minority class for each one of the initial data sets mentioned above, so that the resulting imbalance ratio is set to 20% , 10% or 1% (when possible, taking into account dimension d). By doing so, we reproduce the high imbalance that is often encountered in practice (see He $\&$ [Garcia, 2009\)](#page-11-5). We apply our subsampling strategy once for each data set and each imbalance ratio in a nested fashion, so that the minority samples of the 1% data set are included in the minority samples of the 10% data set. The new data sets thus obtained are called *subsampled data sets* and presented in Table [4](#page-14-0) in Appendix [A.2.](#page-13-2) For the sake of brevity, we display in Table [2](#page-8-0) the data sets among the initial and subsampled for which the None strategy is not the best (up to its standard deviation). The others are presented in Table [5](#page-16-0) in Appendix [A.3.](#page-15-0)

423 424 425 426 Hereafter, we discuss the performances of rebalancing methods presented in Table [2.](#page-8-0) We remark that the included data sets correspond to the most imbalanced subsampling for each data set, or simply the initial data set in case of high initial imbalance. Therefore, in the following, we refer to them as *highly imbalanced data sets*.

427 428 429 430 431 Performances on highly imbalanced data sets Whilst in the vast majority of experiments, applying no rebalancing is among the best approaches to deal with imbalanced data (see Table [5\)](#page-16-0), it seems to be outperformed by dedicated rebalancing strategies for highly imbalanced data sets (Table [2\)](#page-8-0). Surprisingly, most rebalancing strategies do not benefit drastically from tree depth tuning, with the notable exceptions of applying no rebalancing and CW (see the differences between Table [2](#page-8-0) and Table [6\)](#page-16-1).

432 433 434 435 Table 2: Highly imbalanced data sets ROC AUC (max depth tuned with ROC AUC). Only data sets whose ROC AUC of at least one rebalancing strategy is larger than that of None strategy plus its standard deviation are displayed. Undersampled data sets are in italics. Standard deviations are displayed in Table [10.](#page-18-0)

Strategy	None	CW	RUS	ROS	Near	BS ₁	BS ₂	SMOTE	CV	MGS
					Miss ₁				SMOTE	$(d+1)$
CreditCard (0.2%)		0.966 0.967 0.970			0.935 0.892	0.949	0.944	0.947	0.954	0.952
Abalone (1%)	0.764		0.748 0.735		0.722 0.656	0.744	0.753	0.741	0.791	0.802
Phoneme (1%)	0.897		0.868 0.868		0.858 0.698	0.867	0.869	0.888	0.924	0.915
Yeast (1%)		0.925 0.920 0.938			0.908 0.716	0.949	0.954	0.955	0.942	0.945
Wine (4%)		0.928 0.925 0.915			0.924 0.682	0.933 0.927		0.934	0.938	0.941
Pima (20%)	0.798		0.808 0.799	0.790	0.777	0.793	0.788	0.789	0.787	0.787
Haberman (10%)	0.708	0.709	0.720	0.704	0.697	0.723	0.721	0.719	0.742	0.744
$MagicTel$ (20%)	0.917	0.921	0.917	0.922	0.649	0.920	0.905	0.921	0.919	0.913
<i>California</i> (1%)	0.887	0.877	0.880	0.883	0.630		0.885 0.874	0.906	0.916	0.923

455 Re-weighting strategies RUS, ROS and CW are similar strategies in that they are equivalent to applying weights to the original samples. When random forests with default parameters are applied, we see that ROS and CW have the same predictive performances (see Table [6\)](#page-16-1). This was expected, as ROS assigns random weights to minority samples, whose expectation is that of the weights produced by CW. More importantly, RUS has better performances than both ROS and CW. This advocates for the use of RUS among these three rebalancing methods, as RUS produces smaller data sets, thus resulting in faster learning phases. We describe another benefit of RUS in the next paragraph.

456 457 458 459 460 461 462 Implicit regularization The good performances of RUS, compared to ROS and CW, may result from the implicit regularization of the maximum tree depth. Indeed, fewer samples are available after the undersampling step, which makes the resulting trees shallower, as by default, each leaf contains at least one observation. When the maximum tree depth is fixed, RUS, ROS and CW strategies have the same predictive performances (see Table [8](#page-17-1) or Table [9\)](#page-18-1). Similarly, when the tree depth is tuned, the predictive performances of RUS, ROS and CW are smoothed out (see Table [2\)](#page-8-0). This highlights the importance of implicit regularization on RUS good performances.

463 464 465 466 467 468 469 470 SMOTE and CV-SMOTE Default SMOTE ($K = 5$) has a tendency to duplicate original observations, as shown by Theorem [3.5.](#page-3-3) This behavior is illustrated through our experiments when the tree depth is fixed. In this context, SMOTE $(K = 5)$ has the same behavior as ROS, a method that copies original samples (see Table [8](#page-17-1) or Table [9\)](#page-18-1). When the tree depth is tuned, SMOTE may exhibit better performances compared to reweighting methods (ROS, RUS, CW), probably due to a higher tree depth. Indeed, even if synthetic data are close to the original samples, they are distinct and thus allow for more splits in the tree structure. However, as expected, CV SMOTE performances are higher than default SMOTE ($K = 5$) on most data sets (see Table [2\)](#page-8-0).

471 472 473 474 475 476 MGS Our second new publicly available ^{[3](#page-8-1)} strategy exhibits good predictive performances (best performance in 4 out of 9 data sets in Table [2\)](#page-8-0). This could be explained by the Gaussian sampling of synthetic observations that allows generating data points outside the convex hull of the minority class, therefore limiting the border phenomenon, established in Theorem [3.7.](#page-4-1) Note that with MGS, there is no need of tuning the tree depth: predictive performances of default RF are on par with tuned RF. Thus, MGS is a promising new strategy.

477 478

485

4.4 SUPPLEMENTARY RESULTS

479 480 481 482 483 484 Logistic Regression When replacing random forests with Logistic regression in the above protocol (see Table [15\)](#page-22-0), we still do not observe strong benefits of using a rebalancing strategies for most data sets. We compared in Table [17](#page-23-0) the LDAM and Focal losses intended for long-tailed learning, using PyTorch. Table [17](#page-23-0) shows that Focal loss performances are on par with the None strategy ones, while the performances of LDAM are significantly lower. Such methods do not seem promising for binary classification on tabular data, for which they were not initially intended.

³https://github.com/anonymous8880/smote_study

486 487 488 489 490 LightGBM - ROC AUC We apply the same protocol as in Section [4.2,](#page-6-1) using LightGBM (a second-order boosting algorithm, see [Ke et al., 2017\)](#page-11-13) instead of random forests. Again, only data sets such that None strategy is not competitive (in terms of ROC AUC) are displayed in Table [3](#page-9-0) (the remaining ones can be found in Table [20\)](#page-26-0). In Table [3,](#page-9-0) we note that our introduced strategies, CV-SMOTE and MGS, display good predictive results.

Table 3: LightGBM ROC AUC. Only data sets whose ROC AUC of at least one rebalancing strategy is larger than that of None strategy plus its standard deviation are displayed. Undersampled data sets are in italics. Standard deviations are displayed in Table [20.](#page-26-0)

PR AUC As above, we apply exactly the same protocol as described in Section [4.2](#page-6-1) using the PR AUC metric instead of the ROC AUC. The results are displayed in Table [13](#page-20-0) and Table [14](#page-21-0) for tuned random forests. For LightGBM classifiers, results are available in Table [18](#page-24-0) and Table [19.](#page-25-0) Again, we only focus on data sets such that None strategy is not competitive (in terms of PR AUC). In Table [13,](#page-20-0) for random forests tuned on PR AUC, we remark that CV-SMOTE exhibits good performances, being among the best rebalancing strategy for 3 out of 4 data sets. For LightGBM classifier, in Table [18,](#page-24-0) we note that our introduced strategies, CV-SMOTE and MGS, display good predictive results.

5 CONCLUSION AND PERSPECTIVES

514 515 516 517 518 519 520 521 522 523 524 525 In this paper, we analyzed the impact of rebalancing strategies on predictive performance for binary classification tasks on tabular data. First, we prove that default SMOTE tends to copy the original minority samples asymptotically, and exhibits boundary artifacts, thus justifying several SMOTE variants. From a computational perspective, we show that applying no rebalancing is competitive for most datasets, when used in conjunction with a tuned random forest/Logistic regression/LightGBM, whether considering the ROC AUC or PR AUC as metric. For highly imbalanced data sets, rebalancing strategies lead to improved predictive performances, with or without tuning the maximum tree depth. The SMOTE variants we propose, CV-SMOTE and MGS, appear promising, with good predictive performances regardless of the hyperparameter tuning of random forests. Besides, our analysis sheds some lights on the performances of reweighting strategies (ROS, RUS, CW) and an implicit regularization phenomenon occurring when such rebalancing methods are used with random forests.

526 527 528 529 More analyses need to be carried out in order to understand the influence of MGS parameters (regularization of the covariance matrices, number of nearest neighbors...). We also plan to extend our new MGS method to handle categorical features, and compare the different rebalancing strategies in presence of continuous and categorical input variables.

530 531

- **532**
- **533**
- **534**
- **535**
- **536**
- **537**
- **538**
- **539**

540 541 REFERENCES

548

551

553

560

584 585 586

592

- **542 543 544** Anass Aghbalou, Anne Sabourin, and François Portier. Sharp error bounds for imbalanced classification: how many examples in the minority class? In *International Conference on Artificial Intelligence and Statistics*, pp. 838–846. PMLR, 2024.
- **545 546 547** Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. *Machine learning*, pp. 1–79, 2023.
- **549 550** Pierre Alinat. Periodic progress report 4, roars project esprit ii-number 5516. *Technical Thomson Report TS ASM 93/S/EGS/NC*, 79, 1993.
- **552** Sylvain Arlot and Robin Genuer. Analysis of purely random forests bias. *arXiv preprint arXiv:1407.3939*, 2014.
- **554 555 556** Sunil Arya, David M Mount, and Onuttom Narayan. Accounting for boundary effects in nearest neighbor searching. In *Proceedings of the eleventh annual symposium on computational geometry*, pp. 336–344, 1995.
- **557 558 559** Thomas Benjamin Berrett. Modern k-nearest neighbour methods in entropy estimation, independence testing and classification. 2017. doi: 10.17863/CAM.13756. URL [https://www.](https://www.repository.cam.ac.uk/handle/1810/267832) [repository.cam.ac.uk/handle/1810/267832](https://www.repository.cam.ac.uk/handle/1810/267832).
- **561 562** Gérard Biau and Luc Devroye. *Lectures on the nearest neighbor method*, volume 246. Springer, 2015.
	- Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap. Dbsmote: density-based synthetic minority over-sampling technique. *Applied Intelligence*, 36:664–684, 2012.
- **567 568 569** Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with label-distribution-aware margin loss. *Advances in neural information processing systems*, 32, 2019.
- **570 571 572** Gavin C Cawley and Nicola LC Talbot. On over-fitting in model selection and subsequent selection bias in performance evaluation. *The Journal of Machine Learning Research*, 11:2079–2107, 2010.
- **573 574 575** Kamalika Chaudhuri, Kartik Ahuja, Martin Arjovsky, and David Lopez-Paz. Why does throwing away data improve worst-group error? In *International Conference on Machine Learning*, pp. 4144–4188. PMLR, 2023.
- **576 577 578** Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.

579 580 581 582 583 Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer. Smoteboost: Improving prediction of the minority class in boosting. In *Knowledge Discovery in Databases: PKDD 2003: 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003. Proceedings 7*, pp. 107–119. Springer, 2003.

- Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning from imbalanced data sets. *ACM SIGKDD explorations newsletter*, 6(1):1–6, 2004.
- **587 588 589** Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating probability with undersampling for unbalanced classification. In *2015 IEEE symposium series on computational intelligence*, pp. 159–166. IEEE, 2015.
- **590 591** Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL [http://archive.](http://archive.ics.uci.edu/ml) [ics.uci.edu/ml](http://archive.ics.uci.edu/ml).
- **593** Dina Elreedy and Amir F Atiya. A comprehensive analysis of synthetic minority oversampling technique (smote) for handling class imbalance. *Information Sciences*, 505:32–64, 2019.

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 Dina Elreedy, Amir F. Atiya, and Firuz Kamalov. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. *Machine Learning*, January 2023. ISSN 1573-0565. doi: 10.1007/s10994-022-06296-4. URL [https://doi.org/10.](https://doi.org/10.1007/s10994-022-06296-4) [1007/s10994-022-06296-4](https://doi.org/10.1007/s10994-022-06296-4). Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on typical tabular data? *Advances in neural information processing systems*, 35: 507–520, 2022. Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In *International conference on intelligent computing*, pp. 878–887. Springer, 2005. Charles R. Harris, K. Jarrod Millman, Stefan J. van der Walt, Ralf Gommers, Pauli Virtanen, ´ David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. *Nature*, 585(7825):357–362, September 2020. doi: 10.1038/ s41586-020-2649-2. URL <https://doi.org/10.1038/s41586-020-2649-2>. Amira Kamil Ibrahim Hassan and Ajith Abraham. Modeling insurance fraud detection using imbalanced data classification. In *Advances in Nature and Biologically Inspired Computing: Proceedings of the 7th World Congress on Nature and Biologically Inspired Computing (NaBIC2015) in Pietermaritzburg, South Africa, held December 01-03, 2015*, pp. 117–127. Springer, 2016. Haibo He and Edwardo A Garcia. Learning from imbalanced data. *IEEE Transactions on knowledge and data engineering*, 21(9):1263–1284, 2009. Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In *2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)*, pp. 1322–1328. Ieee, 2008. Jyoti Islam and Yanqing Zhang. Gan-based synthetic brain pet image generation. *Brain informatics*, 7:1–12, 2020. M Chris Jones. Simple boundary correction for kernel density estimation. *Statistics and computing*, 3:135–146, 1993. Firuz Kamalov, Amir F Atiya, and Dina Elreedy. Partial resampling of imbalanced data. *arXiv preprint arXiv:2207.04631*, 2022. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information processing systems*, 30, 2017. Mohammed Khalilia, Sounak Chakraborty, and Mihail Popescu. Predicting disease risks from highly imbalanced data using random forest. *BMC medical informatics and decision making*, 11:1–13, 2011. Bartosz Krawczyk. Learning from imbalanced data: open challenges and future directions. *Progress in Artificial Intelligence*, 5(4):221–232, 2016. Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. *Journal of Machine Learning Research*, 18(17):1–5, 2017. URL [http://jmlr.org/papers/v18/16-365.](http://jmlr.org/papers/v18/16-365.html) [html](http://jmlr.org/papers/v18/16-365.html). Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense ´ object detection. In *Proceedings of the IEEE international conference on computer vision*, pp. 2980–2988, 2017.

A EXPERIMENTS

702 703

747

704 705 706 Hardware For all the numerical experiments, we use the following processor : AMD Ryzen Threadripper PRO 5955WX: 16 cores, 4.0 GHz, 64 MB cache, PCIe 4.0. We also add access to 250GB of RAM.

A.1 NUMERICAL ILLUSTRATIONS

Figure 3: Average distance $C(\mathbf{Z}, \mathbf{X})$.

Results with $C(\mathbf{Z}, \mathbf{X})$ Figure [3](#page-13-0) depicts the quantity $C(\mathbf{Z}, \mathbf{X})$ as a function of the size of the minority class, for different values of K. The metric $C(\mathbf{Z}, \mathbf{X})$ is consistently smaller for $K = 5$ than for other values of K, therefore highlighting that data generated by SMOTE with $K = 5$ are closer to the original data sample. This phenomenon is strengthened as n increases. This is an artifact of the simulation setting as the original data samples fill the input space as n increases.

733 734 735 More details on the numerical illustrations protocol applied to real-world data sets We apply SMOTE on real-world data and compare the distribution of the generated data points to the original distribution, using the metric $\overline{C}(\mathbf{Z}, \mathbf{X})/\overline{C}(\mathbf{X}, \mathbf{X})$.

736 737 For each value of n , we subsample n data points from the minority class. Then,

- 1. We uniformly split the data set into $X_1, \ldots, X_{n/2}$ (denoted by **X**) and $\tilde{X}_1, \ldots, \tilde{X}_{n/2}$ (denoted by X).
- 2. We generate a data set **Z** composed of $m = n/2$ i.i.d new observations Z_1, \ldots, Z_m by applying SMOTE procedure on the original data set X , with different values of K . We compute $C(\mathbf{Z}, \mathbf{X})$.
- 3. We use $\hat{\mathbf{X}}$ in order to compute $C(\hat{\mathbf{X}}, \mathbf{X})$.

746 This procedure is repeated $B = 100$ times to compute averages values as in Section [3.3.](#page-4-2)

748 A.2 BINARY CLASSIFICATION PROTOCOL

749 750 751 752 753 754 General comment on the protocol For each data set, the ratio hyperparameters of each rebalancing strategy are chosen so that the minority and majority class have the same weights in the training phase. The main purpose is to apply the strategies exactly on the same data points (X_{train}) , then train the chosen classifier and evaluate the strategies on the same X_{test} . This objective is achieved by selecting each time 4 fold for the training, apply each of the strategies to these 4 exact same fold.

755 The state-of-the-art rebalancing strategies(see Lemaître et al., 2017) are used with their default hyperparameter values.

790

756

778 779 780 781 The subsampled data sets (see Table [4\)](#page-14-0) can be obtained through the repository (the functions and the seeds are given in a jupyter notebook). For the CreditCard data set, a Time Series split is performed instead of a Stratified 5−fold, because of the temporality of the data. Furthermore, a group out is applied on the different scope time value.

Table 4: Subsampled data sets.

782 783 784 For MagicTel and California data sets, the initial data sets are already balanced, leading to no opportunity for applying a rebalancing strategy. This is the reason why we do not include these original data sets in our study but only their subsampled associated data sets.

785 786 787 788 789 The max depth hyperparameter is tuned using GridSearch function from scikit-learn. The grids minimum is 5 and the grid maximum is the mean depth of the given strategy for the given data set (when random forest is used without tuning depth hyperparameter). Then, using numpy [\(Harris](#page-11-14) [et al., 2020\)](#page-11-14), a list of integer of size 8 between the minimum value and the maximum is value is built. Finally, the "None" value is added to this list.

791 792 793 794 Mean standard deviation For each protocol run, we computed the standard deviation of the ROC AUC over the 5-fold. Then, all of these 100 standard deviation are averaged in order to get what we call in some of our tables the mean standard deviations. On Table [10,](#page-18-0) Table [11](#page-19-0) and Table [17](#page-23-0) means standard deviation over 100 runs are displayed for each strategy (no averaging is performed).

795 796 797 798 799 CV SMOTE We also apply our protocol for SMOTE with values of hyperparameter K depending on the number of minority inside the training set. The results are shown on both Table [12](#page-20-1) and Table [16.](#page-23-1) As expected, CV SMOTE is most of the time the best strategy among the SMOTE variants for highly imbalanced data sets. This another illustration of our Theorem [3.5.](#page-3-3)

800 801 802 803 804 805 806 More results about None strategy from seminal papers Several seminal papers already noticed that the None strategy was competitive in terms of predictive performances. [He et al.](#page-11-7) [\(2008\)](#page-11-7) compare the None strategy, ADASYN and SMOTE, followed by a decision tree classifier on 5 data sets (including Vehicle, Pima, Ionosphere and Abalone). In terms of Precision and F1 score, the None strategy is on par with the two other rebalancing methods. [Han et al.](#page-11-8) [\(2005\)](#page-11-8) study the impact of Borderline SMOTE and others SMOTE variant on 4 data sets (including Pima and Haberman). The None strategy is competitive (in terms of F1 score) on two of these data sets.

807

808 809 Random forests - PR AUC We apply exactly the same protocol as described in Section [4.2](#page-6-1) but using the PR AUC metric instead of the ROC AUC. Data sets such that the None strategy is not competitive (in terms of PR AUC) are displayed in Table [13,](#page-20-0) others can be found in Table [14.](#page-21-0) As

 for the ROC AUC metric, None and CW strategies are competitive for a large number of data sets (see Table [14\)](#page-21-0). Furthermore, in Table [13,](#page-20-0) CV-SMOTE exhibits good performances, being among the best rebalancing strategy for 3 out of 4 data sets.

 LightGBM - PR AUC As above, we apply the same protocol as in Section [4.2,](#page-6-1) using the PR AUC metric instead of the ROC AUC and LightGBM (a second-order boosting algorithm, see [Ke et al.,](#page-11-13) [2017\)](#page-11-13) instead of random forests. Again, only data sets such that None strategy is not competitive (in terms of PR AUC) are displayed in Table [18](#page-24-0) (the remaining ones can be found in Table [19\)](#page-25-0). In Table [18,](#page-24-0) we note that our introduced strategies, CV-SMOTE and MGS, display good predictive results.

The classification experiments needed 2 months of calculation time.

A.3 ADDITIONAL EXPERIMENTS

 Tables The tables in appendix can be divided into 3 categories. First, we have the tables related to random forests. Then the tables related to logistic regression. Finally, we have the tables of LightGBM classifiers. Here are some details fore each group:

- Random Forest: In Table [5,](#page-16-0) ROC AUC of the data sets not presented Table [2](#page-8-0) are displayed (using tuned forest on ROC AUC for both). In Table [6](#page-16-1) and Table [7,](#page-17-0) ROC AUC of default random forests are displayed for all the data sets. In Table [8](#page-17-1) and Table [9](#page-18-1) are displayed default random forests ROC AUC with a max tree depth fixed to respectively 5 and the value of RUS depth. Table [10](#page-18-0) and Table [11](#page-19-0) illustrate respectively the same setting as Table [2](#page-8-0) and Table [5](#page-16-0) with the standard deviation displayed. In Table [12,](#page-20-1) the ROC AUC of several SMOTE strategies with various K hyperparameter value are displayed using defaults random forests for all data sets. PR AUC of tuned random forests on PR AUC are displayed in Table [13](#page-20-0) and Table [14.](#page-21-0)
- Logistic Regression: Table [15](#page-22-0) display ROC AUC of several rebalancing strategies when using Logistic regression. In Table [16,](#page-23-1) the ROC AUC of several SMOTE strategies with various K hyperparameter value are displayed using logistic regression for all data sets. Table [17](#page-23-0) shows ROC AUC of None, LDAM and Focal loss strategies when using a logistic regression reimplemented using PyTorch.
	- LightGBM: The PR AUC and ROC AUC of the remaining data sets when using Light-GBM classifiers are displayed respectively in Table [18/](#page-24-0)Table [19](#page-25-0) and Table [20.](#page-26-0)

Table 5: Remaining data sets (without those of Table [2\)](#page-8-0). Random Forest (max_depth= tuned with ROC AUC) ROC AUC for different rebalancing strategies and different data sets. Other data sets are presented in Table [2.](#page-8-0) The best strategy is highlighted in bold for each data set. Standard deviations are available on Table [11.](#page-19-0)

Strategy	None	CW	RUS	ROS	Near	B _{S1}	BS ₂	SMOTE	CV	MGS
					Miss1				SMOTE	$(d+1)$
Phoneme	0.962	0.961	0.951	0.962 0.910		0.960	0.961	0.962	0.961	0.959
Phoneme (20%)	0.952	0.952	0.935	0.953	0.793	0.950	0.951	0.953	0.953	0.949
Phoneme (10%)	0.936	0.935	0.909	0.936	0.664	0.933	0.932	0.935	0.938	0.932
Pima	0.833	0.832	0.828	0.823	0.817	0.814	0.811	0.820	0.824	0.826
Yeast	0.968	0.971	0.971	0.968	0.921	0.964	0.965	0.968	0.969	0.968
Haberman	0.686	0.686	0.685	0.673	0.686	0.682	0.670	0.681	0.690	0.698
California (20%)	0.956	0.955	0.951	0.956	0.850	0.953	0.947	0.955	0.956	0.954
California (10%)	0.948	0.946	0.940	0.948	0.775	0.945	0.934	0.947	0.950	0.948
House _{-16H}	0.950	0.950	0.948	0.950	0.899	0.945	0.942	0.948	0.949	0.948
<i>House</i> $16H_{(20\%)}$	0.950	0.949	0.946	0.949	0.835	0.943	0.938	0.946	0.947	0.946
<i>House</i> $16H_{(10\%)}$	0.945	0.943	0.940	0.944	0.717	0.939	0.931	0.939	0.942	0.937
<i>House_16H</i> (1%)	0.906	0.893	0.902	0.885	0.600	0.894	0.896	0.898	0.905	0.889
Vehicle	0.995	0.994	0.990	0.994	0.978	0.994	0.993	0.994	0.995	0.995
Vehicle (10%)	0.992	0.991	0.982	0.989	0.863	0.991	0.989	0.992	0.993	0.994
Ionosphere	0.978	0.978	0.974	0.978	0.945	0.978	0.978	0.978	0.977	0.976
$Ionosphere (20\%)$	0.988	0.986	0.974	0.987	0.881	0.981	0.974	0.981	0.983	0.983
$\textit{Ionosphere}\ (10\%)$	0.988	0.983	0.944	0.981	0.822	0.972	0.962	0.966	0.967	0.968
Breast Cancer	0.994	0.993	0.993	0.993	0.994	0.992	0.992	0.993	0.994	0.993
Breast Cancer (20%)	0.996	0.995	0.994	0.995	0.997 0.994		0.993	0.995	0.996	0.996
Breast Cancer (10%)	0.997	0.996	0.994	0.996	0.997 0.993		0.992	0.996	0.997	0.997

893 894 895

- **896**
- **897 898**

899

900 901

902

903 904 905

908

906 907

909 910 911

912 913

914 915

916

917

Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS Miss1 SMOTE $(d+1)$ CreditCard (0.2%) (±0.003) 0.930 0.927 0.968 0.932 0.887 0.933 0.941 0.950 0.961 0.953 Abalone $(1\%) (\pm 0.018)$ 0.716 0.698 0.732 0.699 0.652 0.745 0.754 0.744 0.777 0.805 *Phoneme* (1%) (±0.020) 0.852 0.851 0.864 0.840 0.690 0.859 0.863 0.883 0.893 0.913 *Yeast* (1%) (±0.020) 0.914 0.926 0.922 0.919 0.711 0.936 0.954 0.936 0.954 0.932 Wine $(4\%) (\pm 0.008)$ 0.926 0.923 0.917 0.927 0.693 0.934 0.927 0.934 0.935 0.939 *Pima* (20%) (±0.009) 0.777 0.791 0.796 0.787 0.767 0.791 0.790 0.789 0.786 0.786 *Haberman* (10%) (±0.028) 0.680 0.685 0.709 0.688 0.697 0.716 0.713 0.721 0.735 0.736 *MagicTel* (20%) (±0.001) 0.917 **0.921** 0.917 **0.921** 0.650 0.920 0.905 **0.921 0.921** 0.913 *California* (1%) (±0.009) 0.857 0.871 0.881 0.637 0.883 0.876 0.904 0.908 0.921 0.874

Table 6: Highly imbalanced data sets. Random Forest (max depth= ∞) ROC AUC for different rebalancing strategies and different data sets. Data sets artificially undersampled for minority class are in italics. Other data sets are presented in Table [7.](#page-17-0) Mean standard deviations are computed.

919 920

921

923 924 925

922

Table 7: Remaining data sets (without those of Table [2\)](#page-8-0). Random Forest (max depth=∞) ROC AUC for different rebalancing strategies and different data sets. Only datasets such that the None strategy is on par with the best strategies are displayed. Other data sets are presented in Table [6.](#page-16-1) Mean standard deviations are computed. The best strategy is highlighted in bold for each data set.

Table 8: Highly imbalanced data sets. ROC AUC Random Forest with max depth=5.

969

970

Table 9: Highly imbalanced data sets. ROC AUC Random Forest with max_depth=RUS. On the last column, the value of maximal depth when using Random forest (max depth=∞) with RUS strategy for each data set.

Strategy	None	CW	RUS	ROS.	Near BS1 Miss ₁	BS ₂	SMOTE	CV.	MGS SMOTE $(d+1)$	depth
CreditCard (0.2%)(\pm 0.002) 0.954 0.950 0.970 0.970 0.893 0.960 0.962 0.972 0.972 0.962 10										
Abalone $(1\%) (\pm 0.017)$									0.770 0.750 0.733 0.729 0.656 0.762 0.758 0.744 0.761 0.795 7	
<i>Phoneme</i> $(1\%)(\pm 0.014)$							0.897 0.874 0.872 0.869 0.695 0.869 0.858 0.887 0.880		$0.894\;6$	
Yeast $(1\%)(\pm 0.021)$									0.928 0.927 0.928 0.893 0.725 0.924 0.919 0.934 0.925 0.945 3	
Wine $(4\%) (\pm 0.006)$							0.927 0.922 0.915 0.925 0.665 0.923 0.913 0.923 0.925 0.923			10
<i>Pima</i> $(20\%) (\pm 0.009)$							0.784 0.797 0.793 0.790 0.768 0.792 0.789 0.792 0.792		0.790	10
<i>Haberman</i> $(10\%) (\pm 0.028)$	0.696						0.711 0.713 0.721 0.690 0.737 0.729 0.740 0.748		$0.752 - 7$	
<i>MagicTel</i> $(20\%) (\pm 0.001)$	0.917						0.920 0.917 0.921 0.651 0.919 0.905 0.921 0.921 0.913			-20
<i>California</i> $(1\%) (\pm 0.009)$	0.895						0.871 0.877 0.875 0.639 0.876 0.859 0.884 0.903		0.913 10	

1000 Table 10: Table [2](#page-8-0) with standard deviations over 100 runs. Random Forest (max_depth=tuned with ROC AUC) ROC AUC for different rebalancing strategies and different data sets. The best strategies are displayed in bold are displayed.

Strategy	None	CW	RUS	ROS	Near Miss1	BS ₁	BS ₂	SMOTE	CV SMOTE
CreditCard (0.2%)	0.966	0.967	0.970	0.935	0.892	0.949	0.944	0.947	0.954
std	±0.003	±0.003	±0.003	±0.003	±0.005	±0.005	±0.006	± 0.004	±0.003
Abalone (1%)	0.764	0.748	0.735	0.722	0.656	0.744	0.753	0.741	0.791
std	±0.021	±0.021	±0.021	±0.021	±0.033	±0.025	±0.019	±0.019	±0.018
Phoneme (1%)	0.897	0.868	0.868	0.858	0.698	0.867	0.869	0.888	0.924
std	±0.015	±0.018	±0.015	± 0.02	±0.030	±0.026	±0.023	±0.020	±0.014
Yeast (1%)	0.925	0.920	0.938	0.908	0.716	0.949	0.954	0.955	0.942
std	± 0.017	±0.030	±0.026	±0.021	±0.069	±0.0220	±0.009	±0.016	±0.021
Wine (4%)	0.928	0.925	0.915	0.924	0.682	0.933	0.927	0.934	0.938
std	±0.007	±0.008	±0.005	±0.008	±0.013	±0.007	±0.008	±0.006	±0.006
Pima (20%)	0.798	0.808	0.799	0.790	0.777	0.793	0.788	0.789	0.787
std	±0.009	±0.008	±0.010	±0.009	±0.007	±0.009	±0.008	±0.008	±0.007
Haberman (10%)	0.708	0.709	0.720	0.704	0.697	0.723	0.721	0.719	0.742
std	±0.027	±0.029	±0.040	±0.024	±0.038	±0.027	±0.027	±0.024	±0.022
$MagicTel$ (20%)	0.917	0.921	0.917	0.922	0.649	0.920	0.905	0.921	0.919
std	±0.001	±0.001	±0.001	±0.001	±0.005	±0.001	±0.002	±0.001	±0.001
<i>California</i> (1%)	0.887	0.877	0.880	0.883	0.630	0.885	0.874	0.906	0.916
std	±0.010	±0.013	±0.010	± 0.011	±0.012	± 0.014	±0.013	±0.011	±0.007
<i>House</i> $16H_{(1\%)}$	0.906	0.893	0.902	0.885	0.600	0.894	0.896	0.898	0.905
std	±0.006	±0.006	±0.006	±0.007	±0.018	±0.008	±0.006	±0.006	±0.005

1027

1028

1029

1030 1031

1032 1033 1034 Table 11: Table [5](#page-16-0) with standard deviations over 100 runs. Random Forest (max depth=tuned with ROC AUC) ROC AUC for different rebalancing strategies and different data sets. The best strategies are displayed in bold.

Strategy	None	CW	RUS	ROS	Near Miss1	BS ₁	BS ₂	SMOTE	CV SMOTE	MGS $(d+1)$
Phoneme	0.962	0.961	0.951	0.962	0.910	0.960	0.961	0.962	0.961	0.959
std	±0.001	±0.001	±0.001	± 0.001	±0.003	±0.001	±0.001	±0.001	±0.001	±0.001
Phoneme (20%)	0.952	0.952	0.935	0.953	0.793	0.950	0.951	0.953	0.953	0.949
std	±0.001	±0.001	±0.002	± 0.001	± 0.014	± 0.001	±0.001	±0.001	±0.001	±0.001
Phoneme (10%)	0.936	0.935	0.909	0.936	0.664	0.933	0.932	0.935	0.938	0.932
std Pima	± 0.003 0.833	±0.003 0.832	±0.005 0.828	±0.003 0.823	±0.013 0.817	±0.003 0.814	±0.004 0.811	±0.003 0.820	±0.003 0.824	± 0.003 0.826
std	±0.004	±0.004	±0.004	±0.005	±0.004	±0.005	±0.005	±0.007	±0.006	±0.006
Yeast	0.968	0.971	0.971	0.968	0.921	0.964	0.965	0.968	0.969	0.968
std	± 0.003	±0.002	±0.002	±0.004	±0.005	±0.004	±0.003	±0.004	±0.004	±0.003
Haberman	0.686	0.686	0.685	0.673	0.686	0.682	0.670	0.681	0.690	0.698
std	± 0.020	± 0.015	±0.025	± 0.015	± 0.012	±0.016	± 0.014	±0.012	±0.015	± 0.014
California (20%)	0.956	0.955	0.951	0.956	0.850	0.953	0.947	0.955	0.956	0.954
std	± 0.001	±0.001	± 0.001	± 0.001	±0.002	± 0.001	±0.001	±0.001	±0.001	±0.001
California (10%)	0.948	0.946	0.940	0.948	0.775	0.945	0.934	0.947	0.950	0.948
std	±0.002	±0.002	±0.002	± 0.001	±0.004	±0.001	±0.002	±0.001	± 0.001	±0.001
House _{-16H}	0.950	0.950	0.948	0.950	0.899	0.945	0.942	0.948	0.949	0.948
std	±0.001 0.950	±0.001 0.949	± 0.001 0.946	±0.001 0.949	± 0.001 0.835	± 0.001 0.943	±0.001 0.938	±0.001 0.946	± 0.001 0.947	±0.001 0.946
<i>House</i> $16H_{(20\%)}$ std	± 0.001	±0.001	± 0.001	±0.001	±0.001	± 0.001	±0.001	±0.001	± 0.001	±0.001
<i>House</i> $16H_{(10\%)}$	0.945	0.943	0.940	0.944	0.717	0.939	0.931	0.939	0.942	0.937
std	±0.001	±0.001	± 0.001	±0.001	±0.003	± 0.001	±0.001	±0.001	±0.001	± 0.001
<i>House</i> $16H_{(1\%)}$	0.906	0.893	0.902	0.885	0.600	0.894	0.896	0.898	0.905	0.889
std	±0.006	±0.006	±0.006	±0.007	±0.018	±0.008	±0.006	±0.006	±0.005	±0.005
Vehicle	0.995	0.994	0.990	0.994	0.978	0.994	0.993	0.994	0.995	0.995
std	±0.001	±0.001	± 0.001	±0.001	±0.003	±0.001	±0.001	±0.001	± 0.001	±0.001
Vehicle (10%)	0.992	0.991	0.982	0.989	$\,0.863\,$	0.991	0.989	0.992	0.993	0.994
std	± 0.002	±0.002	±0.005	±0.002	± 0.010	±0.002	±0.003	±0.002	± 0.001	±0.001
Ionosphere	0.978	0.978	0.974	0.978	0.945	0.978	0.978	0.978	0.977	${0.976}$
std	±0.003 0.988	±0.003 0.986	±0.003 0.974	±0.003 0.987	±0.003 0.881	±0.003 0.981	±0.003 0.974	±0.003 0.981	±0.002 0.983	±0.002 0.983
$Ionosphere (20\%)$ std	±0.002	±0.003	±0.005	±0.002	± 0.013	±0.003	±0.004	±0.003	±0.004	±0.003
$Ionosphere (10\%)$	0.988	0.983	0.944	0.981	0.822	0.972	0.962	0.966	0.967	0.968
std	±0.004	±0.005	± 0.016	±0.005	±0.026	±0.007	±0.005	±0.005	±0.006	±0.006
Breast Cancer	0.994	0.993	0.993	0.993	0.994 0.992		0.992	0.993	0.994 0.993	
std	±0.001	± 0.001	± 0.001	±0.001	± 0.001	± 0.001	±0.001	±0.001	± 0.001	±0.001
Breast Cancer (20%)	0.996	0.995	0.994	0.995	0.997	0.994	0.993	0.995	0.996	0.996
std	±0.001	±0.001	±0.001	±0.001	±0.001	±0.002	±0.001	±0.001	±0.001	±0.001
Breast Cancer (10%)	0.997	0.996	0.994	0.996	$\,0.997\,$	0.993	0.992	0.996	0.997	0.997
std	±0.001	± 0.001	± 0.001	± 0.001	±0.001	±0.001	±0.001	±0.001	± 0.001	±0.001

- **1075**
- **1076**
- **1077**

1081 1082

1083

1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 SMOTE $K = 5$ $K=\sqrt{n}$ $K = 0.01n$ $K = 0.1n$ CV Strategy SMOTE $CreditCard (\pm 0.004)$ 0.949 0.959 0.941 0.961 0.961 Abalone (1%)(±0.021) 0.744 0.745 0.727 0.729 0.777 *Phoneme* (1%)(±0.019) 0.883 0.880 0.872 0.871 0.893 *Yeast* (1%)(±0.016) 0.940 0.935 0.932 0.931 **0.954** Wine $(4\%)(\pm 0.006)$ 0.934 0.935 0.930 0.934 0.935 *Pima* (20%) (±0.008) 0.789 0.786 0.790 0.788 0.786 *Haberman* (10%)(±0.024) 0.721 0.723 0.715 0.725 0.735 *MagicTel* (20%)(±0.001) **0.921** 0.921 0.921 0.920 0.921 *California* (1%)(±0.009) 0.904 0.905 0.893 0.905 0.908 Phoneme (±0.001) 0.962 0.961 0.962 0.961 0.961 *Phoneme* (20%) (±0.001) 0.953 0.952 0.953 0.953 0.953 *Phoneme* (10%) (±0.003) 0.935 0.938 0.936 0.939 0.915 Pima (\pm 0.005) 0.820 0.819 0.821 0.819 0.821 Yeast (\pm 0.003) 0.967 0.970 0.968 0.969 0.968 Haberman (±0.016) **0.684** 0.684 0.674 0.680 0.680 *California* (20%)(±0.001) 0.955 0.954 0.954 0.953 0.954 *California* (10%)(±0.001) 0.947 0.947 0.947 0.946 0.947 House $16H \left(\pm 0.001\right)$ 0.948 0.947 0.947 0.947 0.948 *House* 16H (20%)(±0.001) **0.946** 0.944 0.945 0.944 0.945 *House* 16H (10%)(±0.001) **0.939** 0.938 **0.939** 0.937 **0.939** *House* **16H** (1%)(±0.005) **0.899** 0.898 0.896 0.898 0.896

1119 1120

1121

1122 1123

1124

1125

1126 1127

1128

1129 1130

1131

1132

1133

Table 12: Highly imbalanced data sets at the top and remaining ones at the bottom. Random Forest $(max \text{depth} = \infty)$ ROC AUC. The best strategy is highlighted in bold for each data set.

21

Table 13: Random Forest (max_depth=tuned with PR AUC) PR AUC for different rebalancing strategies and different data sets.

Vehicle (\pm 0.001) **0.994** 0.994 0.994 0.994 0.994 Vehicle (10%) (\pm 0.002) 0.992 0.992 0.992 0.992 0.992 Ionosphere (±0.003) 0.979 0.977 0.978 0.978 0.979 *Ionosphere* (20%) (±0.003) 0.981 0.981 **0.984** 0.982 0.982 *Ionosphere* (10%) (±0.005) **0.965** 0.964 **0.965** 0.966 **0.965** Breast Cancer (±0.001) 0.993 0.993 0.993 0.993 0.993 *Breast Cancer* (20%) (±0.001) 0.995 0.995 0.996 0.995 0.996 *Breast Cancer* (10%) (±0.001) **0.996** 0.996 0.996 0.996 0.996

Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS $Miss1$ SMOTE $(d + 1)$ Abalone (1%) 0.048 0.055 0.047 0.049 0.022 0.045 0.041 0.039 0.055 0.035

Phoneme (1%) 0.198 0.215 0.081 0.146 0.054 0.226 0.236 0.236 0.260 0.101 *Haberman* (10%) 0.246 0.264 0.275 0.227 0.274 0.274 0.287 0.278 0.292 0.283 *MagicTel* (20%) 0.755 0.759 0.742 0.760 0.336 0.740 0.701 0.756 0.756 0.748

1135

1136 1137 Table 14: Random Forest (max depth=tuned with PR AUC) PR AUC for different rebalancing strategies and different data sets.

Strategy	None CW		RUS	ROS	Near Miss1	BS1	BS ₂	SMOTE CV	SMOTE	MGS $(d+1)$
CreditCard (0.2%)	0.849	0.845	0.739	0.846	0.614	0.817	0.808	0.845	0.842	0.837
std	0.003	0.003	0.005	0.003	0.051	0.006	0.009	0.003	0.000	0.002
Phoneme	0.919	0.917	0.885	0.919	0.846	0.911	0.911	0.916	0.914	0.917
std	0.003	0.002	0.005	0.003	0.005	0.004	0.003	0.004	0.004	0.003
Phoneme (20%)	0.863 0.004	0.857 0.005	0.776 0.007	0.861 0.005	0.573 0.022	0.842 0.006	0.844 0.005	0.855 0.004	0.854 0.005	0.855 0.005
std Phoneme (10%)	0.724	0.707	0.533	0.710	0.268	0.675	0.677	0.695	0.693	0.691
std	0.011	0.012	0.016	0.012	0.018	0.015	0.011	0.010	0.014	0.012
Yeast	0.837	0.843	0.825	0.831	0.712	0.786	0.765	0.831	0.833	0.835
std	0.011	0.006	0.014	0.013	0.019	0.014	0.015	0.008	0.013	0.013
Yeast (1%)	0.351	0.304	0.208	0.269	0.126	0.354	0.301	0.351	0.373	0.316
std	0.055	0.045	0.067	0.055	0.047	0.054	0.051	0.055	0.053	0.060
Wine (4%)	0.602	0.598	0.400	0.588	0.140	0.580	0.572	0.589	0.588	0.536
std	0.023	0.027	0.018	0.028	0.017	0.024	0.024	0.025	0.025	0.027
Pima	0.718	0.709	0.703	0.696	0.701	0.673	0.672	0.689	0.687	0.710
std	0.011	0.008	0.011	0.011	0.009	0.016	0.011	0.015	0.013	0.009
Pima (20%)	0.525	0.522	0.514	0.498	0.490	0.476	0.465	0.484	0.482	0.516
std	0.016 0.465	0.020 0.479	0.024 0.457	0.019 0.411	0.013 0.468	0.019 0.417	0.017 0.421	0.017 0.431	0.015 0.436	0.015 0.483
Haberman std	0.029	0.024	0.031	0.022	0.017	0.019	0.025	0.024	0.024	0.026
California (20%)	0.888	0.885	0.871	0.886	0.672	0.874	0.862	0.882	0.880	0.879
std	0.001	0.001	0.001	0.002	0.004	0.002	0.002	0.002	0.002	0.002
California (10%)	0.802	0.795	0.760	0.797	0.384	0.774	0.738	0.787	0.784	0.767
std	0.003	0.003	0.004	0.003	0.010	0.004	0.006	0.003	0.003	0.003
California (1%)	0.297	0.290	0.208	0.210	0.019	0.227	0.210	0.249	0.267	0.196
std	0.018	0.018	0.020	0.020	0.002	0.014	0.018	0.021	0.015	0.012
House _{-16H}	0.901	0.896	0.890	0.897	0.799	0.885	0.881	0.892	0.891	0.902
std	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	.001	0.001
House ₋₁₆ H (20%)	0.856	0.847	0.832	0.847	0.578	0.827	0.814	0.837	0.836	0.857
std	0.001	0.001	0.002	0.002	0.005	0.002	0.003	0.001	0.001	0.001
<i>House</i> _16H (10%)	0.757	0.729	0.691	0.731	0.242	0.703	0.680	0.711	0.709	0.756
std <i>House</i> $16H_{(1\%)}$	0.003 0.312	0.002 0.242	0.006 0.167	0.003 0.185	0.008 0.032	0.003 0.208	0.006 0.201	0.003 0.203	0.003 0.212	0.002 0.265
std	0.013	0.014	0.018	0.013	0.005	0.011	0.010	0.010	0.011	0.013
Vehicle	0.981	0.978	0.963	0.981	0.957	0.979	0.979	0.978	0.978	0.982
std	0.003	0.003	0.008	0.002	0.006	0.003	0.003	0.003	0.002	0.003
Vehicle (10%)	0.949	0.942	0.869	0.921	0.699	0.932	.935	0.947	0.942	0.944
std	0.010	0.009	0.028	0.014	0.034	0.010	0.012	0.009	0.008	0.009
Ionosphere		0.971 0.970 0.965 0.971 0.932					0.968 0.970 0.968		0.967	0.969
std	0.003	0.003	0.003	0.003	0.007	0.004	0.005	0.005	0.005	0.004
Ionosphere (20%)	0.964	0.955	0.927	0.958	0.730	0.921	0.877	0.925	0.919	0.963
std	0.005	0.007	0.015	0.006	0.022	0.012	0.014	0.010	0.013	0.006
Ionosphere (10%)	0.945	0.917	0.808	0.920	0.526	0.845	0.761	0.820	0.838	0.941
std	0.017	0.019	0.065	0.020	0.065	0.028	0.031	0.033	0.031	0.017
Breast Cancer	0.988	0.986	0.984	0.986	0.987	0.983	0.981	0.986	0.986	0.989
std Breast Cancer (20%)	0.003 0.984	0.003 0.980	0.004 0.968	0.003 0.979	0.003 0.984	0.003 0.971	0.004 0.967	0.004 0.978	0.003 0.980	0.002 0.985
std	0.005	0.005	0.011	0.008	0.005	0.007	0.009	0.007	0.006	0.005
Breast Cancer (10%)	0.975	0.962	0.939	0.960	0.976	0.936	0.921	0.957	0.954	0.978
std	0.008	0.009	0.014	0.009	0.009	0.016	0.014	0.015	0.015	0.006

 Table 15: Highly imbalanced data sets at the top and remaning ones at the bottom. Logistic Regression ROC AUC. For each data set, the best strategy is highlighted in bold and the mean of the standard deviation is computed (and rounded to 10^{-3}).

Strategy	None	CW	RUS	ROS	Near Miss1	BS1	BS ₂	SMOTE	CV SMOTE	MGS $(d+1)$
CreditCard (± 0.001)	0.951	0.953	0.963	0.951	0.888	0.903	0.919	0.946	0.955	0.926
Abalone $(1\%) (\pm 0.009)$	0.848	0.876	0.814	0.878	0.761	0.859	0.853	0.878	0.879	0.872
<i>Phoneme</i> $(1\%) (\pm 0.013)$	0.800	0.804	0.792	0.804	0.695	0.783	0.779	0.805	0.806	0.805
Yeast $(1\%) (\pm 0.006)$	0.975	0.974	0.965	0.972	0.920	0.974	0.973	0.973	0.974	0.970
Wine $(4\%) (\pm 0.003)$	0.836	0.840	0.835	0.839	0.576	0.837	0.831	0.838	0.839	0.833
<i>Pima</i> $(20\%) (\pm 0.005)$	0.821	0.820	0.813	0.819	0.797	0.818	0.820	0.819	0.819	0.818
<i>Haberman</i> $(10\%) (\pm 0.028)$	0.751	0.760	0.726	0.758	0.750	0.750	0.746	0.753	0.754	0.743
$MagicTel (20\%)(\pm 0.001)$	0.844 0.841		0.841	0.841	0.490	0.815	0.814	0.841	0.842	0.838
California $(1\%) (\pm 0.004)$	0.909	0.922	0.892	0.923	0.648	0.918	0.914	0.925	0.924	0.923
Phoneme (± 0.001)	0.813 0.811		0.811	0.811	0.576	0.801	0.805	0.810	0.812	0.808
Phoneme $(20\%) (\pm 0.001)$	0.810	0.808	0.807	0.808	0.505	0.801	0.805	0.807	0.809	0.805
Phoneme $(10\%) (\pm 0.002)$	0.802	0.800	0.799	0.800	0.426	0.796	0.799	0.799	0.801	0.794
Pima (± 0.003)	0.831 0.831		0.828	0.831	0.822	0.829	0.830	0.830	0.830	0.830
Yeast (± 0.001)	0.968 0.967		0.966	0.967	0.945	0.966	0.965	0.967	0.967	0.965
Haberman (± 0.019)	0.674	0.678	0.672	0.674	0.702	0.663	0.661	0.674	0.670	0.674
California $(20\%) (\pm 0.001)$	0.927	0.927	0.926	0.928	0.903	0.928	0.925	0.928	0.928	0.928
<i>California</i> $(10\%) (\pm 0; 001)$	0.923	0.925	0.921	0.925	0.855	0.925	0.919	0.926	0.926	0.925
House _{-16H} $(+0.001)$	0.886	0.889	0.889	0.889	0.867	0.888	0.888	0.889	0.889	0.889
House_16H (20%)(±0.001)	0.881	0.887	0.887	0.887	0.826	0.886	0.886	0.887	0.887	0.886
<i>House_16H</i> $(10\%)(\pm 0.001)$	0.871	0.885	0.884	0.885	0.764	0.885	0.885	0.885	0.885	0.883
<i>House_16H</i> $(1\%) (\pm 0.006)$	0.822	0.862	0.856	0.862	0.694	0.849	0.854	0.861	0.860	0.848
Vehicle (± 0.001)	0.994	0.993	0.990	0.994 0.990		0.993	0.992	0.994	0.994 0.994	
Vehicle (10%) (±0.001)	0.994 0.993		0.985	0.994 0.984		0.993	0.991	0.994	0.994 0.994	
Ionosphere (±0.012)	0.901	0.899	0.904	0.893	0.872	0.889	0.889	0.894	0.895	0.897
<i>Ionosphere</i> $(20\%)(\pm 0.021)$	0.894	0.886	0.896	0.879	0.872	0.882	0.888	0.881	0.879	0.885
$\textit{Ionosphere}\ (10\%) (\pm 0.018)$	0.862	0.856	0.857	0.858	0.812	0.868	0.878	0.860	0.858	0.862
Breast Cancer (± 0.001)	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996
<i>Breast Cancer</i> (20%) (\pm 0.001)	0.997 0.997		0.997	0.997	0.997	0.996	0.994	0.997	0.997	0.997
<i>Breast Cancer</i> (10%) (\pm 0.001)			0.997 0.997 0.997 0.997 0.996			0.997	0.997		0.997 0.997 0.997	

1243

1244 1245 1246 Table 16: Highly imbalanced data sets at the top and remaining ones at the bottom. Logistic regression ROC AUC. For each data set, the best strategy is highlighted in bold and the mean of the standard deviation is computed (and rounded to 10^{-3}).

1247						
1248	SMOTE	$K=5$	$K=\sqrt{n}$	$K = 0.01n$	$K=0.1n$	CV
1249	Strategy					SMOTE
1250	CreditCard (± 0.001)	0.946	0.947	0.947	0.949	0.955
1251	Abalone $(1\%)(\pm 0.001)$	0.878	0.878	0.881	0.877	0.879
1252	<i>Phoneme</i> $(1\%)(\pm 0.001)$	0.805	0.805	0.806	0.806	0.806
1253	Yeast $(1\%)(\pm 0.001)$	0.973	0.974	0.973	0.973	0.974
1254	Wine $(4\%)(\pm 0.003)$	0.838	0.837	0.838	0.837	0.839
1255	<i>Pima</i> (20%) (\pm 0.005)	0.819	0.818	0.819	0.819	0.819
1256	<i>Haberman</i> $(10\%)(\pm 0.028)$	0.753	0.749	0.756	0.753	0.754
1257	<i>MagicTel</i> $(20\%)(\pm 0.001)$	0.841	0.840	0.841	0.841	0.842
1258	California $(1\%)(\pm 0.003)$	0.925	0.925	0.925	0.925	0.924
1259	Phoneme (± 0.001)	0.810	0.810	0.810	0.810	0.812
1260	Phoneme $(20\%) (\pm 0.01)$	0.807	0.807	0.807	0.808	0.809
1261	<i>Phoneme</i> $(10\%) (\pm 0.001)$	0.799	0.799	0.799	0.799	0.801
1262	Pima (± 0.003)	0.830	0.830	0.830	0.830	0.830
1263	Yeast (± 0.001)	0.967	0.967	0.967	0.967	0.967
	Haberman (± 0.018)	0.674	0.677	0.678	0.677	0.670
1264	<i>California</i> $(20\%)(\pm 0.001)$	0.928	0.928	0.928	0.928	0.928
1265	California $(10\%)(\pm 0.001)$	0.926	0.926	0.926	0.925	0.926
1266	House _{-16H(\pm0.001)}	0.889	0.889	0.889	0.889	0.889
1267	House_16H (20%)(±0.001)	0.887	0.887	0.887	0.886	0.887
1268	House_16H (10%)(±0.001)	0.885	0.885	0.885	0.884	0.885
1269	<i>House_16H</i> $(1\%)(\pm 0.005)$	0.861	0.860	0.859	0.859	0.860
1270	Vehicle (± 0.001)	0.994	0.994	0.994	0.994	0.994
1271	Vehicle $(10\%) (\pm 0.001)$	0.994	0.994	0.994	0.994	0.994
1272	Ionosphere (± 0.011)	0.894	0.896	0.895	0.894	0.895
1273	Ionosphere $(20\%) (\pm 0.20)$	0.881	0.881	0.879	0.880	0.879
1274	Ionosphere $(10\%) (\pm 0.017)$	0.860	0.857	0.861	0.859	0.858
	Breast Cancer (± 0.001)	0.996	0.996	0.996	0.996	0.996
1275	Breast Cancer $(20\%) (\pm 0.001)$	0.997	0.997	0.997	0.997	0.997
1276	Breast Cancer $(10\%) (\pm 0.001)$	0.997	0.997	0.997	0.997	0.997
1277						

1278 1279

1280 1281 1282

Table 17: Highly imbalanced data sets ROC AUC. Logistic regression reimplemented in PyTorch using the implementation of [Cao et al.](#page-10-0) [\(2019\)](#page-10-0).

Strategy	None	LDAM loss	Focal loss
CreditCard	0.968 ± 0.002	0.934 ± 0.003	0.967 ± 0.002
Abalone	0.790 ± 0.008	0.735 ± 0.046	0.799 ± 0.009
Phoneme (1%)	0.806 ± 0.008	0.656 ± 0.091	0.807 ± 0.008
Yeast (1%)	0.977 ± 0.002	0.942 ± 0.002	0.977 ± 0.002
Wine	0.827 ± 0.002	0.675 ± 0.087	0.831 ± 0.002
Pima (20%)	0.821 ± 0.005	0.697 ± 0.036	0.821 ± 0.005
Haberman (10%)	0.749 ± 0.030	0.611 ± 0.077	0.750 ± 0.029
$MagicTel$ (20%)	0.843 ± 0.001	0.785 ± 0.20	0.844 ± 0.001
California (1%)	0.833 ± 0.006	0.922 ± 0.003	0.841 ± 0.007

1283 1284 1285

1351 1352

Table 19: LightGBM PR AUC for different rebalancing strategies and different data sets.

Table 20: LightGBM ROC AUC for different rebalancing strategies and different data sets.

std 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1458 1459 B MAIN PROOFS

1460 1461 1462 This section contains the main proof of our theoretical results. The technicals lemmas used by several proofs are available on Appendix [C.](#page-38-0)

1463 1464 B.1 PROOF OF LEMMA [3.1](#page-2-2)

1465 1466 1467 1468 1469 *Proof of Lemma* [3.1.](#page-2-2) Let X be the support of P_X . SMOTE generates new points by linear interpolation of the original minority sample. This means that for all x, y in the minority samples or generated by SMOTE procedure, we have $(1-t)x + ty \in Conv(X)$ by definition of $Conv(X)$. This leads to the fact that precisely, all the new SMOTE samples are contained in $Conv(X)$. This implies $Supp(P_Z) \subseteq Conv(X)$.

1470 1471

1473

1477 1478

1481

1484 1485 1486

1494

 \Box

 (8)

1472 B.2 PROOF OF THEOREM [3.2](#page-3-1)

1474 1475 *Proof of Theorem [3.2.](#page-3-1)* For any event A, B, we have

$$
1 - \mathbb{P}[A \cap B] = \mathbb{P}[A^c \cup B^c] \le \mathbb{P}[A^c] + \mathbb{P}[B^c],
$$

- **1476** which leads to
- $\mathbb{P}[A \cap B] \geq 1 \mathbb{P}[A^c] \mathbb{P}[B^c]$ $\left[\begin{array}{ccc} \end{array} \right]$ (9) $= \mathbb{P}[A] - \mathbb{P}[B^c]$ (10)

1479 1480 By construction,

$$
\mathbb{P}[X_c \in B(x, \alpha - \varepsilon)] - \mathbb{P}[\|X_c - X_{(K)}(X_c)\| > \varepsilon] \tag{12}
$$

$$
\leq \mathbb{P}[X_c \in B(x, \alpha - \varepsilon), \|X_c - X_{(K)}(X_c)\| \leq \varepsilon]
$$
\n
$$
\leq \mathbb{P}[X_c \in B(x, \alpha - \varepsilon), \|X_c - X_{(K)}(X_c)\| \leq \varepsilon]
$$
\n(14)

$$
\leq \mathbb{P}[X_c \in B(x, \alpha - \varepsilon), \|X_c - Z\| \leq \varepsilon]
$$
\n
$$
\leq \mathbb{P}[Z \in B(x, \alpha)]. \tag{14}
$$

1487 1488 Similarly, we have

$$
\mathbb{P}[Z \in B(x, \alpha)] - \mathbb{P}[\|X_c - X_{(K)}(X_c)\| > \varepsilon]
$$
\n⁽¹⁶⁾

$$
\leq \mathbb{P}[Z \in B(x,\alpha), \|X_c - X_{(K)}(X_c)\| \leq \varepsilon]
$$
\n⁽¹⁷⁾

$$
\leq \mathbb{P}[Z \in B(x, \alpha), \|X_c - Z\| \leq \varepsilon]
$$
\n
$$
\leq \mathbb{P}[X_c \in B(x, \alpha + \varepsilon)].
$$
\n(18)

1493 Since X_c admits a density, for all $\varepsilon > 0$ small enough

$$
\mathbb{P}[X_c \in B(x, \alpha + \varepsilon)] \le \mathbb{P}[X_c \in B(x, \alpha)] + \eta,
$$
\n(20)

1495 1496 and

$$
\mathbb{P}[X_c \in B(x,\alpha)] - \eta \le \mathbb{P}[X_c \in B(x,\alpha - \varepsilon)].\tag{21}
$$

1497 1498 1499 Let ε such that equation [20](#page-27-1) and equation [21](#page-27-2) are verified. According to Lemma 2.3 in [Biau & Devroye](#page-10-10) [\(2015\)](#page-10-10), since X_1, \ldots, X_n are i.i.d., if K/n tends to zero as $n \to \infty$, we have

$$
\mathbb{P}[\|X_c - X_{(K)}(X_c)\| > \varepsilon] \to 0. \tag{22}
$$

1500 1501 Thus, for all n large enough,

$$
\mathbb{P}[X_c \in B(x, \alpha)] - 2\eta \le \mathbb{P}[Z \in B(x, \alpha)] \tag{23}
$$

1503 and

1502

$$
\mathbb{P}[Z \in B(x, \alpha)] \le 2\eta + \mathbb{P}[X_c \in B(x, \alpha)].\tag{24}
$$

Finally, for all
$$
\eta > 0
$$
, for all *n* large enough, we obtain
\n
$$
\mathbb{P}[X_c \in B(x, \alpha)] - 2\eta \le \mathbb{P}[Z \in B(x, \alpha)] \le 2\eta + \mathbb{P}[X_c \in B(x, \alpha)],
$$
\nwhich proves that

$$
\mathbb{P}[Z \in B(x, \alpha)] \to \mathbb{P}[X_c \in B(x, \alpha)].\tag{26}
$$

Therefore, by the Monotone convergence theorem, for all Borel sets
$$
B \subset \mathbb{R}^d
$$
,
\n1511 $\mathbb{P}[Z \in B] \to \mathbb{P}[X_c \in B]$. (27)

1512 1513 B.3 PROOF OF LEMMA [3.3](#page-3-2)

1514 1515 *Proof of Lemma* [3.3.](#page-3-2) We consider a single SMOTE iteration. Recall that the central point X_c (see Algorithm [1\)](#page-2-1) is fixed, and thus denoted by x_c .

1516 1517 1518 The random variables $X_{(1)}(x_c), \ldots, X_{(n-1)}(x_c)$ denote a reordering of the initial observations $X 1, X_2, \ldots, X_n$ such that

1519

$$
||X_{(1)}(x_c) - x_c|| \leq ||X_{(2)}(x_c) - x_c|| \leq \ldots \leq ||X_{(n-1)}(x_c) - x_c||.
$$

1520 1521 1522 For clarity, we remove the explicit dependence on x_c . Recall that SMOTE builds a linear interpolation between x_c and one of its K nearest neighbors chosen uniformly. Then the newly generated point Z satisfies

$$
\begin{array}{c} 1523 \\ 1524 \end{array}
$$

1525

1530 1531 1532

1535

 $Z = (1 - W)x_c + W \sum_{i=1}^{K}$ $k=1$ $X_{(k)} 1\!\!1_{\{I=k\}},$ (28)

1526 1527 where W is a uniform random variable over [0, 1], independent of I, X_1, \ldots, X_n , with I distributed as $\mathcal{U}(\{1, ..., K\})$.

1528 1529 From now, consider that the k-th nearest neighbor of x_c , $X_{(k)}(x_c)$, has been chosen (that is $I = k$). Then Z satisfies

$$
Z = (1 - W)x_c + W X_{(k)}
$$
\n(29)

$$
= x_c - Wx_c + WX_{(k)},\tag{30}
$$

1533 1534 which implies

$$
Z - x_c = W(X_{(k)} - x_c).
$$
 (31)

1536 1537 1538 1539 Let f_{Z-x_c} , f_W and $f_{X_{(k)}-x_c}$ be respectively the density functions of $Z-x_c$, W and $X_{(k)}-x_c$. Let $z, z_1, z_2 \in \mathbb{R}^d$. Recall that $z \leq z_1$ means that each component of z is lower than the corresponding component of z_1 . Since W and $X_{(k)} - x_c$ are independent, we have,

$$
\mathbb{P}(z_1 \le Z - x_c \le z_2) = \int_{w \in \mathbb{R}} \int_{x \in \mathbb{R}^d} f_{W, X_{(k)} - x_c}(w, x) \mathbb{1}_{\{z_1 \le wx \le z_2\}} dw dx \tag{32}
$$

$$
= \int_{w \in \mathbb{R}} \int_{x \in \mathbb{R}^d} f_W(w) f_{X_{(k)}-x_c}(x) 1\!\!1_{\{z_1 \le wx \le z_2\}} dw dx \tag{33}
$$

$$
= \int_{w \in \mathbb{R}} f_W(w) \left(\int_{x \in \mathbb{R}^d} f_{X_{(k)}-x_c}(x) 1\!\!1_{\{z_1 \le wx \le z_2\}} \mathrm{d}x \right) \mathrm{d}w. \tag{34}
$$

Besides, let $u = wx$. Then $x = (\frac{u_1}{w}, \dots, \frac{u_d}{w})^T$. The Jacobian of such transformation equals:

1548 1549 1550

1551 1552

1560 1561 1562

1564 1565

$$
\begin{vmatrix}\n\frac{\partial x_1}{\partial u_1} & \cdots & \frac{\partial x_1}{\partial u_d} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_d}{\partial u_1} & \cdots & \frac{\partial x_d}{\partial u_d}\n\end{vmatrix} = \begin{vmatrix}\n\frac{1}{w} & & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{w}\n\end{vmatrix} = \frac{1}{w^d}
$$
\n(35)

1553 1554 Therefore, we have $x = u/w$ and $dx = du/w^d$, which leads to

$$
\mathbb{P}(z_1 \le Z - x_c \le z_2) \tag{36}
$$

$$
= \int_{w \in \mathbb{R}} \frac{1}{w^d} f_W(w) \left(\int_{u \in \mathbb{R}^d} f_{X_{(k)} - x_c} \left(\frac{u}{w} \right) 1\!\!1_{\{z_1 \le u \le z_2\}} \mathrm{d}u \right) \mathrm{d}w. \tag{37}
$$

1559 Note that a random variable Z' with density function

$$
f_{Z'}(z') = \int_{w \in \mathbb{R}} \frac{1}{w^d} f_W(w) f_{X_{(k)}-x_c}\left(\frac{z'}{w}\right) dw \tag{38}
$$

1563 satisfies, for all $z_1, z_2 \in \mathbb{R}^d$,

$$
\mathbb{P}(z_1 \le Z - x_c \le z_2) = \int_{w \in \mathbb{R}} \frac{1}{w^d} f_W(w) \left(\int_{u \in \mathbb{R}^d} f_{X_{(k)} - x_c} \left(\frac{u}{w} \right) 1_{\{z_1 \le u \le z_2\}} \, du \right) \, dw. \tag{39}
$$

1566 1567 Therefore, the variable $Z - x_c$ admits the following density

1568

$$
\begin{array}{c} 1569 \\ 1570 \end{array}
$$

$$
f_{Z-x_c}(z'|X_c = x_c, I = k) = \int_{w \in \mathbb{R}} \frac{1}{w^d} f_W(w) f_{X_{(k)}-x_c}\left(\frac{z'}{w}\right) dw.
$$
 (40)

Since W follows a uniform distribution on $[0, 1]$, we have

1576 1577 1578

1579 1580

$$
f_{Z-x_c}(z'|X_c=x_c, I=k) = \int_0^1 \frac{1}{w^d} f_{X_{(k)}-x_c}\left(\frac{z'}{w}\right) dw.
$$
 (41)

1581 1582 The density $f_{X_{(k)}-x_c}$ of the k-th nearest neighbor of x_c can be computed exactly (see, Lemma 6.1 in [Berrett, 2017\)](#page-10-16), that is

 $\times [1 - \mu_X(B(x_c, ||u||))]^{n-k-1}$

 $k-1$

1583 1584

1585 1586

1587 1588

1590

1589

where

1591 1592 1593

1594 1595 $\mu_X(B(x_c, ||u||)) =$ $B(x_c,\|u\|)$ $f_X(x)dx.$ (43)

 $\int f_X(x_c + u) \big[\mu_X(B(x_c, ||u||)) \big]^{k-1}$

 (42)

1596 1597 We recall that $B(x_c, ||u||)$ is the ball centered on x_c and of radius $||u||$. Hence we have

1598
\n1599
\n1600
\n
$$
f_{X_{(k)}-x_c}(u) = (n-1) \binom{n-2}{k-1} f_X(x_c+u) \mu_X (B(x_c,||u||))^{k-1} [1 - \mu_X (B(x_c,||u||))]^{n-k-1}.
$$
\n(44)

Since $Z - x_c$ is a translation of the random variable Z, we have

 $f_{X_{(k)}-x_c}(u) = (n-1)\binom{n-2}{k-1}$

 $f_Z(z|X_c = x_c, I = k) = f_{Z-x_c}(z - x_c|X_c = x_c, I = k).$ (45)

1607 Injecting Equation [\(44\)](#page-29-0) in Equation [\(41\)](#page-29-1), we obtain

$$
f_Z(z|X_c = x_c, I = k) \tag{46}
$$

$$
= f_{Z-x_c}(z - x_c | X_c = x_c, I = k)
$$
\n(47)

$$
= \int_{0}^{1} \frac{1}{w^{d}} f_{X_{(k)}-x_{c}} \left(\frac{z-x_{c}}{w}\right) \mathrm{d}w \tag{48}
$$

$$
= (n-1)\binom{n-2}{k-1}\int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right) \mu_X\left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)^{k-1} \tag{49}
$$

$$
1618
$$
\n
$$
\times \left[1 - \mu_X \left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)\right]^{n-k-1} dw
$$
\n(50)

1602

1603 1604

1605 1606

$$
f_Z(z|X_c = x_c)
$$

=
$$
\sum_{i=1}^{K} f_Z(z|X_c = x_c, I = k)\mathbb{P}[I = k]
$$
 (51)

$$
\begin{array}{c}\n 1624 \\
 1625 \\
 1626\n \end{array}
$$

1623

$$
= \frac{1}{K} \sum_{k=1}^{K} \int_{0}^{1} \frac{1}{w^{d}} f_{X_{(k)}-x_{c}} \left(\frac{z-x_{c}}{w}\right) dw
$$
\n(53)

 $f_Z(z|X_c = x_c, I = k) \mathbb{P}[I = k]$ (52)

$$
= \frac{1}{K} \sum_{k=1}^{K} (n-1) {n-2 \choose k-1} \int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right) \mu_X\left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)^{k-1}
$$
(54)

$$
\times [1 - \mu_X \left(B \left(x_c, \frac{||z - x_c||}{w} \right) \right)]^{n-k-1} dw \tag{55}
$$

$$
= \frac{(n-1)}{K} \int_0^1 \frac{1}{w^d} f_X \left(x_c + \frac{z - x_c}{w} \right) \sum_{k=1}^K {n-2 \choose k-1} \mu_X \left(B \left(x_c, \frac{||z - x_c||}{w} \right) \right)^{k-1} \tag{56}
$$

$$
\times [1 - \mu_X \left(B \left(x_c, \frac{||z - x_c||}{w} \right) \right)]^{n-k-1} dw \tag{57}
$$

$$
= \frac{(n-1)}{K} \int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right) \sum_{k=0}^{K-1} {n-2 \choose k} \mu_X\left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)^k
$$
(58)

$$
\times \left[1 - \mu_X \left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)\right]^{n-k-2} dw.
$$
\n(59)

Note that the sum can be expressed as the cumulative distribution function of a Binomial distribution parameterized by $n - 2$ and $\mu_X(B(x_c, ||z - x_c||/w))$, so that

$$
\sum_{k=0}^{K-1} \binom{n-2}{k} \mu_X \left(B \left(x_c, \frac{||z - x_c||}{w} \right) \right)^k \left[1 - \mu_X \left(B \left(x_c, \frac{||z - x_c||}{w} \right) \right) \right]^{n-k-2} \tag{60}
$$

$$
=(n-K-1)\binom{n-2}{K-1}\mathcal{B}\left(n-K-1,K;1-\mu_X\left(B\left(x_c,\frac{||z-x_c||}{w}\right)\right)\right),\tag{61}
$$

1654 (see Technical Lemma [C.1](#page-38-1) for details). We inject Equation [\(61\)](#page-30-0) in Equation [\(51\)](#page-30-1)

$$
f_Z(z|X_c = x_c) = (n - K - 1) {n - 1 \choose K} \int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)
$$

$$
\times \mathcal{B}\left(n - K - 1, K; 1 - \mu_X\left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)\right) dw. \tag{62}
$$

We know that

$$
f_Z(z) = \int_{x_c \in \mathcal{X}} f_Z(z | X_c = x_c) f_X(x_c) \mathrm{d}x_c.
$$

$$
\frac{1663}{1664}
$$
 Combining this remark with the result of Equation (62) we get

$$
f_Z(z) = (n - K - 1) {n - 1 \choose K} \int_{x_c \in \mathcal{X}} \int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)
$$

$$
\times \mathcal{B}\left(n - K - 1, K; 1 - \mu_X\left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)\right) f_X(x_c) \, dw \, dx_c.
$$
 (63)

1667 1668 1669

1671 1672 1673

1665 1666

1670 Link with Elreedy's formula According to the Elreedy formula

$$
f_Z(z|X_c = x_c) = (n - K - 1) {n - 1 \choose K} \int_{r = \|z - x_c\|}^{\infty} f_X\left(x_c + \frac{(z - x_c)r}{\|z - x_c\|}\right) \frac{r^{d-2}}{\|z - x_c\|^{d-1}} \times \mathcal{B}(n - K - 1, K; 1 - \mu_X\left(B(x_c, r)\right)) \, \mathrm{d}r. \tag{64}
$$

1674 1675 1676 1677 1678 1679 1680 1681 Now, let $r = ||z - x_c||/w$ so that $dr = -||z - x_c||dw/w^2$. Thus, $f_Z(z|X_c = x_c)$ $=(n-K-1)\binom{n-1}{K}$ K \bigwedge f^1 $\int_0^1 f_X\left(x_c + \frac{z-x_c}{w}\right)$ ω $\begin{bmatrix} 1 \end{bmatrix}$ w^{d-2} 1 $||z-x_c||$ (65) $\times \mathcal{B} \left(n - K - 1, K; 1 - \mu_X \left(\frac{B}{x_c}, \frac{z - x_c}{\mu_X} \right) \right)$ ω $\|\cdot\|z - x_c\|$ w^2 (66)

$$
= (n - K - 1) \binom{n-1}{K} \int_0^1 \frac{1}{w^d} f_X \left(x_c + \frac{z - x_c}{w} \right)
$$

$$
\times R \left(x - K - 1 \right) \left(\frac{n-1}{K} \right) \int_0^1 \frac{1}{w^d} f_X \left(x_c + \frac{z - x_c}{w} \right) dx \tag{67}
$$

$$
\times \mathcal{B}\left(n-K-1,K;1-\mu_X\left(B\left(x_c,\frac{z-x_c}{w}\right)\right)\right) dw.
$$
\n(67)

$$
1687
$$
\n
$$
1688 \qquad \qquad \blacksquare
$$

B.4 PROOF OF THEOREM [3.5](#page-3-3)

1692 *Proof of Theorem* [3.5.](#page-3-3) Let $x_c \in \mathcal{X}$ be a central point in a SMOTE iteration. From Lemma [3.3,](#page-3-2) we have,

$$
\frac{1693}{1694}
$$

1695 1696

1697 1698 1699

1706 1707

1710 1711

1713

1716 1717

 $f_Z(z|X_c = x_c)$ $=(n-K-1)\binom{n-1}{K}$ K $\bigwedge f^1$ 0 1 $\frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)$ w \setminus \times B $\left(n-K-1,K;1-\mu_X\left(B\left(x_c,\frac{||z-x_c||}{\sigma}\right)\right)\right)$ $\begin{pmatrix} -x_c \end{pmatrix}$ aw (68)

1700
\n1701
\n1702
\n1703
\n
$$
\times \mathcal{B}\left(n-K-1,K;1-\mu_X\left(B\left(x_c,\frac{|z-x_c|}{w}\right)\right)\right) \mathrm{d}w.
$$
\n(69)

1704 1705 Let $R \in \mathbb{R}$ such that $\mathcal{X} \subset \mathcal{B}(0, R)$. For all $u = x_c + \frac{z - x_c}{w}$, we have

$$
w = \frac{||z - x_c||}{||u - x_c||}.
$$
\n(70)

1708 1709 If $u \in \mathcal{X}$, then $u \in \mathcal{B}(0,R)$. Besides, since $x_c \in \mathcal{X} \subset B(0,R)$, we have $||u - x_c|| < 2R$ and

$$
w > \frac{||z - x_c||}{2R}.
$$
\n(71)

1712 Consequently,

$$
\mathbb{1}_{\left\{x_c + \frac{z - x_c}{w} \in \mathcal{X}\right\}} \le \mathbb{1}_{\left\{w > \frac{||z - x_c||}{2R}\right\}}.\tag{72}
$$

1714 1715 So finally

$$
\mathbb{1}_{\left\{x_c + \frac{z - x_c}{w} \in \mathcal{X}\right\}} = \mathbb{1}_{\left\{x_c + \frac{z - x_c}{w} \in \mathcal{X}\right\}} \mathbb{1}_{\left\{w > \frac{||z - x_c||}{2R}\right\}}.
$$
\n(73)

1718 Hence,

1719
\n1720
\n1721
\n1722
\n1723
\n1724
\n1725
\n1726
\n1728
\n1729
\n1729
\n1720
\n1721
\n
$$
\mathcal{B}\left(n-K-1, K; 1-\mu_X\left(B\left(x_c, \frac{||z-x_c||}{w}\right)\right)\right) dw
$$
\n(74)

1724
1725 =
$$
(n - K - 1) {n - 1 \choose K} \int_{\frac{||z - x_c||}{W}}^1 \frac{1}{w^d} f_X (x_c + \frac{z - x_c}{w})
$$

1726
1727
$$
\times \mathcal{B}\left(n-K-1,K;1-\mu_X\left(B\left(x_c,\frac{||z-x_c||}{w}\right)\right)\right) \mathrm{d}w.
$$
 (75)

1690 1691

1689

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 Now, let $0 < \alpha \leq 2R$ and $z \in \mathbb{R}^d$ such that $||z - x_c|| > \alpha$. In such a case, $w > \frac{\alpha}{2R}$ and: $f_Z(z|X_c = x_c)$ (76) $=(n-K-1)\binom{n-1}{K}$ K \setminus \bigcap^1 $\frac{\alpha}{2R}$ 1 $\frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)$ ω \setminus \times B $\left(n-K-1,K;1-\mu_X\left(B\left(x_c,\frac{||z-x_c||}{\sigma_X}\right)\right)\right)$ $\begin{pmatrix} -x_c \end{pmatrix}$ aw (77) $\leq (n - K - 1) \binom{n - 1}{K}$ K \bigwedge f^1 $\frac{\alpha}{2R}$ 1 $\frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)$ ω $\Big) \mathcal{B} (n - K - 1, K; 1 - \mu_X (B(x_c, \alpha))) \, \mathrm{d} w.$ (78) Let $\mu \in [0, 1]$ and S_n be a binomial random variable of parameters $(n - 1, \mu)$. For all K,

$$
\mathbb{P}[S_n \le K] = (n - K - 1) {n - 1 \choose K} \mathcal{B}(n - K - 1, K; 1 - \mu).
$$
 (79)

1745 1746 According to Hoeffding's inequality, we have, for all $K \leq (n-1)\mu$,

$$
\mathbb{P}[S_n \le K] \le \exp\left(-2(n-1)\left(\mu - \frac{K}{n-1}\right)^2\right). \tag{80}
$$

1750 1751 Thus, for all $z \notin B(x_c, \alpha)$, for all $K \leq (n-1)\mu_X (B(x_c, \alpha))$,

$$
f_Z(z|X_c = x_c) \tag{81}
$$

$$
\leq \exp\left(-2(n-1)\left(\mu_X\left(B\left(x_c,\alpha\right)\right)-\frac{K}{n-1}\right)^2\right)\int_{\frac{\alpha}{2R}}^1 \frac{1}{w^d} f_X\left(x_c+\frac{z-x_c}{w}\right) dw\right)
$$
(82)

$$
\leq C_2 \exp\left(-2(n-1)\left(\mu_X\left(B\left(x_c,\alpha\right)\right)-\frac{K}{n-1}\right)^2\right) \int_{\frac{\alpha}{2R}}^1 \frac{1}{w^d} dw\tag{83}
$$

$$
\leq C_2 \eta(\alpha, R) \exp\left(-2(n-1)\left(\mu_X\left(B\left(x_c, \alpha\right)\right) - \frac{K}{n-1}\right)^2\right),\tag{84}
$$

1761 1762 with

$$
\eta(\alpha, R) = \begin{cases} \ln\left(\frac{2R}{\alpha}\right) & \text{if } d = 1\\ \frac{1}{d-1}\left(\left(\frac{2R}{\alpha}\right)^{d-1} - 1\right) & \text{otherwise} \end{cases}.
$$

1765 Letting

$$
\epsilon(n, \alpha, K, x_c) = C_2 \eta(\alpha, R) \exp\left(-2(n-1) \left(\mu_X \left(B\left(x_c, \alpha\right)\right) - \frac{K}{n-1}\right)^2\right),\tag{85}
$$

1769 1770 we have, for all $\alpha \in (0, 2R)$, for all $K \leq (n-1)\mu_X (B(x_c, \alpha))$,

$$
\mathbb{P}\left(|Z - X_c| \ge \alpha | X_c = x_c\right) = \int_{z \notin \mathcal{B}(x_c, \alpha), z \in \mathcal{X}} f_Z(z | X_c = x_c) \mathrm{d}z \tag{86}
$$

$$
\leq \int_{z \notin \mathcal{B}(x_c,\alpha), z \in \mathcal{X}} \varepsilon(n, \alpha, K, x_c) \mathrm{d}z \tag{87}
$$

$$
= \varepsilon(n, \alpha, K, x_c) \int_{z \notin \mathcal{B}(x_c, \alpha), z \in \mathcal{X}} dz
$$
 (88)

$$
\leq c_d R^d \varepsilon(n, \alpha, K, x_c),\tag{89}
$$

as $\mathcal{X} \subset B(0,R)$. Since $x_c \in \mathcal{X}$, by definition of the support, we know that for all $\rho > 0$, **1780** $\mu_X(B(x_c, \rho)) > 0$. Thus, $\mu_X(B(x_c, \alpha)) > 0$. Consequently, $\varepsilon(n, \alpha, K, x_c)$ tends to zero, as **1781** K/n tends to zero. \Box

1767 1768

1763 1764

1766

1728

1743 1744

1747 1748 1749

1782 1783 B.5 PROOF OF COROLLARY [3.6](#page-4-0)

1784 1785 We adapt the proof of Theorem 2.1 and Theorem 2.4 in Biau $\&$ Devroye [\(2015\)](#page-10-10) to the case where X belongs to $B(0, R)$. We prove the following result.

1786 1787 Lemma B.1. *Let* X *takes values in* $B(0, R)$ *. For all* $d \geq 2$ *,*

$$
\mathbb{E}[\|X_{(1)}(X) - X\|_2^2] \le 36R^2 \left(\frac{k}{n+1}\right)^{2/d},\tag{90}
$$

1791 *where* $X_{(1)}(X)$ *is the nearest neighbor of* X *among* X_1, \ldots, X_n *.*

1793 1794 1795 *Proof of Lemma [B.1.](#page-33-1)* Let us denote by $X_{(i,1)}$ the nearest neighbor of X_i among $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n+1}$. By symmetry, we have

$$
\mathbb{E}[\|X_{(1)}(X) - X\|_2^2] = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{E} \|X_{(i,1)} - X_i\|_2^2.
$$
 (91)

1800 Let $R_i = ||X_{(i,1)} - X_i||_2$ and $B_i = \{x \in \mathbb{R}^d : ||x - X_i|| < R_i/2\}$. By construction, B_i are disjoint. Since $R_i \leq 2R$, we have

> \sum^{n+1} $i=1$

 $c_d\left(\frac{R_i}{2}\right)$ 2

 $\bigg)^d \leq (3R)^d$

$$
\cup_{i=1}^{n+1} B_i \subset B(0, 3R),\tag{92}
$$

1803 1804 which implies,

$$
\mu\left(\cup_{i=1}^{n+1} B_i\right) \le (3R)^d c_d. \tag{93}
$$

 (94)

Thus, we have

$$
\begin{array}{c} 1807 \\ 1808 \end{array}
$$

1809 1810

1788 1789 1790

1792

1801 1802

1805 1806

1811

1813 1814 1815

$$
1812
$$
 Besides, for all $d \ge 2$, we have

$$
\left(\frac{1}{n+1}\sum_{i=1}^{n+1}R_i^2\right)^{d/2} \le \frac{1}{n+1}\sum_{i=1}^{n+1}R_i^d,\tag{95}
$$

1816 which leads to

$$
\mathbb{E}[\|X_{(1)}(X) - X\|_2^2] = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{E} \|X_{(i,1)} - X_i\|_2^2
$$
\n(96)

$$
{}^{1821}_{1822} = \mathbb{E}\left[\frac{1}{n+1}\sum_{i=1}^{n+1} R_i^2\right]
$$
\n(97)
\n
$$
{}^{1823}_{1824}
$$
\n
$$
(\left(6R\right)^d\right)^{2/d}
$$
\n(98)

$$
\leq \left(\frac{(6R)^d}{n+1}\right)^{2/d} \tag{98}
$$

$$
\leq 36R^2 \left(\frac{1}{n+1}\right)^{2/d}.\tag{99}
$$

1828 1829 1830

> **1833 1834 1835**

> **1825 1826 1827**

1831 1832 Lemma B.2. *Let* X *takes values in* $B(0, R)$ *. For all* $d \geq 2$ *,*

$$
\mathbb{E}[\|X_{(k)}(X) - X\|_2^2] \le (2^{1+2/d}) 36R^2 \left(\frac{k}{n}\right)^{2/d},\tag{100}
$$

where $X_{(k)}(X)$ *is the nearest neighbor of* X *among* X_1, \ldots, X_n *.*

1836 1837 1838 *Proof of Lemma [B.2.](#page-33-2)* Set $d \geq 2$. Recall that $\mathbb{E}[\|X_{(k)}(X) - X\|_2^2] \leq 4R^2$. Besides, for all $k > n/2$, we have

$$
(2^{1+2/d})36R^2\left(\frac{k}{n}\right)^{2/d} > (2^{1+2/d})36R^2\left(\frac{1}{2}\right)^{2/d}
$$
 (101)

 $> 72R^2$ (102)

$$
> \mathbb{E}[\|X_{(k)}(X) - X\|_2^2].\tag{103}
$$

1843 1844 1845 1846 Thus, the result is trivial for $k > n/2$. Set $k \leq n/2$. Now, following the argument of Theorem 2.4 in [Biau & Devroye](#page-10-10) [\(2015\)](#page-10-10), let us partition the set $\{X_1, \ldots, X_n\}$ into 2k sets of sizes n_1, \ldots, n_{2k} with

$$
\sum_{j=1}^{2k} n_j = n \quad \text{and} \quad \left\lfloor \frac{n}{2k} \right\rfloor \le n_j \le \left\lfloor \frac{n}{2k} \right\rfloor + 1. \tag{104}
$$

1849 1850 Let $X^{\star}_{(1)}(j)$ be the nearest neighbor of X among all X_i in the jth group. Note that

$$
||X_{(k)}(X) - X||^2 \le \frac{1}{k} \sum_{j=1}^{2k} ||X_{(1)}^{\star}(j) - X||^2,
$$
\n(105)

1853 1854 1855 since at least k of these nearest neighbors have values larger than $||X_{(k)}(X) - X||^2$. By Lemma [B.1,](#page-33-1) we have

$$
||X_{(k)}(X) - X||^2 \le \frac{1}{k} \sum_{j=1}^{2k} 36R^2 \left(\frac{1}{n_j + 1}\right)^{2/d} \tag{106}
$$

$$
\leq \frac{1}{k} \sum_{j=1}^{2k} 36R^2 \left(\frac{2k}{n}\right)^{2/d} \tag{107}
$$

$$
\leq 2^{1+2/d} \times 36R^2 \left(\frac{k}{n}\right)^{2/d}.\tag{108}
$$

1863 1864

1867 1868

1871 1872

1874

1847 1848

1851 1852

1866 *Proof of Corollary* [3.6.](#page-4-0) Let $d \geq 2$. By Markov's inequality, for all $\varepsilon > 0$, we have

$$
\mathbb{P}\left[\|X_{(k)}(X) - X\|_2 > \varepsilon\right] \le \frac{\mathbb{E}[\|X_{(k)}(X) - X\|_2^2]}{\varepsilon^2}.\tag{109}
$$

1869 1870 Let $\gamma \in (0, 1/d)$ and $\varepsilon = 12R(k/n)^{\gamma}$, we have

$$
\mathbb{P}\left[\|X_{(k)}(X) - X\|_2 > 12R(k/n)^\gamma\right] \le \left(\frac{k}{n}\right)^{2/d - 2\gamma}.\tag{110}
$$

1873 Noticing that, by construction of a SMOTE observation $Z_{K,n}$, we have

$$
||Z_{K,n} - X||_2^2 \le ||X_{(K)}(X) - X||_2^2. \tag{111}
$$

1875 Thus,

$$
\mathbb{P}\left[\|Z_{K,n} - X\|_2^2 > 12R(k/n)^{\gamma}\right] \le \mathbb{P}\left[\|X_{(K)}(X) - X\|_2^2 > 12R(k/n)^{1/d}\right] \tag{112}
$$

$$
\leq \left(\frac{k}{n}\right)^{2/d-2\gamma}.\tag{113}
$$

 \Box

1882 1883 B.6 PROOF OF THEOREM [3.7](#page-4-1)

1884 1885 1886 1887 *Proof of Theorem* [3.7.](#page-4-1) Let $\varepsilon > 0$ and $z \in B(0,R)$ such that $||z|| \geq R - \varepsilon$. Let $A_{\varepsilon} = \{x \in$ $B(0,R), \langle x-z,z \rangle \leq 0\}.$ Let $0 < \alpha < 2R$ and $\tilde{A}_{\alpha,\varepsilon} = A_{\varepsilon} \cap \{x, \|z-x\| \geq \alpha\}.$ An illustration is displayed in Figure [4.](#page-35-0)

1888 We have

1889

$$
f_Z(z) = \int_{x_c \in \tilde{A}_{\alpha,\varepsilon}} f_Z(z|X_c = x_c) f_X(x_c) dx_c + \int_{x_c \in \tilde{A}_{\alpha,\varepsilon}} f_Z(z|X_c = x_c) f_X(x_c) dx_c \tag{114}
$$

$$
1942\n\leq C_2 \left(\frac{n-1}{K}\right) \eta(\alpha, R),\tag{125}
$$

with $\eta(\alpha,R) =$ $\sqrt{ }$ \int \overline{a} $\ln\left(1+\frac{\sqrt{2\varepsilon R}}{\alpha}\right)$ if $d=1$ $\frac{1}{d-1}\left(\left(1+\frac{\sqrt{2\varepsilon R}}{\alpha}\right)^{d-1}-1\right)$ otherwise

Second term According to Lemma [3.3,](#page-3-2) we have

$$
f_Z(z|X_c = x_c) = (n - K - 1) \binom{n-1}{K} \int_0^1 \frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)
$$

$$
\times \mathcal{B}\left(n - K - 1, K; 1 - \mu_X\left(B\left(x_c, \frac{||z - x_c||}{w}\right)\right)\right) dw \tag{126}
$$

$$
\begin{array}{c} 1954 \\ 1955 \\ 1956 \\ 1957 \end{array}
$$

1960

1962 1963

1975 1976

> $\leq \left(\frac{n-1}{K} \right)$ K \bigwedge f^1 $\mathbf{0}$ 1 $\frac{1}{w^d} f_X\left(x_c + \frac{z - x_c}{w}\right)$ w \setminus (127)

1958 1959 Since $\mathcal{X} \subset B(0,R)$, all points $x, z \in \mathcal{X}$ satisfy $||x-z|| \leq 2R$. Consequently, if $||z-x_c||/w > 2R$, \overline{x} $||z - x_c||$

$$
c_c + \frac{\|z - x_c\|}{w} \notin \mathcal{X}.\tag{128}
$$

.

1961 Hence, for all $w \le ||z - x_c||/2R$,

$$
f_X\left(x_c + \frac{z - x_c}{w}\right) = 0.\tag{129}
$$

1964 1965 Plugging this equality into equation [127,](#page-36-0) we have

$$
f_Z(z|X_c = x_c) \tag{130}
$$

$$
\leq \left(\frac{n-1}{K}\right) \int_{\|z-x_c\|/2R}^1 \frac{1}{w^d} f_X\left(x_c + \frac{z-x_c}{w}\right) dw \tag{131}
$$

$$
\leq C_2 \left(\frac{n-1}{K}\right) \int_{\|z-x_c\|/2R}^1 \frac{1}{w^d} dw \tag{132}
$$

1972
1973
$$
\leq C_2 \left(\frac{n-1}{K}\right) \left[-\frac{1}{d-1} w^{-d+1} \right]_{\|z-x_c\|/2R}^1
$$
 (133)

$$
\leq C_2 \left(\frac{n-1}{K}\right) \frac{(2R)^{d-1}}{d-1} \frac{1}{\|z - x_c\|^{d-1}}.
$$
\n(134)

1977 1978 Besides, note that, for all $\alpha > 0$, we have

$$
\int_{B(z,\alpha)} \frac{1}{\|z - x_c\|^{d-1}} f_X(x_c) \mathrm{d}x_c \tag{135}
$$

$$
\leq C_2 \int_{B(0,\alpha)} \frac{1}{r^{d-1}} r^{d-1} \sin^{d-2}(\varphi_1) \sin^{d-3}(\varphi_2) \dots \sin(\varphi_{d-2}) dr d\varphi_1 \dots d\varphi_{d-2},
$$
 (136)

where $r, \varphi_1, \ldots, \varphi_{d-2}$ are the spherical coordinates. A direct calculation leads to

$$
\int_{B(z,\alpha)} \frac{1}{\|z - x_c\|^{d-1}} f_X(x_c) dx_c
$$
\n
$$
\leq C_2 \int_0^{\alpha} dr \int_{S(0,\alpha)} \sin^{d-2}(\varphi_1) \sin^{d-3}(\varphi_2) \dots \sin(\varphi_{d-2}) d\varphi_1 \dots d\varphi_{d-2} \tag{137}
$$

$$
\leq \frac{2C_2 \pi^{d/2}}{\Gamma(d/2)} \alpha,\tag{138}
$$

1991 1992

as

1993

1997

$$
\int_{S(0,\alpha)} \sin^{d-2}(\varphi_1) \sin^{d-3}(\varphi_2) \dots \sin(\varphi_{d-2}) d\varphi_1 \dots d\varphi_{d-2}
$$
\n(139)

1994 1995 1996 is the surface of the S^{d-1} sphere. Finally, for all $z \in \mathcal{X}$, for all $\alpha > 0$, and for all K, N such that $1 \leq K \leq N$, we have

$$
\int_{B(z,\alpha)} f_Z(z|X_c = x_c) f_X(x_c) dx_c \le \frac{2C_2^2 (2R)^{d-1} \pi^{d/2}}{(d-1)\Gamma(d/2)} \left(\frac{n-1}{K}\right) \alpha.
$$
 (140)

1998 1999 2000 Final result Using Figure [4](#page-35-0) and Pythagore's Theorem, we have $a^2 \le \sqrt{a}$ $2\varepsilon R$. Let $d > 1$ and $\epsilon > 0$. Then we have for all α such that $\alpha > a$.

$$
f_Z(z) \tag{141}
$$

$$
= \int_{x_c \in \tilde{A}_{\alpha,\varepsilon}} f_Z(z|X_c = x_c) f_X(x_c) dx_c + \int_{x_c \in \tilde{A}_{\alpha,\varepsilon}^c} f_Z(z|X_c = x_c) f_X(x_c) dx_c \tag{142}
$$

$$
\leq \frac{C_2}{d-1} \left(\left(1 + \frac{\sqrt{2\varepsilon R}}{\alpha} \right)^{d-1} - 1 \right) \left(\frac{n-1}{K} \right) + \frac{2C_2^2 (2R)^{d-1} \pi^{d/2}}{(d-1)\Gamma(d/2)} \left(\frac{n-1}{K} \right) \alpha \tag{143}
$$

$$
=\frac{C_2}{d-1}\left(\frac{n-1}{K}\right)\left[\left(\left(1+\frac{\sqrt{2\varepsilon R}}{\alpha}\right)^{d-1}-1\right)+\frac{2C_2(2R)^{d-1}\pi^{d/2}}{\Gamma(d/2)}\alpha\right],\tag{144}
$$

2011 2012 2013 But this inequality is true if $\alpha \ge a$. We know that $(1+x)^{d-1} \le (2^{d-1}-1)x+1$ for $x \in [0,1]$ and But this inequality is then $\alpha \leq \alpha$. We know $d-1 \geq 0$. Then, for α such that $\frac{\sqrt{2\varepsilon R}}{\alpha} \leq 1$,

$$
f_Z(z) \tag{145}
$$

$$
\leq \frac{C_2}{d-1} \left(\frac{n-1}{K} \right) \left[\left(\left((2^{d-1} - 1) \frac{\sqrt{2\varepsilon R}}{\alpha} + 1 \right) - 1 \right) + \frac{2C_2 (2R)^{d-1} \pi^{d/2}}{\Gamma(d/2)} \alpha \right] \tag{146}
$$

$$
\leq \frac{C_2}{d-1} \left(\frac{n-1}{K} \right) \left[\left((2^{d-1} - 1) \frac{\sqrt{2\varepsilon R}}{\alpha} \right) + \frac{2C_2 (2R)^{d-1} \pi^{d/2}}{\Gamma(d/2)} \alpha \right].
$$
 (147)

2022 2023 Since $\frac{\sqrt{2\varepsilon R}}{\alpha} \leq 1$, then $\alpha \geq$ √ $2\varepsilon R \ge a$. So our initial condition on α to get the upper bound of the second term is still true. Now, we choose α such that,

$$
(2^{d-1} - 1)\frac{\sqrt{2\varepsilon R}}{\alpha} \le \frac{2C_2(2R)^{d-1}\pi^{d/2}}{\Gamma(d/2)}\alpha,
$$
\n(148)

which leads to the following condition

2028 2029 2030

2031

$$
\alpha \ge \left(\frac{\Gamma(d/2)(2^{d-1}-1)\sqrt{2\varepsilon R}}{2C_2(2R)^{d-1}\pi^{d/2}}\right)^{1/2},\tag{149}
$$

2032 assuming that

$$
\left(\frac{\varepsilon}{R}\right)^{1/2} \le \frac{1}{\sqrt{2}dC_2} Vol(B_d(0,1)).
$$
\n(150)

Finally, for

$$
\alpha = \left(\frac{\Gamma(d/2)(2^{d-1} - 1)\sqrt{2\varepsilon R}}{2C_2(2R)^{d-1}\pi^{d/2}}\right)^{1/2},\tag{151}
$$

we have,

$$
f_Z(z) \le \frac{C_2}{d-1} \left(\frac{n-1}{K}\right) \left[\frac{4C_2(2R)^{d-1} \pi^{d/2}}{\Gamma(d/2)} \alpha\right]
$$
(152)

$$
\leq \frac{C_2}{d-1} \left(\frac{n-1}{K}\right) \left[\frac{4C_2(2R)^{d-1} \pi^{d/2}}{\Gamma(d/2)} \left(\frac{\Gamma(d/2)(2^{d-1}-1)\sqrt{2\varepsilon R}}{2C_2(2R)^{d-1} \pi^{d/2}}\right)^{1/2} \right] \tag{153}
$$

2047 2048

2049 2050 2051

$$
=2^{d+2}\left(\frac{n-1}{K}\right)\left(\frac{C_2^3 Vol(B_d(0,1))}{d}\right)^{1/2}\left(\frac{\varepsilon}{R}\right)^{1/4}.
$$
\n(154)

 \Box

2052 2053 C TECHNICAL LEMMAS

C.0.1 CUMULATIVE DISTRIBUTION FUNCTION OF A BINOMIAL LAW

Lemma C.1 (Cumulative distribution function of a binomial distribution). *Let* X *be a random variable following a binomial law of parameter* $n \in \mathbb{N}$ *and* $p \in [0,1]$ *. The cumulative distribution function* F *of* X *can be expressed as [Wadsworth et al.](#page-12-16) [\(1961\)](#page-12-16):*

(i)

2063

$$
F(k; n, p) = \mathbb{P}(X \le k) = \sum_{i=0}^{\lfloor k \rfloor} {n \choose i} p^i (1-p)^{n-i},
$$

(ii)

$$
F(k; n, p) = (n - k) {n \choose k} \int_0^{1-p} t^{n-k-1} (1-t)^k dt
$$

= $(n - k) {n \choose k} \mathcal{B}(n - k, k + 1; 1 - p),$

 \Box

with $B(a, b; x) = \int_{t=0}^{x} t^{a-1} (1-t)^{b-1} dt$, the incomplete beta function.

Proof. see [Wadsworth et al.](#page-12-16) [\(1961\)](#page-12-16).

C.0.2 UPPER BOUNDS FOR THE INCOMPLETE BETA FUNCTION

Lemma C.2. Let $B(a, b; x) = \int_{t=0}^{x} t^{a-1} (1-t)^{b-1} dt$, be the incomplete beta function. Then we *have*

$$
\frac{x^a}{a} \le B(a, b; x) \le x^{a-1} \left(\frac{1 - (1 - x)^b}{b} \right),
$$

for $a > 0$ *.*

2089 2090

2091

Proof. We have

