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ABSTRACT

Positive Unlabeled(PU) learning refers to the task of learning a binary classifier
given a few labeled positive samples, and a set of unlabeled samples (which could
be positive or negative). Majority of the existing approaches rely on additional
knowledge of the class prior, which is unavailable in practice. Furthermore, these
methods tend to perform poorly in low-data regimes, especially when very few
positive examples are labeled. In this paper, we propose a novel PU learning frame-
work that overcomes these limitations. We start by learning a feature space through
pretext-invariant representation learning and then apply pseudo-labeling to the un-
labeled examples, leveraging the cluster-preserving property of the representation
space. Overall, our proposed PU learning framework handily outperforms state-
of-the-art PU learning methods across several standard PU benchmark datasets,
while not requiring a-priori knowledge or estimate of class prior. Remarkably,
our method remains effective even when labeled data is scant, where previous PU
learning algorithms falter. We also provide simple theoretical analysis motivating
our proposed algorithms.

1 INTRODUCTION

This paper studies classical Positive Unlabeled (PU) learning – the weakly supervised task of learning
a binary (positive vs negative) classifier in the absence of any explicitly labeled negative examples,
i.e., using an incomplete set of positives and a set of unlabeled samples.

This setting is frequently encountered in several real-world applications, especially where obtaining
negative samples is either resource-intensive or impractical. For instance, consider personalized
recommendation systems, the training data typically consists of recorded user interactions, such as
the items shown to the user and the items they clicked on. While the clicked items are considered
positive preferences, the items not clicked on cannot be assumed to be negatives and should be treated
as unlabeled, along with items that were not shown to the user (Naumov et al., 2019; Chen et al.,
2021; Kelly & Teevan, 2003). Similarly, PU learning has also found applications in diverse domains
such as drug, gene, and protein identification (Yang et al., 2012; Elkan & Noto, 2008), anomaly
detection (Blanchard et al., 2010), fake news detection (Ren et al., 2014), matrix completion (Hsieh
et al., 2015), data imputation (Denis, 1998), named entity recognition (NER) (Peng et al., 2019) and
face recognition (Kato et al., 2018) among others.

PU Learning can also be viewed as a particular instance of learning with class dependent label
noise. However, due to the unavailability of negative examples, statistically consistent unbiased risk
estimation is generally infeasible, without imposing strong structural assumptions on p(x) (Blanchard
et al., 2010; Lopuhaa et al., 1991; Natarajan et al., 2013). In fact, we show that no robust ERM
estimator can solve the equivalent class-dependent label noise problem reliably unless certain dataset
conditions are met (see Appendix A.3.2, Lemma 1). The milestone is (Elkan & Noto, 2008), which
additionally assumes a-priori knowledge of class prior πp = p(y = 1|x) and treats the unlabeled
examples as a mixture of positives and negatives: p(x) = πpp(x|y = 1) + (1 − πp)p(x|y = 0).
(Blanchard et al., 2010; Du Plessis et al., 2014) build on this idea, and develop statistically consistent
and unbiased risk estimators to perform cost-sensitive learning which has become the backbone of
modern large scale PU learning algorithms (Chen et al., 2020d; Garg et al., 2021).

Unfortunately, these approaches suffer from two major issues (Also see Appendix A.3.1):

• Knowledge of class prior (πp): Firstly, in practice, the true πp is often not available and needs to
be estimated π̂p from the data. Further, these estimators are highly sensitive to the π̂p - resulting in
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significantly inferior performance when the estimate is inaccurate (Kiryo et al., 2017; Chen et al.,
2020a). 1 This can be attributed to the fact that the estimation error ∥πp − π̂p∥ ≤ ϵ introduces
bias ∼ O(ϵ) in the risk estimation. Thus, πp is often estimated via a separate Mixture Proportion
Estimation (MPE) (Ramaswamy et al., 2016; Ivanov, 2020; Yao et al., 2021) sub-routine, adding
significant computational overhead.

• Limited supervision: Moreover, even when the oracle class prior is available, if the supervision is
limited, i.e., only a handful of nP positive examples are labeled, existing PU learning approaches
can suffer from significant drop in performance or even complete collapse (Chen et al., 2020a).
This is primarily due to the increased variance in risk estimation, which scales as ∼ O(1/nP).

To this end, the primary aim of this work is to develop a parameter-free approach that facil-
itates Positive Unlabeled (PU) learning, even in scenarios where the availability of labeled
examples is limited, without requiring any additional side information, such as class prior.

(a) Generalization (b) Convergence (c) Embedding PUCL(γ = 0.5)

Figure 1: Incorporating supervision: In this experiment we train a ResNet-18 on ImageNet-II: Im-
ageWoof vs ImageNette - two subsets of ImageNet-1k widely used in noisy label learning research
https://github.com/fastai/imagenette. Amount of supervision is measured with fraction of positive to unla-
beled samples γ = nP

nU
. We keep the total number of samples N = nP + nU fixed, while varying nP. Observe

that: (a)Generalization: PUCL remains robust across various levels of supervision, consistently outperforming
its unsupervised counterpart, SSCL, and competing effectively with SCL-PU even in high supervision regimes.
In contrast, SCL-PU experiences significant performance degradation, particularly in low-supervision regimes,
where PUCL continues to demonstrate unique effectiveness. (b) Convergence: Incorporating additional positive
also improves the convergence of PUCL over SSCL( Theorem 4 ). (c) Embedding quality: Finally, models that
are trained with more PU supervision yields representation manifolds exhibiting better linear separability.

Orthogonal to the existing approaches, we introduce a novel framework that deftly leverages semantic
similarity among samples, along with the available weak supervision to learn a representation space
that exhibit linear separability, and develop that into an end-to-end method that remains effective
even in low-data regime while obviating the need for a-priori knowledge or estimate of class prior.

Our proposed PU Learning framework, as outlined in Algorithm 1, involves two key steps:
• Learning a cluster preserving representation manifold i.e. a feature space that preserves the

underlying clusters by mapping semantically similar examples close to each other. In particular,
we adopt a simple PU specific modification of the standard self-supervised contrastive objective
to take into account the available weak supervision in form of labeled positives resulting in
significantly improved representations compared to the self-supervised counterpart.

• Assign pseudo-labels to the unlabeled examples by exploiting the geometry of the representation
manifold learnt in the previous step. These pseudo-labels are then used to train the downstream
linear classifier using ordinary supervised objective e.g. cross-entropy (CE).

Contributions. Our proposed approach can be summarized into the following key contributions:

1For example, consider πp ̸= π̂p = 1 which leads to generate solution i.e. all the examples wrongly being
predicted as positives (Chen et al., 2020a).
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• In standard self-supervised contrastive learning approaches (Gutmann & Hyvärinen, 2010; Chen
et al., 2020b), the loss function encourages similarity between samples and their augmentations,
and dissimilarity between pairs of samples. We adopt a simple modification of this idea for the PU
setting by including an additional similarity term for pairs of samples that are both labeled; we call
our method PUCL and formally describe it in Algorithm 1(A). To the best of our knowledge, this
paper represents the first work tailoring contrastive learning specifically to the PU setting.

• We compare PUCL to two natural baselines2: self-supervised contrastive learning SSCL which
ignores the positive labels, and an adaptation of supervised contrastive learning SCL where all
the unlabeled samples are treated as negatives. We show that the relative performances of these
methods depend on the number of labeled positives, and that PUCL significantly outperforms the
baselines, especially in settings where the number of labeled positives is small.

• We theoretically ground our empirical findings by providing a bias-variance justification, which
provides more insight into the behavior of different contrastive objectives under various PU learning
scenarios; see Section 2.2 for more details.

• Next, we develop a clever pseudo-labeling mechanism PUPL; that operates on the representation
space learnt via PUCL. The key idea is to perform clustering on the representation manifold, where
we additionally leverage the representations of the labeled positive examples to guide the cluster
assignments as outlined in Algorithm 1(B). Theoretically, our algorithm enjoys O(1) multiplicative
error compared to optimal clustering under mild assumption. It is worth noting that, due to judicious
initialization, PUPL yields improved constant factor compared to kMeans++ ( Theorem 3 ).

• Since, even when available labeled positives are limited, representation learning is possible via
proposed PUCL, PUPL is able to produce high quality pseudo-labels. Thus, our overall approach of
contrastive pretraining followed by pseudo-labeling enables PU learning even when only a handful
of labeled examples are available, a realistic setting where existing approaches often fail.

• Extensive experiments across several standard PU learning benchmark data sets reveal that our
approach results in significant improvement in generalization performance compared to existing
PU learning methods with ∼ 2% improvement over current SOTA averaged over six benchmark
data sets demonstrating the value of our approach.

2 CONTRASTIVE APPROACH TO PU LEARNING

2.1 PROBLEM SETUP

Let x ∈ Rd and y ∈ Y = {0, 1} be the underlying input (i.e., feature) and output (label) random
variables respectively and let p(x, y) denote the true underlying joint density of (x, y). Then, a PU
training dataset is composed of a set XP of nP positively labeled samples and a set XU of nU unlabeled
samples (a mixture of both positives and negatives) 3 i.e.

XPU = XP ∪ XU, XP = {xP
i }

nP
i=1

i.i.d.∼ p(x|y = 1), XU = {xU
i

i.i.d.∼ p(x)}nu
i=1 (1)

Without the loss of generality, throughout the paper we assume that the overall classifier f(x) : Rd →
R|Y | is parameterized in terms of (a) an encoder gB(·) : Rd → Rk – a mapping function from the
feature space to a lower dimensional manifold referred to as the representation manifold hereafter;
and (b) a linear layer vv(·) : Rk → R|Y | i.e.

fv,B(x) = vv ◦ gB(x) = vT gB(x), ∀x ∈ Rd. (2)

The goal in PU learning is thus to train a binary classifier fv,B(x) from XPU (1).

As discussed before, our proposed PU learning framework involves two key steps - (a) learning
a mapping function gB(·) : Rd → Rk to a cluster-preserving representation space via contrastive
learning and (b) exploit the geometry of the feature space to pseudo-label the representations, used to
train the subsequent linear layer vv(·) : Rk → R|Y |. In the rest of this section, we discuss these two
ideas in more detail, explore different design choices and systematically develop the framework.

2Additionally, in Appendix A.5.4 we discuss some recent weakly supervised contrastive approaches.
3This particular setup of how PU learning dataset is generated is referred to as the case-control setting (Bekker

et al., 2019; Blanchard et al., 2010). However, in Appendix A.3.1 we also experiment with different contrastive
objectives in the single-dataset setting (Bekker & Davis, 2020).
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2.2 REPRESENTATION LEARNING FROM POSITIVE UNLABELED DATA

Central to our approach is the construction of a representation space that fosters the proximity of
semantically related instances while enforcing the separation of dissimilar ones. One way to obtain
such a representation space via pretext-invariant representation learning where the representations
zi = gB(xi) ∈ Rk are trained to be invariant to label-preserving distortions (Wu et al., 2018; Misra &
Maaten, 2020)4. To prevent trivial solutions (Tian et al., 2021), a popular trick is to apply additional
repulsive force between the embeddings of semantically dissimilar images, known as contrastive
learning (Chopra et al., 2005; Schroff et al., 2015; Sohn, 2016). In particular, we study variants of
InfoNCE family of losses (Oord et al., 2018) – a popular contrastive objective based on the idea of
Noise Contrastive Estimation (NCE), a method of estimating the likelihood of a model by comparing
it to a set of noise samples (Gutmann & Hyvärinen, 2010):

L∗
CL = E

(xi,yi)∼p(x,y)
E

xj∼p(x|yj=yi)

{xk}N
k=1∼p(x|yk ̸=yi)

[
zi · zj − log

(
exp(zi · zj) +

N∑
k=1

exp(zi · zk)
)]

, (3)

Where, the operator · is defined as: zi ·zj = 1
τ

zT
i zj

∥zi∥∥zj∥ Intuitively, the loss projects the representation

vectors onto hypersphere Sk−1
1 = {z ∈ Rk : ∥z∥ = 1

τ } and aims to minimize the angular distance
between similar samples while maximizing the angular distance between dissimilar ones. τ ∈ R+

is a hyper-parameter that balances the spread of the representations on the hypersphere (Wang &
Isola, 2020). The objective aims to minimize the angular distance between similar samples while
maximizing the angular distance between dissimilar ones.

While, several frameworks have been proposed to realize the infoNCE family of losses in the finite
sample setting (Caron et al., 2020; Grill et al., 2020; He et al., 2020; Zbontar et al., 2021), in this
paper we adopt the SimCLR framework (Chen et al., 2020d).

Self Supervised Contrastive Learning (SSCL): In the unsupervised setting, since identifying similar
and dissimilar example pairs from the appropriate class conditionals is intractable; different augmen-
tations of the same image are treated as similar, while rest are are considered as dissimilar pairs. In
particular, for any random batch of samples D = {xi}bi=1, corresponding multi-viewed batch is con-
structed by obtaining two augmentation (correlated views) of each sample: D̃ = {t(xi), t

′(xi)}bi=1

where t(·), t′(·) : Rd → Rd are stochastic label preserving transformations, such as color distortion,
cropping, flipping etc. To facilitate the subsequent discussion, let we introduce I ≡ {1, . . . , 2b}
corresponding to the elements of the multi-viewed batch. For augmentation indexed i ∈ I, other
augmentation originating from the same source sample is indexed as a(i). Then, SSCL minimizes
the following objective (Chen et al., 2020b) :

LSSCL = − 1

|I|
∑
i∈I

[
zi · za(i) − logZ(zi)

]
(4)

Where, Z(zi) =
∑

j∈I 1(j ̸= i) exp(zi · zj) is the finite-sample approximation of the partition
function within the batch. In practice, rather than computing the loss over the encoder outputs i.e.
zi = gB(xi); it is beneficial to feed it through a small nonlinear projection network hΓ(·) : Rk → Rp

to obtain a lower dimensional representation zi = hΓ ◦ gB(xi) ∈ Rp (Chen et al., 2020b; Schroff
et al., 2015). Note that the hΓ(·) is only used during training and discarded during inference.

2.2.1 INCORPORATING PU SUPERVISION

Despite its ability to learn robust representations, SSCL is entirely agnostic to semantic an-
notations, hindering its ability to benefit from additional supervision, especially when such
supervision is reliable. This lack of semantic guidance often leads to inferior visual represen-
tations compared to fully supervised approaches (He et al., 2020; Kolesnikov et al., 2019).

4Consider dataset x ∈ X , y ∈ Y with underlying ground-truth labeling mechanism y = Y(x) ∈ Y .
Parameterized representation function fW(·) is said to be invariant under transformation t : X → X that do not
change the ground truth label i.e. Y(t(x)) = Y(x) if fW(t(x)) ≈ fW(x).
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Figure 2: Geometric intuition of incorporating contrastive (PU)-supervision: Consider 1D feature space
x ∈ R, e.g., xi = 1 if shape: triangle (▲, ▲), xi = 0 if shape: circle (•, •). However, the labels are yi = 1 if
color: blue (▲,•) and yi = 1 if color: red (▲, •). We show all possible configurations of arranging these points
on the vertices of unit hypercube H ∈ R2 when ▲ is fixed at (0, 1). All the four shaded point configurations are
favored by SSCL (4), since xi = xj are placed neighboring vertices. However, the minimum loss configurations
of PUCL (marked in rectangle) favors configurations, that additionally also preserve annotation consistency.

Motivated by these observations, our goal is to design a contrastive loss that can leverage the
available weak supervision in PU learning (in the form of labeled positive examples) in an efficient
manner, to learn more discriminative representations compared to LSSCL.

Positive Unlabeled Supervised Contrastive Learning (SCL-PU): In the fully supervised setting,
Supervised Contrastive Learning (SCL) (Khosla et al., 2020) addresses this issue by utilizing the
semantic annotations to guide the choice of similar and dissimilar pairs, often resulting in significant
empirical gains. However, unfortunately in PU learning, since negative examples are not available,
it is non-trivial to extend SCL in this setting. Consider the naive disambiguation-free (Li et al.,
2022) adaptation, we refer as SCL-PU – wherein, the unlabeled training examples are treated as
pseudo-negative instances5 i.e.

LSCL-PU = − 1

|I|
∑
i∈I

[(
1(i ∈ P)

1

|P \ i|
∑
j∈P\i

zi · zj + 1(i ∈ U)
1

|U \ i|
∑
j∈U\i

zi · zj

)
− logZ(zi)

]
(5)

Here, P and U denote the subset of indices in D̃ that are labeled and unlabeled respectively i.e.
P = {i ∈ I : xi = XP},U = {i ∈ I : xi ∈ XU}. It is easy to follow that this naive adaptation suffers
from statistical bias to estimate L∗

CL which becomes increasingly pronounced as the level of available
supervision decreases as characterized in Theorem 1.

Theorem 1. LSCL-PU (5) is a biased estimator of L∗
CL characterized as follows:

E
XPU

[
LSCL-PU

]
− L∗

CL =
πp(1− πp)

1 + γ

[
2µ̃PN − (µ∗

P + µ∗
N)

]
Here, µ∗

P = Exi,xj∼p(x|y=1)

(
zi · zj

)
and µ∗

N = Exi,xj∼p(x|y=0)

(
zi · zj

)
capture the proximity

between samples from same class marginals and µ̃PN = Exi,xj∼p(x|yi ̸=yj)
(
zi · zj

)
captures the

proximity between dissimilar samples. γ = nP
nU

captures the proportion of cardinality of labeled
to unlabeled training subset.

Consistent with the theoretical observation, our experiments (Figure 4) also reveal that, while in the
low-supervision regime, LSCL-PU might suffer from significant drop in generalization performance, it
still results in significant improvements over the unsupervised LSSCL when sufficient labeled positives
are available. indicating a bias-variance trade-off that can be further exploited to arrive at an
improved loss.

Positive Unlabeled Contrastive Learning (PUCL): In response, we consider a simple modifica-
tion to the standard contrastive objective for the PU setting that is able to incorporate the available
(weak) supervision judiciously. In particular, the modified objective dubbed PUCL leverages the
available supervision as follows – each labeled positive anchor is attracted closer to all other labeled

5Note that, this is a is a reduction of PU Learning to learning with class-dependent noisy label with noise
rates E(ξP) =

πP
γ+πP

and ξN = 0. Refer to Appendix A.3.2 for more details.
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positive samples in the batch, whereas an unlabeled anchor is only attracted to its own augmentation.

LPUCL = − 1

|I|
∑
i∈I

[
1(i ∈ U)

(
zi · za(i)

)
+ 1(i ∈ P)

1

|P \ i|
∑
j∈P\i

zi · zj − logZ(zi)

]
(6)

In essence, the unsupervised part in PUCL enforces consistency between representations learned via
label-preserving augmentations i.e. between zi and za(i)∀i ∈ I, whereas the supervised component
injects structural knowledge derived from labeled positives (see Figure 2, 7, Appendix A.5.2).

It is not hard to see that, LPUCL is an unbiased estimator of L∗
CL. Additionally, by using the available

labeled positives it enjoys a lower variance compared to LSSCL and the gap is a monotonically
increasing function of γ = nP

nU
as summarized in Theorem 2.

Theorem 2. Assume that xi,xa(i) are i.i.d draws from the same class marginal (Saunshi et al.,
2019; Tosh et al., 2021), then it follows that the objective functions LSSCL (4) and LPUCL (6) are
unbiased estimators of L∗

CL (3). Additionally, it holds that:

∆σ(γ) ≥ 0 ∀γ ≥ 0 ; ∆σ(γ1) ≥ ∆σ(γ2) ∀γ1 ≥ γ2 ≥ 0

where, ∆σ(γ) = Var(LSSCL)−Var(LPUCL).

Empirical Evidence: Our ablation experiments (see Figure 4, Table 2 and Appendix A.5.4) also
suggest that indeed LPUCL consistently produces representations that have improved linear separability
over LSSCL indicated by its improved downstream classification performance. These improvements
are particularly pronounced when a sufficient number of labeled instances are available. Further, we
observe that PUCL also significantly improves over SCL-PU objective especially in the practical
settings where γ is usually small while staying competitive for settings where a large fraction of the
data is labeled as discussed in more detail in Section 3.

2.3 POSITIVE UNLABELED PSEUDO LABELING

While so far we have only discussed about learning a representation function, mapping the input
features to a contrastive representation manifold, where semantically dissimilar samples are likely to
be easily separable – performing inference on this manifold is not entirely obvious. Under the standard
semi-supervised setting, the linear layer vv(·) can be trained using CE loss over the representations of
the labeled data (Assran et al., 2020) to perform downstream inference. However, in the PU learning
setting since we do not have any negative examples, a naive disambiguation-free approach would fit
the bias in semantic annotations resulting in decision boundary deviation (Li et al., 2022) even for
completely separable feature space ( Figure 12). One natural approach would be to train the linear
classifier using specialized cost-sensitive PU learning algorithm such as NNPU (Kiryo et al., 2017) -
the de-facto approach to solve PU problems in practical settings and at the core of most modern PU
learning algorithms. However, they suffer from the issues mentioned in Section 1.

In response, we ask the question: Can we develop a scheme to train a downstream PU classifier over
the representations learnt via contrastive pretraining, that remains effective even in extreme low-
supervision regime (i.e. when only a handful of positive examples are labeled ) while not requiring
the knowledge (or estimate) of dataset properties such as class prior ?

To this end, we propose a clever pseudo-labeling mechanism that obviates the need of class prior
knowledge and significantly simplifies the downstream inference problem which can now be solved
using standard CE loss over the pseudo-labels – even when only a handful of labeled examples are
available. Our algorithm relies on the fact that the contrastive representation manifold resulting
from Algorithm 1(A) fosters proximity of semantically similar examples i.e. it is likely to pre-
serve underlying clustering structure (Parulekar et al., 2023). In particular, we seek to find centers
C∗ = {µP, µN} on the representation space, such that it approximately solves the NP-hard k-means
problem (Mahajan et al., 2012) i.e. minimize the following potential function:

ϕ∗ = ϕ(ZPU, C
∗) =

∑
x∈ZPU

min
µ∈C∗

∥x− µ∥2 , ZPU = {gB(xi) ∈ Rk : xi ∈ XPU} (7)

6



Under review as a conference paper at ICLR 2024

(a) ImageNet-II (b) CIFAR-Hard

Figure 3: Linear Probing: Given pretrained embedding our goal is now to train a downstream linear model.
In this experiment we take puCL(γ) pretrained encoder (frozen) and train a linear classifier for downstream
inference. In particular, we evaluate several popular SOTA PU Learning methods along with the proposed
pseudo-labeling based approach. Our findings are particularly noteworthy in the context of low-data regimes.
While traditional PU learning methods often struggle to maintain performance with limited data, our approach
consistently demonstrates robust effectiveness.

Contrastive PU Learning Datasets
Average

Contrastive Loss Linear Probing F-MNIST-I F-MNIST-II CIFAR-I CIFAR-II STL-I STL-II
(π∗

p = 0.3) (π∗
p = 0.7) (π∗

p = 0.4) (π∗
p = 0.6) (π̂p = 0.51) (π̂p = 0.49)

nP = 1000

SSCL NNPU† 89.5±0.9 85.9±0.5 91.7±0.3 90.0±0.4 81.1±1.2 81.4±0.8 86.6
PU-SCL NNPU† 73.0±4.9 81.8±0.5 88.4±2.1 63.7±5.3 59.2±8.1 68.8±3.1 72.5

PUCL NNPU† 90.0±0.1 86.8±0.4 91.8±0.2 90.3±0.5 81.5±0.7 82.6±0.4 87.2
SSCL PUPL (CE) 91.4±1.2 86.2±0.6 91.6±0.9 90.7±0.4 81.2±1.6 81.3±0.7 87.1

PU-SCL PUPL (CE) 77.8±0.3 82.5±4.1 90.1±1.2 68.9±7.5 58.5±8.2 73.9±1.2 75.3
PUCL PUPL (CE) 91.8±0.8 89.2±0.3 92.3±1.9 91.2±0.5 83.8±1.4 84.5±0.7 88.8

nP = 3000 nP = 2500

SSCL NNPU† 89.6±0.1 85.0±0.4 92.3±0.3 92.7±0.3 81.6±0.9 84.2±1.0 87.6
PU-SCL NNPU† 85.7±0.3 82.1±0.2 90.5±3.1 88.6±0.5 83.2±0.8 84.8±1.4 85.8

PUCL NNPU† 90.3±0.1 87.0±0.7 93.2±0.1 92.9±0.1 84.9±0.7 85.1±0.7 88.9
SSCL PUPL (CE) 90.1±0.2 88.8±0.6 92.7±1.3 92.9±0.8 82.0±1.6 84.3±0.2 88.5

PU-SCL PUPL (CE) 85.9±1.6 84.8±2.4 92.4±0.9 93.4±1.2 83.1±2.9 85.5±0.6 87.5
PUCL PUPL (CE) 92.0±0.7 89.6±1.2 93.5±0.8 93.8±0.4 85.0±0.9 85.2±2.1 89.9

Table 1: Effectiveness of PUPL. To demonstrate the efficacy of PUPL , we train a downstream linear classifier
using PUPL(CE) and NNPU ( run with π∗

p ). over embeddings obtained via different contrastive objectives -
SSCL, SCL-PU and PUPL.

Lloyd’s algorithm (Lloyd, 1982) is the de-facto approach for locally solving (7) in an unsupervised
fashion. However, since we have some label positive examples, instead of initializing the centers
randomly, we initialize µP to be the centroid of the representations of the labeled positive samples;
whereas, µN is initialized via randomized k-means++ seeding strategy. The algorithm then performs
usual alternating k-means updates. The unlabeled samples can then be pseudo-labeled based on the
nearest cluster center as follows:

zi ∈ ZU : ỹi =

{
1 if µP = argminµ∈C ∥zi − µ∥2
0 o/w

This immediately allow us to learn a linear decision boundary via training vv(·) over {(zi, ỹi) : zi ∈
ZPU} using any standard classification loss such as CE. Algorithm 1(B) describes PUPL in detail.

If the PU data is generated as (1), then we can prove that PUPL enjoys improved guarantees over
standard k-means and k-means++ (Yoder & Priebe, 2017; Liu et al., 2010):

Theorem 3. Suppose, PU data is generated as (1), then running Algorithm 1(B) on ZPU yields:
E
[
ϕ(ZPU, CPUPL)

]
≤ 16ϕ∗(ZPU, C

∗). In comparison, running k-means++ on ZPU we get,
E
[
ϕ(ZPU, Ck−means++)

]
≤ 21.55ϕ∗(ZPU, C

∗).
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Algorithms
Datasets

AverageF-MNIST-I F-MNIST-II CIFAR-I CIFAR-II STL-I STL-II
(π∗

p = 0.3) (π∗
p = 0.7) (π∗

p = 0.4) (π∗
p = 0.6) (π̂p = 0.51) (π̂p = 0.49)

nP = 1000

UPU† 71.3±1.4 84.0±4.0 76.5±2.5 71.6±1.4 76.7±3.8 78.2±4.1 76.4
NNPU† 89.7±0.8 88.8±0.9 84.7±2.4 83.7±0.6 77.1±4.5 80.4±2.7 84.1

NNPU† W MIXUP 91.4±0.3 88.2±0.7 87.2±0.6 85.8±1.2 79.8±0.8 82.2±0.9 85.8
SELF-PU† 90.8±0.4 89.1±0.7 85.1±0.8 83.9±2.6 78.5±1.1 80.8±2.1 84.7

PAN 88.7±1.2 83.6±2.5 87.0±0.3 82.8±1.0 77.7±2.5 79.8±1.4 83.3
VPU† 90.6±1.2 86.8±0.8 86.8±1.2 82.5±1.1 78.4±1.1 82.9±0.7 84.7

MIXPUL 87.5±1.5 89.0±0.5 87.0±1.9 87.0±1.1 77.8±0.7 78.9±1.9 84.5
PULNS 90.7±0.5 87.9±0.5 87.2±0.6 83.7±2.9 80.2±0.8 83.6±0.7 85.6

P3MIX-E 91.9±0.3 89.5±0.5 88.2±0.4 84.7±0.5 80.2±0.9 83.7±0.7 86.4
P3MIX-C 92.0±0.4 89.4±0.3 88.7±0.4 87.9±0.5 80.7±0.7 84.1±0.3 87.1

PUCL + PUPL 91.8±0.8 89.2±0.3 92.3±1.9 91.2±0.5 83.8±1.4 84.5±0.7 88.8

nP = 3000 nP = 2500

UPU† 89.9±1.0 78.6±1.3 80.6±2.1 72.9±3.2 70.3±2.0 74.0±3.0 77.7
NNPU† 90.8±0.6 90.5±0.4 85.6±2.3 85.5±2.0 78.3±1.2 82.2±0.5 85.5

RP 92.2±0.4 75.9±0.6 86.7±2.9 77.8±2.5 67.8±4.6 68.5±5.7 78.2
VPU† 92.7±0.3 90.8±0.6 89.5±0.1 88.8±0.8 79.7±1.5 83.7±0.1 87.5

PUCL + PUPL 92.0±0.7 89.6±1.2 93.5±0.8 93.8±0.4 85.0±0.9 85.2±2.1 89.9

Table 2: PU Learning Benchmarks. We compare our approach against several PU Learning baselines
algorithms over different datasets and different amount of labeled data. Our setup is identical as (Li et al., 2022;
Chen et al., 2020a). †: These methods were run with oracle class prior knowledge.

This result indicates that, whenever the feature space exhibits clustering properties, i.e. positive and
negative examples form separate clusters; and the labeled positives are drawn i.i.d from the true
positive marginal, then Theorem 3 suggest that PUPL is able to recover the true underlying labels
even in low-supervision regime. Further, due to the clever initialization of the cluster centroids, PUPL
enjoys improved guarantees over k-means++.

3 EMPIRICAL EVIDENCE

Experimental Setup. Closely following the experimental setup of (Li et al., 2022; Chen et al.,
2020a), we conduct our experiments on six benchmark datasets: STL-I, STL-II, CIFAR-I, CIFAR-
II, FMNIST-I, and FMNIST-II, obtained via modifying STL-10 (Coates et al., 2011), CIFAR-
10 (Krizhevsky et al., 2009) and Fashion MNIST (Xiao et al., 2017) respectively. Additionally, we
perform ablations on a subset of dog vs non-dog images sampled from ImageNet-subset (Hua et al.,
2021; Engstrom et al., 2019), CIFAR-10(cat vs dogs) and CIFAR-10(vehile vs animal). We use
LeNet-5 (LeCun et al., 1998) for F-MNIST and 7-layer CNN for STL and CIFAR benchmarks (Li
et al., 2022; Chen et al., 2020a). Dog vs Non Dog (ImageNet) experiments utilize ResNet-34 (He et al.,
2016), Dog vs Cats (CIFAR-10) use ResNet-18. Details on experimental setup, hyper-parameters,
baselines are presented in Appendix A.7.

• Comparison with other PU baselines: To demonstrate the efficacy of our proposed approach,
we compare it with several popular PU Learning baselines. The details of the baselines can be
found in Appendix A.7. As discussed before, several of the baselines rely the knowledge of class
prior πp. For CIFAR-I, CIFAR-II, FMNIST-I, and FMNIST-II, oracle π∗

p is known exactly, with
values 0.4, 0.6, 0.3, and 0.7, respectively. However, since STL dataset is naturally semi-supervised,
π∗
p is unknown and thus estimated using KM2 (Ramaswamy et al., 2016) - a popular mixture

proportion estimation algorithm. The estimated class priors π̂p for STL-I and STL-II are found
to be 0.51 and 0.49 (Li et al., 2022). The empirical findings are summarized in 2 - where the
baselines at nP = 1000, are borrowed from (Li et al., 2022) and other reported baselines are
obtained from (Chen et al., 2020a).

• Ablations on Contrastive Representation Learning. Theorem 1,3 indicate that the bias-variance
trade-off depends on amount of positive labeled data as well as the true class prior and thus are
important parameters to decide which contrastive loss to pick. Our ablation experiments Figure 4
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(a) Varying γ with fixed nU , π (b) Varying π with fixed nU , γ (c) Varying π, γ with fixed nU

Figure 4: Ablation of Contrastive Representation Learning under different PU dataset settings: To better
understand the bias-variance trade-off in PU representation learning, we experiment with different PU learning
settings: class prior πp and amount of labeled data captured by γ = nP

nU
( Theorem 4 ). Experiments train

ResNet-34 on ImageNet Dogs vs Non-Dogs. Embedding evaluation was performed using fully supervised kNN
classification. They flesh out several interesting aspects of contrastive learning over PU data and supplement our
theoretical findings. Please refer to Section 3 for a detailed discussion.

are aimed at understanding this bias-variance trade-off and gain insight about the behavior of
contrastive objectives in the PU setting. Our observations are summarized as follows:

• Role of γ : In these experiments, we fix the amount of unlabeled data nU and πp, and vary the
number of labeled positive examples nP, resulting in different values of γ = nP

nU
. We consistently

observe that PUCL outperforms SSCL across all settings. The improvements are particularly
significant when γ is larger. While, for larger values of γ, SCL-PU shows accuracy gains, it suffers
from performance degradation, especially for smaller values of γ - aligning with Theorem 1

• Role of πp : The bias characterization of SCL-PU indicate a dependence on πp. To understand
this in isolation, we fix γ and nU while using different πp to create the unlabeled set i.e. πpnU
positives and (1− πp)nU negatives are mixed. Indeed as πp approaches 1/2 we observe that the
SCL-PU loss starts to degrade and more interestingly, as πp → 1 SCL-PU completely collapses.
This is possibly because a large value of πp implies that the training algorithm was presented with
less amount of negative (unlabeled) examples. While the other two objectives remain fairly robust;
gains of PUCL over SSCL by using available supervision is diminished.

• Convergence: We Find that PUCL not only has better generalization, it also enjoys uperior
convergence compared to SSCL since it suffers a lower bias compared to the ideal fully supervised
loss. Due to space constraint we discuss this in Figure 9, Theorem 4 in Appendix A.5.

4 CONCLUSION, LIMITATIONS AND BROADER IMPACT

In summary, we present a novel, simple and practical PU learning solution with superior empirical
performance, without needing additional knowledge like class prior. Our approach uniquely stays
effective even with extremely limited labels, unlike prior PU methods. Overall, by pioneering PU
learning with semantic similarity through contrastive learning and pseudo-labeling, we provide a
theoretically-grounded technique that opens a valuable new research direction for PU learning.

One potential limitation of our method is that it depends on contrastive learning to find cluster-
preserving embedding space and might fail when it can’t do so. Further, it depends on contrasting
augmentations, which might be challenging to extend in some domains e.g. time series.
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A APPENDIX

A.1 NOTATIONS AND ABBREVIATIONS

SSCL Self Supervised Contrastive Learning

SCL-PU Naive PU adaptation of Supervised Contrastive Learning

PUCL Positive Unlabeled Contrastive Learning

PUPL Positive Unlabeled Pseudo Labeling

a A scalar (integer or real)

a A vector

A A matrix

a A scalar random variable

a A vector-valued random variable

A A set

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

A\B Set subtraction, i.e., the set containing the elements of A
that are not in B

ai Element i of the random vector a

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or
over a variable whose type has not been specified

f : A → B The function f with domain A and range B
f ◦ g Composition of the functions f and g

f(x; θ) A function of x parametrized by θ. (Sometimes we write
f(x) and omit the argument θ to lighten notation)

||x||p Lp norm of x

1(condition) is 1 if the condition is true, 0 otherwise
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A.2 EXTENDED RELATED WORK

Positive Unlabeled (PU) Learning : Existing PU learning algorithms primarily differ in the way
they handle the semantic annotations of unlabeled examples.

One set of approaches rely on heuristic based sample selection where the idea is to identify potential
negatives, positives or both samples in the unlabeled set; followed by performing traditional super-
vised learning using these pseudo-labeled instances in conjunction with available labeled positive
data (Liu et al., 2002; Bekker & Davis, 2020; Luo et al., 2021; Wei et al., 2020).

A second set of approaches adopt a re-weighting strategy, where the unlabeled samples are treated
as down-weighted negative examples (Liu et al., 2003; Lee & Liu, 2003). However, both of these
approaches can be difficult to scale, as identifying reliable negatives or finding appropriate weights
can be challenging or expensive to tune, especially in deep learning scenarios (Garg et al., 2021).

Recent works, further use the cost-sensitive classifiers in conjunction with other techniques.For
example (Chen et al., 2021) use self distillation to improve the initial nnPU model; (Wei et al., 2020)
uses mixup data augmentation to create augmented unlabeled samples with soft labels. Moreover, PU
learning is also closely related to other robustness and weakly supervised settings, including learning
under distribution shift (Garg et al., 2021), asymmetric label noise (Tanaka et al., 2021; Du & Cai,
2015) and semi-supervised learning (Chen et al., 2020c; Assran et al., 2020; Zhou, 2018).

Contrastive Representation Learning: Self-supervised learning has demonstrated superior
performances over supervised methods on various benchmarks. Joint-embedding methods (Chen
et al., 2020b; Grill et al., 2020; Zbontar et al., 2021; Caron et al., 2021) are one the most promising
approach for self-supervised representation learning where the embeddings are trained to be invariant
to distortions. To prevent trivial solutions, a popular method is to apply pulsive force between
embeddings from different images, known as contrastive learning. Contrastive loss is shown to be
useful in various domains, including natural language processing (Gao et al., 2021), multimodal
learning (Radford et al., 2021). Contrastive loss can also benefit supervised learning (Khosla et al.,
2020).

Clustering based Pseudo Labeling: Our approach is also closely related simultaneous clustering
and pseudo-labeling approaches like DeepCluster (Caron et al., 2020) Clustering Based Representa-
tion Learning: Simultaneous clustering and representation learning has gained popularity recently.
DeepCluster (Caron et al., 2018) uses off-the-shelf clustering method e.g. kMeans to assign pseudo
labels based on cluster membership and subsequently learns the representation using standard CE loss
over the pseudo-labels. However, this standard simultaneous clustering and representation learning
framework is often susceptible to degenerate solutions (e.g. trivially assigning all the samples to a
single label) even for linear models (Xu et al., 2004; Joulin & Bach, 2012; Bach & Harchaoui, 2007).
SeLA (Asano et al., 2019) alleviate this by adding the constraint that the label assignments must
partition the data in equally-sized subsets. Twin contrastive clustering (TCC) (Shen et al., 2021),
SCAN (Van Gansbeke et al., 2020), (Qian, 2023), SwAV (Caron et al., 2020; Bošnjak et al., 2023)
combines ideas from contrastive learning and clustering based representation learning methods to
perform simultaneous clusters the data while enforcing consistency between cluster assignments
produced for different augmentations of the same image in an online fashion.
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A.3 BACKGROUND

A.3.1 DISCUSSION ON DIFFERENT PU LEARNING PROBLEM SETTINGS

Case Control Setting: Recall, the PU setting we have studied in the paper. Let x ∈ Rd and
y ∈ Y = {0, 1} be the underlying input (i.e., feature) and output (label) random variables respectively
and let p(x, y) denote the true underlying joint density of (x, y). Then, a PU training dataset is
composed of a set XP of nP positively labeled samples and a set XU of nU unlabeled samples (a
mixture of both positives and negatives) i.e.

XPU = XP ∪ XU, XP = {xP
i }

nP
i=1

i.i.d.∼ p(x|y = 1), XU = {xU
i

i.i.d.∼ p(x)}nu
i=1 (8)

This particular setup of how PU learning dataset is generated is referred to as the case-control
setting (Bekker et al., 2019; Blanchard et al., 2010) and possibly widely used.

Single Dataset Setting: Now, we consider another setting referred to as the Single Dataset setting
where there is only one dataset. The positive samples are randomly labeled from the dataset as
opposed to being independent samples from the positive marginal. Thus the unlabeled set is no longer
truly representative of the mixture. However our experiments ?? reveal that contrastive learning is
still able learn representations following similar trends as case-control settings possibly because it is
agnostic to how the data is generated unlike unbiased PU Learning methods.

A.3.2 CONNECTION TO LEARNING UNDER CLASS DEPENDENT LABEL NOISE

PU Learning is also closely related to the popular learning under label noise problem where the
goal is to robustly train a classifier when a fraction of the training examples are mislabeled. This
problem is extensively studied under both generative and discriminative settings and is an active area
of research (Ghosh et al., 2015; 2017; Ghosh & Lan, 2021; Wang et al., 2019; Zhang et al., 2017).

Consider the following instance of learning a binary classifier under class dependent label noise i.e.
the class conditioned probability of being mislabeled is ξP and ξN respectively for the positive and
negative samples. Formally, let XPN be the underlying clean binary dataset.

XPN = XP ∪ XN, XP = {xP
i }

nP
i=1

i.i.d.∼ p(x|y = +1), XN = {xN
i

i.i.d.∼ p(x|y = −1)}nN
i=nP+1 (9)

Instead of XPN, a binary classifier needs to be trained from a noisy dataset X̃PN with class dependent
noise rates ξP and ξN i.e.

X̃PN = {(xi, ỹi)}nP+nN
i=1 , ξP = p(ỹi ̸= yi|yi = +1), ξN = p(ỹi ̸= yi|yi = −1) (10)

REDUCTION OF PU LEARNING 2.1 TO LEARNING WITH LABEL NOISE : Recall from
Section 2.2 the naive disambiguation-free approach (Li et al., 2022), where the idea is to pseudo
label the PU dataset as follows: Treat the unlabeled examples as negative and train an ordinary
binary classifier over the pseudo labeled dataset. Clearly, since the unlabeled samples (a mixture
of positives and negatives) are being pseudo labeled as negative, this is an instance of learning
with class dependent label noise:

X̃PN = XP ∪ X̃N, XP = {xP
i }

nP
i=1

i.i.d.∼ p(x|y = 1), X̃N = {xU
i

i.i.d.∼ p(x)}nu
i=1 (11)

It is easy to show that noise rates are:

E(ξP) =
πP

γ + πP
and ξN = 0 (12)

Where E(γ) = nP
nU

and πP = p(y = 1|x) are training distribution dependent parameters.

Under the standard robust Empirical Risk Minimization (ERM) framework, the goal is to robustly
estimate the true risk i.e. for some loss we want the estimated risk (from the noisy data) to be close to
the true risk (from the clean data) i.e. with high probability:

∆ =

∥∥∥∥R̂(θ)−R(θ∗)

∥∥∥∥
2

= E
∥∥∥∥ℓ(fθ(x), ỹ)− ℓ

(
fθ∗(x), y

)∥∥∥∥
2

≤ ϵ
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A popular way to measure the resilience of an estimator against corruption is via breakdown point
analysis (Donoho & Huber, 1983; Huber, 1996; Lopuhaa et al., 1991; Acharya et al., 2022).

Definition 1 (Breakdown point). Breakdown point ψ of an estimator is simply defined as the
smallest fraction of corruption that must be introduced to cause an estimator to break implying
∆ (risk estimation error) can become unbounded i.e. the estimator can produce arbitrarily wrong
estimates.

It is easy to show the following result:

Lemma 1. Consider the problem of learning a binary classifier (P vs N) in presence of class-
dependent label noise with noise rates E(ξP) =

πP
γ+πP

, ξN = 0. Without additional distributional

assumption, no robust estimator can guarantee bounded risk estimate
∥∥∥∥R̂(θ)−R(θ∗)

∥∥∥∥
2

≤ ϵ if

γ ≤ 2πp − 1

where γ = nP
nU

and πp = p(y = 1|x) denotes the underlying class prior.

Proof. This result follows from using the fact that for any estimator 0 ≤ ψ < 1
2 (Lopuhaa et al.,

1991; Minsker et al., 2015; Cohen et al., 2016; Acharya et al., 2022) i.e. for robust estimation to be
possible, the corruption fraction α = πP

γ+1 <
1
2 . ■

This result suggests that PU Learning cannot be solved by off-the-shelf label noise robust algorithms
and specialized algorithms need to be designed.

A.3.3 COST SENSITIVE PU LEARNING

Consider training linear classifier vv(·) : Rk → R|Y | where k ∈ R+ is the dimension of the features.
In the (fully) supervised setting (PN) labeled examples from both class marginals are available and
the linear classifier can be trained using standard supervised classification loss e.g. CE. However, in
the PU learning setup since no labeled negative examples are provided it is non-trivial to train.

As discussed in Appendix A.3.2, without additional assumptions the equivalent class dependent
label noise learning problem cannot be solved when γ ≤ 2πp − 1. However, note that in PU
Learning, we additionally know that a subset of the dataset is correctly labeled i.e.

p(ỹi = yi = 1|xi ∈ P) = 1

Can we use this additional information to enable PU Learning even when γ <= 2πp − 1 ?

Remarkably, SOTA cost-sensitive PU learning algorithms tackle this by forming an unbiased estimate
of the true risk from PU data (Blanchard et al., 2010) by assuming additional knowledge of the true
class prior πp = p(y = 1|x). The unbiased estimator dubbed uPU (Blanchard et al., 2010; Du Plessis
et al., 2014) of the true risk RPN(v) from PU data is given as:

R̂pu(v) = πpR̂
+
p (v) +

[
R̂−

u (v)− πpR̂
−
p (v)

]
where we denote the empirical estimates computed over PU dataset (1) as:

R̂+
p (v) =

1

nP

nP∑
i=1

ℓ(v(xP
i ), 1) , R̂

−
p (v) =

1

nP

nP∑
i=1

ℓ(v(xP
i ), 0) , R̂

−
u (v) =

1

nU

nU∑
i=1

ℓ(v(xU
i ), 0)

and ℓ(·, ·) : Y × Y → R is the classification loss e.g. CE.

In practice, clipping the estimated negative risk results in a further improvement (Kiryo et al., 2017).

R̂pu(v) = πpR̂
+
p (v) + max

{
0, R̂−

u (v)− πpR̂
−
p (v)

}
(13)
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This clipped loss dubbed NNPU is the de-facto approach to solve PU problems in practical settings
and we use this as a powerful baseline for training the downstream PU classifier.

As discussed before, we identify two main issues related to these cost-sensitive estimators:

• Class Prior Estimate : The success of these estimators hinges upon the knowledge of the
oracle class prior π∗

p for their success. It is immediate to see that an error is class prior estimate
∥π̂p − π∗

p∥2 ≤ ξ results in an estimation bias ∼ O(ξ) that can result in poor generalization, slower
convergence or both.
Our experiments (Figure 15) suggest that even small approximation error in estimating the class
prior can lead to notable degradation in the overall performance of the estimators.
Unfortunately however in practical settings (e.g. large-scale recommendation) the class prior is not
available and often estimating it with high accuracy using some MPE (Garg et al., 2021; Ivanov,
2020; Ramaswamy et al., 2016) algorithm can be quite costly.

• Low Supervision Regime : While these estimators are significantly more robust than the vanilla
supervised approach, our experiments ( Figure 14) suggest that they might produce decision
boundaries that are not closely aligned with the true decision boundary especially as γ becomes
smaller (Kiryo et al., 2017; Du Plessis et al., 2014). Note that, when available supervision is limited
i.e. when γ is small, the estimates R̂+

p and R̂−
p suffer from increased variance resulting in increase

variance of the overall estimator ∼ O( 1
nP
). For sufficiently small γ these estimators are likely

result in poor performance due to large variance.
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A.4 FULL ALGORITHM: PARAMETER FREE CONTRASTIVE PU LEARNING

Algorithm 1 Contrastive Positive Unlabeled Learning

initialize: PU training data XPU; batch size b; temperature parameter τ > 0; randomly initial-
ized encoder gB(·) : Rd → Rk, projection network: hΓ(·) : Rk → Rp, and linear classifier
vv(·) : Rk → R|Y |; family of stochastic augmentations T .

A. PUCL : Positive Unlabeled Contrastive Representation Learning
for epochs e = 1, 2, . . . , until convergence do

select mini-batch: D = {xi}bi=1 ∼ XPU and sample augmentations: t(·) ∼ T , t′(·) ∼ T
create multi-viewed batch: D̃ = {x̃i = t(xi), x̃a(i) = t′(xi)}bi=1

I = {1, 2, . . . , 2b} is the index set of D̃ and P = {i ∈ I : xi ∈ XP},U = {j ∈ I : xj ∈ XU}
obtain representations: {zj}j∈I = {zi = hΓ ◦ gB(x̃i), za(i) = hΓ ◦ gB(x̃a(i))}bi=1

compute pairwise similarity: zi · zj = 1
τ

zT
i zj

∥zi∥∥zj∥ , Pi,j =
exp (zi·zj)∑

k∈I
1(k ̸=i) exp(zi·zk)

,∀i, j ∈ I

compute loss : LPUCL = − 1
|I|
∑
i∈I

[
1(i ∈ P) 1

|P\i|
∑
j∈P

1(j ̸= i) logPi,j + 1(i ∈ U) logPi,a(i)

]
update network parameters B,Γ to minimize LPUCL

end
return: encoder gB(·) and throw away hΓ(·).

B. PUPL: Positive Unlabeled Pseudo Labeling
obtain representations: ZP = {ri = gB(xi) : ∀xi ∈ XP}, ZU = {rj = gB(xj) : ∀xj ∈ XU}
initialize pseudo labels : ỹi = yi = 1 : ∀ri ∈ ZP and ỹj = 0 : ∀rj ∈ ZU

initialize cluster centers: µP = 1
|ZP|

∑
ri∈ZP

ri , µN
D(x′)∼ ZU where D(x′) = ∥x′−µP∥2∑

x ∥x−µP∥2

while not converged do
pseudo-label: ∀ri ∈ ZU : ỹi = 1 if µP = argminµ∈{µP,µN} ∥ri − µ∥2 else ỹi = 0

Z̃P = ZP ∪ {ri ∈ ZU : ỹi = 1} , Z̃N = {zi ∈ ZU : ỹi = 0}
update cluster centers: µP = 1

|Z̃P|

∑
zi∈Z̃P

zi , µN = 1
|Z̃N|

∑
zi∈Z̃N

zi

end
return: X̃PU = {(xi, ỹi) : ∀xi ∈ XPU}

C. Train Binary Classifier
update network parameters v to minimize cross-entropy loss LCE(v

T gB(xi), ỹi)
return: Positive Unlabeled classifier : fv,B = vv ◦ gB(·)
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A.5 PUCL: POSITIVE UNLABELED REPRESENTATION LEARNING

Summary: One way to obtain a representation manifold where the embeddings (features) exhibit
linear separability is via contrastive learning (Parulekar et al., 2023).
• However, standard self-supervised contrastive loss SSCL (4) is unable to leverage the available

supervision in the form of labeled positives.
• (Theorem 1) On the other hand, naive adaptation of the supervised contrastive loss SCL-PU (5)

suffers from statistical bias in the PU setting that can result in significantly poor representations
especially in the low supervision regime i.e. when only a handful labeled positive examples are
available.

• (Theorem 2) To this end, the proposed objective PUCL leverages the available supervision
judiciously to form an unbiased risk estimator of the ideal objective. Further, we show that it is
provably more efficient than the self-supervised counterpart.

A.5.1 GENERALIZATION BENEFITS OF INCORPORATING ADDITIONAL POSITIVES

As previously discussed, the main observation we make is that judiciously incorporating available
PU supervision is crucial for the success of contrastive learning over PU Learning. The unsupervised
SSCL (4) objective is completely agnostic of the labels, resulting in representation that are while
robust to noisy label, has poor generalization performance on downstream PU classification. On the
other hand, SCL-PU: naive adaptation of SCL while performs well in low (high) noise (supervi-
sion) settings, it suffers from major performance degradation in the high (low) noise (supervision)
regime. PUCL interpolates nicely between the robustness and generalization trade-off by judiciously
incorporating the labeled positive to form an unbiased version of SCL. In Figure 5, we present a few
more results affirming this observation over multiple datasets, encompassing both Single Dataset and
Case-Control PU learning settings.

A.5.2 GROUPING SEMANTICALLY DIFFERENT OBJECTS TOGETHER :

An important underlying assumption unsupervised learning is that the features contains information
about the underlying label. Indeed, if p(x) has no information about p(y|x), no unsupervised
representation learning method e.g. SSCL can hope to learn cluster-preserving representations.

However, in fully supervised setting, since semantic annotations are available, it is possible to
find a representation space where semantically dissimilar objects are grouped together based on
labels i.e. clustered based on semantic annotations via supervised objectives e.g. CE. While, it is
important to note that such models would be prone to over-fitting and might generalize poorly to
unseen data. Since supervised contrastive learning objectives SCL (14) (Khosla et al., 2020) use
semantic annotations to guide the contrastive training, it can also be effective in such scenarios.

In particular, in SCL, in addition to self-augmentations, each anchor is attracted to all the other
augmentations in the batch that share the same class label. For a fully supervised binary setting it
takes the following form:

LSCL = − 1

|I|
∑
i∈I

[
1(i ∈ P)

1

|P \ i|
∑
j∈P\i

zi · zj + 1(i ∈ N)
1

|N \ i|
∑
j∈N\i

zi · zj − logZ(zi)

]
(14)

where P and N denote the subset of indices in the augmented batch D̃ that are labeled positive and
negative respectively i.e. P = {i ∈ I : yi = 1}, N = {i ∈ I : yi = 0}. Clearly, LSCL (14) is a
consistent estimator of the ideal objective L∗

CL (3). Since the expected similarity of positive pairs is
computed over all the available samples from the same class marginal as anchor, this loss enjoys a
lower variance compared to its self-supervised counterpart LSSCL (4).

In the PU learning setting, PUCL (6) behaves in a similar way. It incorporates both semantic similar-
ity (via pulling self augmentations together) and semantic annotation (via pulling together labeled
positives together). Intuitively, by interpolating between supervised and unsupervised contrastive
objectives, PUCL favors representations where both semantically similar (feature) examples are
grouped together along with all the labeled positives (annotations) are grouped together.
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(a) ImageNet-II (Case Control) (b) ImageNet-II (Single Dataset)

(c) CIFAR-0 (Case Control) (d) CIFAR-0 (Single Dataset)

Figure 5: Generalization with varying supervision: In this experiment we train a ResNet-18 on CIFAR-0
(Subset of Dogs and Cats) and ImageNet-II (ImageWoof vs ImageNette) under both case-control and single-
dataset PU Learning setting. For case control setting, number of unlabeled samples nU is kept fixed while we
vary the number of labeled positives nP. On the other hand for the Single Dataset setting we keep the total
number of samples fixed N = nP + nU while varying nP. In both settings, we find PUCL to remain quite
robust across different levels of supervision while consistently outperforming its unsupervised counterpart SSCL
and being competitive with SCL-PU even in high supervision regimes. While., SCL-PU suffers from large
degradation especially in the low-supervision regime.

ARRANGING POINTS ON UNIT HYPERCUBE:

To further understand the behavior of interpolating between semantic annotation (labels) and semantic
similarity (feature) - Consider 1D feature space x ∈ R, e.g., xi = 1 if shape: triangle (▲, ▲), xi = 0
if shape: circle (•, •). However, the labels are yi = 1 if color: blue (▲,•) and yi = 1 if color: red (▲,
•) i.e p(x) contains no information about p(y|x). Figure 7 shows several representative configurations
(note that, other configurations are similar) of arranging these points on the vertices of unit hypercube
H ∈ R2 when ▲ is fixed at (0, 1).

• Unsupervised objectives e.g. SSCL (4) only rely on semantic similarity (feature) to learn embed-
dings, implying they attain minimum loss configuration when semantically similar objects xi = xj

are placed close to each other (neighboring vertices on H2) since this minimizes the inner product
between representations of similar examples( Figure 7(a) ).
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(a) Embedding SSCL (b) Embedding PUCL(γ = 0.2) (c) Embedding PUCL(γ = 0.5)

Figure 6: Embedding Quality with varying supervision: In this experiment we train a ResNet-18 on
ImageNet-II: ImageWoof vs ImageNette - two subsets of ImageNet-1k widely used in noisy label learning
research https://github.com/fastai/imagenette. Amount of supervision is measured with the ratio of labeled to
unlabeled data γ = nP

nU
. We keep the total number of samples N = nP + nU fixed, while varying nP. We

observe that the embeddings obtained via PUCL exhibit significantly improved separability than that of the
unsupervised baseline SSCL especially with increasing supervision.

(a) Unsupervised: Semantic similarity obeying

(b) Supervised: Semantic annotation obeying

(c) Contrastive (PU)-Supervised: Semantic similarity and annotation obeying

Figure 7: Geometric intuition of incorporating supervision: Consider 1D feature space x ∈ R, e.g., xi = 1
if shape: triangle (▲, ▲), xi = 0 if shape: circle (•, •). However, the labels are yi = 1 if color: blue (▲,•) and
yi = 1 if color: red (▲, •). We show possible configurations (other configurations are similar) of arranging
these points on the vertices of unit hypercube H ∈ R2 when ▲ is fixed at (0, 1). (a) Unsupervised objectives
e.g. SSCL only rely on semantic similarity (feature) to learn embeddings, implying they attain minimum loss
configuration when semantically similar objects are places close to each other (neighboring vertices on H2).
(b) Supervised objectives on the other All the four shaded point configurations are favored by SSCL (4), since
xi = xj are placed neighboring vertices. However, the minimum loss configurations of PUCL (marked in
rectangle) additionally also preserves annotation consistency.

• Supervised objectives e.g. CE on the other hand, updates the parameters such that the logits
match the label. Thus purely supervised objectives attain minimum loss when objects sharing same
annotation are placed next to each other ( Figure 7(b) ).
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(a) PUCL(γ) (b) Gains from PU supervision (c) Gains from full supervision

Figure 8: Grouping dissimilar objectes together : In this experiment we train a ResNet-18 on three CIFAR
subsets carefully crafted to understand this phenomenon. In particular, we use CIFAR-hard (airplane, cat) vs
(bird, dog), CIFAR-easy (airplane, bird) vs (cat, dog) and CIFAR-medium (airplane, cat, dog) vs bird. Note
that, airplane and bird are semantically similar, also dog-cat are semantically closer to each other. We repeat the
experiments across different supervision levels - amount of supervision is measured with γ = nP

nU
. We keep

the total number of samples N = nP + nU fixed, while varying nP. Observe that, (a) shows generalization
of PUCL across different γ. (b), (c) denote the performance gains of PUCL and fully supervised SCL over
unsupervised SSCL. Clearly, in the hard setting, SSCL i.e. PUCL(γ = 0), suffers from large performance
degradation. However, given enough supervision signal PUCL is still able to learn representations that preserves
class label obeying linear separability.

• On the other hand, PUCL interpolates between the supervised and unsupervised objective. Simply
put, by incorporating additional positives aims at learning representations that preserve annotation
consistency. Thus, the minimum loss configurations are attained at the intersection of the minimum
point configurations of SSCL and fully supervised SCL ( Figure 7(c) )

Experimental Evaluation: To understand this phenomenon experimentally, we train a ResNet-18
on three CIFAR subsets carefully crafted to simulate this phenomenon. In particular, we use CIFAR-
hard (airplane, cat) vs (bird, dog), CIFAR-easy (airplane, bird) vs (cat, dog) and CIFAR-medium
(airplane, cat, dog) vs bird. Note that, airplane and bird are semantically similar, also dog-cat are
semantically closer to each other. Our experimental findings are reported in Figure 8. In summary,
we observe that while SSCL is completely blind to supervision signals; given enough labels – PUCL
is able to leverage the available positives to group the samples labeled positive together. Since we are
in binary setting, being able to cluster positives together automatically solves the downstream P vs N
classification problem as well.

A.5.3 CONVERGENCE BENEFITS OF INCORPORATING ADDITIONAL POSITIVES

As discussed throughout the paper, the main trick to incorporate

Our experiments also reveal that, leveraging the available positives in the loss not only improves
the generalization performance, it also improves the convergence of representation learning from
PU data as demonstrated in Figure 9. We argue that this is due to reduced variance resulting from
incorporating multiple labeled positive examples by PUPL. We begin with deriving the gradient
expressions for SSCL and PUCL
Theorem 4. The gradient of LPUCL (6) has lower bias than that of LSSCL (4) with respect to L∗ (3).

Proof. Gradient derivation of SSCL Recall that, the SSCL (4) takes the following form for any
random sample from the multi-viewed batch indexed by i ∈ I

ℓi = − log
exp (zi · za(i)/τ)

Z(zi)
; ∀i ∈ I

= −
zi · za(i)

τ
+ logZ(zi)

(15)

Recall that the partition function Z(zi) is defined as : Z(zi) =
∑

j∈I 1(j ̸= i) exp(zi · zj/τ). Note
that, zi = gw(xi) where we have consumed both encoder and projection layer into w, and thus by
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chain rule we have,

∂ℓi
∂w

=
∂ℓi
∂zi

· ∂zi
∂w

(16)

Since, the second term depends on the encoder and fixed across the losses, the first term is sufficient
to compare the gradients resulting from different losses. Thus, taking the differential of (15) w.r.t
representation zi we get:

∂ℓi
∂zi

= −1

τ

[
za(i) −

∑
j∈I\{i} zj exp(zi · zj/τ)

Z(zi)

]

= −1

τ

[
za(i) −

za(i) exp(zi · za(i)/τ) +
∑

j∈I\{i,a(i)} zj exp(zi · zj/τ)
Z(zi)

]

= −1

τ

za(i)(1− exp(zi · za(i)/τ)
Z(zi)

)
−

∑
j∈I\{i,a(i)}

zj
exp(zi · zj/τ)

Z(zi)


= −1

τ

za(i)(1− exp(zi · za(i)/τ)
Z(zi)

)
−

∑
j∈I\{i,a(i)}

zj
exp(zi · zj/τ)

Z(zi)


= −1

τ

za(i) (1− Pi,a(i)

)
−

∑
j∈I\{i,a(i)}

zjPi,j



(17)

Where, the functions Pi,j are defined as:

Pi,j =
exp(zi · zj/τ)

Z(zi)
(18)

Gradient derivation of PUCL Recall that, given a randomly sampled mini-batch D, PUCL (6)
takes the following form for any sample i ∈ I where I is the corresponding multi-viewed batch. Let,
P(i) = P \ i i.e. all the other positive labeled examples in the batch w/o the anchor.

ℓi = − 1

|P(i)|
∑

q∈P(i)

log
exp (zi · zq/τ)

Z(zi)
; ∀i ∈ I

= − 1

|P(i)|
∑

q∈P(i)

[zi · zq
τ

− logZ(zi))
] (19)

where Z(zi) is defined as before. Then, we can compute the gradient w.r.t representation zi as:
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∂ℓi
∂zi

= − 1

|P(i)|
∑

q∈P(i)

[
zq
τ

− ∂Z(zi)

Z(zi)

]

= − 1

τ |P(i)|
∑

q∈P(i)

[
zq −

∑
j∈I\{i} zj exp(zi · zj/τ)

Z(zi)

]

= − 1

τ |P(i)|
∑

q∈P(i)

zq − ∑
q′∈P(i)

zq′Pi,q′ −
∑

j∈U(i)

zjPi,j


= − 1

τ |P(i)|

 ∑
q∈P(i)

zq −
∑

q∈P(i)

∑
q′∈P(i)

zq′Pi,q′ −
∑

q∈P(i)

∑
j∈U(i)

zjPi,j


= − 1

τ |P(i)|

 ∑
q∈P(i)

zq −
∑

q′∈P(i)

|P(i)|zq′Pi,q′ −
∑

j∈U(i)

|P(i)|zjPi,j


= −1

τ

 1

|P(i)|
∑

q∈P(i)

zq −
∑

q∈P(i)

zqPi,q −
∑

j∈U(i)

zjPi,j


= −1

τ

 ∑
q∈P(i)

zq

(
1

|P(i)|
− Pi,q

)
−
∑

j∈U(i)

zjPi,j



(20)

where we have defined U(i) = I \ {i,P(i)} i.e. U(i) is the set of all samples in the batch that are
unlabeled.

In case of fully supervised setting we would similarly get:

∂ℓi
∂zi

= −1

τ

 ∑
q∈P(i)

zq

(
1

|P(i)|
− Pi,q

)
−
∑

j∈N(i)

zjPi,j

 (21)

Since, in the fully supervised setting I− P(i) = N(i). Thus, by comparing the last term of the three
gradient expressions, it is clear that PUCL enjoys lower bias compared to SSCL with respect to fully
supervised counterpart. ■

(a) CIFAR-0 (b) ImageNet-II
Figure 9: Convergence benefits from incorporating labeled positives: Training ResNet-18 on (a)
CIFAR-0: Dogs vs Cats subsets from CIFAR10. (b) ImageNet-II: ImageWoof vs ImageNette subsets
https://github.com/fastai/imagenette from ImageNet-1k. Observe that, by judiciously incorporating available
labeled positives into the contrastive loss not only improves generalization it also improves convergence of
contrastive representation learning from PU data as explained in Theorem 4

.
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(a) CIFAR-I: DCL(λ) vs λ (b) CIFAR-I: MCL(λ) vs λ (c) CIFAR-I

(d) CIFAR-0: DCL(λ) vs λ (e) CIFAR-0: MCL(λ) vs λ (f) CIFAR-0

Figure 10: Parametric Weakly/Un-supervised Contrastive Objectives: The aprametric objective MCL and
DCL are both sensitive to the choice of the hyperparameter. Further, we note that the gains from unsupervised
(with bias correction) DCL over SSCL is not as significant as the gains PUCL enjoys over SSCL, thanks to
incorporating available positives. MCL however, for suitable choice of λ provide competitive performance as
PUCL and in certain cases even does better. However, we note that the right choice of hyperparameter depends
on the problem and data making it a less attractive choice to adopt in practice.

A.5.4 COMPARISON WITH PARAMETRIC CONTRASTIVE LEARNING OBJECTIVES:

Mixed Contrastive Learning (MCL): At a high level, the main idea of PUCL is to interpolate
between the supervised and unsupervised objectives judiciously. By doing so, it is able to exploit the
bias-variance trade-off as discussed in Section 2.2.

Another intuitive approach to interpolate between the robustness of SSCL and generalization benefits
of SCL-PU could be to simply optimize over a convex combination of the two objectives. Such a
hybrid objective has been proven effective in settings with label noise (i.e. when the labels are flipped
with some constant probability) (Cui et al., 2023) and thus warrants investigation in the PU learning
setting. We refer to this loss as Mixed Contrastive Loss (MCL) defined as follows:

LMCL(λ) = λLSCL-PU + (1− λ)LSSCL , 0 ≤ λ ≤ 1 (22)

Similar to PUCL; MCL combines two key components: the unsupervised part in MCL enforces
consistency between representations learned via label-preserving augmentations (i.e. between zi and
za(i)∀i ∈ I), whereas the supervised component injects structural knowledge derived from available
semantic annotation (labeled positives).

It is worth noting that, PUCL can be viewed as a special case of MCL where loss on unlabeled
samples is equivalent to LMCL(λ = 0) and on the labeled samples LMCL(λ = 1) i.e.

LPUCL =
1

n

n∑
i=1

1(xi ∈ P)ℓiMCL(1) + 1(xi /∈ P)ℓiMCL(0)

In the PU setting, since the structural knowledge of classes perceived by the disambiguation-free
objective LSCL-PU is noisy, the generalization performance of MCL is sensitive to the choice of
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hyper-parameter λ. This can be attributed to a similar bias-variance trade-off argument as discussed
before. We validate this intuition by extensive ablation experiments across various choices of λ
(Figure 10) under different PU learning scenarios i.e. under varying levels of supervision (varying γ).

Our experiments suggest that, when available supervision is limited i.e. for small values of γ a smaller
value of λ (i.e. less reliance on supervised part of the loss) is preferred. Conversely, for larger values
of γ larger contribution from the supervised counterpart is necessary.

Since, the success of MCL is sensitive to the appropriate choice of λ, tuning which can be quite
challenging and depends on the dataset and amount of available supervision, making MCL often less
practical in the real world PU learning scenario. Thus, overall, PUCL is a more practical method as it
alleviates the need for hyper-parameter tuning and works across various PU Learning scenarios while
not suffering from performance degradation.

Debiased Contrastive Loss (DCL): Another popular approach to incorporate latent weak supervi-
sion in the unsupervised setting is via appropriately compensating for the sampling bias referred to as
debiased contrastive learning (DCL) (Chuang et al., 2020).

Recall the infoNCE family of losses (3):

L∗
CL = E

(xi,yi)∼p(x,y)
E

xj∼p(x|yj=yi)

{xk}N
k=1∼p(x|yk ̸=yi)

[
zi · zj − log

(
exp(zi · zj) +

N∑
k=1

exp(zi · zk)
)]

,

Further, recall that in the fully unsupervised setting, since no supervision is available the negatives
are chosen as all the samples in the batch (Chen et al., 2020b) (4).

LSSCL = − 1

|I|
∑
i∈I

[
zi · za(i) − log

∑
j∈I

1(j ̸= i) exp(zi · zj)
]

= − 1

|I|
∑
i∈I

[
zi · za(i) − log

(
zi · za(i) +

∑
i∈I\{i,a(i)}

exp(zi · zj)︸ ︷︷ ︸
RN:Negative pairs sum

)]

Compared to L∗
CL this finite sample objective is biased since some of the samples treated as negative

might belong to the same latent class as the anchor. (Chuang et al., 2020) refers to this phenomenon
as sampling bias and propose a modified objective Debiased Contrastive Learning (DCL) to alleviate
this issue. In particular, they follow (13) to form an estimate of the negative sum as:

R−
n =

1

1− λ

[
R̂−

u (v)− λR̂−
p (v)

]
λ is a hyper-parameter that needs to be tuned. Our experiments Figure 10 suggest that we note that
the gains from unsupervised (with bias correction) DCL over SSCL is not as significant as the gains
PUCL enjoys over SSCL, thanks to incorporating available positives. Moreover, we see that DCL is
quite sensitive to the choice of hyperparameter making it hard to adopt in real world.

A.5.5 BIAS VARIANCE TRADEOFF

PROOF OF THEOREM 1.

We restate Theorem 1 for convenience -
Theorem 1. LSCL-PU (5) is a biased estimator of L∗

CL characterized as follows:

E
XPU

[
LSCL-PU

]
− L∗

CL =
πp(1− πp)

1 + γ

[
2µ̃PN − (µ∗

P + µ∗
N)

]
Here, µ∗

P = Exi,xj∼p(x|y=1)

(
zi · zj

)
and µ∗

N = Exi,xj∼p(x|y=0)

(
zi · zj

)
capture the proximity

between samples from same class marginals and µ̃PN = Exi,xj∼p(x|yi ̸=yj)

(
zi · zj

)
captures the
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(a) Varying γ with fixed nU , π (b) Varying π with fixed nU , γ (c) Varying π, γ with fixed nU

(d) Varying both π, γ with fixed nU (Side by Side)

Figure 11: Ablation of Non-Parametric Contrastive Losses under different PU settings: To better
understand the bias-variance trade-off we experiment with different PU learning settings: class prior πp and
amount of labeled data captured by γ = nP

nU
Experiments train ResNet-34 on ImageNet Dogs vs Non-Dogs.

Embedding evaluation was performed using fully supervised kNN classification. Overall these experiments
indicate that unlike SCL, PUCL and SSCL remain robust across various PU learning settings wherein, PUCL
enjoys superior generalization performance on downstream classification. Further, they flesh out several
interesting aspects of contrastive learning over PU data and supplement our theoretical findings. Please refer
to Section 3 for a detailed discussion.

proximity between dissimilar samples. γ = nP
nU

captures the proportion of cardinality of labeled to
unlabeled training subset.

Proof. Suppose, XPU is generated from the underlying supervised dataset XPN = XP ∪ XN i.e.
labeled positives XPL is a subset of nPL elements chosen uniformly at random from all subsets of XP
of size nL : XPL ⊂ XP = {xi ∈ Rd ∼ p(x|y = 1)}nP

i=1. Further, denote the set positive and negative
examples that are unlabeled as XPU and XNU .

XPU = XPL ∪ XPU ∪ XPN , XP = XPL ∪ XPU and XU = XPU ∪ XNU (23)

Now, we can establish the result by carefully analyzing the bias of LSCL-PU (5) in estimating the ideal
contrastive loss (3) over each of these subsets.

For the labeled positive subset XPL the bias can be computed as:

BLSCL-PU(xi ∈ XPL) = Exi∈XPL

[
1

nPL

∑
xj∈XPL

zi · zj

]
− Exi,xj∼p(x|y=1)

[
zi · zj

]
(24)

Clearly under the PU setting (1), since the labeled positives are i.i.d samples from the positive
marginal the first expectation the two expectations align implying the zero bias. However obviously
the variance scales inversely with the amount of labeled positives O( 1

|XPL |
).
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For the unlabeled positive subset XPU the bias can be computed as:

BLSCL-PU(xi ∈ XPU) = Exi∈XPU

[
1

nU

∑
xj∈XU

zi · zj

]
− Exi,xj∼p(x|y=1)

[
zi · zj

]

= Exi∈XPU

[
πpExj∈XPU

(
zi · zj

)
+ (1− πp)Exj∈XNU

(
zi · zj

)]
− µ∗

P

= πpµ
∗
P + (1− πp)Exi∈XPU

[
Exj∈XNU

(
zi · zj

)]
− µ∗

P

= (1− πp)Exi∼p(x|y=1)

[
Exj∼p(x|y=0)

(
zi · zj

)]
− (1− πp)µ

∗
P

= (1− πp)Exi,xj∼p(x|yi ̸=yj)

(
zi · zj

)
− (1− πp)µ

∗
P

= (1− πp)µ̃PN − (1− πp)µ
∗
P

Finally, for the negative unlabeled set:

BLSCL-PU(xi ∈ XNU) = Exi∈XNU

[
1

nU

∑
xj∈XU

zi · zj

]
− Exi,xj∼p(x|y=0)

[
zi · zj

]

= Exi∈XNU

[
πpExj∈XPU

(
zi · zj

)
+ (1− πp)Exj∈XNU

(
zi · zj

)]
− µ∗

N

= πpExi,xj∼p(x|yi ̸=yj)

(
zi · zj

)
+ (1− πp)Exi,xj∼p(x|y=0)

(
zi · zj

)
− µ∗

N

= πpµ̃PN − πpµ
∗
N

Now, using the fact that the unlabeled examples are sampled uniformly at random from the mixture
distribution with positive mixture weight πp we can compute the total bias as follows:

BLSCL-PU(xi ∈ XPU) =
πp

1 + γ
BLSCL-PU(xi ∈ XPU) +

1− πp
1 + γ

BLSCL-PU(xi ∈ XNU) where γ =
|XPL |
|XU|

We get the desired result by plugging in the bias of the subsets and simplifying. ■

PROOF OF THEOREM 2.

We restate Theorem 1, 2 for convenience -
Theorem 2. Assume that xi,xa(i) are i.i.d draws from the same class marginal (Saunshi et al., 2019;
Tosh et al., 2021), then it follows that the objective functions LSSCL (4) and LPUCL (6) are unbiased
estimators of L∗

CL (3). Additionally, it holds that:

∆σ(γ) ≥ 0 ∀γ ≥ 0 ; ∆σ(γ1) ≥ ∆σ(γ2) ∀γ1 ≥ γ2 ≥ 0

where, ∆σ(γ) = Var(LSSCL)−Var(LPUCL).

Proof. We first prove that both LSSCL (4) and LPUCL (6) are unbiased estimators of L∗
CL (3) using a

similar analysis as the previous proof.

For the labeled positive subset XPL the bias can be computed as:

BLPUCL(xi ∈ XPL) = Exi∈XPL

[
1

nPL

∑
xj∈XPL

zi · zj

]
− Exi,xj∼p(x|y=1)

[
zi · zj

]
= 0
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Here we have used the fact that labeled positives are drawn i.i.d from the positive marginal. For the
unlabeled samples

BLPUCL(xi ∈ XU) = Exi∈XU

[
zi · za(i)

]
− Exi,xj∼p(x|yi=yj)

[
zi · zj

]

= Exi,xj∼p(x|yi=yj)

[
zi · zj

]
− Exi,xj∼p(x|yi=yj)

[
zi · zj

]
= 0

Thus LPUCL is an unbiased estimator of L∗
CL. Clearly, the i.i.d assumption similarly implies LSSCL is

also an unbiased estimator.

Next we can do a similar decomposition of the variances for both the objectives. Then the difference
of variance under the PU dataset -

∆σ(XPU) = VarLSSCL(XPU)−VarLPUCL(XPU)

= ∆σ(XPL) + ∆σ(XU)

= ∆σ(XPL)

=

(
1− 1

nPL

)
Var

(
zi · zj : xi,xj ∈ XPL

)

=

(
1− 1

γ|XU|

)
Var

(
zi · zj : xi,xj ∈ XPL

)

Clearly, since variance is non-negative we have ∀γ > 0 : ∆σ(XPU) ≥ 0

Now consider two settings where we have different amounts of labeled positives defined by ratios γ1
and γ2 and denote the two resulting datasets X γ1

PU and X γ2

PU then

∆σ(X γ1

PU)−∆σ(X γ2

PU) = ∆σ(X γ1

PL
)−∆σ(X γ2

PL
)

=
1

|XU|

(
1

γ2
− 1

γ1

)
Var

(
zi · zj : xi,xj ∈ XPL

)
≥ 0

The last inequality holds since γ1 ≥ γ2. This concludes the proof. ■
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(a) Supervised (b) PU (γ = 1
5

) (c) PU (γ = 1
50

)

Figure 12: Geometric Intuition of PUPL (separable): We train logistic regression over (almost) separable 2D
Gaussian Mixture. CE∗ denote the supervised classifier for comparison with the decision boundaries obtained by
CE, NNPU (trained with π∗

p) and PUPL(CE). It is clear that, as γ = nP
nU

is decreased CE soon diverges; NNPU
suffers from significant decision boundary deviation. On the other hand, PUPL(CE) almost surely remains close
to the true decision boundary as long as the feature space displays inherent clustering structure.

A.6 PUPL: POSITIVE UNLABELED PSEUDO LABELING

Summary: Consider performing PU learning over a (almost) linearly separable feature space
(i.e., where the true positives and true negatives form separate clusters).
• Standard supervised classification loss, e.g., CE, suffers from decision boundary deviation

when the number of labeled examples is limited.
• Cost-sensitive PU learning approaches address this issue by forming an unbiased risk estimator

by leveraging the unlabeled and labeled positives (see Appendix A.3.3). However, we observe
that when only a handful of positives are labeled, even these approaches are unable to recover
the ideal decision boundary as the unbiased estimate suffers from large variance.

• Our proposed approach PUPL (Algorithm 1(B)) on the other hand, is able to identify the
correct pseudo-labels (i.e. cluster assignments) almost surely (within constant multiplicative
approximation error).

• Consequently training using the pseudo-labels with standard classification loss e.g. CE loss
often achieves decision boundaries that closely align with the true boundaries.

Consider the naive disambiguation-free setup where the unlabeled samples are treated as pseudo-
negatives and the classifier is trained using standard CE loss. As demonstrated in Figure 14, the bias
induced via the pseudo-labeling results in the decision boundary to deviate further from the true (fully
supervised) decision boundary when only a limited amount of labeled examples are available.

A.6.1 NECESSARY DEFINITIONS AND INTERMEDIATE LEMMAS

Before proceeding with the proofs we would need to make some definitions more formal and state
some intermediate results.

Definition 2 (Supervised Dataset). Let XPN denote the true underlying fully supervised (PN) dataset

XPN = {xi ∼ p(x)}ni=1 = XP ∪ XN, XP = {xP
i }

nP
i=1

i.i.d.∼ pp(x), XN = {xN
i }

nN

i=1
i.i.d.∼ pn(x)

where, p(x) denotes the underlying true mixture distribution; pp(x) = p(x|y = 1) and pn(x) =
p(x|y = 0) denote the underlying positive and negative class marginal respectively.

Definition 3 (Class Prior). The mixture component weights of p(x) are πp and πn = 1− πp.

p(x) = πppp(x) + (1− πp)p(x|y = 0) where, πp = p(y = 1|x)

Definition 4 (Positive Unlabeled Dataset). Let p(x) denotes the underlying true mixture distribution
of positive and negative class with class prior πp = p(y = 1|x). Further let, pp(x) = p(x|y = 1)
and pn(x) = p(x|y = 0) denote the true underlying positive and negative class marginal respectively.
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(a) Supervised (b) PU (γ = 1
6

)

(c) PU (γ = 1
30

) (d) PU (γ = 1
300

)

Figure 13: Geometric Intuition of PUPL (overlapping): Here we aim to learn a linear classifier over
overlapping gaussians. We note that, puPL matches the bounday of supervised CE even in this setting.

Then the PU dataset is generated as:

XPU = XPL ∪ XU, XPL = {xP
i }

nPL
i=1

i.i.d.∼ pp(x), XU = {xU
i

i.i.d.∼ p(x)}nu
i=1

Definition 5 (Clustering). A clustering refers to a set of centroids C = {µP, µN} that defines the
following pseudo-labels to the unlabeled instances:

∀zi ∈ ZU : ỹi =

{
1, if µP = argminµ∈C ∥zi − µ∥2
0, otherwise

Definition 6 (Potential Function). Given a clustering C the potential function over the dataset is:

ϕ(ZPU, C) =
∑

zi∈ZPU

min
µ∈C

∥zi − µ∥2 , ZPU = {zi = gB(xi) ∈ Rk : xi ∈ XPU}

Definition 7 (Optimal Clustering). Refers to the optimal clustering C∗ = {µ∗
P, µ

∗
N} that solves the

k-means problem i.e. attains the minimum potential function:

ϕ∗(ZPU, C
∗) =

∑
zi∈ZPU

min
µ∈C∗

∥zi − µ∥2 , ZPU = {zi = gB(xi) ∈ Rk : xi ∈ XPU}

Definition 8 (D2). Given clustering C the D2(·) : Rd → R+ score is:

D2(x) = ϕ({x}, C)

Central to the analysis is the following two lemmas:

35



Under review as a conference paper at ICLR 2024

(a) Supervised (b) PU (γ = 1
4

) (c) PU (γ = 1
5

)

(d) PU (γ = 1
10

) (e) PU (γ = 1
25

) (f) PU (γ = 1
50

)

Figure 14: Decision Boundary Deviation : Training a linear classifier over 2D Gaussian Mixture.
(0) CE∗ - Denotes the ideal supervised classification boundary.
(1) CE - We consider the standard disambiguation-free CE loss - wherein the unlabeled samples are simply
treated as pseudo-negatives and a binary classifier is trained to separate the labeled positives from these pseudo
negatives (unlabeled) examples. CE loss is unable to recover the true decision boundary (i.e. the decision
boundary learnt in the fully supervised setting) in this setting. In fact as amount of labeled positives decrease
(i.e. for smaller γ) clearly the decision boundary deviates dramatically from the true boundary due to the biased
supervision and eventually diverges.
(2) nnPU - Models trained with nnPU objective (Kiryo et al., 2017). We note that nnPU is significantly more
robust than the naive disambiguation-free approach. Especially when sufficient labeled positives are provided
the decision boundary learnt by nnPU is closely aligned with the true decision boundary. However, when only a
handful of positives are labeled we observe that nnPU might also result in significant generation gap possibly
because the variance of the estimator is high in this case. Note that, All nnPU experiments here are run with
oracle knowledge of class prior information π∗

p = 1
2

.
(3) puPL + CE - On the other hand our clustering based pseudo-labeling approach almost surely recovers the
true underlying labels even when only a few positive examples are available resulting in consistent improvement
over existing SOTA cost-sensitive approaches. Further our approach obviates the need of class prior knowledge
unlike nnPU.

Lemma 2 (Positive Centroid Estimation). Suppose, ZPL is a subset of nL elements chosen uniformly
at random from all subsets of ZP of size nL : ZPL ⊂ ZP = {zi = gB(xi) ∈ Rk : xi ∈ Rd ∼
p(x|y = 1)}nP

i=1 implying that the labeled positives are generated according to (1). Let, µ denote the
centroid of ZPL i.e. µ = 1

nPL

∑
zi∈ZPL

zi and µ∗ denote the optimal centroid of ZP i.e. ϕ∗(ZP, µ
∗) =∑

zi∈ZPU
∥zi − µ∗∥2 then we can establish the following result:

E

[
ϕ(ZP, µ)

]
=

(
1 +

nP − nPL

nPL(nP − 1)

)
ϕ∗(ZP, µ

∗)

Lemma 3 (k-means++ Seeding). Given initial cluster center µP = 1
nPL

∑
zi∈ZPL

zi, if the second

centroid µN is chosen according to the distribution D(z) = ϕ({z},{µP})∑
z∈ZU

ϕ({z},{µP}) ∀z ∈ ZU, then:

E

[
ϕ(ZPU, {µP, µN})

]
≤ 2ϕ(ZPL , {µP}) + 16ϕ∗(ZU, C

∗)

36



Under review as a conference paper at ICLR 2024

Figure 15: Sensitivity to Class Prior Estimate: Training a linear classifier over 2D Gaussian Mixture. We
vary the estimated class prior as π̂p = (1 ± 0.2)π∗

p to test the robustness. As we see that the cost-sensitive
baseline nnPU suffers significant variance due to approximation error in class prior estimation. The proposed
PUCL followed by CE training on the other hand obviates the need for class prior estimation and consistently
produces better PU classification than nnPU.

A.6.2 PROOF OF THEOREM 3.

We restate Theorem 3 for convenience -

Theorem 3. Suppose, PU data is generated as (1), then running Algorithm 1(B) on ZPU yields:
E
[
ϕ(ZPU, CPUPL)

]
≤ 16ϕ∗(ZPU, C

∗). In comparison, running k-means++ on ZPU we get,
E
[
ϕ(ZPU, Ck−means++)

]
≤ 21.55ϕ∗(ZPU, C

∗).

We will closely follows the proof techniques from (Arthur & Vassilvitskii, 2007) mutatis mutandis to
prove this theorem.

Proof. Recall that we choose our first center from supervision i.e. µP = 1
nPL

∑
zi∈ZPL

zi

and then choose the next center from the unlabeled samples according to probability D(z) =
ϕ({z},{µP})∑

z∈ZU
ϕ({z},{µP}) ∀z ∈ ZU. Then, from Lemma 3:

E

[
ϕ(ZPU, {µP, µN})

]
≤ 2ϕ(ZPL , {µP}) + 16ϕ∗(ZU, C

∗)

= 2ϕ(ZPL , {µP}) + 16

(
ϕ∗(ZPU, C

∗)− ϕ∗(ZPL , C
∗)

)

= 2

(
ϕ(ZPL , {µP})− 8ϕ∗(ZPL , {µ∗

P})

)
+ 16ϕ∗(ZPU, C

∗)

Now we use Lemma 2 to bound the first term -

E

[
ϕ(ZPU, {µP, µN})

]
≤ 2

[(
1 +

nP − nPL

nPL(nP − 1)

)
− 8

]
ϕ∗(ZPL , {µ∗

P}) + 16ϕ∗(ZPU, C
∗)

≤ 2

[
nP − nPL

nPL(nP − 1)
− 7

]
ϕ∗(ZPL , {µ∗

P}) + 16ϕ∗(ZPU, C
∗)

≤ 16ϕ∗(ZPU, C
∗)

Note that this bound is much tighter in practice when a large amount of labeled examples are available
i.e. for larger values of nPL . Additionally our guarantee holds only after the initial cluster assignments
are found. Subsequent standard k-means iterations can only further decrease the potential.
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On the other hand for k-means++ strategy (Arthur & Vassilvitskii, 2007) the guarantee is:

E

[
ϕ(ZPU, Ck−means++)

]
≤

(
2 + ln 2

)
8ϕ∗(ZPU, C

∗) ≈ 21.55ϕ∗(ZPU, C
∗)

This concludes the proof. ■

A.6.3 PROOF OF LEMMA 2

Proof.

E

[
ϕ(ZP, µ)

]
= E

[ ∑
zi∈ZP

∥zi − µ∥2
]

= E

[ ∑
zi∈ZP

∥zi − µ∗∥2 + nP∥µ− µ∗∥2
]

= ϕ∗(ZP, µ
∗) + nPE

[
∥µ− µ∗∥2

]

Now we can compute the expectation as:

E

[
∥µ− µ∗∥2

]
= E

[
µTµ

]
+ µ∗Tµ∗ − 2µ∗TE

[
1

nPL

∑
zi∈ZPL

zi

]

= E

[
µTµ

]
+ µ∗Tµ∗ − 2µ∗T 1

nPL

E

[ ∑
zi∈ZPL

zi

]

= E

[
µTµ

]
+ µ∗Tµ∗ − 2µ∗T 1

nPL

nPLEzi∈ZP

[
zi

]

= E

[
µTµ

]
− µ∗Tµ∗

We can compute the first expectation as:

E

[
µTµ

]
=

1

n2PL

E

[( ∑
zi∈ZPL

zi

)T( ∑
zi∈ZPL

zi

)]

=
1

n2PL

[
p(i ̸= j)

∑
zi,zj∈ZP,i̸=j

zTi zj + p(i = j)
∑

zi∈ZP

zTi zi

]

=
1

n2PL

[( nP−2
nPL−2

)(
nP
nPL

) ∑
zi,zj∈ZP,i̸=j

zTi zj +

(
nP−1
nPL−1

)(
nP
nPL

) ∑
zi∈ZP

zTi zi

]

=
1

n2PL

[
nPL(nPL − 1)

nP(nP − 1)

∑
zi,zj∈ZP,i̸=j

zTi zj +
nPL

nP

∑
zi∈ZP

zTi zi

]
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Plugging this back we get:

E

[
∥µ− µ∗∥2

]
=

1

n2PL

[
nPL(nPL − 1)

nP(nP − 1)

∑
zi,zj∈ZP,i̸=j

zTi zj +
nPL

nP

∑
zi∈ZP

zTi zi

]
− µ∗Tµ∗

=
nP − nPL

nPL(nP − 1)

[
1

nP

∑
zi∈ZP

zTi zi − µ∗Tµ∗

]

=

(
1 +

nP − nPL

nPL(nP − 1)

)
ϕ∗(ZP, µ

∗)

This concludes the proof. ■

A.6.4 PROOF OF LEMMA 3

Proof. This result is a direct consequence of Lemma 3.3 from (Arthur & Vassilvitskii, 2007) and
specializing to our case where we only have 1 uncovered cluster i.e. t = u = 1 and consequently the
harmonic sum Ht = 1. ■
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A.7 ADDITIONAL REPRODUCIBILITY DETAILS

In this section we present more details on our experimental setup.

For all the experiments in Table 2, contrastive training is done using LARS optimizer (You et al.,
2019), cosine annealing schedule with linear warm-up, batch size 1024, initial learning rate 1.2. We
use a 128 dimensional projection layer hΓ(·) composed of two linear layers with relu activation and
batch normalization. We leverage Faiss (Johnson et al., 2019) for efficient implementation of PUPL.
To ensure reproducibility, all experiments are run with deterministic cuDNN back-end and repeated 5
times with different random seeds and the confidence intervals are noted.

A.7.1 POSITIVE UNLABELED BENCHMARK DATASETS

Consistent with recent literature on PU Learning (Li et al., 2022; Chen et al., 2020a) we conduct
our experiments on six benchmark datasets: STL-I, STL-II, CIFAR-I, CIFAR-II, FMNIST-I, and
FMNIST-II, obtained via modifying STL-10 (Coates et al., 2011), CIFAR-10 (Krizhevsky et al.,
2009), and Fashion MNIST (Xiao et al., 2017), respectively. The specific definitions of labels
(“positive” vs “negative”) are as follows:

• FMNIST-I: The labels "positive" correspond to the classes "1, 4, 7", while the labels "negative"
correspond to the classes "0, 2, 3, 5, 6, 8, 9".

• FMNIST-II: The labels "positive" correspond to the classes "0, 2, 3, 5, 6, 8, 9", while the labels
"negative" correspond to the classes "1, 4, 7".

• CIFAR-I: The labels "positive" correspond to the classes "0, 1, 8, 9", while the labels "negative"
correspond to the classes "2, 3, 4, 5, 6, 7".

• CIFAR-II: The labels "positive" correspond to the classes "2, 3, 4, 5, 6, 7", while the labels
"negative" correspond to the classes "0, 1, 8, 9".

• STL-I: The labels "positive" correspond to the classes "0, 2, 3, 8, 9", while the labels "negative"
correspond to the classes "1, 4, 5, 6, 7".

• STL-II: The labels "positive" correspond to the classes "1, 4, 5, 6, 7", while the labels "negative"
correspond to the classes "0, 2, 3, 8, 9".

A.7.2 POSITIVE UNLABELED BASELINES

Next, we describe the PU baselines used in Table 2:

• Unbiased PU learning (UPU) (Du Plessis et al., 2014): This method is based on unbiased risk
estimation and incorporates cost-sensitivity.

• Non-negative PU learning (NNPU) (Kiryo et al., 2017): This approach utilizes non-negative risk
estimation and incorporates cost-sensitivity. Suggested settings: β = 0 and γ = 1.0.

• nnPU w Mixup Zhang et al. (2017) : This cost-sensitive method combines the nnPU approach
with the mixup technique. It performs separate mixing of positive instances and unlabeled ones.

• SELF-PU Chen et al. (2020d): This cost-sensitive method incorporates a self-supervision scheme.
Suggested settings: α = 10.0, β = 0.3, γ = 1

16 , Pace1 = 0.2, and Pace2 = 0.3.
• Predictive Adversarial Networks (PAN) (Hu et al., 2021): This method is based on GANs and

specifically designed for PU learning. Suggested settings: λ = 1e− 4.
• Variational PU learning (VPU) (Chen et al., 2020a): This approach is based on the variational

principle and is tailored for PU learning. The public code from net.9 was used for implementation.
Suggested settings: α = 0.3, β ∈ {1e− 4, 3e− 4, 1e− 3, . . . , 1, 3}.

• MIXPUL (Wei et al., 2020): This method combines consistency regularization with the mixup
technique for PU learning. The implementation utilizes the public code from net.10. Suggested
settings: α = 1.0, β = 1.0, η = 1.0.

• Positive-Unlabeled Learning with effective Negative sample Selector PULNS (Luo et al.,
2021): This approach incorporates reinforcement learning for sample selection. We implemented a
custom Python code with a 3-layer MLP selector, as suggested by the paper. Suggested settings:
α = 1.0 and β ∈ {0.4, 0.6, 0.8, 1.0}.

• P3MIX-C/E (Li et al., 2022): Denotes the heuristic mixup based approach.
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A.7.3 IMAGE AUGMENTATIONS FOR CONTRASTIVE TRAINING

We provide the details of transformations used to obtain the contrastive learning benchmarks in this
paper for each datasets.

1 cifar_transform = transforms.Compose([
2 transforms.RandomResizedCrop(input_shape),
3 transforms.RandomHorizontalFlip(p=0.5),
4 transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5),
5 transforms.RandomApply(
6 [transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
7 transforms.RandomGrayscale(p=0.2),
8 transforms.ToTensor(),
9 transforms.Normalize(mean=self.mean, std=self.std)])

1 fmnist_transform = transforms.Compose([
2 transforms.RandomResizedCrop(input_shape),
3 transforms.RandomApply(
4 [transforms.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.8),
5 transforms.ToTensor(),
6 transforms.Normalize(mean=self.mean, std=self.std)])

1 stl_transform = transforms.Compose([
2 transforms.RandomHorizontalFlip(),
3 transforms.RandomResizedCrop(size=96),
4 transforms.RandomApply(
5 [transforms.ColorJitter(0.5, 0.5, 0.5, 0.1)], p=0.8),
6 transforms.RandomGrayscale(p=0.2),
7 transforms.GaussianBlur(kernel_size=9),
8 transforms.ToTensor(),
9 transforms.Normalize((0.5,), (0.5,))])

1 imagenet_transform = transforms.Compose([
2 transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
3 transforms.RandomHorizontalFlip(p=0.5),
4 transforms.RandomApply(
5 [transforms.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.8),
6 transforms.RandomGrayscale(p=0.2),
7 transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5),
8 Solarization(p=0.2),
9 transforms.ToTensor(),

10 transforms.Normalize(mean=self.mean, std=self.std)])

1 imagenet_transform = transforms.Compose([
2 transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
3 transforms.RandomHorizontalFlip(p=0.5),
4 transforms.RandomApply(
5 [transforms.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.8),
6 transforms.RandomGrayscale(p=0.2),
7 transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5),
8 Solarization(p=0.2),
9 transforms.ToTensor(),

10 transforms.Normalize(mean=self.mean, std=self.std)])

A.7.4 PYTORCH STYLE PSEUDO CODES

1 class SelfSupConLoss(nn.Module):
2 """
3 Self Supervised Contrastive Loss
4 """
5 def __init__(self, temperature: float = 0.5, reduction="mean"):
6 super(SelfSupConLoss, self).__init__()
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7 self.temperature = temperature
8 self.cross_entropy = nn.CrossEntropyLoss(reduction=reduction)
9

10 def forward(self, z: torch.Tensor, z_aug: torch.Tensor, *kwargs) ->
torch.Tensor:

11 """
12 :param z: features
13 :param z_aug: augmentations
14 :return: loss value, scalar
15 """
16

17 batch_size, _ = z.shape
18 # project onto hypersphere
19 z = nn.functional.normalize(z, dim=1)
20 z_aug = nn.functional.normalize(z_aug, dim=1)
21

22 # calculate similarities block-wise
23 inner_pdt_00 = torch.einsum(’nc,mc->nm’, z, z) / self.temperature
24 inner_pdt_01 = torch.einsum(’nc,mc->nm’, z, z_aug) / self.temperature
25 inner_pdt_10 = torch.einsum("nc,mc->nm", z_aug, z) / self.temperature
26 inner_pdt_11 = torch.einsum(’nc,mc->nm’, z_aug, z_aug) / self.

temperature
27

28 # remove similarities between same views of the same image
29 diag_mask = torch.eye(batch_size, device=z.device, dtype=torch.bool)
30 inner_pdt_00 = inner_pdt_00[~diag_mask].view(batch_size, -1)
31 inner_pdt_11 = inner_pdt_11[~diag_mask].view(batch_size, -1)
32

33 # concatenate blocks
34 inner_pdt_0100 = torch.cat([inner_pdt_01, inner_pdt_00], dim=1)
35 inner_pdt_1011 = torch.cat([inner_pdt_10, inner_pdt_11], dim=1)
36 logits = torch.cat([inner_pdt_0100, inner_pdt_1011], dim=0)
37

38 labels = torch.arange(batch_size, device=z.device, dtype=torch.long)
39 labels = labels.repeat(2)
40 loss = self.cross_entropy(logits, labels)
41

42 return loss

1 class SupConLoss(nn.Module):
2 """
3 Supervised Contrastive Loss
4 """
5 def __init__(self, temperature: float = 0.5, reduction="mean"):
6 super(SupConLoss, self).__init__()
7 self.temperature = temperature
8 self.reduction = reduction
9

10 def forward(self, z: torch.Tensor, z_aug: torch.Tensor, labels: torch.
Tensor, *kwargs) -> torch.Tensor:

11 """
12

13 :param z: features => bs * shape
14 :param z_aug: augmentations => bs * shape
15 :param labels: ground truth labels of size => bs
16 :return: loss value => scalar
17 """
18 batch_size, _ = z.shape
19

20 # project onto hypersphere
21 z = nn.functional.normalize(z, dim=1)
22 z_aug = nn.functional.normalize(z_aug, dim=1)
23

24 # calculate similarities block-wise
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25 inner_pdt_00 = torch.einsum(’nc,mc->nm’, z, z) / self.temperature
26 inner_pdt_01 = torch.einsum(’nc,mc->nm’, z, z_aug) / self.temperature
27 inner_pdt_10 = torch.einsum("nc,mc->nm", z_aug, z) / self.temperature
28 inner_pdt_11 = torch.einsum(’nc,mc->nm’, z_aug, z_aug) / self.

temperature
29

30 # concatenate blocks
31 inner_pdt_0001 = torch.cat([inner_pdt_00, inner_pdt_01], dim=1)
32 inner_pdt_1011 = torch.cat([inner_pdt_10, inner_pdt_11], dim=1)
33 inner_pdt_mtx = torch.cat([inner_pdt_0001, inner_pdt_1011], dim=0)
34

35 max_inner_pdt, _ = torch.max(inner_pdt_mtx, dim=1, keepdim=True)
36 inner_pdt_mtx = inner_pdt_mtx - max_inner_pdt.detach() # for

numerical stability
37

38 # compute negative log-likelihoods
39 nll_mtx = torch.exp(inner_pdt_mtx)
40 # mask out self contrast
41 diag_mask = torch.ones_like(inner_pdt_mtx, device=z.device, dtype=

torch.bool).fill_diagonal_(0)
42 nll_mtx = nll_mtx * diag_mask
43 nll_mtx /= torch.sum(nll_mtx, dim=1, keepdim=True)
44 nll_mtx[nll_mtx != 0] = - torch.log(nll_mtx[nll_mtx != 0])
45

46 # mask out contributions from samples not from same class as i
47 mask_label = torch.unsqueeze(labels, dim=-1)
48 eq_mask = torch.eq(mask_label, torch.t(mask_label))
49 eq_mask = torch.tile(eq_mask, (2, 2))
50 similarity_scores = nll_mtx * eq_mask
51

52 # compute the loss -by averaging over multiple positives
53 loss = similarity_scores.sum(dim=1) / (eq_mask.sum(dim=1) - 1)
54 if self.reduction == ’mean’:
55 loss = torch.mean(loss)
56 return loss

1 class PUConLoss(nn.Module):
2 """
3 Positive Unlabeled Contrastive Loss
4 """
5

6 def __init__(self, temperature: float = 0.5):
7 super(PUConLoss, self).__init__()
8 # per sample unsup and sup loss : since reduction is None
9 self.sscl = SelfSupConLoss(temperature=temperature, reduction=’none’)

10 self.scl = SupConLoss(temperature=temperature, reduction=’none’)
11

12 def forward(self, z: torch.Tensor, z_aug: torch.Tensor, labels: torch.
Tensor, *kwargs) -> torch.Tensor:

13 """
14 @param z: Anchor
15 @param z_aug: Mirror
16 @param labels: annotations
17 """
18 # get per sample sup and unsup loss
19 sup_loss = self.scl(z=z, z_aug=z_aug, labels=labels)
20 unsup_loss = self.sscl(z=z, z_aug=z_aug)
21

22 # label for M-viewed batch with M=2
23 labels = labels.repeat(2).to(z.device)
24

25 # get the indices of P and U samples in the multi-viewed batch
26 p_ix = torch.where(labels == 1)[0]
27 u_ix = torch.where(labels == 0)[0]
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28

29 # if no positive labeled it is simply SelfSupConLoss
30 num_labeled = len(p_ix)
31 if num_labeled == 0:
32 return torch.mean(unsup_loss)
33

34 # compute expected similarity
35 # -------------------------
36 risk_p = sup_loss[p_ix]
37 risk_u = unsup_loss[u_ix]
38

39 loss = torch.cat([risk_p, risk_u], dim=0)
40 return torch.mean(loss)

1 def puPL(x_PU, y_PU, num_clusters=2):
2 """
3 puPL: Positive Unlabeled Pseudo Labeling
4 """
5 p_ix = y_PU==1
6 u_ix = y_PU==0
7 x_P = x_PU[p_ix]
8 x_U = x_PU[u_ix]
9

10 ## Initialize Cluster Centers ##
11 # Compute the mean of x_P as the first centroid
12 centroid_P = np.mean(x_P, axis=0)
13 # Next, use K-means++ to choose the second center from x_U
14 kmeans_pp = KMeans(n_clusters=1, init=np.array([centroid_2]))
15 kmeans_pp.fit(x_U)
16 centroid_N = kmeans_pp.cluster_centers_[0]
17 # Initialize the centroids with the computed values
18 centroids = np.array([centroid_N, centroid_P])
19

20 ## Perform K-means iterations ##
21 kmeans = KMeans(n_clusters=num_clusters, init=centroids)
22 kmeans.fit(np.concatenate((x_U, x_P), axis=0))
23

24 labels = kmeans.labels_
25 data = np.concatenate((x_U, x_P), axis=0)
26

27 return labels, data
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