
Published as a conference paper at ICLR 2023

ADVERSARIAL DIVERSITY IN HANABI

Brandon Cui ∗†

MosaicML
Andrei Lupu∗

Meta AI & FLAIR, University of Oxford
Samuel Sokota†
Carnegie Mellon University

Hengyuan Hu†

Stanford University
David J Wu
Meta AI

Jakob N. Foerster †

FLAIR, University of Oxford

ABSTRACT

Many Dec-POMDPs admit a qualitatively diverse set of “reasonable” joint
policies, where reasonableness is indicated by symmetry equivariance, non-
sabotaging behaviour and the graceful degradation of performance when paired
with ad-hoc partners. Some of the work in diversity literature is concerned with
generating these policies. Unfortunately, existing methods fail to produce teams
of agents that are simultaneously diverse, high performing, and reasonable. In this
work, we propose a novel approach, adversarial diversity (ADVERSITY), which
is designed for turn-based Dec-POMDPs with public actions. ADVERSITY relies
on off-belief learning to encourage reasonableness and skill, and on “repulsive”
fictitious transitions to encourage diversity. We use this approach to generate new
agents with distinct but reasonable play styles for the card game Hanabi and open-
source our agents to be used for future research on (ad-hoc) coordination.1

1 INTRODUCTION

A key objective of cooperative multi-agent reinforcement learning (MARL) is to produce agents
capable of coordinating with novel partners, including other artificial agents and ultimately humans.
In order to make progress on this objective, a number of works have focused on the general chal-
lenge of ad-hoc team play, which is to create autonomous agents able to “efficiently and robustly
collaborate with previously unknown teammates on tasks to which they are all individually capable
of contributing as team members” (Stone et al., 2010). To evaluate such agents, many works on
ad-hoc coordination rely on evaluation setups similar to the one proposed by Stone et al. (2010),
pairing the agents at test time with partners sampled from a pre-determined pool.

The value of such evaluations depends on the size and quality of the pool of partners. A pool that is
too small or too homogeneous may not be representative of all possible play-styles, and provide an
inaccurate evaluation of the coordination capabilities of an agent. For this reason, previous works in
coordination have relied on various approaches to generate a diverse pool of partners.

A first approach is to handcraft policies, either directly or by shaping the reward at train-time (Al-
brecht, 2015; Barrett et al., 2017; Zand et al., 2022), but it requires domain knowledge and scales
poorly. Another is to train a population with varying hyperparameters or by deploying multiple RL
algorithms on the same task (Nekoei et al., 2021; Zand et al., 2022; Albrecht, 2015). The diversity
achieved this way is unclear, since it is a byproduct of the variability of the algorithms used rather
than being actively optimized for. Yet other works augment training with a diversity loss (Lupu
et al., 2021) or save multiple checkpoints (Strouse et al., 2021) but often do not report the level
of diversity achieved. Measures of diversity based on policy similarity struggle in settings where
not all different actions result in “meaningfully” different outcomes2. Furthermore, the number of
possible trajectories is often so large that it becomes easy to maximize diversity objectives without
learning qualitatively different policies – imagine a humanoid robot that wiggles a finger at any sin-

∗Equal contribution. Correspondence at brandon@mosaicml.com and alupu@meta.com
†Work done while at Meta AI.
1https://github.com/facebookresearch/off-belief-learning
2While “meaningfully different” is environment dependent, we elaborate on what we mean in Section 4

1

https://github.com/facebookresearch/off-belief-learning

Published as a conference paper at ICLR 2023

diff

(a) Standard OBL transition

diff

(b) Repulsive OBL transition
Figure 1: Standard (a) and repulsive (b) OBL transitions when training πℓ for n = 2 steps. ADVERSITY
trains policy πℓ on (b) with probability λ, and on (a) otherwise. Differences between the two are in red.

gle time step in the episode rather than learning different walking styles. This is particularly true in
multi-agent settings, where the number of trajectories is exponential in the number of agents.

To avoid such pitfalls, another approach, followed by Charakorn et al., is to require distinct policies
to be incompatible by training them to obtain a low score when paired in mixed teams. In Section 7,
we show that this results in policies that simply identify whether they are playing in self-play (SP,
with themselves) or in cross play (XP), with another agent. In the latter case, they purposely “sab-
otage” the game by selecting actions that minimize return, such as playing unplayable cards in the
card game Hanabi. Adapting to such policies in an ad-hoc pool is a non-goal, since they do not
represent meaningfully different policies but rather actively poor and adversarial game play.

This is in line with previous findings that partners trained with SP rely on arbitrary conventions and
symmetry breaking, making collaboration with them difficult (Hu et al., 2020; 2021b; Lupu et al.,
2021). As such, producing strong and meaningfully diverse policies in Dec-POMDPs remains an
important unsolved problem.

We address this problem in turn-based settings with public actions by introducing adversarial diver-
sity (ADVERSITY), a policy training method which, given a repulser agent, produces an “adver-
sary” whose conventions are fundamentally incompatible with those of the repulser. The key insight
of ADVERSITY is that it prevents the adversary from identifying whether it is currently in SP or
playing with the repulser agent by randomizing between the two at every time step. In other words,
even if the adversary is in an action-observation history (AOH) that is incompatible with the repulser
agent, the adversary is paired with the repulser agent with a fixed probability λ, in which case the
next reward is inverted. Likewise, with probability 1− λ the adversary is instead paired with itself.

Crucially, the choice of the current partner determines not only the sign of the reward (positive or
negative) and the partners’ action, but also how the entire AOH thus far is interpreted. Here, we build
on top of the fictitious transition mechanism from off-belief learning (Hu et al., 2021b, OBL) and
use the belief model of the repulser policy on the corresponding repulsive transition. In a nutshell,
if the adversary is currently paired with the repulser policy, the transition is sampled from a belief
distribution that assumes the repulser policy took all actions thus far.

When the adversary is paired with itself rather than the repulser, we must avoid the feedback loop
between induced beliefs and future actions, which would allow the adversary to form arbitrary
conventions. Thus, we train in a hierarchy: we start with the grounded belief, like in OBL, and at
each level ℓ we compute the vanilla transitions using the belief model of the level below, ℓ− 1. The
adversary is trained to maximize a “difference value function”, which estimates the forward looking
discounted difference between adversarial and vanilla transitions under their corresponding beliefs.

For the first time, ADVERSITY enables us to produce a number of high performing, diverse, and
symmetry-invariant policies for the challenging collaborative card game Hanabi.

2 RELATED WORK

Stone et al. (2010) and Bowling & McCracken (2005) were among the first to formulate the ad-hoc
teamwork (“impromptu team play”) setting, requiring autonomous agents to collaborate with novel
teammates. Works in the literature have often taken a type-based approach, where potential partners
are grouped in a number of possible types, which must be identified at test time. Different types (or
classes) of polices have notably been generated through genetic algorithms (Albrecht et al., 2015) to

2

Published as a conference paper at ICLR 2023

induce diversity. However, these methods usually require hand-coded heuristics and are difficult to
scale to complex, high dimensional environments that we consider in this paper.

Other works promote diversity in multi-agent RL (MARL) to robustify an agent by having it train
against a pool of partners (Lupu et al., 2021; Strouse et al., 2021). Lupu et al. uses an auxiliary loss
to induce diversity, while Strouse et al. selects older checkpoints of the model; both suffer from the
arbitrariness and sabotage issues which we address in our work. Canaan et al. (2019) generates a
diverse pool of agents through MAP-Elites (Mouret & Clune, 2015), but the algorithm relies on low-
dimensional rule based agents and fails to produce strong Hanabi agents (scores > 19 points). In
contrast, our method scales to high-dimensional settings and does not require manual hard-coding.

Hu et al. (2020) introduce a setting where the goal is to maximize the cross-play (mixed team)
performance between independently trained agents from the same training algorithm. For clarity,
we refer to this metric as the intra-algorithm cross-play (intra-AXP) in this paper. Hu et al. (2020)
highlighted the importance of “reasonable” policies, in particular focusing on symmetry breaking.
Ma et al. (2022) also investigates producing reasonable policies through the inductive biases of
various model architectures. They find that certain architectures achieve diversity in simple settings.

The work most similar to ours is that of Charakorn et al. (2023). They learn incompatible policies
by maximizing SP scores, while minimizing XP scores in a pool, and optimizing the lower bound on
variations between policies. As we show in Section 7, this approach leads to agents that obtain low
XP scores by sabotaging the game rather than discovering fundamentally incompatible conventions.

3 BACKGROUND

3.1 TURN-BASED DEC-POMDPS WITH PUBLIC ACTIONS

In this work, we assume a turn-based Dec-POMDP (Oliehoek, 2012) which can be described by
a tuple (n,S,A, P, r,O, γ), with number of agents n, state space S, action space A, transition
function P : S × A × S → [0, 1] determining the probability over next states, reward function
r : S × A → R, observations function O(s) = o, and discount factor γ ∈ [0, 1]. We also define
the trajectory up to time t as τt = (o0, a0, . . . , at−1, ot) and the action-observation history (AOH)
of agent i as τ it = (oi0, a0, . . . , at−1, o

i
t). For a given player i, a policy πi(a|τ it) is a function that

maps an AOH to a distribution over actions. Importantly, this setting is turn based, meaning only
one agent acts at any given time step. We also assume public actions, such that all agents observe
the action selected by the acting agent—a limitation we inherit from OBL.

Multiple trajectories can produce the same AOH. The relationship between them is therefore prob-
abilistic and depends on the policy π that generated the trajectory up to time t. We refer to this
distribution over trajectories as the belief, Bπ(τt|τ it) = P (τt|τ it , π).

3.2 SELF-PLAY TRAINING

Self-play (SP) is a general class of training methods for multi-agent RL. When training the (joint)
policy π in SP, we unroll the policy up to time step t, producing the partial trajectory τt. Each agent
i then observes τ it and samples an action from π(·|τ it). The team receives a reward rt = r(τt, at)
and transitions to trajectory τt+1. In two-player turn-based games, the process is repeated for agent
−i to obtain rt+1 and τ it+2. Finally, SP computes the TD target

δSP = rt + γrt+1 + γ2Vπ(τ
i
t+2, a), (1)

which assumes that actions will be selected according to policy π at all future time-steps.

During SP training, past, present and future actions are assumed to be sampled from the policy being
trained. In fully cooperative settings, this enables agents to communicate additional information
about their private observation (and therefore the trajectory τt) by selecting actions to sharpen their
partner’s belief Bπ−i(τt|τ it). Arbitrary correlations arising during training (e.g. due to random
initialization) are therefore reinforced, as they provide useful information to other agents at future
time-steps. While such correlations can improve the team’s return, they are unlikely to reoccur on
independent training runs, resulting in a policy that is brittle and difficult to cooperate with.

3

Published as a conference paper at ICLR 2023

3.3 OFF-BELIEF LEARNING

Off-Belief Learning (Hu et al., 2021b, OBL) is a training algorithm designed to address the short-
comings of SP training in turn-based Dec-POMDPs with public actions. It prevents agents from
learning arbitrary and brittle conventions peculiar to the random correlations of a particular run.

The general issue in applying SP training to cooperative MARL is that it enables information feed-
back loops that reinforce spurious correlations between actions and meanings. For example, con-
sider in the cooperative card game Hanabi a policy πA, where by chance πA often takes a particular
action X when its partner has a playable card, and otherwise takes action Y. Upon observing X, the
partner’s belief over the card will be that it is playable. The partner therefore plays it, resulting in
a positive reward which reinforces the convention that “X means playable”. Crucially, this occurs
even if neither X nor Y reveal any extra information about the playable card.

The key insight of OBL is to break this loop by fixing a belief model B0, which is independent of πA.
At each step, OBL then reinterprets the AOH based on this B0 by sampling a new fictitious trajectory
τ ′t ∼ B0. The correlation between the trajectory seen by πA and its action are then restricted to what
“survives” given this trajectory resampling. Thus, if πA takes action X when a card is playable, but
that same card isn’t playable under τ ′t , then no reward is obtained if the partner plays the card. In
particular, OBL uses B0 = Bπ0

, where π0 is fully random. Thus, in expectation, “X means playable”
will only be reinforced if X carries verifiable information about the playability of the card.

More formally: like SP, when training policy π, OBL unrolls π to obtain the trajectory τt, AOH
τ it and action ait ∼ π(·|τ it) for agent i. However, OBL breaks the information feedback loop by
entirely ignoring the reward r(τt, a

i
t). Instead, it assumes access to the environment simulator, as

well as to a belief model Bπ0
of another policy π0, and samples a fictitious trajectory τ ′t ∼ Bπ0

(·|τ it).
In this fictitious trajectory, OBL first applies the “real” action ait and then fictitious action a−i

t+1

′ ∼
π(·|τ ′t+1). It thus receives fictitious rewards r′t = r(τ ′t , a

i
t) and r′t+1 = r(τ ′t+1, a

−i
t+1

′
), and fictitious

future trajectory τ ′t+2 and AOH τ it+2
′. The TD target used for training the policy is therefore

δOBL = r′t + γr′t+1 + γ2Vπ(τ
i
t+2

′
). (2)

In essence, rather than training on the real rewards seen during the transition, OBL samples a ficti-
tious transition at every time step. This fictitious transition reinterprets the AOH of agent i as having
been produced by policy π0 rather than π. As a result, actions that sharpen the posterior distribution
Bπ(τt|τ it) over trajectories given π are no longer reinforced in general. Instead, agents must rely on
actions which convey information about the trajectory in spite of this resampling.

As stated earlier, OBL assumes π0 to be a fully random policy. As a result, spurious correlations
between the real trajectory and the observations do not propagate and agents can only rely on actions
that convey verifiable information about the state. We refer to such agents as “grounded.”

OBL can be iterated to produce a hierarchy of policies, with each level πℓ being trained on fictitious
transitions sampled from a belief model Bℓ−1 = Bπℓ−1

(τt|τ it). This process was shown to reliably
produce policies with similar conventions that are devoid of symmetry breaking and are altogether
considered as more “reasonable” partners for coordination. In practice, we use neural networks B̂l

trained with supervised learning to approximate Bl to enable fast inference and sampling.

4 PROBLEM SETTING AND MOTIVATION

Many works seek to train a large pool of diverse policies from scratch. Instead, given access to a
fixed repulser policy µ, our goal is to train an adversary π—a new agent with a different play style.
We predict that many methods addressing the latter task could theoretically be deployed at larger
scale to produce a population of agents. However, this is not the primary focus of our paper.

We aim for the adversary to exhibit meaningful diversity from the repulser: to adopt conventions and
strategies that differ drastically from those of the repulser, to the extent permitted by the environ-
ment. This is in contrast to policies that merely exhibit small differences in action probabilities or
state occupancy but otherwise converge to the same high level strategy (Lupu et al., 2021). Further-
more, we seek adversaries that achieve high return and that are reasonable teammates. We further
discuss these desiderata in section 4.2.

4

Published as a conference paper at ICLR 2023

4.1 MOTIVATION

The main motivation to our work is to generate quality partners to serve as a test suite for ad-
hoc coordination. While it is often easy to produce a population by varying the training method
or hyperparameters, there is no guarantee that such approaches will produce meaningfully diverse
policies. Additionally, it is concerning if small training variations do produce diversity, as it suggests
that the training algorithms used do not reliably output policies with consistent conventions. Indeed,
such policies will fail in the context of intra-AXP, making them poor partners for ad-hoc evaluation.

Instead, with a method that is able to take a small number of reasonable partners and output highly
skilled and very distinct adversaries, it becomes possible to generate a partner pool that both covers
a more substantial portion of the policy set and is less likely to be populated by poor collaborators.
With access to such a method, it will become easier to test the ability of an agent to generalize to
unseen and meaningfully diverse partners.

A method for producing adversaries to skilled agents has other possible applications. Previous stud-
ies (Hu et al., 2021b; Lupu et al., 2021) have shown that biases in the training method or the environ-
ment structure can result in RL agents repeatedly converging to the same equilibrium. Discovering
new ways of solving a task is therefore an open problem. Were it solved, it would have applica-
tions to software testing, for instance by discovering new ways of breaking a feature or simulating
different user behaviours when using a program.

4.2 DESIDERATA FOR ADVERSARIES

Before proposing an approach to train adversaries, we first establish how to measure success.
Whether two policies are meaningfully diverse is environment and task-specific. For instance, two
humanoid robots moving their arms differently may be considered irrelevant if the goal is to discover
new gait patterns. Similarly, the feasibility of training strong and distinct policies is environment-
dependent (e.g. a task may have a unique equilibrium). Therefore, we do not formally define the
notion of “meaningful diversity”, and instead determine the desiderata of such agents, each under-
stood to be potentially limited by the environment itself.

Skill level: Past works indicate that diversity often comes at the cost of performance. While the
environment structure may in itself be at cause, this effect can also be attributed to the difficulty
of simultaneously optimizing for return and diversity (Parker-Holder et al., 2020). A good method
would minimize this drop, and produce adversaries that are as strong as allowed by the setting.

Note that this is not claiming that ad-hoc partners of beginner or intermediate levels are not useful.
However, it is usually easy to obtain such partners by selecting earlier checkpoints of a trained
policy. Thus, our goal is to produce adversaries near expert level (i.e. as close to SOTA as possible).

“True” Diversity: Another core criteria to adversaries is that they adopt distinct strategies from
those of their respective repulser policy. The first way to evaluate whether the adversary π and its
repulser µ adopted different strategies is by evaluating them in XP, as a mixed team. Low XP can be
indicative of distinct and incompatible conventions, but it is not sufficient. Indeed, low XP can also
be explained by having brittle policies that fail at the slightest deviation from SP. Even worse, since
π is a function of µ, it is possible that π learns to identify when it is paired with µ, and deliberately
performs poorly, i.e. sabotages the game (see Section 7).

While secondary, it is also desirable that the adversary strategies differ in an interpretable way from
those of the repulser policy. For instance, an adversary to a robot sports team that is particularly
aggressive may instead play much more defensively.

Reasonableness: We require adversaries to be ”reasonable” or ”well-behaved” in an informal sense.
First, this means policies that do not sabotage, as explained above. Secondly, we wish to avoid arbi-
trary conventions or symmetry breaking, since those are unlikely to be recovered even by subsequent
runs of the same algorithm, making for very inflexible and uncooperative partners.

While we do not have a problem agnostic means of identifying the failure modes listed above, we
do have Hanabi specific metrics as explored in Section 6. Furthermore, as explained in Section 5,
our method avoids these failure modes by design, building on the desirable properties of OBL.

5

Published as a conference paper at ICLR 2023

5 ADVERSARIAL DIVERSITY

Given a repulser policy µ, how do we train an adversary policy π = Adv(µ) satisfying the criteria
above? A simple starting point is to train π to maximize SP return while minimizing return when
paired with µ. However, as we show in section 7, this approach leads to agents that identify whether
they are playing in SP and sabotage if not. Thus, it fails to produce reasonable policies. We therefore
introduce ADVERSITY, which overcomes these issues with two key insights.

Algorithm 1 ADVERSITY training at level ℓ for one data collection and training step. We present
the two player case. At timestep t, the active player is i and the next player is −i.

▷ B̂πℓ−1 : belief model from previous ADVERSITY level.
▷ πℓ: new ADVERSITY policy being trained, Qθ: the Q-network that constitutes the policy πℓ.
▷ µ: repulser policy, B̂µ: repulser belief model, λ: repulsive probability.
procedure ADVERSITY(Qθ, πℓ, µ, B̂µ,D)

Initialize training episode E = EmptyList and sample initial environment τ0 ∼ P (τ0)
while NotTerminal(τ) do

Get observation τ i
t = Oi(τt) and action ai

t ∼ πℓ(τ
i
t) for the active player i

if x ∼ U(0, 1);x < λ then
B = B̂µ, πpartner = µ, w = −1

else
B = B̂ℓ−1, πpartner = πℓ, w = 1

end if
Sample fictitious trajectory τ ′

t ∼ B(·|τ i
t)

Apply active player’s action on the fictitious trajectory τ ′
t+1 = P (·|τ ′

t , a
i
t) and collect reward r′t

Partner observes and picks fictitious action a−i
t+1

′
= πpartner(O−i(τ ′

t+1))

Apply partner’s action on the fictitious trajectory τ ′
t+2 = P (·|τ ′

t+1, a
′−i
t+1) and collect reward r′t+1.

Compute target Qt = wr′t + wγr′t+1 + γ2V diff(Oi(τ ′
t+2))

Append observation, action and target to training episode E.append((τ i
t , a

i
t, Qt))

Apply active player’s action on the real trajectory and get to the next state τt+1 ∼ P (·|τt, ai
t)

end while
Add training episode to the replay buffer D.add(E)
Sample training episode from the replay buffer E ′ ∼ D
Do gradient descent θ = θ − α ∂

∂θ
L(θ), where L(θ) = 1

2

∑
t∈E′ [Qθ(τ

i
t , a

i
t)−Qt]

2

end procedure

Firstly, we prevent sabotages by re-sampling the partner for every AOH, such that the adversary can-
not condition on the partner’s identity to choose its action. At every time step, the adversary’s partner
is the repulser with probability λ, and itself otherwise. However, doing so directly perturbs the tra-
jectory distribution and impacts learning. For that reason, we leave the trajectory being unrolled
intact and perform this partner switching within the fictitious transitions of OBL. Thus, in ”repul-
sive” transitions (when π is paired with µ), we not only sample the next action from the repulser, but
also use the repulser’s belief model to resample the current trajectory. This reduces the likelihood of
µ being off-distribution and reinforces actions that are incompatible with µ. Conceptually, on those
transitions we pretend that all prior actions in the episode were taken by the repulser.

Secondly, we prevent arbitrary conventions by training a hierarchy of adversary policies, πℓ. On
vanilla transitions (when the adversary is paired with itself), each πℓ uses a fixed belief model from
the adversary policy at the level below, πℓ−1. Like OBL, the lowest level belief is the grounded
belief, i.e. the unique belief corresponding to a uniformly random policy. All belief models are
trained using the supervised learning procedure described in Hu et al. (2021a).

Technically, we proceed as follows: at a given level ℓ, ADVERSITY follows a similar training
pattern to OBL by unrolling policy πℓ on the real trajectory and computing a fictitious transition
given τ ′t ∼ B̂ℓ−1(τ

−i
t+1

′
) and a−i

t+1

′ ∼ π(·|τ−i
t+1

′
). However, with probability λ, the algorithm utilizes

a “repulsive” fictitious transition rather than the vanilla OBL one. In that case, we instead sample
τ ′t ∼ B̂µ(τ

−i
t+1

′
) and the partner’s action from µ. We then flip the fictitious rewards to obtain the

repulsive target
δAdv = −r′t − γr′t+1 + γ2V diff

π (τ it+2

′
). (3)

This procedure is summarized in Algorithm 1 and each transition is illustrated in Figure 1.

6

Published as a conference paper at ICLR 2023

Self-Play Worst Response ADVERSITY
repulser SP repulser XP Intra-AXP SP repulser XP Intra-AXP

Rank Bot 23.86 ± 0.09 0.0 ± 0.0 0.64 ± 1.0 24.22 ± 0.16 1.94 ± 0.0 24.09 ± 0.0
Color Bot 23.90 ± 0.14 0.01 ± 0.0 1.36 ± 2.0 24.03 ± 0.13 2.98 ± 1.0 10.93 ± 8.0
Clone Bot 23.90 ± 0.13 0.0 ± 0.0 6.22 ± 2.0 23.94 ± 0.16 7.48 ± 2.0 21.38 ± 1.0

OBL 23.82 ± 0.1 0.0 ± 0.0 3.39 ± 5.0 24.11 ± 0.07 9.07 ± 8.0 8.33 ± 5.0

Table 1: Score table for SPWR and ADVERSITY for 4 repulser policies. Each number is averaged over 3
independent adversaries. Both approaches produce policies with high SP and low repulser XP, but ADVER-
SITY achieves higher intra-AXP, which demonstrates that the policies are a more principled and reproducible
function of the repulser.

Accounting for both transitions, at every time step the policy learns difference Q-values that estimate
the expected future discounted reward difference between vanilla and repulsive transitions:

Qdiff
πℓ

(τ it , a
i) = (1− λ)Eτ ′

t∼Bℓ−1(τ i
t), a

−i
t+1

′∼ππℓ
{r′t + γr′t+1 + γ2V diff

πℓ
(τ it+2

′
)}

+ λEτ ′
t∼Bµ(τ i

t), a
−i
t+1

′∼µ{−r′t − γr′t+1 + γ2V diff
πℓ

(τ it+2

′
)}

V diff
πℓ

(τ it) =
∑
a

πℓ(a|τ it)Qdiff
πℓ

(τ it , a)

Breaking it down, the first line corresponds to vanilla OBL. It implies reinterpreting the past as
having been produced by a given policy πℓ−1 and acting according to πℓ ever after, reinforcing only
actions that lead to high expected return when interpreting the partner’s actions according to πℓ−1.
This prevents feedback loops in SP where the agent can learn spurious beliefs from noise about
which past actions correspond to what unobserved trajectories, and then use those beliefs to signal
information and reinforce them into arbitrary and brittle conventions.

The second line represents repulsive transitions. Resampling the current trajectory assuming the
AOH was produced by µ results in ait being reinforced if it is incompatible with µ’s conventions and
leads to low immediate rewards. At the next step, we assume our partner is µ, thus simulating XP
between the repulser and the adversary. Here again, negating r′t+1 means we reinforce actions that
are misinterpreted by µ.

Finally, in both vanilla and repulsive transitions, we maximize expected future discounted difference
reward, denoted by V diff

ℓ (τ it+2
′
). Conceptually, these difference value functions assume that at every

point in the future the repulser will intervene for one time step with probability λ, at which point
rewards are inverted and the entire past is re-interpreted according to their belief model B̂πµ .

Overall, this procedure pushes πℓ to select actions that achieve high return under B̂πℓ−1
, and that are

simultaneously incompatible with µ’s conventions.

This section describes training a single policy πℓ on top of B̂ℓ−1 and µ. Because the initial belief
B̂0 is restricted to only rely on grounded information, the skill level of π1 is limited. Therefore,
to improve skill we follow the procedure from Hu et al. (2021b) and iteratively learn higher levels
πℓ. At each level, we decrease λ, up to λ = 0, at which point our training reverts to vanilla OBL.
Nonetheless, since each level uses the belief level of the previous level, in our settings the final play
style is incompatible to µ, as we show in Section 7. This shows that we truly obtain novel equilibria.

6 EXPERIMENTAL SETUP

Here we describe the evaluation setting and baseline. Training details are included in the Appendix.

6.1 HANABI

We implement and test our method in Hanabi, a large scale cooperative card game proposed as a
challenging benchmark for Dec-POMDP research (Bard et al., 2020). Hanabi is played with 8 hint
tokens, 3 life tokens and a deck of 50 cards, each having a rank between 1 and 5 and one of five
colors. It is a game for 2-5 players, but we restrict ourselves to the 2-player version.

7

Published as a conference paper at ICLR 2023

Rank Bot Color Bot Clone Bot OBL Non-repulser

SPWR 2.36 ± 0.17 1.14 ± 0.19 2.17 ± 0.07 2.04 ± 0.20 1.57 ± 0.10
ADVERSITY 0.06 ± 0.01 0.10 ± 0.02 0.05 ± 0.01 0.09 ± 0.05 0.05 ± 0.01

Table 2: Average number of sabotages per game by the row agents playing with the column agents they are
trained to be different from. Each pair is evaluated on 1000 games, averaged over 3 seeds of the row agent.
The “Non-repulser” column is when SPWR/ADVERSITY of one agent plays with the other three agents. For
reference, in self-play, each OBL agent does 0.057 pure sabotages per game for mistakes, risky bets and it
almost never loses all 3 lives.

The goal is to form stacks of cards in rank order for each of the five colors. The final score, between
0 and 25, is given by the number of cards successfully stacked by the end of the game. At any given
time, player’s have five cards in their hands, and can only see their partner’s cards. The players must
therefore communicate effectively with their partners so that they can act in an informed manner.

One their turn, a player has up to 20 different actions. They can either a) discard one of their cards,
b) attempt to play one of their cards, c) hint at all the cards of a chosen color in the partner’s hand, or
d) hint at all the cards of a given rank in the partner’s hand. Discarding replenishes one hint token.
Playing a card results in it being placed on top of the pile of its color if it’s the next logical card in
that pile. Otherwise, the card is lost and the team loses a life. Hinting provides limited information
to the partner and consumes a hint token. Hinting is not allowed if there are no hint tokens left, and
discarding is not allowed if all 8 tokens are available. If the team loses all 3 lives, the game ends
prematurely, with a score of 0. Finally, the game also ends when there are no cards left in the deck.

6.2 SELF-PLAY WORST RESPONSE

As a baseline, we implement a “Self-Play Worst Response” (SPWR) – a PPO agent using the same
neural network architecture and hyperparameters as above but trained on SP data with probability
1 − λ and in XP with the repulser with probability λ. Our SWPR experiments set λ = 0.25. An
entire game is either SP or XP, with no switching within a single game. When in XP, the rewards
received are inverted. This is a simpler version of LIPO from Charakorn et al. (2023).

7 RESULTS

We evaluate the skill level, diversity, and reasonableness of our method against the SPWR baseline.
For both our method and our baseline, we train 3 adversary seeds for each of 4 repulser policies.
In addition to vanilla OBL level 5, the repulsers are 3 of the baseline policies inspired by Hu et al.
(2021b); namely Rank Bot, which is an Other-Play (Hu et al., 2020) (and therefore color equivariant)
policy favouring rank hints, Color Bot, which is a reward-shaped policy favouring color, and Clone
Bot, which is a supervised learning bot trained on human data.

We first see in Table 1 that both the SPWR and ADVERSITY agents achieve high SP, corresponding
to high skill in Hanabi, and very low XP scores when paired with their respective repulser, showing
that both methods produce policies that are incompatible with their repulser. However, ADVER-
SITY shows a clear advantage over the SPWR in terms of intra-AXP scores, computed between
independent adversary seeds. SPWR produces different policies every run, resulting in a very low
Intra-AXP score. In contrast, ADVERSITY agents tend to be quite similar, as shown by the lower
SP-XP gap. Adversaries to Color Bot and OBL are exceptions and have low Intra-AXP scores.

To evaluate whether the adversaries exhibit meaningful diversity from their repulser, we first look at
conditional action matrices, presented in appendix A.4. These display the conditional probability of
a player’s action ait+1 given the previous action, a−i

t . We find that both ADVERSITY and the SPWR
exhibit meaningful diversity from their repulsers and between adversaries to different repulsers. For
example, when Rank Bot is the repulser policy, ADVERSITY consistently produces adversaries that
use color to indicate playable cards. Similarly, while OBL tends to respond to discard actions by
also discarding a card, adversaries to OBL learn instead to discard their last card to hint play.

8

Published as a conference paper at ICLR 2023

ra
nk

_b
ot

co
lo

r_
bo

t

clo
ne

_b
ot ob

l

rb
_W

R

cb
_W

R

clo
ne

_W
R

ob
l_W

R

rank_bot

color_bot

clone_bot

obl

rb_WR

cb_WR

clone_WR

obl_WR

24.14 4.77 9.25 12.21 0.00 10.25 10.02 0.49

4.55 24.32 14.09 22.52 1.07 0.00 0.34 0.03

9.52 13.95 20.77 15.90 0.81 0.95 0.00 1.92

12.57 22.59 15.46 24.35 0.43 0.56 1.27 0.00

0.00 1.09 0.80 0.52 23.70 0.00 0.00 0.20

9.99 0.01 0.94 0.54 0.01 24.10 9.40 1.04

9.74 0.35 0.00 1.37 0.00 8.36 24.08 0.14

0.34 0.01 1.44 0.00 0.26 1.26 0.25 23.77

0

5

10

15

20

(a) XP matrix with self-play worst response agents

ra
nk

_b
ot

co
lo

r_
bo

t

clo
ne

_b
ot ob

l

rb
_a

dv

cb
_a

dv

clo
ne

_a
dv

ob
l_a

dv

rank_bot

color_bot

clone_bot

obl

rb_adv

cb_adv

clone_adv

obl_adv

24.14 4.77 9.25 12.21 2.18 9.17 5.95 1.10

4.55 24.32 14.09 22.52 19.76 3.53 2.65 0.44

9.52 13.95 20.77 15.90 9.76 7.65 4.88 2.23

12.57 22.59 15.46 24.35 20.39 8.82 8.98 1.67

2.21 19.84 9.95 20.57 24.33 4.97 4.46 3.70

9.65 3.48 7.67 9.20 5.18 24.16 12.58 3.86

6.03 2.72 4.81 8.55 3.91 12.14 24.00 3.05

1.07 0.45 2.15 1.70 3.63 4.03 2.76 24.20

5

10

15

20

(b) XP matrix with ADVERSITY agents

Figure 2: XP matrices between 8 Hanabi models: 4 repulser models (Rank Bot, Color Bot, Clone Bot, OBL)
and their respective adversaries, trained either through SPWR (a) or ADVERSITY (b). Each entry is averaged
over 2000 games. Red squares highlight repulser-SPWR or repulser-adversary pairs. Both SPWR and AD-
VERSITY produce policies that have low XP scores with their repulsers, but ADVERSITY exhibits a wider
range of scores when paired with ad-hoc agents, indicating graceful degradation and more reasonable policies.

In terms of method consistency, the action matrices for different ADVERSITY seeds tend to be
similar, reinforcing the idea that it is reproducible. SPWR seeds, on the other hand, differ wildly,
explaining the low inter-AXP score mentioned previously.

Finally, Figure 2b shows the XP matrices between bots including the repulsers and one of each
adversary seed. Notice that SPWR adversaries have near-zero XP scores with virtually every partner;
a red flag supporting the hypothesis that they learned to identify when not in SP and purposely throw
the game. Meanwhile, ADVERSITY agents exhibit a graceful degradation of ad-hoc performance
depending on the similarity to the partner’s policy, indicating much more reasonable policies.

Sabotaging: We verify that unlike ADVERSITY, SPWR adversaries exhibit sabotaging behavior
in Hanabi. We do this by measuring sabotages, the number of knowingly unplayable cards (based
on revealed information) played by the agent. We measure the average number of sabotages per
game when SPWR and ADVERSITY are paired with their respective repulser agents and report
results in Table 2. ADVERSITY consistently has a low number of sabotages (< 0.1) per game,
whereas SPWR has at least 1 sabotage per game and in many cases > 2. The sabotages are lower
for SPWR(Color Bot) simply because a color hint does not immediately reveal whether a card is
definitely unplayable. The SPWR(Color Bot) agent simply plays unhinted cards blindly, which is
not necessarily a sabotage by our strict definition, but a poor move nonetheless. Moreover, SPWR
agents sabotage all non-SP games, not just the ones with the repulser they were trained with. This
indicates that the poor XP performance of SPWR comes not from playing a reasonable reward-
maximizing strategy that happens to be meaningfully different and incompatible with other agents,
but from “deliberately” playing bad actions upon identifying that its current partner is not itself. We
also verified that the < 0.1 mean incidence of sabotaging for ADVERSITY is in line with vanilla
OBL evaluated in SP, i.e. corresponds to a standard rate of mistakes or risky bets. On a different
metric, SPWR is responsible for a dominant amount of 2.67 ± 0.05 out of 3 life losses per game
while, ADVERSITY is only responsible for 1.42 ± 0.05—roughly half of the total mistakes. This
also indicates that SPWR tries hard to terminate games deliberately, while ADVERSITY policies
fail due to meaningful incompatibility, without any party trying to explicitly sabotage.

8 CONCLUSION AND FUTURE WORK

In this paper, we introduce ADVERSITY, a method for producing highly skilled and reasonable
policies for a fully cooperative task that play according to meaningfully diverse conventions. While
our results show that both ADVERSITY and our baseline produce agents that exhibit high skill
and meaningful diversity from their repulser, only ADVERSITY agents are also reproducible on
independent runs and reasonable, as indicated by the graceful degradation of their performance with
different ad-hoc partners.

The main limitation of our method is the high computational cost, making it difficult to scale the
method to a large number of adversaries. Were this issue solved, ADVERSITY could theoretically
be used to produce a large pool of diverse agents by iteratively computing adversaries to past models.

9

Published as a conference paper at ICLR 2023

REFERENCES

Stefano Albrecht, Jacob Crandall, and Subramanian Ramamoorthy. An empirical study on the prac-
tical impact of prior beliefs over policy types. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, 2015.

Stefano Vittorino Albrecht. Utilising policy types for effective ad hoc coordination in multiagent
systems. 2015.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. Making friends on the fly: Cooperating
with new teammates. Artificial Intelligence, 242:132–171, 2017.

Michael Bowling and Peter McCracken. Coordination and adaptation in impromptu teams. In AAAI,
volume 5, pp. 53–58, 2005.

Rodrigo Canaan, Julian Togelius, Andy Nealen, and Stefan Menzel. Diverse agents for ad-hoc
cooperation in hanabi. In 2019 IEEE Conference on Games (CoG), pp. 1–8, 2019. doi: 10.1109/
CIG.2019.8847944.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse coopera-
tive agents by learning incompatible policies. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=UkU05GOH7_
6.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for (human-ai)
zero-shot coordination in hanabi. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 4190–4203. Curran Associates, Inc., 2021.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. ” other-play” for zero-shot
coordination. arXiv preprint arXiv:2003.02979, 2020.

Hengyuan Hu, Adam Lerer, Noam Brown, and Jakob Foerster. Learned belief search: Efficiently
improving policies in partially observable settings. arXiv preprint arXiv:2106.09086, 2021a.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, David Wu, Noam Brown, and Jakob N. Fo-
erster. Off-belief learning. ICML, 2021b. URL https://arxiv.org/abs/2103.04000.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International Conference on Machine Learning, pp. 7204–7213. PMLR, 2021.

Mingwei Ma, Jizhou Liu, Samuel Sokota, Max Kleiman-Weiner, and Jakob N. Foerster. Learning
to coordinate with humans using action features. CoRR, abs/2201.12658, 2022. URL https:
//arxiv.org/abs/2201.12658.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. CoRR,
abs/1504.04909, 2015. URL http://arxiv.org/abs/1504.04909.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coor-
dination as a realistic scenario for lifelong learning. In International Conference on Machine
Learning, pp. 8016–8024. PMLR, 2021.

Frans A Oliehoek. Decentralized pomdps. In Reinforcement Learning, pp. 471–503. Springer, 2012.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020.

10

https://openreview.net/forum?id=UkU05GOH7_6
https://openreview.net/forum?id=UkU05GOH7_6
https://arxiv.org/abs/2103.04000
https://arxiv.org/abs/2201.12658
https://arxiv.org/abs/2201.12658
http://arxiv.org/abs/1504.04909

Published as a conference paper at ICLR 2023

Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling network architectures for deep reinforcement learning. In Maria-Florina Bal-
can and Kilian Q. Weinberger (eds.), Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pp. 1995–2003. JMLR.org, 2016. URL http:
//proceedings.mlr.press/v48/wangf16.html.

Jaleh Zand, Jack Parker-Holder, and Stephen J Roberts. On-the-fly strategy adaptation for ad-hoc
agent coordination. arXiv preprint arXiv:2203.08015, 2022.

11

http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 TRAINING DETAILS

Our implementation is based on the open sourced OBL code with two main modifications. We first
replace the recurrent Q-learning backbone with PPO as it runs faster and requires significantly less
memory. Then, we implement a synchronous method that trains all OBL levels simultaneously.

Otherwise, we use a distributed training set up similar to (Hu et al., 2021b), which we detail in the
appendix. All bots are trained for 3000 epochs, each epoch consists of 1000 gradient steps. We
select the checkpoint with the highest SP score.

The original OBL trains multiple levels of policies sequentially, using the output policy of the pre-
vious level as the input policy of the new level. In ADVERSITY, we train all levels simultaneously
for faster wall-clock time. These policies are denoted as π0, π1 . . . πL and their corresponding belief
models are denoted as B̂0, . . . , B̂L. To warm up the belief model and avoid having too many invalid
samples, we first train a belief model B̂0 on the uniform random base policy π0 and initialize all
B̂l = B̂0. Then, L policy training tasks and L belief training tasks start at the same time. The belief
task of B̂l gets a latest copy of πl every 50 gradient steps and the policy task of πl gets a latest copy of
B̂l−1 every 50 gradient steps. The details of each individual belief follows the exact configurations
of the original OBL paper and each policy task uses the PPO-OBL method described above.

For each adversary, we train a hierarchy of 7 levels, setting λ = 0.25 for l = 1 and decreasing by
0.08 every level (min. 0). Levels l ≤ 4 are trained simultaneously, followed by levels l ≥ 5, also
trained simultaneously and with beliefs initialized at B̂l = B̂4. This split was forced by limitations
on the concurrent compute available to the authors, but we anticipate no change in performance if
all levels were trained simultaneously. The ADVERSITY numbers reported in Section 7 all refer to
the highest level of the hierarchy.

A.2 POLICY TRAINING DETAILS

We use a large scale distributed training framework for policy training. To train a single policy, we
run 6400 games in parallel, each adding to a centralized replay buffer. We achieve this by running 80
threads in parallel, with 80 games running per thread. All models are on GPUs and we dynamically
batch all model calls in order to increase inference speed. This schema also allows games on the
same thread to forward environment calls while certain games wait for GPU calls. As done in (Wang
et al., 2016), when an environment terminates, each game grabs all necessary objects: observations,
actions, and targets, pads everything to a length of 80 and adds it to a centralized replay buffer.

For every training step we apply the PPO update rule, but instead of using the real reward and
advantage, we use the fictitious values. Every m = 10 training steps, we update the environment
actors with the weights for the updated policy. As done in Cui et al. (2021) synchronously train our
hierarchy of beliefs and policies, querying for and updating all dependencies every p = 50 training
steps.

We utilize the same policy architecture as Hu et al. (2021b). We utilize their public-private LSTM
architecture. The public observation is encoded by a one-layer feedforwards neural network fol-
lowed by a LSTM. The private observation is encoded by a three-layer neural network. We combine
these encodings via element wise multiplication.

For all OBL experiments we compute the target with r = 1 fictitious steps. We also sample the
belief model s = 10 times and use the first sampled trajectory that doesn’t violate card constraints
to compute the fictitious targets. We then use a simulator to produce transitions from the valid
trajectory. Like Hu et al., we discard the fictitious transition whenever the belief fails to produce a
valid sample, which in practice happens on less than 1% of transitions.

Implementation

The policy is represented by a public-LSTM network πθ with a value head and a policy head. A
large number of parallel workers generate data by sampling from a slightly outdated policy πθ′ and
write that data into a replay buffer D. One datapoint in D is an entire trajectory τ j . Although PPO

12

Published as a conference paper at ICLR 2023

normally does not need a replay buffer, we still use one here to fully decouple inference and training
for maximum speed. Its size is set to a small value of 1024 to minimize the instability caused by
stale data. πθ is trained with the Adam optimizer (Kingma & Ba, 2014) on minibatches of data
uniformly sampled from the replay buffer. The value loss is Eτ i∼D

∑
t[rt + γVθ(τ

i
t+1)− Vθ(τ

i
t)]

2.

The policy loss is Eτ i∼D
∑

t min[rt(θ)Ȧt, clip(rt(θ), 1 ± ϵ)Ȧt] where rt(θ) =
πθ(a

i
t|τ

i
t)

πθ′ (a
i
t|τ i

t)
, Ȧt =

StopGradient[rt+γvθ(τ
i
t+1)−Vθ(τ

i
t)]. We perform one gradient step per minibatch. We use 1-step

bootstrapped value target instead of
∑

t rt because it converges significantly faster and it fits well in
the OBL fictitious target computation. πθ′ is synced with πθ every 10 gradient updates.

A.3 BELIEF TRAINING DETAILS

We utilize the same distributed training schema from policy training for belief training. This has
also been done by (Hu et al., 2021b). As done in policy training, we query and update dependencies
every p = 50 training steps.

For belief training we store the true hand of the player along with the observation to train the be-
lief. For training, we train an autoregressive belief model that predicts cards oldest to newest via
supervised learning. More precisely, the belief model is trained to minimize the loss

L(h|τ it) = −
n∑

k=1

log p(hk|τ it , h1:k−1), (4)

where hk is the kth card in the player’s hand and n is the hand size (usually 5).

A.4 ADDITIONAL RESULTS

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1

D2

D3

D4

D5

P1

P2

P3

P4

P5

C1

C2

C3

C4

C5

R1

R2

R3

R4

R5

(a) Rank bot

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1

D2

D3

D4

D5

P1

P2

P3

P4

P5

C1

C2

C3

C4

C5

R1

R2

R3

R4

R5

(b) Color bot
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1

D2

D3

D4

D5

P1

P2

P3

P4

P5

C1

C2

C3

C4

C5

R1

R2

R3

R4

R5

action_matrix

(c) Clone bot

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1

D2

D3

D4

D5

P1

P2

P3

P4

P5

C1

C2

C3

C4

C5

R1

R2

R3

R4

R5

(d) OBL

Figure 3: Conditional action matrices showing p(at+1|at) for the 4 repulser policies

13

Published as a conference paper at ICLR 2023

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(rb)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(rb)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(rb)_SEEDc

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(cb)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(cb)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(cb)_SEEDc

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(clone)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(clone)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(clone)_SEEDc

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(obl)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(obl)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(obl)_SEEDc

Figure 4: Action matrices for all SPWR agents.

14

Published as a conference paper at ICLR 2023

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(rb)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(rb)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(rb)_SEEDc

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(cb)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(cb)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(cb)_SEEDc

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(clone)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(clone)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(clone)_SEEDc

D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5
D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(obl)_SEEDa
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(obl)_SEEDb
D1 D2 D3 D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5 R1 R2 R3 R4 R5

D1
D2
D3
D4
D5
P1
P2
P3
P4
P5
C1
C2
C3
C4
C5
R1
R2
R3
R4
R5

ADV(obl)_SEEDc

Figure 5: Action matrices for all ADVERSITY agents.

15

Published as a conference paper at ICLR 2023

ran
k_b

ot

col
or_

bo
t

clo
ne

_bo
t ob

l

SP
WR(rb

)_S
EE

Da

SP
WR(rb

)_S
EE

Db

SP
WR(rb

)_S
EE

Dc

SP
WR(cb

)_S
EE

Da

SP
WR(cb

)_S
EE

Db

SP
WR(cb

)_S
EE

Dc

SP
WR(cl

on
e)_

SE
ED

a

SP
WR(cl

on
e)_

SE
ED

b

SP
WR(cl

on
e)_

SE
ED

c

SP
WR(ob

l)_S
EE

Da

SP
WR(ob

l)_S
EE

Db

SP
WR(ob

l)_S
EE

Dc

rank_bot

color_bot

clone_bot

obl

SPWR(rb)_SEEDa

SPWR(rb)_SEEDb

SPWR(rb)_SEEDc

SPWR(cb)_SEEDa

SPWR(cb)_SEEDb

SPWR(cb)_SEEDc

SPWR(clone)_SEEDa

SPWR(clone)_SEEDb

SPWR(clone)_SEEDc

SPWR(obl)_SEEDa

SPWR(obl)_SEEDb

SPWR(obl)_SEEDc

24.14 4.77 9.25 12.21 0.01 0.00 0.00 0.02 1.28 1.47 0.00 0.01 0.00 0.00 0.12 1.46

0.00 24.32 14.09 22.52 0.01 0.13 0.12 0.00 0.01 0.01 0.11 0.19 1.17 0.02 0.00 0.03

0.00 0.00 20.77 15.90 0.18 3.30 0.08 0.19 0.76 3.02 0.00 0.00 0.02 0.14 0.80 1.19

0.00 0.00 0.00 24.35 0.00 0.19 0.09 0.00 0.36 0.06 0.09 0.15 0.43 0.00 0.00 0.00

0.00 0.00 0.00 0.00 23.74 0.17 1.96 0.02 0.01 0.03 3.10 0.07 0.68 11.77 0.02 0.01

0.00 0.00 0.00 0.00 0.00 23.91 0.03 0.17 0.04 8.79 0.01 0.00 0.00 0.02 4.30 7.21

0.00 0.00 0.00 0.00 0.00 0.00 23.86 1.76 0.47 0.00 5.49 0.38 1.34 6.41 0.02 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.63 6.67 0.05 6.20 6.25 4.93 1.03 0.05 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.92 0.28 1.72 11.96 0.43 0.04 0.03 0.07

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.91 0.00 0.00 0.00 0.00 3.68 3.80

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.65 5.23 8.21 6.81 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.00 1.58 0.07 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.84 5.11 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.94 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.82 10.16

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.69

Convergence

0

5

10

15

20

Figure 6: XP matrix of the four repulser candidates and all the SPWR bots. Red rectangles indicate
pairs of the form (X,SPWR(X)). Numbers below the diagonal were not computed.

ran
k_b

ot

col
or_

bo
t

clo
ne

_bo
t ob

l

ADV(rb
)_S

EE
Da

ADV(rb
)_S

EE
Db

ADV(rb
)_S

EE
Dc

ADV(cb
)_S

EE
Da

ADV(cb
)_S

EE
Db

ADV(cb
)_S

EE
Dc

ADV(cl
on

e)_
SE

ED
a

ADV(cl
on

e)_
SE

ED
b

ADV(cl
on

e)_
SE

ED
c

ADV(ob
l)_S

EE
Da

ADV(ob
l)_S

EE
Db

ADV(ob
l)_S

EE
Dc

rank_bot

color_bot

clone_bot

obl

ADV(rb)_SEEDa

ADV(rb)_SEEDb

ADV(rb)_SEEDc

ADV(cb)_SEEDa

ADV(cb)_SEEDb

ADV(cb)_SEEDc

ADV(clone)_SEEDa

ADV(clone)_SEEDb

ADV(clone)_SEEDc

ADV(obl)_SEEDa

ADV(obl)_SEEDb

ADV(obl)_SEEDc

24.14 4.77 9.25 12.21 2.18 1.56 2.07 9.17 8.01 3.15 5.95 11.24 7.54 1.10 11.55 3.37

0.00 24.32 14.09 22.52 19.76 20.41 19.78 3.53 4.28 1.12 2.65 8.00 7.08 0.44 14.40 4.84

0.00 0.00 20.77 15.90 9.76 10.43 10.07 7.65 5.79 3.47 4.88 10.62 6.94 2.23 14.23 4.77

0.00 0.00 0.00 24.35 20.39 20.06 20.17 8.82 11.57 2.48 8.98 16.45 14.50 1.67 20.00 5.53

0.00 0.00 0.00 0.00 24.33 24.04 24.22 4.97 5.23 3.21 4.46 7.32 8.09 3.70 16.32 15.60

0.00 0.00 0.00 0.00 0.00 24.00 23.99 4.76 5.68 3.03 4.48 7.18 8.62 2.52 16.33 14.30

0.00 0.00 0.00 0.00 0.00 0.00 24.34 6.26 4.17 4.84 4.44 7.93 8.10 5.33 16.69 16.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.16 8.67 21.15 12.58 14.53 12.85 3.86 10.95 11.48

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.86 2.97 10.31 15.67 12.32 3.93 6.10 7.42

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.07 7.34 6.15 5.92 3.50 4.84 10.95

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.00 20.28 22.24 3.05 8.41 7.38

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.72 21.61 4.27 12.78 7.71

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.10 2.90 11.88 8.76

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.20 2.17 8.86

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.12 13.96

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.02
0

5

10

15

20

Figure 7: XP matrix of the four repulser candidates and all the ADVERSITY bots. Red rectangles
indicate pairs of the form (X,Adv(X)). Numbers below the diagonal were not computed.

16

	Introduction
	Related work
	Background
	Turn-based Dec-POMDPs with Public Actions
	Self-Play Training
	Off-Belief Learning

	Problem Setting and Motivation
	Motivation
	Desiderata for Adversaries

	Adversarial Diversity
	Experimental Setup
	Hanabi
	Self-Play Worst Response

	Results
	Conclusion and Future Work
	Appendix
	Training Details
	Policy Training Details
	Belief Training Details
	Additional Results

