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Abstract: Tactile memory—the ability to store and retrieve touch-based expe-
riences—is critical for humans to perform contact-rich and fine manipulation
tasks like key insertion, even under uncertainties. Replicating this capability in
robots remains challenging due to underdeveloped spatiotemporal representations
for tactile signals. This study introduces TaMeSo-bot (Tactile Memory with Soft
Robot), a robotic system that combines physical softness for safe contact with
retrieval-based manipulation. Inspired by neurophysiological findings on tac-
tile memory, TaMeSo-bot introduces a transformer-based method that processes
multi-modal sequences—including tactile, force-torque, and proprioceptive sig-
nals—while modeling the spatial relationships across distributed taxel sensors.
Leveraging a masked token prediction technique, our system autonomously ex-
tracts task-relevant features without manual subtask segmentation. We validate
our approach on peg-in-hole tasks in both offline and real-robot experiments. Re-
sults show improved action position retrieval accuracy (34% over baseline) and
performance with 77.5% and 57.5% success rates under seen and unseen condi-
tions (peg and hole pose uncertainty and different diameter pegs), respectively.
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Figure 1: Overview of the TaMeSo-bot system. The tactile memory system stores encoded tactile
demonstrations and retrieves relevant actions by matching current sensory inputs to similar past ex-
periences, enabling robust contact-rich manipulation. The retrieved actions are then executed via
mechanical smoothing through the soft wrist’s physical compliance, which naturally filters discon-
tinuities for safe and stable manipulation.
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1 Introduction

A tactile memory system, which stores and retrieves tactile information, is essential for daily ac-
tivities [1]. This study explores a robotic system, Tactile Memory with Soft Robot (TaMeSo-bot),
that integrates two key elements: soft robots, which enable safe physical interactions, and a tactile
memory capable of storing and retrieving tactile information within a database for robust and fine
contact-rich manipulation. Retrieval-based approaches eliminate the need for such labor-intensive
segmentation and labeling processes on the database, and therefore have shown great potential in
robot manipulation [2, 3, 4]. Nevertheless, building our system upon these methods presents a ma-
jor challenge: The development of effective and robust representations capable of capturing subtask-
relevant information in contact-rich scenarios is still an open problem.

This study proposes a Transformer-based tactile representation designed for retrieval-based manip-
ulation in contact-rich tasks. We employ a distributed tactile sensor integrated into the gripper and
a built-in force-torque (F/T) sensor on the robot’s wrist. Sequences of tokens derived from each
taxel and the other modalities—including force/torque signals, soft wrist poses, and end-effector
poses—are provided as input to the transformer model. To obtain a robust feature representation
relevant to the task, we train our model leveraging masked token prediction techniques [5, 6]. As
shown in Fig. 1, these learned representations are stored in the tactile memory and subsequently used
via retrieve-and-replay execution. During the online execution, we leverage the physical softness of
the wrist to smooth the retrieved actions, which we refer to as mechanical smoothing.

We validated our method through offline and real-world robot experiments with peg-in-hole tasks. In
offline evaluations, our model achieved more accurate action retrieval than a baseline without spatio-
temporal interactions and masking. Also, the learned features were clearly segmented according to
subtasks. In real-world experiments, the robot completed peg-in-hole tasks even under grasp and
hole pose uncertainty, and with previously unseen peg sizes.

2 TaMeSo-bot: Tactile Memory with Soft Wrist

2.1 Tactile Memory System: Representation Learning

The tactile memory system implements a non-parametric control policy that retrieves the appropriate
action by querying a database whose keys are tactile representations augmented with multimodal
contexts. To build these query keys, we aim to learn an encoder E that maps a sub-trajectory τ =
({st−H+1,at−H+1} , . . . , {st,at}) consisting of state-action pairs {s,a} over a history window
H , to a compact representation vector zt that is later stored in a database with the corresponding
action at. Each embedding zt is stored in the database together with its accompanying action at

and later used to retrieve the appropriate action at execution time.

Tokenization and Position Encoding As shown on the left of Fig. 1, at each timestep t, we collect
tactile signals from a PapillArray Tactile Sensor [7] with nine (3×3) taxels, each producing 3D force
measurements stact = {s1t , . . . , s9t} ∈ R3×9. As auxiliary states, we capture the wrist force/torque
uft
t ∈ R6, arm pose uarm

t , and gripper pose ugrip
t ∈ R7 measured from a motion capture system.

We also record the robot action at ∈ R6, which is the displacement of the 3D position [∆x,∆y,∆z]
and 3D euler rotation representations [∆θx,∆θy,∆θz] of the robot arm.

The individual taxels and actions serve as base tokens {stac1, . . . , stac9,a}, while the other sen-
sory information {uft,uarm,ugrip} serves as auxiliary tokens that compensate for global con-
texts. These tokens are projected to the de-dimensional embeddings b = {b1, . . . , b9, b10} and
e = {eft, earm, egrip} by a linear projection f(·). To incorporate the spatial relationship of tactile
tokens, each taxel position is encoded as a spatial position embedding epos ∈ Rdpos by sinusoidal
encoding, reflecting its location in the 3 × 3 grid. The action token is considered at the center of
this grid to facilitate spatial reasoning between actions and tactile feedback. To incorporate these
auxiliary embeddings as global context, we add their weighted sum to each base token embedding.
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Figure 2: Masked Trajectory Encoder for distributed tactile sensors and actions. During training,
the encoder learns to reconstruct the states and actions within a time window H , while randomly
masking input tokens. After training, the tactile trajectory datasets are encoded into a single repre-
sentative embedding z that captures the spatio-temporal dynamics of the tactile-action sequences.

In summary, the one token embeddings xi ∈ Rde+dpos are described as

xi =
(
bi + wft · eft + warm · earm + wgrip · egrip

)
⊕ epos , (1)

where ⊕ denotes hard-concatenation of the positional embeddings and + denotes soft-concatenation
with weights w for each token embeddings.

Bidirectional Transformer-based Tactile Encoder Our model processes sub-trajectory se-
quences τ from historical observations. Through the embedding process defined in Eq. (1), a
sub-trajectory τ is transformed into an input tensor X =

(
{x1

1, . . . ,x
10
1 }, . . . , {x1

H , . . . ,x10
H }

)
∈

RH×10×d, where H is the sequence length, 10 represents the number of tokens per timestep consist-
ing of nine taxel tokens and one action token, and d = de + dpos is the embedding dimension. We
employ a bidirectional transformer encoder E with L layers to process the input tensor X . Details
of the model parameters are provided in the Appendix.

Masked Trajectory Encoder To learn robust tactile representations that capture the intrinsic
structure of the data, we employ masked token prediction strategy [5, 6]. As illustrated in Fig. 2, we
train a Bidirectional Transformer-based encoder that learns to reconstruct input states and actions
with a temporal window H while randomly masking input tokens. Specifically, for each input X ,
we sample a masking ratio uniformly from the range [0, 0.6], following prior work [5]. During in-
ference, since the current action at is unknown, we mask the action token in the current timestep
and use the encoder to generate query vectors that capture the current tactile context.

Feature Pooling To obtain a tactile representation that captures information across all tokens, we
apply a pooling function g(·). For our system, we adopt the widely used average pooling [8].

2.2 Tactile Memory System: Database and Retrieval

Database Construction Each trajectory τ consists of a sequence of tactile tokens xt ∈ R10×H×d,
where 10 denotes the number of tokens including nine tactile sensor taxels and one action token, H
is the number of timesteps to encode, and d is the feature dimension. The pooling operation converts
the input tensor xt into a representative vector zt ∈ Rd. The resulting pair {zt,at}, where at is the
corresponding action sequence, is then stored in the database D.

Non-parametric Control Policy At execution time, given a sequence of tactile observation
(st−H+1, . . . , st) and previous actions (at−H+1, . . . ,at−1), we encode it using the pretrained en-
coder E and pooling function g(·) to obtain the query representation zq ∈ Rd

e . Here we mask the
current action token as it is unknown at the time of execution. We then retrieve the k most similar
representations from the database using L2 distance, dist(zq, zi) = ∥zq − zi∥ . For real-time robot
control at 50 Hz, we employ an approximate nearest neighbor search using a hierarchical navigable
small world (HNSW) graph-based index [9].
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3 Experiments

We conducted a series of experiments to evaluate the robustness of our TaMeSo-bot system in peg-
in-hole tasks. Our experiments are designed to validate the effectiveness of our proposed TaMeSo-
bot system, aiming to answer a key question: Does the proposed masking strategy improve the
quality and robustness of the learned tactile representation? To address these questions, we conduct
comprehensive evaluations through both offline analysis using collected datasets and experiments
on a real robotic system. The offline evaluation results are introduced in the Appendix.

Robot Setup We use a robotic arm (UR5e, Universal Robots A/S, Denmark) with a force-torque
sensor, a parallel gripper (Hand-e, Robotiq, Canada), and a soft wrist [10], which consists of three
springs and allows 6 degrees of freedom deformation. A motion tracker (HTC VIVE Tracker [11],
HTC Corporation, Taiwan) is mounted on the gripper to capture its pose, and a tactile sensor (Pap-
illArray Tactile Sensor [7], Contactile Pty Ltd, Australia) is attached to one side of the gripper.

Tasks and Dataset Collection We focus on peg-in-hole tasks. For the experiments, circular metal
pegs with diameters of 15 mm and 20 mm are used. The tolerance between the pegs and holes is
1 mm. We collect demonstrations using the teleoperation system with a VR controller proposed
in [12]. The robot grasps each peg in a vertical orientation. Both the sampling and control frequen-
cies are set to 50 Hz. Each demonstration begins from a different initial pose and terminates when
the peg is fully inserted into the hole, lasting approximately 150–300 time steps (3-6 seconds). The
resulting dataset comprises 300 successful demonstrations: 150 with a 15 mm diameter peg and 150
with a 20 mm diameter peg.

Table 1: Real-robot evaluation in seen condi-
tions. Peg-in-hole task success rate (%) under
four different starting positions.

Method 15 mm peg 20 mm peg
Ours (w/o mask) 50% (10/20) 75% (15/20)
Ours (full) 75% (15/20) 80% (16/20)

Table 2: Real-robot evaluation in unseen condi-
tions: unseen diameters of pegs and different peg
and hole poses.

Table 3: Real-robot evaluation with unseen hole
diameters and conditions testing different peg
sizes and pose variations.

Diameters Conditions Success rate ↑
25 mm – 80% (8/10)
10 mm – 50% (5/10)
15 mm Hole tilted 3° 50% (5/10)
15 mm Peg misalignment 10° 50% (5/10)

Task Setup We evaluate task success rates
under both seen and unseen conditions. We re-
trieve the actions of the k = 3 nearest neighbors
and select one of them uniformly at random to
prevent the robot from getting stuck during the
trials. For the seen conditions, we compare our
method with and without masking, using pegs
with 15 mm and 20 mm diameters. The robot
initiates each trial from four directions. For un-
seen conditions, we evaluate only the masked
version of our method, using pegs with 10 mm
and 25 mm diameters, and a 15 mm peg with a
10° grasp misalignment and a 3° hole tilt. The
detail is introduced in the Appendix.

Results Table 1 reports the success rates from
five trials at each of four initial positions, show-
ing that the masked encoder consistently out-
performs the unmasked baseline. Finally, Ta-
ble 3 shows that the masked method maintains
a success rate of roughly 50% on unseen tasks.

4 Conclusion

We presented TaMeSo-bot, integrating tactile memory with soft robotics for robust contact-rich
manipulation under uncertainty. Our transformer-based spatiotemporal tactile representation with
masking successfully extracted task-relevant features from multiple sensor modalities. Experiments
with peg-in-hole tasks validated our approach’s effectiveness under grasp and hole pose uncertainty,
even with previously unseen peg sizes.
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Appendix

A Attached File

Please see the supplementary video submitted. The video includes highlights of our proposed
method, visualizations of embeddings throughout manipulation episodes, successful insertions with
various peg-hole configurations, and failure cases that complement the results described in this ap-
pendix.

B Additional Detail for Proposed Method

B.1 Learning Objective

After encoding, each processed token is passed through a modality-specific linear layer that projects
the embedding back to the original signal dimension. The reconstructed outputs are then compared
with the raw observations at the same temporal indices. The model is trained to reconstruct these
observations by minimizing a mean-squared-error (MSE) loss averaged over every element in the
entire mini-batch U :

L = Ltactile + Laction , (2)

where

Ltactile =
1

|U |
∑
t∈U

MSE(ŝtact , stact ) , Laction =
1

|U |
∑
t∈U

MSE(ât, at) .

Here stact ∈ R3×9 stacks the nine 3-D taxel readings at time step t, MSE(·, ·) denotes the element-
wise mean-squared error, and |U | is the mini-batch size. The loss in Eq. (2) is optimized with the
Adam optimizer. Details of the training parameters are provided in the Appendix.

B.2 Selection of Hyperparameters

Table 4 shows our Bidirectional Transformer model hyperparameters. We used 248-dimensional to-
ken embeddings (de) with 8-dimensional positional embeddings (dpos), yielding a 256-dimensional
input embedding. The model uses 4 encoder layers, 8 attention heads, a feed-forward size of 512,
and 0.1 dropout. These parameters were selected based on preliminary experiments, where we sys-
tematically evaluated different configurations. Specifically, we tested various embedding and hidden
size pairs from {(32, 64), (64, 128), (128, 256), (256, 512), (512, 1024)}, with (256, 512) yielding
the best action retrieval accuracy. To facilitate reproduction of our results, the lower section of the
table summarizes the training hyperparameters used in our experiments.

B.3 Mechanical Smoothing

Encoding a history window already promotes temporal consistency in the retrieved actions, yet
small discontinuities can still cause the robot to overshoot the hole or collide with the surface,
risking damage to the environment. This risk is particularly significant in industrial settings where
rigid, position-controlled robots are used. To address these discontinuities, we introduce mechanical
smoothing that exploits the soft wrist’s compliance to smooth the commanded motion.

The soft wrist in our system serves as a compliant element. However, it also exhibits a delayed
response, similar to other soft robots [13]. While such delays are typically compensated for through
specific control techniques [13], we instead leverage this delayed response as a low-pass filtering
property. The soft wrist naturally filters high-frequency components of commanded actions, provid-
ing mechanical low-pass filtering that reduces the impact of discontinuities inherent in the retrieval-
based policy. The physical compliance of the soft wrist complements our mechanical smoothing
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Table 4: Hyperparameters of our method.
Hyperparameter Notation Value
Dimension of token embeddings de 248
Dimension of positional embeddings dpos 8
Input embedding size d = de + dpos 256
Temporal window size H 15

Number of attention heads Nhead 8
Feed-forward hidden dimension Nhid 512
Number of encoder layers Nlayers 4
Dropout 0.1

Epochs 30
Learning rate 1.0× 10−4

Batch size 128
# Data-loading workers 16
Train / validation split ratio 0.8
Maximum masking ratio of input tokens 0.6

Fit Align Insertion

Fit Align

Y

Figure 3: Left: Snapshots of three phases during an insertion trial. Right: Time transitions of the
commanded ∆y action (top) and the resulting gripper y-position (bottom). The shaded regions
indicate abrupt command changes.

by naturally absorbing discontinuities in the commanded actions. Figure 3 illustrates a represen-
tative successful trial with snapshots and time-series plots of the retrieved action commands and
the gripper pose. Despite abrupt command changes (shaded in pink), the gripper motion remains
smooth.

C Offline Evaluation

C.1 Evaluation of Action Retrieval

We evaluate the quality of our learned spatiotemporal tactile representation by assessing its perfor-
mance as a retriever policy. We construct a database D of paired tactile representations and actions
{z,a}, where a query tactile embedding zq retrieves the most similar representation z and returns
its associated action a. For this evaluation, we randomly allocate 80% of the collected sequences to
build the database and use the remaining 20% as test queries.

Metrics For each tactile state in the test set, we retrieve the nearest neighbor (k = 1) from the
database and measure the Root Mean-Squared Errors (RMSE), defined as the element-wise L2 dis-
tance between the retrieved action and the ground-truth action executed at that time step. Lower
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Table 5: Offline Evaluation. Action prediction accuracy using nearest neighbor retrieval based on
learned representations. Metrics include RMSE (with standard deviation), median (p50), and 95th
percentile (p95) error values. Lower values indicate better prediction accuracy across all metrics.

Method ∆ Position Errors [mm] ∆ Rotation Errors [°]
RMSE p50 p95 RMSE p50 p95

Naive State-Action Concatenation 8.055 ± 6.776 10.975 24.648 0.837 ± 0.442 0.612 1.622

Ours (w/o Masking) 6.536 ± 6.036 8.312 21.506 0.644 ± 0.331 0.485 1.190
Ours (Full) 6.025 ± 5.456 7.803 19.732 0.629 ± 0.309 0.486 1.109
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Figure 4: Cumulative distribution of position errors (left) and rotation errors (right) for Naive State-
Action Concatenation (•), Ours without masking (■), and Ours with full masking (▲).

MSE values indicate more accurate action retrieval, effectively evaluating how well our representa-
tion learning enables the nearest-neighbor policy to retrieve appropriate actions.

Baselines Since no existing methods directly address the joint representation learning of dis-
tributed tactile signals and actions in our problem setting, we compare our approach against the
following baselines to demonstrate the effectiveness of our proposed method:

• Naive State-Action Concatenation: A baseline that hard-concatenates non-encoded sensor data
with actions, following the state-action fusion strategy adopted in [4], representing a simple
retrieval approach without learned encoding.

• Ours (w/o Masking): A variant of our proposed Transformer architecture that learns joint tactile-
action representations but without implementing the masking strategy, demonstrating the contri-
bution of our basic representation learning approach.

Results Table 5 summarizes the results for the offline evaluation of the retrieval policy perfor-
mance on collected dataset. Our full method drastically reduces the position RMSE and rotation
RMSE compared to naive concatenation. The improvement is particularly evident in the median
(p50) position error, and in the 95th percentile (p95) position error. This indicates that our method
not only improves average performance but also significantly enhances robustness in challenging
cases. Figure 4 illustrates the superior performance of our proposed representation compared to
the naive feature concatenation baseline. The cumulative distribution plots of both position and
rotation errors demonstrate that our approach consistently achieves lower error rates across all per-
centiles. The ablation study further confirms the effectiveness of our masking strategy. Comparing
”Ours (w/o Masking)” to ”Ours (Full)”, we observe that incorporating the masking mechanism pro-
vides consistent improvements across error distributions. More notably, the 95th percentile errors
demonstrate that masking particularly enhances performance on difficult samples. We also perform
visualization for the latent space in the Appendix.
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C.2 Embedding Space Analysis

We analyze the structure of the learned high-dimensional embedding space to assess whether our
representation captures semantically meaningful information corresponding to distinct subtasks
within the contact-rich manipulation process. We create the database using 80% of the collected
demonstrations and evaluate the distance to one query vector picked up from the remaining 20%
trajectories. To visualize this high-dimensional structure while preserving relevant distance relation-
ships, we employ a two-pronged approach. First, we use t-SNE to project the state embeddings from
the offline dataset into a lower-dimensional (2D) space. Second, to illustrate how high-dimensional
proximity relates to subtasks, we overlay colormaps onto the t-SNE projection. These colormaps
represent the distances calculated in the original high-dimensional embedding space between each
projected state and representative query embeddings selected for key subtasks: “fit”, “align”, and
“insert”. The representative query embeddings are selected from manually segmented subtask se-
quences, specifically choosing states positioned in the middle of each subtask sequence.

Figure 5 visualizes the learned embedding space of our proposed method (top row) and the variants
of our method without masked token prediction (bottom row). The top row shows the embedding
space of our proposed method, where we observe distinctive clusters for each subtask. The bottom
row illustrates the embedding space of our variant without masked token prediction. In the bottom
row without masked token prediction, we observe that compared to the results with masked token
prediction, there are more embeddings with closer distances to the query points, resulting in more
scattered clusters. Comparing both rows reveals that our proposed method produces more distinctive
representations, which likely contributes to the improved performance in offline evaluation. Interest-
ingly, we observe that “fit”, “align”, and “insert” are positioned near each other, indicating seamless
transitions between these subtasks. “Insert” appears as a subset of “align”, forming a smaller cluster,
which aligns with the physical nature of these manipulation phases. States closer to a specific sub-
task query in the high-dimensional space tend to cluster together in the t-SNE projection, suggesting
the learned representation is well-suited for retrieval-based control by capturing task progress. For
visualization of distances to query points throughout an episode aligned with real-robot’s videos,
please refer to the enclosed video.

D More Ablation Studies

Due to page limitations in the main text, we provide more detailed ablation studies here to thoroughly
examine the effectiveness of our approach.

D.1 Effect of context weights wft, warm, wgrip

As described in Section 2.1 of the main text, we augment our main tokens of distributed taxels by
soft-concatenating inputs from various sensors as auxiliary tokens with appropriate weights to pro-
vide contextual information. To investigate the contribution of each context, we toggled the weights
assigned to force/torque sensors (wft), arm pose (warm), and gripper pose (wgrip), and evaluated ac-
tion retrieval performance in offline evaluation with and without these auxiliary contexts.

Table 6 shows that disabling all auxiliary contexts significantly degraded performance. Among
these contextual inputs, force/torque information had the most substantial impact, with its inclusion
markedly improving performance. The contributions of arm pose and gripper pose were nearly
equivalent, though we observed that arm pose primarily influenced position accuracy, while gripper
pose had a greater effect on rotation accuracy. Specifically, the model without gripper pose (w/o
Gripper Pose) achieved the best position RMSE of 5.90 mm, while the model without arm pose
(w/o Arm Pose) attained the best rotation RMSE of 0.623°.
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Figure 5: t-SNE visualization of the learned embedding space. Colormaps indicate distance in the
original high-dimensional space to representative query points for each subtask. Top: Embedding
space visualization of our method, showing distinctive distances to query points representing fit,
align, and insert subtasks. Bottom: Visualization of the variant of our proposed method (without
masked token prediction). Compared to the top row, distances to query points are less distinctive and
more scattered. Query points for fit and align, and align and insert show proximity to each other,
indicating their seamless task nature. The query point for insert shows distance patterns suggesting
it functions as a subset of align, forming a more concentrated region of similarity.

Table 6: Position and Rotation Errors of action retrieval in offline evaluation for varying context
weights. We trained models with different combinations of auxiliary contexts (wft for force/torque,
warm for arm pose, and wgrip for gripper pose) and evaluated their performance on offline trajectories.
Lower values indicate better action retrieval performance.

Input Contexts wft warm wgrip Position RMSE [mm] Rotation RMSE [◦]

No Auxiliary Context 0.0 0.0 0.0 7.53 0.722

w/o Force/Torque 0.0 0.4 0.4 6.29 0.647
w/o Arm Pose 0.2 0.0 0.4 5.95 0.623
w/o Gripper Pose 0.2 0.4 0.0 5.90 0.664

D.2 Effect of the size of temporal window H

As described in Section 3.1 of the main text, we input a history of state and action pairs to the Trans-
former. To investigate the best value for this temporal window size H , we conducted an ablation
study comparing four variants (H = 5, 10, 15, 20). Table 7 summarizes the results. We observe a
trade-off between position and rotation accuracy. Smaller windows yield slightly better positional
performance at the cost of higher rotational error, while larger windows improve rotation at the
expense of position. Based on this balance, we selected H = 15 for the experiments.
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Table 7: Temporal Window Size Comparison. Position and rotation error statistics for different
temporal window sizes. Metrics include RMSE (with standard deviation), median (p50) and 95th
percentile (p95) error values.

Temporal Window Position Errors [mm] Rotation Errors [°]
RMSE p50 p95 RMSE p50 p95

5 5.984 ± 5.402 7.673 19.479 0.672 ± 0.348 0.497 1.244
10 5.992 ± 5.431 7.673 19.576 0.635 ± 0.318 0.482 1.119
15 6.025 ± 5.456 7.803 19.732 0.629 ± 0.309 0.486 1.109
20 6.129 ± 5.506 7.946 19.568 0.614 ± 0.306 0.468 1.090

Seen (in database) Unseen

15 mm 20 mm 10 mm 25 mm 10°peg tilt 3°hole tilt

Figure 6: Pegs and holes used in the experiments.

E Additional Experimental Details

We used the teleoperation system proposed in [12] for both data collection and retrieval execution.
In this system, Virtual Reality (VR) controllers specify both the desired end-effector pose and the
stiffness parameters fed into the underlying compliance controller [14]. Table 8 shows the com-
pliance controller parameters. For any six-dimensional array, the first three elements correspond
to the translational axes (X, Y, Z) and the last three to the rotational axes (roll, pitch, yaw). The
stiffness parameters were kept constant throughout the experiments. The proportional gains deter-
mine how quickly the robot responds to deviations in each Cartesian axis, while the derivative gains
provide damping to resist rapid changes. The error scale uniformly adjusts the magnitude of the
computed P/D error signals to tune overall sensitivity. The number of internal iterations controls
how many forward-dynamics simulation steps the controller takes per cycle to reconcile force and
motion commands. Readers are referred to [14] for more details on the compliance controller.

We used a soft wrist [10], consisting of three coil springs. The spring constant is 4.112 N/mm, and
the equilibrium length is 25 mm. Figure 6 shows the pegs and holes used in the experiments.

Table 8: Parameters of the compliance controller.
Parameter Value
Stiffness [1200, 1200, 1200, 300, 300, 300]
Proportional gains [0.035, 0.035, 0.035, 0.5, 0.5, 0.5]
Derivative gains [0, 0, 0, 0, 0, 0]
Error scale 0.8
Iterations 1.0
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F Discussion on Real-World Experimental Results

F.1 Effect of the Masked Token Prediction

Our real-robot experiments in Section 4.2 demonstrate that masked token prediction enhances task
performance. By randomly masking portions of the input sequence, the encoder is forced to infer
missing information from both past and future context, yielding richer spatiotemporal feature rep-
resentations. As a result, the three core phases of peg-in-hole (”fit”, ”align”, and ”insert”) emerge
as well-separated clusters in the learned embedding space, as visualized in Figure 5. This clearer
clustering enables the nearest-neighbor retrieval to more reliably select appropriate actions for each
phase, reducing erroneous transitions and improving overall success rates. In contrast, the unmasked
baseline produces less distinctive embeddings, leading to less consistent action retrieval and lower
insertion success. These findings confirm that masking not only produces more robust represen-
tation but also sharpens phase-specific distinctions, which improves the following action retrieval
performance.

F.2 Failure Cases

The most common failure occurred when multiple insertion attempts timed out after 30 seconds.
This typically resulted from the retrieved action direction deviating slightly from the true hole di-
rection. The problem was most pronounced with the unseen 10 mm peg and hole. The small hole
makes it difficult for the robot to locate the hole before the time limit expires. We also observed that,
during the search phase, the robot occasionally inserted the peg into an adjacent hole instead of the
intended target. Interestingly, once the peg “fits” into the wrong hole, the system still transitions to
the align phase, despite the hole’s location being markedly different from the goal. This behavior
suggests that successful “fit” embeddings lie close together in the embedding space, regardless of
which hole is engaged. Another failure mode occurred when the embedding fell outside the distri-
bution of the training demonstrations. For example, when inserting into a tilted hole, the embedding
lies far from the data manifold defined by the demonstrations. As a result, the robot repeatedly re-
trieves the same nearest action, even though that action is a poor match, and ends up in an unnatural,
stalled configuration. Concrete examples of these failures are shown in the supplemental video.

G Limitation

While our method shows promising results even under grasp and hole pose uncertainty and with
unseen pegs, there are several limitations that should be addressed in future work. First, due
to the extremely high cost of collecting real-robot demonstrations across multiple tasks and di-
verse configurations, we limited our study to peg-in-hole tasks. This limitation could potentially
be addressed through ongoing efforts in the community to develop large-scale robot manipulation
datasets [15, 16], which would enable the validation of our approach on a wider range of contact-rich
manipulation tasks. Second, our approach assumes that the query and the embedding in the database
are from reasonably close domains. For queries that fall completely outside the domain covered by
the database, our method cannot extrapolate expected outputs. An interesting direction for future
research would be to explore method for transferring embedding spaces between different domains,
which could enable more flexible adaptation to novel manipulation scenarios without requiring ex-
tensive data collection. Lastly, this study uses an external motion tracker to capture the pose of the
soft wrists. Future work could explore incorporating visual inputs or modeling the entire system as
a partially observable Markov decision process (POMDP) to realize a tracker-less system. Such an
approach would simplify the system setup and enable broader reproduction of our method across
diverse scenarios.
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