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ABSTRACT

Advancements in 3D scene reconstruction have transformed 2D images from the
real world into 3D models, producing realistic 3D results from hundreds of input
photos. Despite great success in dense-view reconstruction scenarios, rendering a
detailed scene from sparse views is still an ill-posed optimization problem, often
resulting in artifacts and distortions in unseen areas. In this paper, we propose
ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous
reconstruction problem as a temporal generation task. The key insight is to un-
leash the strong generative prior of large pre-trained video diffusion models for
sparse-view reconstruction. Nevertheless, it is challenging to preserve 3D view
consistency when directly generating video frames from pre-trained models. To
address this issue, given limited input views, the proposed ReconX first constructs
a global point cloud and encodes it into a contextual space as the 3D structure
condition. Guided by the condition, the video diffusion model then synthesizes
video frames that are detail-preserved and exhibit a high degree of 3D consis-
tency, ensuring the coherence of the scene from various perspectives. Finally, we
recover the 3D scene from the generated video through a confidence-aware 3D
Gaussian Splatting optimization scheme. Extensive experiments on various real-
world datasets show the superiority of ReconX over state-of-the-art methods in
terms of quality and generalizability.

1 INTRODUCTION

With the rapid development of photogrammetry techniques such as NeRF (Mildenhall et al., 2020)
and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), 3D reconstruction has become a popular
research topic in recent years, finding various applications from virtual reality (Dalal et al., 2024)
to autonomous navigation (Adamkiewicz et al., 2022) and beyond (Martin-Brualla et al., 2021b;
Liu et al., 2024a; Wu et al., 2024a; Charatan et al., 2024). However, sparse-view reconstruction is
an ill-posed problem (Gao et al., 2024; Yu et al., 2021) since it involves recovering a complex 3D
structure from limited viewpoint information (i.e., even as few as two images) that may correspond
to multiple solutions. This uncertain process requires additional assumptions and constraints to yield
a viable solution.

Recently, powered by the efficient and expressive 3DGS (Kerbl et al., 2023) with fast rendering
speed and high quality, several feed-forward Gaussian Splatting methods (Charatan et al., 2024;
Szymanowicz et al., 2024b; Chen et al., 2024a) have been proposed to explore 3D scene reconstruc-
tion from sparse view images. Although they can achieve promising interpolation results by learning
scene-prior knowledge from feature extraction modules (e.g., epipolar transformer (Charatan et al.,
2024)), insufficient captures of the scene still lead to an ill-posed optimization problem (Wu et al.,
2024b). As a result, they often suffer from severe artifact and implausible imagery issues when
rendering the 3D scene from novel viewpoints, especially in unseen areas.

To address the limitations, we propose ReconX, a novel 3D scene reconstruction paradigm that
reformulates the inherently ambiguous reconstruction problem as a generation problem. Our key in-
sight is to unleash the strong generative prior of pre-trained large video diffusion models (Blattmann
et al., 2023a;b; Xing et al., 2023) to create more observations for the downstream reconstruction
task. Despite the capability to synthesize video clips featuring plausible 3D structures (Gao et al.,
2024), recovering a high-quality 3D scene from current video diffusion models is still challenging,
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Figure 1: An overview of our ReconX framework for sparse-view reconstruction. Unleashing
the strong generative prior of video diffusion models, we can create more observations for 3D re-
construction and achieve impressive performance.

due to the poor 3D view consistency across generated 2D frames. Grounded by theoretical analysis,
we explore the potential of incorporating 3D structure condition into the video generative process,
which bridges the gap between the under-determined 3D creation problem and the fully-observed 3D
reconstruction setting. Specifically, given sparse images, we first build a global point cloud through
a pose-free stereo reconstruction method. Then we encode it into a rich context representation space
as the 3D condition in cross-attention layers, which guides the video diffusion model to synthesize
detail-preserved frames with 3D consistent novel observations of the scene. Finally, we reconstruct
the 3D scene from the generated video through Gaussian Splatting with a 3D confidence-aware and
robust scene optimization scheme, which further deblurs the uncertainty in video frames effectively.
Extensive experiments verify the efficacy of our framework and show that ReconX outperforms ex-
isting methods for high quality and generalizability, revealing the great potential to craft intricate
3D worlds from video diffusion models. The overview and examples of reconstructions are shown
in Figure 1.

In summary, our main contributions are as follows:

* We introduce ReconX, a novel sparse-view 3D scene reconstruction framework that reframes the
ambiguous reconstruction challenge as a temporal generation task.

* We incorporate the 3D structure condition into the conditional space of the video diffusion model
to generate 3D consistent frames and propose a 3D confidence-aware optimization scheme in
3DGS to reconstruct the scene given the generated video.

» Extensive experiments demonstrate that our ReconX outperforms existing methods for high-
fidelity and generalizability on a variety of real-world datasets.

2 RELATED WORK

Sparse-view reconstruction. NeRF and 3DGS typically demand hundreds of input images and rely
on the multi-view stereo reconstruction (MVS) approach (e.g., COLMAP (Schonberger & Frahm,
2016)) to estimate the camera parameters. To address the issue of low-quality 3D reconstruction
caused by sparse views, PixelNeRF (Yu et al., 2021) proposes using convolutional neural networks
to extract features from the input context. Moreover, FreeNeRF (Yang et al., 2023) adopts the
frequency and density regularized strategies to alleviate the artifacts caused by insufficient inputs
without any additional cost. To mitigate the overfitting to input sparse views in 3DGS, FSGS (Zhu
et al., 2023) and SparseGS (Xiong et al., 2023) employ a depth estimator to regularize the optimiza-
tion process. However, these methods all require known camera intrinsics and extrinsics, which is
not practical in real-world scenario. Benefiting from the existing powerful 3D reconstruction model
(i.e., DUSt3R (Wang et al., 2024a)), InstantSplat (Fan et al., 2024) is able to acquire accurate camera
parameters and initial 3D representations from unposed sparse-view inputs, leading to the efficient
and high-quality 3D reconstruction.

Regression model for generalizable view synthesis. While NeRF and 3DGS are optimized per-
scene, a line of research aims to train feed-forward models that output a 3D representation directly
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from a few input images, bypassing the need for time-consuming optimization. Splatter image (Szy-
manowicz et al., 2024b) performs an efficient feed-forward manner for monocular 3D object re-
construction by predicting a 3D Gaussian for each image pixel. Meanwhile, pixelSplat (Charatan
et al., 2024) proposes predicting the scene-level 3DGS from the image pairs, using the epipolar
transformer to better extract scene features. Following that, MVsplat (Chen et al., 2024a) intro-
duces the cost volume and depth refinements to produce a clean and high-quality 3D Gaussians in
a faster way. LatentSplat (Wewer et al., 2024) encodes the variational 3D Gaussians and utilizes
a discriminator to synthesize more realistic images. To reconstruct a complete scene from a sin-
gle image, Flash3D (Szymanowicz et al., 2024a) adopts a hierarchical 3DGS learning policy and
depth constraint to achieve high-quality interpolation and extrapolation view synthesis. Although
these methods leverage the 3D data priors, they are limited by the scarcity and diversity of 3D data.
Consequently, these methods struggle to achieve high-quality renderings in unseen areas, especially
when out-of-distribution (OOD) data is used as input.

Generative models for 3D reconstruction. Constructing comprehensive 3D scenes from limited
observations demands generating 3D content, particularly for unseen areas. Earlier studies distill the
knowledge in the pre-trained text-to-image diffusion models (Rombach et al., 2022; Saharia et al.,
2022; Ramesh et al., 2022) into a coherent 3D model. Specifically, the Score Distillation Sam-
pling (SDS) technique (Wu et al., 2024b; Lin et al., 2023; Liu et al., 2024c; Wang et al., 2024b)
is adopted to synthesize a 3D object from the text prompt. To enhance the 3D consistency, sev-
eral approaches (Wu et al., 2024a; Shi et al., 2023; Liu et al., 2023) inject the camera information
into diffusion models, providing strong multi-view priors. Furthermore, ZeroNVS (Sargent et al.,
2023) and CAT3D (Gao et al., 2024) extend the multi-view diffusion to the scene level generation.
GeNVS (Chan et al., 2023) embeds a 3D feature field into the diffusion model to enhance the novel
view synthesis ability. More recently, video diffusion models (Blattmann et al., 2023a; Xing et al.,
2023) have shown an impressive ability to produce realistic videos and are believed to implicitly un-
derstand 3D structures (Liu et al., 2024b). SV3D (Voleti et al., 2024) and V3D (Chen et al., 2024b)
explore fine-tuning the pre-trained video diffusion model for 3D object generation. Meanwhile,
MotionCtrl (Wang et al., 2024c) and CameraCtrl (He et al., 2024) achieve scene-level controllable
video generation from a single image by explicitly injecting the camera pose into video diffusion
models. However, they cannot work for the unconstrained sparse-view 3D scene reconstruction,
which requires strong 3D consistency.

3  MOTIVATION FOR RECONX

In this paper, we focus on the fundamental problem of 3D scene reconstruction and novel view
synthesis (NVS) from very sparse view (e.g., as few as two) images. Most existing works (Chen
et al., 2024a; Yu et al., 2021; Charatan et al., 2024; Szymanowicz et al., 2024a) utilize 3D prior and
geometric constraints (e.g., depth, normal, cost volume) to fill the gap between observed and novel
regions in sparse-view 3D reconstruction. Although capable of producing highly realistic images
from the given viewpoints, these methods often struggle to generate high-quality images in areas
not visible from the input perspectives due to the inherent problem of insufficient viewpoints and
the resulting instability in the reconstruction process. To address this issue, a natural idea is to cre-
ate more observations to convert the under-determined 3D creation problem into a fully constrained
3D reconstruction setting. Recently, video generative models have shown promise for synthesiz-
ing video clips featuring 3D structures (Voleti et al., 2024; Blattmann et al., 2023a; Xing et al.,
2023). This inspires us to unleash the strong generative prior of large pre-trained video diffusion
models to create temporal consistent video frames for sparse-view reconstruction. Nevertheless, it
is non-trivial as the main challenge lies in poor 3D view consistency among video frames, which
significantly limits the downstream 3DGS training process. To achieve 3D consistency within video
generation, we first analyze the video diffusion modeling from a 3D distributional view. Let « be the
set of rendering 2D images from any 3D scene in the world, ¢(x) be the distribution of the rendering
data x, and our goal is to minimize the divergence D:

o D (a(@)]lpo.u (), M

where pg  is a diffusion model parameterized by @ € © (the parameters in the backbone) and
1 € U (any embedding function shared by all data). The vanilla video diffusion model (Xing
et al., 2023) chooses a CLIP (Radford et al., 2021) model g to add an image-based condition (i.e.,
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Figure 2: Pipeline of ReconX. Given sparse-view images as input, we first build a global point cloud
and project it into 3D context representation space as 3D structure condition. Then we inject the 3D
structure condition into the video diffusion process and guide it to generate 3D consistent video
frames. Finally, we reconstruct the 3D scene from the generated video through Gaussian Splatting
with a 3D confidence-aware and robust scene optimization scheme. In this way, we unleash the
strong power of the video diffusion model to reconstruct intricate 3D scenes from very sparse views.

1) = g). However, in sparse-view 3D reconstruction, only conditioning on 2D images cannot provide
sufficient condition for approximating ¢(x) (Charatan et al., 2024; Chen et al., 2024a; Wu et al.,
2024b). Motivated by this, we explore the potential of incorporating the native 3D prior (denoted by
JF) to find an optimal solution in Equation 1 and derive a theoretical formulation for our analysis in
Proposition 1.

Proposition 1. Let 0*,¢* = g* be the optimal solution of the solely image-based conditional
diffusion scheme and é*, z/;* = {g*, F*} be the optimal solution of the diffusion scheme with a
native 3D prior. Suppose the divergence D is convex and the embedding function space V includes
all measurable functions, then we have D(q () ||pg. - (z)) < D (q () ||pe+ = ()). (Proof in our
Appendix)

Towards this end, we reformulate the inherently ambiguous reconstruction problem as a generation
problem by incorporating a 3D native structure condition into the diffusion process. More prelimi-
naries can be found in our Appendix.

4 METHOD

4.1 OVERVIEW OF RECONX

Given K sparse-view (i.e., as few as two) images 7 = {Ii}fi1 , (I" € REXWX3) our goal is to
reconstruct the underlying 3D scene, where we can synthesize novel views of unseen viewpoints.
In our framework ReconX, we first build a global point cloud P = {p;,1 <i< N} € RN x3
from Z and project P into the 3D context representation space F as the structure condition F(P)
(Sec. 4.2). Then we inject F(P) into the video diffusion process to generate 3D consistent video

frames 7' = {Ii}f; , (K’ > K), thus creating more observations (Sec. 4.3). To alleviate the
negative artifacts caused by the inconsistency among generated videos, we utilize the confidence
maps C = {Ci}fil from the DUSt3R model and LPIPS loss (Zhang et al., 2018a) to achieve a robust
3D reconstruction (Sec. 4.4). In this way, we can unleash the full power of the video diffusion model
to reconstruct intricate 3D scenes from very sparse views. Our pipeline is depicted in Figure 2.

4.2 BUILDING THE 3D STRUCTURE CONDITION

Grounded by the theoretical analysis in Sec. 3, we leverage an unconstrained stereo 3D reconstruc-
tion method DUSt3R (Wang et al., 2024a) with point-based representations to build the 3D structure

condition F. Given a set of sparse images 7 = { I 1} we first construct a connectivity graph

=1’
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G(V, &) of K input views similar to DUSt3R, where vertices V' and each edge e = (n,m) € £ indi-
cates that the images I™ and I'™ shares visual contents. Then we use G to recover a globally aligned
point cloud P. For each image pair e = (n,m), we predict pairwise pointmaps P™™, P™" and
their corresponding confidence maps ™", C™" € RH*W >3 For clarity, we denote P™¢ := P™"
and P™¢ := P"™"_ Since we aim to rotate all pairwise predictions into a shared coordinate frame,
we introduce transformation matrix 7, and scaling factor o, associated with each pair e € £ to
optimize global point cloud P as:

HW
P = argminzz Z ce

P.To ec& vee i=1

Py — o TP 2

More details of the point cloud extraction can be found in Wang et al. (2024a). Having aligned the
point clouds P, we now project it into a 3D context representation space F through a transformer-
based encoder for better interaction with latent features of the video diffusion model. Specifically,
we embed the input point cloud P into a latent code using a learnable embedding function and a
cross-attention encoding module:

F(P) = FEN (CrossAttn(PosEmb(ﬁ),PosEmb(P))) , 3)

where P is a down-sampled version of P at 1/8 scale to efficiently distill input points to a compact
3D context space. Finally, we get the 3D structure guidance F(P) which contains sparse structural
information of the 3D scene that can be interpreted by the denoising U-Net.

4.3 3D CONSISTENT VIDEO FRAMES GENERATION

In this subsection, we incorporate the 3D structure condition F(P) into the video diffusion process
to obtain 3D consistent frames. To achieve consistency between generated frames and high-fidelity
rendering views of the scene, we utilize the video interpolation capability to recover more unseen
observations, where the first frame and the last frame of input to the video diffusion model are two

reference views. Specifically, given sparse-view images 7 = {Iﬁef}i=1 as input, we aim to render

consistent frames f(I'; ', Ity) = {I';', I, ..., Ip, I} € RUTH2X3XHXW where T is the number
of generated novel frames. To unify the notation, we denote the embedding of image condition in
the pretrained video diffusion model as F; = g(Iy¢) and the embedding of 3D structure condition
as Fr = F(P). Subsequently, we inject the 3D condition into the video diffusion process by
interacting with the U-Net intermediate feature Fj, through the cross-attention of spatial layers:
KT KT
Fou = Softmax(Q\/ag We+Ar- SoftmaX(Q\/{
where Q) = F,\Wo, K, = FWg,Vy = F;Wy, Kr = FrWy.,Vr = FrW{, are the query, key,
and value of 2D and 3D embeddings respectively. Wq, Wi, Wi, Wy, WY, are the projection ma-
trices and A r denotes the coefficient that balances image-conditioned and 3D structure-conditioned
features. Given the first and last two views condition cyjew from F; and 3D structure condition cCggryc
from F'z, we apply the classifier-free guidance (Ho & Salimans, 2022) strategy to incorporate the
condition and our training objective is:

WV, “4)

Ediffusion = Ewwp,ENN(O,I),t |:||€ — €9 (mh t, Cyiew s Cstruc) H;i| s (5)

where x; is the noise latent from the ground-truth views of the training data.

4.4 CONFIDENCE-AWARE 3DGS OPTIMIZATION.

Built upon the well-designed 3D structure condition, our video diffusion model generates highly
consistent video frames, which can be used to reconstruct the 3D scene. As conventional 3D re-
construction methods are originally designed to handle real-captured photographs with calibrated
camera metrics, directly applying these approaches to the generated videos is not effective to re-
cover the coherent scene due to the uncertainty of unconstrained images (Wang et al., 2024a; Fan
et al., 2024). To alleviate the uncertainty issue, we adopt a confidence-aware 3DGS mechanism
to reconstruct the intricate scene. Different from recent approaches (Martin-Brualla et al., 2021a;
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Ren et al., 2024) which model the uncertainty in per-image, we instead focus on a global alignment

. i E A .
among a series of frames. For the generated frames {I z}i:l, we denote C; and C; as the per-pixel

color value for predicted and generated view i. Then, we model the pixel values as a Gaussian dis-
tribution in our 3DGS, where the mean and variance of I’ are C; and o;. The variance o; measures
the discrepancy between the predicted and generated images. The uncertainty metric o; for each
image is estimated by minimizing the following negative log-likelihood among all frames:

1 |C; — C; |13
R NG Z Gl ) )
Ly, og ( 2mo? exp ( 552 (6)

where C; = A(C;, {C;}£', \ C;) and A is a tailored global align function to establish connections
between each frame and the other frames, enabling a more robust global uncertainty estimation.
Specifically, the training objective of DUSt3R is to map image pairs to 3D space, while the confi-
dence map C represents the model’s confidence in the pixel matches of image pairs within the 3D
scene. Through its training process, DUSt3R inherently assigns low confidence to mismatched re-

gions in image pairs, achieving the goal of Eq. 6. The confidence maps {Ci}fil for each generated

frames {I i }1K:1 are equivalent to the uncertainty o;. Meanwhile, the pairwise matching between all
frames accomplishes the global alignment operation .A. Moreover, we introduce the LPIPS (Zhang
etal., 2018b) loss to remove the artifacts and further enhance the visual quality. Towards this end, we
formulate the confidence-aware 3DGS loss between the Gaussian rendered image I‘and generated

frame I’ as:
K/ . . . . . .
Leont = D€ (Mo L1 (1, 1) + A Lo (1, T') + Nipips Cigs (11, T1)) )
1=1

where L1, Lgim, and Lipips denote the Ly, SSIM, and LPIPS loss, respectively, with A, Agsim, and
Aipips being their corresponding coefficient parameters. In comparison to the photometric loss (e.g.,
L1 and L), the LPIPS loss mainly focuses on the high-level semantic information.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our sparse-view reconstruction frame-
work ReconX. We first present the setup of the experiment (Sec 5.1). Then we report our qual-
itative and quantitative results compared to feed-forward based methods (Sec 5.2) and per-scene
optimization-based methods (Sec 5.3) in various settings. Finally, we conduct ablation studies to
further verify the efficacy of our framework design (Sec 5.4). Please refer to our supplementary
materials for more comparisons and visualizations.

5.1 EXPERIMENT SETUP

Implementation Details. In our framework, we choose DUSt3R (Wang et al., 2024a) as our uncon-
strained stereo 3D reconstruction backbone and the 12V model DynamiCrafter (Xing et al., 2023)
(@ 512 x 512 resolution) as the video diffusion backbone. We first finetune the image cross-
attention layers with 2000 steps on the learning rate 1 x 10~* for warm-up. Then we incorporate
the 3D structure condition ¢y into the video diffusion model and further finetune the spatial layers
with 30K steps on the learning rate of 1 x 1075, Our video diffusion was trained on 3D scene
datasets by sampling 32 frames with dynamic FPS at the resolution of 512 x 512 in a batch. The
AdamW (Loshchilov & Hutter, 2017) optimizer is employed for optimization. At the inference of
our video diffusion, we adopt the DDIM sampler (Song et al., 2022) using multi-condition classifier
free guidance (Ho & Salimans, 2022). Similar to Xing et al. (2023), we adopt tanh gating to learn
Ar adaptively. The training is conducted on 8 NVIDIA A800 (80G) GPUs in two days. In the 3DGS
optimization stage, we choose the point maps of the first and end frames as the initial global point
cloud and all 32 generated frames are used to reconstruct the scene. Our implementation follows
the pipeline of the original 3DGS (Kerbl et al., 2023), but unlike this method, we omit the adaptive
control process and attain high-quality renderings in just 1000 steps. The coefficients Argp, Assims
and Appips are set to 0.8, 0.2, and 0.5, respectively.
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Figure 3: Qualitative comparison with feed-forward based methods. We provide the comparison
of our ReconX with other baselines in Easy Set, Hard Set, and Cross Set. In comparison to these
feed-forward based methods, ReconX achieves better visual quality and generalization.

Datasets. The video diffusion model of ReconX is trained on three datasets: RealEstate-10K (Zhou
et al., 2018), ACID (Liu et al., 2021), and DL3DV-10K (Ling et al., 2024) based on the pretrained
model. RealEstate-10K is a dataset downloaded from YouTube, which is split into 67,477 training
scenes and 7,289 test scenes. The ACID dataset consists of natural landscape scenes, with 11,075
training scenes and 1,972 testing scenes. DL3DV-10K is a large-scale outdoor dataset containing
10,510 videos with consistent capture standards. For each scene video, we randomly sample 32
contiguous frames with random skips and serve the first and last frames as the input for our video
diffusion model. To further validate our strong generalizability, we also directly evaluate our method
on the DTU (Jensen et al., 2014), NeRF-LLFF (Mildenhall et al., 2019), and more challenging
outdoor datasets Mip-NeRF 360 (Barron et al., 2022) and Tank-and-Temples dataset (Knapitsch
et al., 2017).

Baselines and Metrics. To comprehensively demonstrate our strong capability in sparse-view re-
construction, we compare our ReconX with (a) feed-forward based methods trained from 3D scenes
to learn 3D prior and (b) per-scene optimization based methods with specific priors (e.g., , depth)
for sparse-view reconstruction. Specifically, we compare with NeRF-based pixeINeRF (Yu et al.,
2021) and MuRF (Xu et al., 2024); Light Field based GPNR (Suhail et al., 2022) and AttnRend (Du
etal., 2023); and the recent state-of-the-art 3DGS-based pixelSplat (Charatan et al., 2024) and MV S-
plat (Chen et al., 2024a) in feed-forward based comparisons. On the other hand, we compare with
SparseNeRF (Wang et al., 2023), original 3DGS (Kerbl et al., 2023), and DNGaussian (Li et al.,
2024) for per-scene optimization comparisons. Furthermore, we qualitatively compare our method
with more recent works CAT3D (Gao et al., 2024) and ReconFusion (Wu et al., 2024b) that incor-
porate generative power. For quantitative results, we report the standard metrics in NVS, including
PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018b).

5.2 COMPARISON WITH FEED-FORWARD BASED BASELINES

Comparison for small angle variance in input views. For fair comparison with baseline methods
like MuNeRF (Xu et al., 2024), pixelSplat (Charatan et al., 2024), and MV Splat (Chen et al., 2024a),
we first compare our reconX with baseline method from sparse views with small angle variance (see
Easy Set from Table 1 and Figure 3). We observe that our ReconX surpasses all previous state-of-
the-art models in terms of all metrics on visual quality and qualitative perception.

Comparison for large angle variance in input views. As MVSplat and pixelSplat are much bet-
ter than previous baselines, we conduct thorough comparisons with them in more difficult settings.
In more challenging settings (i.e., given sparse views with large angle variance), our proposed Re-
conX demonstrate more significant improvement than baselines, especially in unseen and general-
ized viewpoints (see Hard Set from Table 2 and Figure 3). This clearly shows the effectiveness



Under review as a conference paper at ICLR 2025

Easy Set RealEstate 10K ACID Hard Set ACID RealEstate 10K
Method PSNR1 SSIM?T LPIPS | | PSNRT SSIM1 LPIPS | Method PSNR 1 SSIM1 LPIPS| |PSNR1 SSIM?T LPIPS |
pixelNeRF | 20.43 0.589 0.550 20.97 0.547 0.533 pixelSplat | 16.83 0.476 0.494 19.62 0.730 0.270
GPNR 24.11 0.793 0.255 25.28 0.764 0.332 MVSplat 16.49 0.466 0.486 19.97 0.732 0.245
AttnRend 24.78 0.820 0.213 26.88 0.799 0.218 ReconX 24.53 0.847 0.083 23.70 0.867 0.143
MuRF 26.10 0.858 0.143 28.09 0.841 0.155 Cross Set | TLEE ‘ DTU

pixelSplat 25.89 0.858 0.142 28.14 0.839 0.150 pixelSplat | 16.83 0.476 0.494 19.62 0.730 0.270
MVSplat 26.39 0.839 0.128 28.25 0.843 0.144 MVSplat 16.49 0.466 0.486 19.97 0.732 0.245
ReconX 28.31 0.912 0.088 28.84 0.891 0.101 ReconX 24.53 0.847 0.083 23.70 0.867 0.143

Table 1: Quantitative comparisons with feed- Table 2: Quantitative comparison with feed-
forward based methods for small angle vari- forward based methods for large angle vari-
ance (Easy Set) in input views. For each scene, ance (Hard Set) in input views and cross-dataset
the model takes two views as input and renders ~ (Cross Set) comparisons to evaluate generaliza-
three novel views for evaluation. tion ability.

2-view 3-view 6-view 9-view
PSNRt SSIMT LPIPS| PSNRtT SSIMt LPIPS| PSNRt SSIMt LPIPS| PSNRT SSIMT LPIPS)

Method

Mip-NeRF 360

3DGS 10.36 0.108 0.776 10.86  0.126 0.695 12.48 0.180 0.654 13.10  0.191 0.622
SparseNeRF 11.47 0.190 0.716 11.67 0.197 0.718 1479 0.150 0.662 1490  0.156 0.656
DNGaussian 10.81 0.133 0.727 11.13 0.153 0.711 1220  0.218 0.688 13.01 0.246 0.678
ReconX (Ours) 13.37 0.283 0.550 16.66  0.408 0.427 18.72  0.451 0.390 18.17  0.446 0.382
Tank and Temples

3DGS 9.57 0.108 0.779 10.15 0.118 0.763 11.48 0.204 0.685 1250 0.202 0.669
SparseNeRF 9.23 0.191 0.632 9.55 0.216 0.633 1224 0.274 0.615 1274 0.294 0.608
DNGaussian 10.23 0.156 0.643 11.25 0.204 0.584 1292 0.231 0.535 13.01 0.256 0.520
ReconX (Ours) 1428  0.394 0.564 1538  0.437 0.483 16.27  0.497 0.420 18.38  0.556 0.355
DL3DV

3DGS 9.46 0.125 0.732 10.97  0.248 0.567 1334 0332 0.498 14.99 0.403 0.446
SparseNeRF 9.14 0.137 0.793 10.89  0.214 0.593 12.15 0.234 0.577 12.89 0.242 0.576
DNGaussian 10.10  0.149 0.523 11.10  0.274 0.577 12.65 0.330 0.548 1346  0.367 0.541
ReconX (Ours) 13.60  0.307 0.554 1497 0419 0.444 1745 0476 0.426 1859  0.584 0.386

Table 3: Quantitative comparisons with per-scene optimization based methods on MipNeRF
360 and Tank and Temples, and DL3DV. We evaluate the reconstruction performance with different
input views for each scene.

of ReconX in creating more consistent observations from video diffusion to mitigate the inherent
ill-posed sparse-view reconstruction problem.

Cross-dataset generalization. Unleashing the strong generative power of the video diffusion
model through 3D structure condition, our ReconX is inherently superior in generalizing to out-
of-distribution novel scenes. To demonstrate the strong generalizability of ReconX, we conduct two
cross-dataset evaluations. For a fair comparison, we train the models solely on the RealEstate1 0K
and directly test them on two popular NVS datasets (i.e., NeRF-LLFF (Mildenhall et al., 2019) and
DTU (Jensen et al., 2014)). As shown in Cross Set from Table 2 and Figure 3, the competitive
baseline methods MV Splat (Chen et al., 2024a) and pixelSplat (Charatan et al., 2024) fail to render
such OOD datasets which contain different camera distributions and image appearance, leading to
dramatic performance degradation. In contrast, our ReconX shows impressive generalizability and
the gain is larger when the domain gap from training and test data becomes larger.

Assessing more-view quality. ReconX is agnostic to the number of input views. Specifically, given
N views as input, we sample a plausible camera trajectory to render image pairs using our video
diffusion models and finally optimize the 3D scene from all generated frames. For a fair comparison
with Chen et al. (2024a), we verify this by testing on DTU with three context views. Our results are
PSNR:22.83, SSIM: 0.512, LPIPS: 0.317, MVSplat’s are PSNR: 14.30, SSIM: 0.508, LPIPS: 0.371,
and pixelSplat’s are PSNR: 12.52, SSIM: 0.367, LPIPS: 0.585. Compared to the two-view results
(Table 2), our ReconX and MV Splat both achieve better performance given more input views while
we are much better than MVSplat. However, pixelSplat performs worse when using more views
also shown in Chen et al. (2024a).

5.3 COMPARISON WITH PER-SCENE OPTIMIZATION BASED BASELINES

To verify the capability of ReconX in sparse-view reconstruction in more challenging outdoor set-
tings, we compare with per-scene optimization-based methods in different input views (i.e., , 2, 3,
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—Input Views —— Ground Truth ReconX (Ours)

Figure 4: Qualitative comparison with per-scene optimization based methods on Mip-Nerf 360
and Tank and Temples. With two sparse views as input, our ReconX achieves much better recon-
struction quality compared with baselines.

Ground Truth ReconX (Ours) ReconFusion

P

Figure 5: Qualitative comparison with CAT3D (Gao et al., 2024) and ReconFusion (Wu et al.,
2024b) with three sparse views as input.

6, and 9 views) in Table 3 and more visual comparisons in Figure 4. We observe that our method
outperforms all the other per-scene optimization baselines in PSNR, SSIM, and LPIPS scores. As
shown in Figure 4, we find that the baselines produce extremely blurry results in only two view
settings with noisy camera estimations. In contrast, by unleashing the generative power of the video
diffusion model, our ReconX can create more observations from only two sparse views and ensures
high-quality novel view rendering, avoiding local minima issues. To further demonstrate our su-
periority, we compare with recent works CAT3D (Gao et al., 2024) and ReconFusion (Wu et al.,
2024b) that incorporate generative prior to mitigate ill-posed sparse view reconstruction in Figure 5.
Since the codes for CAT3D and ReconFusion are not available, we downloaded the results directly
from the project pages using three input views as provided in their papers. The results show that our
ReconX can produce higher-frequency details in novel views.

5.4 ABLATION STUDY AND ANALYSIS

We carry out ablation studies on RealEstate10K to analyze the design of our ReconX framework
in Table 4 and Figure 6. A naive combination of pretrained video diffusion model and Gaussian
Splatting is regarded as the “base”. Specifically, we ablate on the following aspects of our method:
3D structure condition, DUSt3R initialization, confidence-aware optimization, and LPIPS loss. The
results indicate that the omission of any of these elements leads to a degradation in terms of quality
and consistency. Notably, the basic combination of original video diffusion model and 3DGS leads
to significant distortion of the scene. The absence of 3D structure condition causes inconsistent
generated frames especially in distant input views, resulting in blur and artifact issues. The lack of
confidence-aware optimization leads to suboptimal results in some local detail areas. Adding LPIPS
loss in confidence-aware 3DGS optimization would provide clearer rendering views. Moreover,
we ablate the impact of DUSt3R and video diffusion priors in Figure 7. Although the point cloud
may not include enough high-quality information, such coarse 3D structure is sufficient to guide
the video diffusion in our ReconX to fill in the distortions, occlusions or missing regions. This
demonstrates that our ReconX has learned a comprehensive understanding of the 3D scene and can
generate high-quality novel views from imperfect conditional information and exhibit robustness to
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Video diffusion 3D structure condition DUSt3R init confidence-aware opt.  LPIPS loss \ PSNRT SSIM?T LPIPS|

- - v - - 17.34  0.527 0.259
v - v - - 1970 0.789 0.229
v - v v v 25.13 0.901 0.131
v v - v v 27.11 0.908 0.113
v v v - v 27.83 0.897 0.097
v v v v - 27.47 0.906 0.111
v v v v v 28.31 0.912 0.088

Table 4: Quantitative results of ablation study. We report the quantitative metrics in ablations of
our framework in real-world data (Zhou et al., 2018).

Input Views Ground Truth ReconX (Ours) base w/o 3D structure condition w/o confidence-aware opt. ~ W/o LPIPS loss

all .
ﬁ :
&

Figure 6: Visualization results of ablation study. We present the renderings of DUSt3R and our
ReconX.

Dust3Rinit + GS
Renders

Reconx
Renderings

Figure 7: Visualization results on the impact of video diffusion. We ablate the impact of video
diffusion in improving the reconstruction result of DUSt3R.

the point cloud conditions. This illustrates the effectiveness of our overall framework (Figure 2),
which drives generalizable and high-fidelity 3D reconstruction given only sparse views as input.

6 CONCLUSION

In this paper, we introduce ReconX, a novel sparse-view 3D reconstruction framework that refor-
mulates the inherently ambiguous reconstruction problem as a generation problem. The key to our
success is that we unleash the strong prior of video diffusion models to create more plausible ob-
servations frames for sparse-view reconstruction. Grounded by the empirical study and theoretical
analysis, we propose to incorporate 3D structure guidance into the video diffusion process for better
3D consistent video frames generation. What’s more, we propose a 3D confidence-aware scheme to
optimize the final 3DGS from generated frames, which effectively addresses the uncertainty issue.
Extensive experiments demonstrate the superiority of our ReconX over the latest state-of-the-art
methods in terms of high quality and strong generalizability in unseen data.

Limitations and Future Work. Although ReconX achieves remarkable reconstruction results in
novel viewpoints, the quality still seems to be limited by the backbone as we choose the U-Net
based diffusion model DynamiCrafter (Xing et al., 2023). We expect that this issue can be solved
with open-sourced larger video diffusion models (e.g., DiT-based framework). In the future, it is
interesting to integrate 3DGS optimization directly with the video generation model, enabling more
efficient end-to-end 3D scene reconstruction. We are also interested in exploring consistent 4D scene
reconstruction. We believe that ReconX provides a promising research direction to craft intricate 3D
worlds from video diffusion models and hope it will inspire more works in the future.
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A PRELIMINARIES

Video Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2020) have emerged as
the cutting-edge paradigm to generate high-quality videos. These models learn the underlying data
distribution by adding and removing noise on the clean data. The forward process aims to transform
a clean data sample xo ~ p(x) to a pure Gaussian noise x1 ~ N (0, I), following the process:

wt:\/aitw0+ Vl_@t67 ENN(Oal)a (8)

where x; and &; denotes the noisy data and noise strength at the timestep ¢. The denoising neural
network €y is trained to predict the noises added in the forward process, which is achieved by the
MSE loss:

L= EmNp,ENN(O,I),c,t ||6 — €9 (wt; t, C)HS:I ; &)

where c represents the embeddings of conditions like text or image prompt. For the video diffusion
models, Latent Diffusion Models (LDMs) (Rombach et al., 2022), which compress images into the
latent space, are commonly employed to mitigate the computation complexity while maintaining
competitive performance.

3D Gaussian Splatting. 3DGS (Kerbl et al., 2023) represents a scene explicitly by utilizing a set of
3D Gaussian spheres, achieving a fast and high-quality rendering. A 3D Gaussian is modeled by a
position vector . € R3, a covariance matrix ¥ € R3*3, an opacity a € R, and spherical harmonics
(SH) coefficient ¢ € R* (Ramamoorthi & Hanrahan, 2001). Moreover, the Gaussian distribution is
formulated as the following:

G(x) — 6_%(x_l"‘)T271(x_”')7 (10)
where ¥ = RSSTRT, S denotes the scaling matrix and R is the rotation matrix.

In the rendering stage, the 3D Gaussian spheres are transformed into 2D camera planes through
rasterization (Zwicker et al., 2001). Specifically, given the perspective transformation matrix W
and Jacobin of the projection matrix J, the 2D covariance matrix in the camera space is computed
as

S =JwswiJ’ (11)

For every pixel, the Gaussians are traversed in depth order from the image plane, and their view-
dependent colors ¢; are combined through alpha compositing, leading to the pixel color C:

i—1
C=> o [[(1-a). (12)
j=1

i€EN

End-to-end Dense Unconstrained Stereo. DUSt3R (Wang et al., 2024a) is a new model to predict
a dense and accurate 3D scene representation solely from image pairs without any prior information
about the scene. Given two unposed images {I1, I5}, this end-to-end model is trained to estimate
the point maps {P; 1, P 1} and confidence maps {C; 1,C2 1}, which can be utilized to recover the
camera parameters and dense point cloud. The training procedure for view v € {1, 2} is formulated
as a regression loss:

1 1 -
*'Pv,lfT'Pv,l

% Zq

L= ‘ ; 13)

where P and P denote the ground-truth and predlcnon point maps, respectively. The scaling factors

z; = norm(P; 1, P» 1) and zl—norm(Pl 1, Py 1) are adopted to normalize the point maps, which
merely indicate the mean distance D of all valid points from the origin:

norm (Py 1, Pyy) = |D1‘+| Z > P (14)

ve{1,2} €D,

B MORE IMPLEMENTATION DETAILS

Implementation of PosEmb. The PosEmb implemented in our paper is a column-wise positional
embedding function: R? — RY, where C' is the dimension of embedding. More specifically, the
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PosEmb function is implemented as follows: (1) Fixed Sinusoidal Basis: The basis e is a 3D
sinusoidal encoding: e = [sin(2°7p),sin(2'7p),...], where p € R? is the position. (2) Em-
bedding Calculation: The input x is projected onto e and its sine and cosine are concatenated:
embeddings = concat(sin(proj), cos(proj)). (3) Learnable Transformation: The positional en-
coding is passed through an MLP along with the input x: y = MLP(concat(embeddings, x)). In
short, PosEmb combines a fixed sinusoidal encoding with a learnable MLP transformation.

More details of transformer-based encoder. For the transformer-based encoder, we encode the
DUSt3R point cloud data to a fixed-length sparse representation of the point cloud. Specifically,
we first employ a subsampling based on farthest point sampling (FPS) to reduce the point cloud
to a smaller set of key points while retaining its overall structural characteristics. Then, we apply
cross-attention between the embeddings of the original point cloud and downsampled point cloud.
This mechanism can be interpreted as a form of partial self attention, where the downsampled points
act as query anchors that aggregate information from the original point cloud. The encoder is not
initialized from any pretrained models. Instead, it is trained jointly with the video diffusion model
in an end-to-end manner. This design choice ensures that the encoder is specifically adapted to the
characteristics of DUSt3R point clouds in our experiment datasets.

Camera alignment. We consider that the camera pose from DUSt3R is not aligned with the
COLMAP cameras. Since we adopt the point cloud and camera poses from DUSt3R in our experi-
ment, it is necessary for us to unify the training and testing images into the same DUSt3R coordinate
system. Specifically, we process the training and testing images together through DUSt3R to obtain
the corresponding camera poses, and utilize only the point maps from the training set as the initial
point cloud for optimizing 3DGS.

Test view selection. In comparison with feed-forward based methods, we follow MVSplat (Chen
etal., 2024a) and pixelSplat (Charatan et al., 2024) to choose test views in Easy Set. For Hard Set, we
choose the frame intervals much larger (i.e., > 200 frames) than Easy Set. For Tank-and-Templates
and DL3DV datasets, we select the training views evenly from all the frames and use every 8th of
the remaining frames for evaluation. For nine scenes in Mip-NeRF 360 dataset, we manually choose
a training 9-view split of views that are uniformly distributed around the hemisphere and pointed
toward the central object of interest. Then we further choose the 6- and 3-view splits to be subsets
of the 9-view split.

C THEORETICAL PROOF

Proposition 1. Let 8%, ¢* = g* be the optimal solution of the solely image-based conditional

diffusion scheme and é*, P = {g*, F*} be the optimal solution of diffusion scheme with native
3D prior. Suppose the divergence D is convex and the embedding function space VU includes all
measurable functions, we have D(q () |[pg- ;- (®)) < D (q () [|po- v~ ().

Proof. According to the convexity of D and Jensen’s inequality D(E[X]) < E[D(X)], where X is
a random variable, we have:

D (@) lpg. - (®)) = D (Byoa@|s)[ By ps - (215))
< gD (a(als) 5. - (w]5)) as)
= By D (4(@|9)]1pg. o 5 (2]5))

where we incorporate an intermediate variable s, which represents a specific scene. g(x|s) indicates
the conditional distribution of rendering data « given the specific scene s. According to the definition

of 5*,9*,]-'*, we have:

By P (4(@15) |25 - 5 (ls) = it By D (a(a]s)][p0 0.5 (x]3))

minEy) min P (a(@ls)lposw.r0@)  (16)

= min B min D (g(]s)[pe.¢.5(2))

17



Under review as a conference paper at ICLR 2025

Input Views

Novel Views
! i l

Figure 8: Evaluation of extrapolation ability of ReconX. We highlight the extrapolated regions in
the red boxes in the novel rendered views.

where E is the general 3D encoder in 3D structure conditional scheme while it is a redundant
embedding in solely image-based conditional scheme, i.e., ¢ = {g, E(&)}. Combining Equation 15
and 16, we have:

D (4(2)pg- - (@)) < min By minD (q(@]s) [po.5.5())

< guin D (q(@)llpe.g.£(@)) = | min D (q(@)[po.g.p0)(®)  (17)

= minD (q(x)llpe.i:(x)) =D (¢ (@) [Ipo v+ (2)) -
The second inequality holds because given general real-world scene s in any parameter 8 €
©, approximating g(z|s) is simpler than g(x) by only tuning the encoder E of pg , ', ie.,
ming D (q(x|s)||pe,g,z(x)) < ming D (¢(x)||pe,q,z(x)) holds almost everywhere (a.e.), repre-
senting Py (s) {ming D (q(z | s)||pe,g,r(x)) < ming D (¢(z)||pe,¢,p(x))} = 1.

Consequently, the proof of Proposition 1 has been done.

D MORE RESULTS AND ANALYSIS

Evaluation of our extrapolation ability. As we use a pair of input views in our method, it is worthy
to note that if the angular difference between the two views is too large, it is hard to ensure that the
entire interpolated region falls within the visible perspective of the input views, which requires the
extrapolation ability. We have evaluated it in our generalizable experiments with DTU dataset. For
instance, in the case of DTU in Figure 3, we cannot see the roof area from the input views, while
our ReconX is able to extrapolate and generate the red and yellow roof with 3D structure-guided
generative prior. To further demonstrate the extrapolation capability of our method, we conduct a
specific experiment in Figure 8. This experiment selects two views with large angular spans and
highlights the extrapolated regions in the red boxes in the novel-rendered views. This emphasizes
our model’s generative power to extrapolate unseen regions and extend beyond the visible input
views.

More visual results in outdoor scenes. Regarding the DL3DV dataset, we trained our model
on this to demonstrate its performance on outdoor scenes. Due to the limitations of feed-forward
methods on this dataset, we did not present quantitative results in the main paper, as these methods
fail on it. However, to highlight our model’s strengths in outdoor environments, we have included

'A simple verifiable case is to optimize the parameters of 3DGS by only 2D images (solely image-based
conditional learning) or using a SFM initialization from collected images (native 3D conditional learning)
before optimization. The latter provides a more constrained and optimal solution space.
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Method 3-view 6-view 9-view

etho PSNRt SSIMt LPIPS| PSNRT SSIMt LPIPS|, PSNRT SSIMT LPIPS|
Zip-NeRF 12.77 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ZeroNVS 14.44 0.316 0.680 15.51 0.337 0.663 15.99 0.350 0.655
ReconFusion 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460

ReconX (Ours) 17.16 0.435 0.407 19.20 0.473 0.378 20.13 0.482 0.356

Table 5: Quantitative comparisons with more per-scene optimization based methods on MipN-
eRF 360. We evaluate the reconstruction performance with different input views for each scene.

3D Gaussians Rendered Views
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Figure 9: Rendering comparison with Gaussian-based methods frame by frame.

visual results in the supplementary video and have added comparisons with per-scene optimization
methods in Table 3. We have also provided more visual results on DL3DV in Figure 10. We also
compare our ReconX in 3D Gaussians with frame-by-frame results in Figure 9.

More quantitative comparisons. As the data is open-sourced in ReconFusion (Wu et al., 2024b)
we conduct an additional quantitative experiment in comparison with ZipNeRF (Barron et al., 2023),
ZeroNVS (Sargent et al., 2023), CAT3D (Gao et al., 2024), and ReconFusion (Wu et al., 2024b). It
is worth noting that the data split used in CAT3D (Gao et al., 2024) follows a heuristic loss (Gao
et al., 2024) to encourage reasonable camera spacing and coverage of the central object. We observe
that our ReconX is better than all baselines in Table 5.
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Figure 10: Qualitative results of our ReconX on outdoor scenes Ling et al. (2024).
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