
Disentangled Representation Learning in
Non-Markovian Causal Systems

Adam Li∗ and Yushu Pan∗ and Elias Bareinboim
Causal Artificial Intelligence Lab

Columbia University
{adam.li, yushupan, eb}@cs.columbia.edu

Abstract

Considering various data modalities, such as images, videos, and text, humans
perform causal reasoning using high-level causal variables, as opposed to operating
at the low, pixel level from which the data comes. In practice, most causal reasoning
methods assume that the data is described as granular as the underlying causal
generative factors, which is often violated in various AI tasks. This mismatch
translates into a lack of guarantees in various tasks such as generative modeling,
decision-making, fairness, and generalizability, to cite a few. In this paper, we
acknowledge this issue and study the problem of causal disentangled representation
learning from a combination of data gathered from various heterogeneous domains
and assumptions in the form of a latent causal graph. To the best of our knowledge,
the proposed work is the first to consider i) non-Markovian causal settings, where
there may be unobserved confounding, ii) arbitrary distributions that arise from
multiple domains, and iii) a relaxed version of disentanglement. Specifically, we
introduce graphical criteria that allow for disentanglement under various conditions.
Building on these results, we develop an algorithm that returns a causal disentan-
glement map, highlighting which latent variables can be disentangled given the
combination of data and assumptions. The theory is corroborated by experiments.

1 Introduction

Causality is fundamental throughout various aspects of human cognition, including understanding,
planning, decision-making. The ability to perform causal reasoning is considered one of the hallmarks
of human intelligence [1–3]. In the context of AI, the capability of reasoning with cause-and-effect
relationships plays a critical role in challenges of explainability, fairness, decision-making, robustness,
and generalizability. One key assumption of most methods currently available in the causal literature
is that the set of (endogenous) variables is at the right level of granularity. However, this is not the
case in many AI applications, where various modalities, such as images, and text, come into play [4].
For example, images of a park scene capture objects as causal variables, not the pixels themselves.
AI must disentangle these latent causal variables to represent the true relationships in the image.
Faithfully representing this latent structure impacts downstream AI tasks like image generation and
few-shot learning.

In machine learning, the representation learning literature is concerned with finding useful represen-
tations from data [5]. One important line of work traces back to linear ICA (independent component
analysis) [6], where one attempts to disentangle latent variables assuming a linear mixing function.
The literature has also considered settings where the mixing function is nonlinear [7, 8]. It has been
understood that nonlinear-ICA is, in general, not identifiable (ID) given only observational data [9].

*These authors contributed equally to this work, and the author names are listed in alphabetical order.
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Work
Input Output

Assumptions Data Identifiability GoalNon-Markovian Non-parametric Interventions Multiple Domains Distr. Reqs.
[6, 11–14] ✗ ✗ ✓ ✗ 1 per node Scaling, Mixture or Affine Transformation

[7, 8, 10, 15, 16] ✗ ✗ ✗/✓ ✗/✓ 2|V|+ 1 Scaling
[17, 18] ✗ ✓ ✓ ✗ 1 per node Scaling
[19, 20] ✗ ✓ ✗/✓ ✗/✓ 1 per node Scaling

[21] ✗ ✓ ✓ ✗ 1 per node Scaling or Ancestral Mixture
[22] ✗ ✓ ✗ ✓ 2|V|+ |MG|+ 1 Scaling or Mixture
[23] ✗ ✗ ✗/✓ ✗/✓ TBD Scaling & Affine Transformation
[24] ✗ ✓ ✗/✓ ✗/✓ TBD Functional Dependency Map1

This work ✓ ✓ ✓ ✓ General Causal Disentanglement Map

Table 1: A non-exhaustive list of identifiability results given knowledge of the latent graph.

Different routes have been taken to circumvent such impossibilities. For instance, one might assume
parametric families (e.g., exponential), and auxiliary variables as input, which can be thought of as
non-stationary times-series that may lead to certain invariances that can be exploited [7, 8, 10].
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Figure 1: Dimensions of identifia-
bility in causal disentanglement rep-
resentation learning.

Interestingly, the machinery developed in this context can be
applied to causal settings with multimodal data, where there
is a mismatch between the causal variables and the granularity
at which they are represented in the data. The key observation
that links these two worlds is that an underlying causal system
generates the data at such granularity (images, texts). Acknowl-
edging this connection leads to various possibilities regarding
learning, or disentangling the causal variables from data, sim-
ilar to the initial ICA-like literature. First, the assumption that
the features underlying a signal are independent needs to be
relaxed since it is arguably too stringent, a priori ruling out
almost any interesting causal system. So, we should consider
different assumptions regarding the structure of the underlying
generative model. One initial relaxation is that this model is
Markovian, where the features need not be independent, and
causal relationships are allowed across features. In the context
of computer vision, for example, one might assume a specific structure on the latent variables where
the style and content of the images are separated and augmented data is leveraged to disentangle these
two components [18]. Generalizing this idea to more relaxed causal settings, one can show ID up to
certain indeterminancies given observational across multiple domains, or interventional data [21, 22].
Another approach allows for certain parametric mixing functions, which could lead to new ID results
[11, 14]. These results have been applied and advanced across various downstream tasks [25–31].

Considering this background, we study three axes within the different types of input and expected out-
puts of the causal disentanglement representation learning task, which is summarized in Table 1 and
Fig. 1. The input can be partitioned into qualitative and quantitative components. Qualitatively, we
consider different assumptions about the underlying generative processes, including non-parametric
models, as well as linear or Gaussian ones. We also account for systems with richer causal topologies
than ICA (independent features) and generalize the Markovian setting. Notably, we do not rule out
a priori the existence of unobserved confounding among features, a pervasive challenge in causal
inference in empirical sciences. Quantitatively, we consider data gathered from arbitrary combina-
tions of interventions and domains. Recent literature on this distinction acknowledges key differences
[32–37], whereas prior literature often assumes data comes from different interventions in the same
domain or from various (observational) distributions from different domains. In fact, it is feasible
that data spawns various interventions and domains in a less well-structured manner (App. A.3). In
terms of the expected output, similar to [24], we will consider both full disentanglements as well as
a more relaxed type of disentanglement, known as the causal disentanglement map.

For concreteness, consider a hypothetical latent graph depicted in Fig. 2 in the context of epilepsy
research [38–46]. In terms of assumptions, hospitals in different countries Πi and Πj will differ in
the amount of sleep (V1) patients get (represented by the S-node Si,j → V1). Now suppose sleep
(V1) affects the efficacy of the drug treatment (V2), and the drug helps epilepsy patients control their
seizures (V3). The quality of sleep and the type of drug treatment are confounded by socioeconomic
factors (V1 L9999K V2). Clinicians are then given electroencephalogram (EEG) data from each

1We recently were made aware of the work in [24], where their definition of a functional dependency map is
what we define as a causal disentanglement map. However, the disentanglement map that they can achieve is
different from ours as discussed in Section F.

2



fX

Latent Selection 
Diagram, GS

Mixing 
Function 

(Unobserved)

Multi-domain High-dimensional 
Distributions X ∈ ℝd LatentsInverse Mixing 

Function

̂fX
−1

V1

V2

V3

Si,j
̂V1

̂V2

̂V3

Si,j
̂V1

̂V2

̂V3

V1

V2

V3

Causal Disentanglement Map
GV, ̂V

Πi

Πj

EMRs, Imaging, 
Bloodwork

Input (Data and Assumptions) Output Representation

Figure 2: Data generating model and the goal of learning disentangled causal latent representations.

hospital where they know different drug treatments were administered. The EEG X is a nonlinear
(nonparametric) transformation of latent V = {V1, V2, V3} via fX . Their goal is to generate realistic
EEG data to understand how different drugs affect EEG patterns. This requires a general output
representation that disentangles sleep from drug as it is understood that sleep affects EEG [47]. One
could leverage state-of-the-art generative modeling techniques and train a self-supervised learning
model to learn a representation of the EEG that they then perturb to generate new instances of EEG
[48–50]. However, there are no guarantees that the representation, or interventions in the latent
space will generate realistic EEG. In this case, drug and sleep might remain entangled in the learned
representation, which is potentially harmful, since it may lead to unrealistic EEG data that contains
visual differences due to sleep rather than drug. More formally, given an input set of distributions
and knowledge of the latent variable causal structure, the goal is to learn the inverse of the mixing
function f̂−1

X and a representation V̂ = {V̂1, V̂2, V̂3}, where V2 is disentangled from V1
2.

In this paper, we develop graphical and algorithmic machinery to determine whether (and how) causal
representations can be disentangled from heterogeneous data and assumptions about the underlying
causal system, which might help improve various downstream tasks. Our contributions are: 3:

1. Graphical criteria for determining the disentangleability of causal factors. We formalize
a general version of the causal representation learning problem and develop methods to
determine if a pair of (user-chosen) variables are disentangled in a non-Markovian setting
with arbitrary distributions from multiple heterogeneous domains (Props. 3,4, and 5)4.

2. An algorithm to learn the causal disentanglement map. Leveraging these new conditions,
we develop an algorithmic called CRID, which systematically determines whether two
sets of latent variables are disentangleable given their selection diagram and a collection of
intervention targets (Thm. 1). The theoretical findings are corroborated with simulations.

All supplementary material (including proofs) is provided in the full technical report.
Preliminaries. We introduce basic definitions used throughout the paper. Uppercase letters (X)
represent random variables, lowercase letters (x) signify assignments, and bold letters (X) indicate
sets. For a set X, |X| denotes its dimension. Denote P (X) as a probability distribution over X
and p(x) as its density function. The basic semantic framework of our analysis rests on structural
causal models (SCMs) [1, Ch. 7]. An SCM is a 4-tuple ⟨U,V,F , P (U)⟩, where (1) U is a set of
background variables, also called exogenous variables, that are determined by factors outside the
model; (2) V = {V1, V2, . . . , Vd} is the set of endogenous variables that are determined by other
variables in the model; (3) F is the set of functions {fV1

, fV2
. . . , fVd

} mapping UVj
∪PaVj

to Vj ,
where UVj

⊆ U and PaVj
⊆ V\Vj ; (4) P (U) is a probability function over the domain of U.

Each SCM induces a causal diagram G, which is a directed acyclic graph where every Vj is a vertex.
There is a directed arrow from Vj to Vk if Vj ∈ PaVk

. There is a bidirected arrow between Vj

and Vk if UVj
and UVk

are not independent [3]. Variables V can be partitioned into subsets called
c-components [57]. The c-component of X , denoted as C(X), is a set of variables connected to
X by bidirected paths. The c-component of a set X, denoted as C(X), is defined as the union of

2We separate the tasks of disentanglement and structural learning, and consider the latent causal graph as
input of our task. Still, there are works in the literature that consider both tasks simultaneously [13, 22, 51–56].

3We refer the readers to our full technical report for a more detailed treatment of the problem setting.
4All proofs are provided in Appendix C.
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the c-component of every X ∈ X. We will use Pa(X) or PaX to denote parents of X in G. Let
Pa(X) = Pa(X) ∪X , which includes X itself. A subgraph over X ⊆ V in G is denoted as G(X)
and GX denotes the subgraph by removing arrows coming into nodes in X.

A soft intervention on a variable X , denoted σX , replaces fX with a new function f ′
X of Pa′ ⊂ V

and variables U′
X [58, 59]. For interventions on a set of variables X ⊆ V, let σX = {σX}X∈X, that

is, the result of applying one intervention after the other. Given an SCMM, letMσX
be a submodel

ofM induced by interventionMσX
. A special class of soft interventions, resulting in observational

distributions, called idle intervention, leaves the function as it is, which means σX = {}. Another
special class of stochastic soft interventions, called perfect interventions [21, 51] and denoted as
perf(X), such that Pa(X) = ∅ and U′

X ∩U = ∅. This implies that the modified diagram induced
byMσX

is GX. We assume soft interventions that are not hard do not change the structure of the
graph 5. Namely, the diagram induced byMσX

is the same with G.

2 Modeling Disentangled Representation Learning (General Case)

In this section, we formalize the disentangled representation learning task in causal language. We
leverage an Augmented SCMs, to model the generative process over latent causal variables V.
Definition 2.1 (Augmented Structure Causal Model). An Augmented Structure Causal Model (for
short, ASCM) over a generative level SCM M0 = ⟨{U0,V0,F0, P

0(U0)}⟩ is a tuple M =
⟨U, {V,X},F , P (U)⟩ such that (1) exogenous variables U = U0; (2) V = V0 = {V1, . . . , Vd}
are d latent endogenous variables; X is an m dimensional mixture variable; (3) F = {F0, fX},
where fX : Rd → Rm is a diffeomorphic 6 function that maps from (the respective domains of) V to
X. ∃ h = f−1

X such that V = h(X); and (4) P (U0) = P 0(U0).

In words, an ASCMM describes a two-stage generative process involving latent generative factors
V and high-dimensional mixture X (e.g., images, or text). First, latent generative factors V ∈ Rd

are generated by an underlying SCM. The causal diagram induced byM0 over V is called a latent
causal graph (LCG); denoted as G here. Next, a nonparametric diffeomorphism fX mixes V to get
the high-dimensional mixture X ∈ Rm. An important aspect of fX is that it is invertible regarding V
which implies that the generative factors V are recognized in a given X = x 7.

The initial disentangled representation learning setting can be traced back at least to linear/nonlinear
ICA [7–9], where G is assumed to have no edges (V are independent of each other) and Markovian
(no bidirected edges in the LCG). More recently, allowing latent variables to have edges in the LCG
was studied, albeit still under the Markovian assumption [11, 13, 14, 21, 22, 51, 55]. We relax this
assumption and allow confounding to exist between V, which we call non-Markovianity8.

Domains. We address the general setting of distributions that arise from multiple domains. Fol-
lowing [32–35, 62, 63], we define the so-called latent selection diagram that represents a collection
of ASCMs to model the multi-domain setting. Selection diagrams enable us to compactly represent
causal structure and cross-domain invariances 9.
Definition 2.2 (Latent Selection Diagrams). Let M = ⟨M1,M2, ...,MN ⟩ be a collection of
ASCMs relative to N domains Π = ⟨Π1,Π2, ...,ΠN ⟩, sharing mixing function fX and LCG, G. M
defines a latent selection diagram (LSD. for short) GS , constructed as follows: (1) every edge in
G is also an edge in GS ; (2) GS contains an extra node Si,j and corresponding edge Si,j → Vk

whenever there exists a discrepancy f i
Vk
̸= f j

Vk
, or P i(Uk) ̸= P j(Uk) betweenMi andMj .

S-nodes indicate possible differences over V due to changes in the underlying mechanism or exoge-
nous distributions across domains. For example, consider the LSD in Fig. 2. The S-node Si,j implies

5General soft interventions can arbitrarily change the graph by adding or removing edges. We do not consider
this setting, and refer the readers to [1, 58, 59] for a general discussion on soft interventions.

6A diffeomorphism is a bijective function fX such that both fX and f−1
X are continuously differentiable [27]

7Further discussion on the invertibility and non-parametric assumption is provided in Appendix A.2.
8To our knowledge, this is the first work in disentangled casual representation learning to relax Markovianity,

which we believe is important since a significant challenge in causal inference stems from the existence of
confounding bias traced back to Rubin [60], Pearl [1, 61], and more recently data fusion [36].

9See [32, 33] and Appendix Sec. A.3 for a more detailed discussion on the fundamental differences between
interventions and domains, and why modeling their distinction is important in general.
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that V1 possibly changes from domain Πi to Πj , while the other variable’s mechanisms are assumed
to be invariant. Note no S-node points to X since fX is shared across M.

Interventions. A set of interventions Σ = {σ(k)}Kk=1 are applied across domains Π, where
k is an index from 1 to K. The corresponding domains that Σ are intervened in is denoted as
ΠΣ = {Π(k)}Kk=1 (the domains associated with each σ(k) ∈ Σ). We study a general setting where
each intervention can be applied to any subset of nodes and in any domain, which can be seen as a
generalization of the more restricted settings in prior work (see Appendix F).

The intervention targets collection of these K interventions {σ(k)}Kk=1 is denoted as Ψ = {I(k)}Kk=1.

Each intervention target I(k) is given in the form of {V Π(k),{b},t
i , V

Π(k),{b′},t′
j , . . . }, which indicates

the intervention σ(k) changes the mechanism of {Vi, Vj , . . . } in domain Π(k). {b} indicates the
mechanism of the intervention on the same node. The mechanisms of V 1

i and V 2
i are different while

the mechanism on different nodes (V 1
i and V 1

j ) is default different. t = perf indicates the intervention

is perfect. When I(k) = {V Π(k),t
i }, where {b} is omitted, then the intervention is assumed to have a

different mechanism. When I(k) = {V Π(k),{b}
i }, where t is omitted, then the intervention is assumed

to be a general soft intervention. When I(k) is an idle intervention in Π(n), it is denoted as {}Π(n)

.
The set Perf[I(k)] is a set of variables with perfect interventions in σ(k). Thus when Perf[I(k)] = {},
it implies there are no variables with perfect interventions in σ(k). Ψperf

T is a subset of Ψ such that
T ⊆ Perf[I(j)] for every I(j) ∈ Ψperf

T , which implies I(j) contains perfect interventions on T; see
Fig. S1 and Ex. 7 illustrating the notation.

Given Distributions. The interventions Σ = {σ(k)}Kk=1, induce distributions P = {P (k)}Kk=1 in
multi-domains, where P (k) = PΠ(k)

(X;σ(k)).

previously I think we assume the indepandent assumption so we do not need to worry. But you
are right, it can raise concerns

If you enforce V_4 in the linear system (even it canceled),
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Problem Statement Suppose the underlying true model
M induces the LSD GS and a collection of distributions
P over X is given according to a corresponding collection
of interventions Σ. The goal of this paper is to learn a dis-
entangled representation V̂ of the latent generative factors
V in M. In the literature, it is common to require every
variable Vi ∈ V to be disentangled from all other variables
[7, 21] or some special subset (e.g. non-ancestors of Vi)
[21, 22]. However, as illustrated in Fig. 2, sometimes only
the target variables (Vtar ⊆ V) is needed to be disentan-
gled from some user-chosen entangled variables (Ven).
Recent work has also considered a similar goal of general-
ized disentanglement [24]. Our work still differs from theirs in the following ways: i) [assumptions]
we model a completely nonparametric non-Markovian ASCM, whereas [24] assumes sparsity and a
Markovian ASCM, and ii) [input] we consider arbitrary combinations of distributions from multiple
domains, whereas [24] considers only interventions within a single domain (see Appendix F for a
detailed comparison). We formally define this type of general indeterminacy next as well as the
formal version of our ID task.
Definition 2.3 (General Identifiability/Disentangleability (ID)). Let M be the underlying true
ASCMs inducing LSD GS , and P = {P (k)}Kk=1 a set of distributions resulting from K intervention
sets Σ. Consider target variables Vtar ∈ V, and Ven ⊆ V\Vtar. The set Vtar is identifiable
(disentangled) with respect to (from) Ven if there exists a function τ such that V̂tar = τ (V\Ven)

for any M̂ that is compatible with GS and PM̂ = P . For short, Vtar is said to be ID w.r.t. Ven.

To illustrate, consider a target variable Vtar such that one wants its representation to be disentangled
from another subset variables Ven. The above definition states that Vtar is disentangled from Ven

(or is ID w.r.t. Ven) if the learned representations V̂tar in M̂ is only a function of V\Ven for any
M̂ that matches with the LSD GS and distribution P10. Def 2.3 is illustrated in Fig. 3. Following the
example illustrated in Fig. 2, suppose the user wants V3 to be disentangled from V1 while considering
the entanglement between V2 and V3 acceptable. If V̂ 3 = τ(V 2, V 3) for any ASCM M̂ matches the

10In general, this definition is defined after a permutation of variables. We illustrate more in Sec. A.4.
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distributions and LSD, V3 is ID w.r.t. V1. Def. 2.3 is more relaxed since one is free to choose any
target Vtar and Ven. It can be reduced to existing identifiability definitions (Appendix F.2).
Example 1 (Example of an ID task). Suppose the pair of underlying ASCMs ⟨M1,M2⟩
induces the LSG GS in Fig. 2 and distributions P = {P (1), P (2), P (3), P (4)} =
{PΠ1(X), PΠ2(X), PΠ2(X;σV3), P

Π1(X;σV4)} from interventions Σ = {σ(1), σ(2), σ(3), σ(4)} =
{{}, {}, σV3

,perf(V2)}. Given intervention targets Ψ = {I(1), I(2), I(3), I(4)} = {{}Π1 , {}Π2 ,

V Π2
3 , V Π1,perf

2 } and GS , the task is to determine whether (and how) {V2, V3} is ID w.r.t. V1, and V1

is ID w.r.t {V2, V3}. The answer to this is provided in Ex. 6.

Assumptions (Informal) and Modeling Concepts Before discussing the main theoretical contri-
butions, we restate important assumptions and remarks (discussed in this section) here to ground the
ASCM model 11.
Assumption 1 (Soft interventions without altering the causal structure). Interventions do not change
the causal diagram. Hard interventions cut all incoming parent edges, and soft interventions preserve
them [59]. However, more general interventions may arbitrarily change the parent set for any given
node [59]. We do not consider such interventions and leave this general case for future work.

Assumption 2 (Known-target interventions). All interventions occur with known targets, reducing
permutation indeterminacy for intervened variables.
Assumption 3 (Sufficiently different distributions). Each pair of distributions P (j) and P (k) ∈ P are
sufficiently different, unless stated otherwise. This is naturally satisfied if ASCMs and interventions
are randomly chosen [51]. Similar assumptions include the "genericity" [51], "interventional
discrepancy" [21], and "sufficient changes" assumptions [10, 22].

Remark 1 (Mixing is invertible). As a consequence of Def. 2.1, the mixing function fX is invertible,
ensuring that latent variables are uniquely learnable [9, 10, 17, 64].

Remark 2 (Confounders are not part of the mixing function). According to Def. 2.1, latent exogenous
variables U influence the high-dimensional mixture X only through latent causal variables V, so
unobserved confounding U does not directly affect the mixing function.

Remark 3 (Shared causal structure). As a consequence of Def. 2.2, each environment’s ASCM
shares the same latent causal graph, with no structural changes among latent variables 12.

3 Graphical Criterion for Causal Disentanglement

In this section, we study a general form of identifiability given general assumptions and input
distributions. More specifically, we build the connection from V and representation V̂ through
comparing distributions and then introduce three graphical criteria (Prop. 3, 4 and 5) to check ID.

First, we introduce a factorization of distributions induced by non-Markovian models [3, Def. 15].
Specifically, consider PT(V) induced by an ASCMM after a perfect intervention on T. Then, given
a topological order < of G, PT(V) can be factorized as follows:

PT(V) =
∏

Vi∈V

PT(Vi|PaT+
i ) (1)

where PaT+
i = Pa({V ∈ C(Vi) : V ≤ Vi}) \ {Vi} is the extended parents set of Vi in GT. The

factorization form for PT(V) will be different according to the choice given order.
Example 2. Consider a collection of M inducing the LSD shown in Fig. 4(c). Given order A:
V1 < V2 < V3 < V4, P (V) can be factorized as: P (V1)P (V2 | V1)P (V3 | V2, V1)P (V4 | V3)
Notice that the conditioning part of V3 includes {V2, V1}, which are not parents of V3. Choosing
order B: V1 < V3 < V2 < V4, P (V) can be factorized as P (V1)P (V3)P (V2 | V1, V3)P (V4 | V3).
The conditioning part of V2 and V3 are different given different orders.

11For a formal discussion on the assumptions, we refer the readers to Appendix A.2)
12The assumption that there are no structural changes between domains can be relaxed and is considered in

the context of inference when causal variables are fully observed, as discussed in [33]. This is an interesting
topic for future explorations, and we do not consider this avenue here.
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Figure 4: LSDs in Ex. and Exps. (a) chain, (b) collider and (c) non-markovian graphs.

Armed with this factorization, the representation V̂ in M̂ and the true underlying variables V in M
can be related by comparing distributions as follows.

Proposition 1 (Distribution Comparison). Consider a pair of collections ASCMs M and M̂
that matches with the distribution P resulting from interventions Σ and LSD GS . Consider two
distributions PΠ(j)

(X;σ(j)) and PΠ(k)

(X;σ(k)). Suppose perf(T) is in both intervention sets, then,
d∑
i

log p
(j)
T (vi | paT+

i )− p
(k)
T (vi | paT+

i ) =

d∑
i

log p
(j)
T (v̂i | p̂aT+

i )− log p
(k)
T (v̂i | p̂aT+

i ), (2)

where p
(j)
T (·) and p

(k)
T (·) are density functions.

To illustrate, Prop.1 shows when the intervention and domain changes from σ(k) to σ(j) and Π(k) to
Π(j), the change comes from factors pT(vi | paT+

i ) both in M and M̂.

However, not all factors necessarily contribute to Eq (2). For example, in the Markovian setting,
only one factor pT(vi | pai) possibly changes when comparing the observational to a singleton
interventional distribution in the same domain. Other invariant factors will be canceled out in Eq. (2).
The following result generalizes finding invariant factors when comparing distributions from different
domains and interventions in non-Markovian settings.

Proposition 2 (Invariant Factors). Consider two distributions P (j), P (k) ∈ P with intervention
targets σ(j) and σ(k) containing perf(T). Construct the changed variable set ∆V[I(j), I(k), GS ] (for
short ∆V) with target sets I(j), I(k) as follows: (1) Vl ∈ ∆V if V πl,{bl},tl

l ∈ I(j) but V π′
l,{bl},t

′
l

l ̸∈
I(k), or vice versa; (2) Vl ∈ ∆V if i) SΠ(j),Π(k)

point to Vl and ii) V πl,{bl},tl
l ̸∈ I(j) ∪ I(k). If

Vi ∈ V\C(∆V), then p
(j)
T (vi | paT+

i ) = p
(k)
T (vi | paT+

i ) (denoted invariant factors).

Prop. 2 states that factors pT(vi | paT+
i ) are guaranteed to be invariant if Vi is not in the C-component

of the changed variable set ∆V. ∆V[I(j), I(k), GS ] contains variables that are intervened differently
in I(j), I(k) and the variables pointed by S-node, Sj,k 13.

Example 3. Consider the diagram in Fig. 4(c) and two distributions P (1), P (2) ∈ P with intervention
targets I(1) = {}Π1 and I(2) = {V Π1

2 }. The changed variable set ∆V(2),(1) = {V2, V3} since
V2 ∈ I(2), V2 ̸∈ I(1), and C(V2) = {V2, V3}. Thus, comparing P (2) with P (1) (order A in Ex. 2),
factors p(v1), p(v4 | v2, v1) are invariant, whereas p(v2 | v1), p(v3 | v2, v1) can change.

With Prop. 2, Eq. (2) naturally keeps factors only in the C-component of ∆V, i.e.,∑
Vi∈Ṽ

log p
(j)
T (vi | paT+

i )−p(k)T (vi | paT+
i ) =

∑
Vi∈Ṽ

log p
(j)
T (v̂i | p̂aT+

i )−log p(k)T (v̂i | p̂aT+
i ) (3)

where Ṽ = C(∆V[I(j), I(k), GS ]). This factorization hints that V̂ (RHS of Eq. (3)) is only related
to variables that appear on the LHS.

Definition 3.1 (∆Q Set). Given two distributions P (j), P (k) with interventions targets σ(j) and σ(k)

containing perfect interventions on T, the ∆Q[I(j), I(k),T, GS ] set (for short: ∆Q(j),(k), or ∆Q if
index not needed) of the target sets I(j), I(k) is the remaining variables after comparison (i.e. Eq. 3),
∆Q[I(j), I(k),T, GS ] = Ṽ ∪PaT+(Ṽ), where Ṽ = C(∆V[I(j), I(k), GS ]).

13Notice that the same intervention mechanism will dominate the domain changes, which means when the
intervened mechanism of Vl is the same between I(j) and I(k), the discrepancy of Vl due to the change of
domain between Π(j) and Π(k) will be canceled. See Appendix A.3 for an example.
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To illustrate, the ∆Q set involves all variables in LHS of Eq. (3), including Ṽ and its extended
parents. These variables come from factors that possibly change and are kept in Eq. (3). We call
V\∆Q canceled variables since invariant factors are canceled out from the comparison. Continuing
Ex. 3, ∆Q = {V1, V2, V3} given either topological order.

Leveraging the comparisons among distributions in P (Eq. 3), we next develop three criterions for
disentanglement. First, we can disentangle canceled variables from ∆Q set since the difference of
density over representations V̂ in the ∆Q set (RHS of Eq. (3)) is irrelevant to canceled variables
(LHS of Eq. (3)).
Proposition 3 (ID the ∆Q set w.r.t Canceled Variables). Consider variables Vtar ⊆ V. Let
PT = {P (a0), P (a1), . . . , P (aL)} ⊆ P be a collection of distributions such that (1) ∀ l ∈ [L],
T = Perf[I(a0)] ⊆ Perf[I(al)] 14; (2)

⋃
l∈[L] ∆Q[I(al), I(a0),T, GS ] = Vtar; (3) there exists

{a′1, . . . , a′d′} ⊆ {a1, . . . , aL} such that for all V tar
i ∈ Vtar, V tar

i ∈ ∆Q[I(a
′
i), I(a0),T, GS ],

where d′ = |Vtar|. Then, Vtar is ID w.r.t V\Vtar.

Prop. 3 disentangles target variables Vtar (as a union of ∆Q sets) from canceled variables according
to Eq. (3). To illustrate, it considers to find a collection of L distribution {P (a1), . . . , P (aL)} to com-
pare with the baseline P (a0) such that (1) the perfect intervention variables sets of {I(a1), . . . , I(aL)}
contain the perfect intervention set of the baseline I(a0), (2) the union of ∆Q is equivalent to Vtar,
and (3) each V tar

i changes at least once. Then, Vtar can be ID wrt V\Vtar.

Example 4. (Ex. 3 continued.) Suppose P = {P (1), P (2), P (3), P (4)} with intervention targets
I(1) = {}Π1 , I(2) = {V2}Π1 , I(3) = {V3}Π1 , I(4) = {V1}Π1 . Consider Vtar = {V1, V2, V3} and
Ven = V\{V1, V2, V3} = {V4}. Comparing {I(2), I(3), I(4)} with the baseline I(1), the perfect
intervention variables are T = Perf[I(1)] = {}. Then we have ∆Q sets: {V1, V2, V3}, {V1, V2, V3}
and V1. Thus, these three comparisons satisfy the three conditions in Prop. 3. Then Vtar is ID w.r.t
Ven by Prop. 3. See Appendix Ex. 17 for a derivation.

According to Prop. 3, a disentanglement corollary leveraging the comparison of interventions and
observational distributions can be derived.
Corollary 1 (ID intervened variables). Given an observational distribution and L distributions
resulting from interventions on the same target W but with different mechanisms (in the same domain),
if L ≥ |Pa+W ∪W|, Pa+W ∪W is ID w.r.t V\{Pa+W ∪W}, where Pa+W = ∪Wi∈WPa+Wi

.

The second result disentangles variables within ∆Q sets.
Proposition 4 (ID of variables within ∆Q sets). Consider the variables Vtar ⊆ V,PT that satisfies
conditions (1) in Prop. 3 and ∆Q(al),(a0) = Vtar, for l ∈ [L]. For any pair of Vi, Vj ∈ Vtar such
that Vi ⊥⊥ Vj |Vtar\{Vi, Vj} in GT(V

tar), Vi is ID w.r.t. Vj if L ≥ 2|Vtar| + δ ̸⊥, where δ ̸⊥
is the number of pair Vk, Vr ∈ Vtar such that Vk and Vr are connected given Vtar\{Vk, Vr} in
GT(V

tar).

Prop. 4 disentangles target variables Vi and Vj both in ∆Q sets. To illustrate, consider a set of
distributions that satisfies conditions (1) as Prop. 3. This proposition suggests that if (1) Vi, Vj ∈ Vtar

are conditionally independent given all other variables in Vtar, (2) L is not smaller than 2|Vtar|+δ ̸⊥,
then Vi can be disentangled from Vj .

Example 5. Suppose LSD GS is a collider graph shown in Fig. 4(b). Suppose the intervention
targets are Ψ = {{}Π1 , {}Π2 , {}Π3 , {}Π4 , {}Π5}, which means that observational distributions
are available in each domain. Consider T = {}. Let Vtar = {V1, V3}. We have V1 ⊥⊥ V3 in
G(V1, V3). Based on Def. 3.1,∆Q[I(j), I(1),T, GS ] = {V1, V3} for j = 2, 3, 4, 5. Then the number
of distributions used for comparing (i.e., four) is not smaller than the required (2× 2 + 0), which
means V1 is ID w.r.t. V3 and V3 is ID w.r.t. V1 by Prop. 4. See App. Ex. 18 for a derivation.

With these existing disentanglements from Props. 3 and 4, the following Proposition considers an
inverse direction, which identifies canceled variables w.r.t. ∆Q sets 15.
Proposition 5 (ID of canceled variables w.r.t. ∆Q sets). Suppose Ψ contains perf(T). Given
V\V tar is ID w.r.t. a single variable V tar, V tar is ID w.r.t. V\V tar if V tar ⊥⊥ V\V tar in GT.

14Recall we use the notation Perf[I] to denote that all variables that have perfect interventions on I.
15Recall that ID is one-way. ID of Vi wrt Vj does not imply Vj is ID wrt Vi.
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Algorithm 1 CRID: Algorithm for determining causal representation identifiability - GS is the
LSD; Ψ is the intervention target sets; GV,V̂ is the output bipartite graph (i.e. CDM).

Input: GV, and intervention target sets Ψ.
Output: CDM GV,V̂

1: GV,V̂ ← FullyConnectedBipartiteGraph(V, V̂) ▷ Initialize GV,V̂ with Alg. F.2
2: while GV,V̂ is updated in the last epoch do
3: Perf = {T1,T2, . . . ,Ts} ← Ψ ▷ Get perfect intervention variables sets.
4: for all T ∈ Perf do
5: Ψperf

T ← Ψ ▷ Collect intervention targets that contain hard intervention variables T
6: for all I ∈ Ψperf

T such that Perf[I] = T do ▷ Iterate intervention targets as the baseline
7: Q = {Q1, . . . ,Q|ΨT\I|}, where Qk ← ∆Q[J(k), I,T, GS ] ▷ Construct ∆Q sets.
8: for all Q such that Q =

⋃
Ql∈Q Ql ⊂ V do ▷ Iterate the union of ∆Q factors

9: GV,V̂ ← Dis∆QFromCancel(Q, GV,V̂, GT,Ψ
perf
T , I,Q) ▷ Alg. F.3, Prop. 3

10: GV,V̂ ← DisWithin∆Q(Q, GV,V̂, GT,Ψ
perf
T , I,Q) ▷ Alg. F.6, Prop. 4

11: for all T ∈ Perf do
12: GV,V̂ ← DisCancelFrom∆Q(GV,V̂, GT) ▷ Alg. F.8, Prop. 5

13: return GV,V̂

V1

V2

V3

V̂1

V̂2

V̂3

(a) Initialization.

V1

V2

V3

V̂1

V̂2

V̂3

(b) 1st epoch, Step 11.

V1

V2

V3

V̂1

V̂2

V̂3

(c) 1st epoch, Step 14.

V1

V2

V3

V̂1

V̂2

V̂3

(d) 2nd epoch, Step 11.

Figure 5: Process of removing edges from CDM GV,V̂ using Alg. 1 in Ex. 6. (d) is the final output.

To illustrate, Prop. 5 states: if V\{V tar} is already disentangled from V tar, then V tar is ID wrt
V\{V tar} if a perfect intervention on T exists to separate V tar and V\{V tar} in GT. Prop. 5 does
not compare distributions but relies on existing disentanglements. See Ex. 19 for details.

4 Algorithmic Disentanglement of Causal Representations

In this section, we develop an algorithmic procedure for determining whether Vtar and Ven are
disentangleable given the LSD GS and interventions sets Ψ. The whole algorithm CausalRepresen-
tationID (CRID, for short) is described in Alg. 1. We start by introducing a bipartite graph GV,V̂,
called Causal Disentanglement Map (CDM) (which was informally shown in Fig 2 (right)). In words,
the absence of the edge Vi ̸→ V̂j implies Vj is ID w.r.t Vi. If each V̂i is only pointed by Vi, then we
have full disentanglement of V. If V ⊂ Vi points to V̂i , then we have partial disentanglement of Vi.

CRID proceeds by first constructing the fully connected CDM in Step 1. In each iteration, the hard
intervention set T and the baseline intervention target set I (Steps 4 and 6) are enumerated. For each
T and baseline, all ∆Q sets are constructed based on Def. 3.1 and put into a collection Q (Steps 7).
After the union of ∆Q sets (denoted as Q) is chosen (Step 8) iteratively, Props. 3 and 4 are leveraged
in two procedures (Step 9 and 10) to check the identification of Q w.r.t. V\Q and the identification
within Q. The disentanglements in CDM at the current stage are leveraged to reduce the required
number of distributions (see details in Alg. F.3 and F.6). At the end of the iteration, Prop. 5 is used
for identifying V\Q from Q leveraging current disentanglement in CDM (Step 11-12).

Example 6. (Ex. 1 continued.) Consider the selection diagram (Fig. 2) and the set up in Ex. 1
The perfect intervention variable sets are the empty set {} and {V2}. First, T is chosen as {} and
then Ψperf

T = Ψ. Choosing the baseline I = I(1), the ∆Q collection: Q = {Q1,Q2,Q3} =
{{V2, V3}, {V2, V3}, {V1, V2}}. We consider the Q as {V2, V3} and {V1, V2}. For Q = {V2, V3},
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(a) (b) (c) (d)

CRID Output

Disentangled

Entangled

Figure 6: Correlation of learned latent representations with true latent variables from Fig. 4.

leveraging Step 9 (Prop. 3), the edges from V1 to {V̂2, V̂3} are removed (See Ex. 15 for details) and
Step 10 (Prop. 4) does not remove further edges. However, for Q = {V1, V2}, no edge can be
removed, since it at least needs two comparisons for claiming disentanglement.

Choosing {}Π2 or V Π2
3 or V Π1,do

2 as the baseline, no new Q can be constructed, so no further edges
are removed. When T is chosen as {V2}, the comparison does not work since no other distribution is
available. At the end of this iteration, with the fact that {V2, V3} is ID wrt V1 and V1 ⊥⊥ {V2, V3}
in GV2

, Step 12 (Prop. 5) removes edges from V2 to V̂1 and V3 to V̂1. In the second iteration, the
algorithm repeats the choice of T and the baseline. At this iteration, for Q = {V1, V2}, the edge
from V3 to V̂2 is removed since V3 to V̂1 has already been removed in CDM and only 1 comparison is
needed now. At the end of this epoch no further can be removed by Alg. F.8. In the third epoch, GV,V̂

is not updated and the process of CDM returned is shown in Fig. 5.

The following theorem indicates the soundness of CRID.
Theorem 1 (Soundness of CRID). Consider a LSD GS and intervention targets Ψ. Consider the
target variables Vtar and Ven ⊆ V\Vtar. If no edges from Vtar points to V̂en in the output causal
disentanglement map (CDM) from CRID, GV,V̂ , then Vtar is ID w.r.t Ven.

5 Experiments

We corroborate the theoretical findings through simulations and MNIST dataset. For full details, see
Appendix Section G. In simulations, we consider LSDs shown in Fig. 4 with different collection of
distributions P = {P (k)(X;σ(k))}Kk=1 and the results are presented in Fig. 6. For the evaluation, we
follow a standard evaluation protocol in prior work [18], where we take the latent representations
V̂ and compute their mean correlation coefficient (MCC) wrt the latent V. We compare MCC with
what is expected from CRID. Fig. S9 shows the full MCC comparisons of V and V̂.

Chain Graph Fig. 4(a). Fig. 6(a) shows ID of V3 wrt {V1} using input distributions P with interven-
tions Σ = {σ{}, σ

{1}
3 , σ

{2}
3 } because MCC(V̂3, V1) is relatively low compared to MCC(V̂3, V3),

which is consistent with CRID. The ID results of [21] states V3 would still be entangled with V1

because V1 ∈ Anc(V3). Fig. 6(b) shows ID of V1 wrt {V2, V3}. Interestingly, we do not even have to
intervene on V1 to obtain full disentanglement.

Collider Graph Fig. 4(b). Fig. 6(c) shows V1 and V3 are ID wrt V2 and each other because
MCC(V̂3, V3) > MCC(V̂3, Vi) and MCC(V̂2, V2) > MCC(V̂2, Vi), which is consistent with
CRID. There are distributions from four domains that have a change-in-mechanism on {V1, V3}
(represented by the S-node). According to [22], since V1 and V3 are adjacent in the Markov Network,
V1 and V3 are not disentangleable.

Non-Markovian Graph Fig. 4(c). Fig. 6(d) shows V3 is ID wrt {V1, V2, V4} with interventions Σ =
{do{1}(V3), do

{2}(V3)}, which is consistent with CRID. No prior results achieve disentanglement
with confounding among V.

6 Conclusions

This work introduces theory and a practical ID algorithm for determining which latent variables are
disentangleable from a given set of assumptions in the form of a LSD, and input distributions from
heterogenous domains. This brings us one step closer to building robust AI that can reason causally
over high-level concepts when only given low-level data.
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A Background and Assumptions

A.1 Notations

Symbol Description
[d] {1, 2, . . . , d}
G Latent Causal Graph (LCG) over V induced by anM
M An ASCM (Def. 2.1) describes the data generation process of d latent

variables V ∈ Rd and an observed high-dimensional mixture X ∈ Rm.

G Latent Causal Diagram (LCG) over V induced by anM

Pa(V),PaV The union of parents of V and V itself

C(V) C-Component of V (Def.6.2).

M A set of N ASCMs ⟨M1, . . . ,MN ⟩ (shared mixing function fX)
relative to domains Π = ⟨Π1, . . . ,ΠN ⟩

GS Latent Selection Diagram (LSG, Def 2.2) induced by M

Σ = {σ(k)}Kk=1 A set of K >= N interventions applied to M. Each intervention σ(k)

can be idle, perfect, or other soft interventions that do not alter the
structure of G

ΠΣ = {Π(k)}Kk=1 The corresponding domains of interventions Σ. σ(k) is applied in Π(k)

Ψ = {I(k)}Kk=1 The collection of intervened target sets of the intervention collection Σ.

I(k) = {V Π(k),{b},t
i , . . . } The intervention target set of σ(k)

{b} The mechanism of intervention. Default as interventions have different
mechanisms if b is ignored. Also, the mechanism od different variables
are different. The mechanism of V {1}

1 is not equal to V
{1}
2 .

t Whether an intervention is perfect or not. t = do means it is perfect.
Default as not perfect if t is ignored.

Perf[I(k)] Variables that are perfectly intervened on in σ(k).

Ψperf
T The collection of intervention target sets that contain a perfect

intervention on T.

P = {P (k)}Kk=1 Set of distributions induced by M resulting from collection of
interventions Σ. P (k) = PΠ(k)

(X;σ(k))

PaT+(V),PaT+
V Extended parents from factorization Eq. (1).

∆V[I(j), I(k), GS ] Changed variable sets constructed in Proposition 2. For short, ∆V or
∆V(j),(k) when index is needed.

Ṽ The C-Component of ∆V[I(j), I(k), GS ]. The factor P (vi | paT+) for
Vi ∈ V\Ṽ remains invariant in Eq.( 2).

∆Q[I(j), I(k),T, GS ] ∆Q set defined in Def. 3.1. Variables in ∆Q set remains from Eq.( 2)
to Eq.( 3). For short, ∆Q or ∆Q(j),(k) when index is needed.

Canceled variables The complement of ∆Q, which is V\∆Q.

Figure S1: Table of Notations
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We gave an example to illustrate the notation of a collection of intervention target sets Ψ and each
intervention target set I(k).
Example 7. Let an intervention target collection be

Ψ = {I(1) = {{}Π1}, I(2) = {V Π1,{1}
1 }, I(3) = {V Π2,{2}

1 , V
Π2,{1},perf
2 }, I(4) = {V Π2,{1}

1 , V Π2,perf
2 }}

(4)
In words, Ψ indicates 4 different interventions Σ = {σ(k)}4k=1:
σ(1); an idle intervention is applied resulting in an observational distribution in the domain Π1.
σ(2); a soft intervention with mechanism {1} is applied to V1 in domain Π1.
σ(3); an intervention is applied to V1 and V2 in domain Π2 where the mechanism of V1 is different
from σ(2) and the intervention on V2 is perfect.
σ(4); an intervention is applied to V1 and V2 in domain Π2 where the mechanism of V1 is the same
with σ(2) and the mechanism of V2 is different from σ(3).
Perf[I(3)] = {V2} means that σ(3) perfectly intervenes on {V2}.
Ψperf

V2
= {I(3), I(4)} means that the interventions targets that contain perfect interventions on V2.

Ψ{} = Ψ. Also, the mechanism of V Π1,{1}
1 is different from the mechanism of V Π2,{1}

2 since
variables are different.

A.2 Assumptions and Remarks

In this paper, we make a few key assumptions about interventions and the differences in domains.
We leverage many similar assumptions to the setting proposed in the literature related to causal
representation learning, and handling of multiple domains and interventions [21, 22, 32, 51]. We
discuss those assumptions and their implications here.
Remark 1 (Mixing is invertible). As a consequence of Def. 2.1, the mixing function fX is invertible,
ensuring that latent variables are uniquely learnable [9, 10, 17, 64].

The mapping from generative factors V to high dimensional mixture X is a one-to-one mapping.
Consider images. In one direction, V constructs the image through a mixing tool fX (such as a
camera lens). In the reverse direction, these generative factors V can be uniquely labeled through
f−1
X . We take images example in Sec. D.1 as an example. The generative factors Gender,Age and
Haircolor are directly expressed through pixels in images. Given an image, the values of these
generative factors are uniquely determined. This assumption is commonly used in non-linear ICA
and representation learning literature [9, 10, 17, 64].
Remark 2 (Confounders are not part of the mixing function). According to Def. 2.1, latent exogenous
variables U influence the high-dimensional mixture X only through latent causal variables V, so
unobserved confounding U does not directly affect the mixing function.

An example of when this can occur in the real world is when modeling high-dimensional T1
MRI scans. Let the LCG comprise of Drug Treatment → Outcome, but they are confounded by
socioeconomic status (Drug Treatment↔ Outcome). The drug treatment and outcome are assumed
to be visually discernable on the MRI. However, socioeconomic status does not directly impact how
the MRI appears, except through how it impacts the drug treatment efficacy or outcome. In addition,
in EEG data, sleep quality and drug treatment may influence EEG appearance, while socioeconomic
status may confound sleep and drug treatment but not directly affect EEG. This idea is also present in
prior work, such as nonlinear ICA, where independent exogenous variables Ui each point to a single
Vi. [7].
Remark 3 (Shared causal structure). As a consequence of Def. 2.2, each environment’s ASCM
shares the same latent causal graph, with no structural changes among latent variables 16.

This means that the S-nodes will not represent structural changes such as when Vi has a different
parent set across domains 17.

16The assumption that there are no structural changes between domains can be relaxed and is considered in
the context of inference when causal variables are fully observed, as discussed in [33]. This is an interesting
topic for future explorations, and we do not consider this avenue here.

17The assumption that there are no structural changes between domains can be relaxed and is considered in
the context of inference, as discussed in [33]. This is an interesting topic for future explorations, and we do not
consider this avenue here.
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Remark 4 (Mixing function is shared across all domains). By Def. 2.1, the mixing function fX is the
same for all ASCMsMi ∈M, enabling cross-domain analysis. If the mixing function varied across
distributions, the latent representations would not be identifiable from iid data alone [9, 51].

Sharing of the mixing function is needed for the multi-domain setting because if everything may
change across environments, the domains can only be analysed in isolation, and thus unable to
leverage the changes (and similarities) across domains.

Assumptions for Interventions We discuss assumptions related to interventions here.
Assumption 1 (Soft interventions without altering the causal structure). Interventions do not change
the causal diagram. Hard interventions cut all incoming parent edges, and soft interventions preserve
them [59]. However, more general interventions may arbitrarily change the parent set for any given
node [59]. We do not consider such interventions and leave this general case for future work.

This assumption precludes any soft interventions that modify the graphical structure of the causal
diagram. This work does allow both perfect interventions that cut all incoming parent edges, and
soft interventions that preserve all parent edges. However, more general interventions may arbitrarily
change the parent set for any given node [59]. We do not consider such interventions and leave this
general case for future work. Note Assumption 1 does not mean that interventions cannot occur with
the same mechanism across domains. For example, consider two hospitals Π1 and Π2. Treating
epilepsy in each of these hospitals can have outcomes that differ vastly due to the differences in
domains [38, 39, 41]. This is represented graphically in GS with S1,2 → outcome. However, if a
neurologist who controls every aspect of his treatment procedure treats patients in both hospitals
herself for the purposes of an experiment, then the outcomes will not differ in distribution. This is
represented graphically as S1,2 ̸→ outcome with the S-node being removed from the "outcome"
variable. Thus if a pair of interventions occurring in different domains are deemed to have the same
mechanism, then the S-node (if one is pointing to the intervened variable) is removed when comparing
these two distributions.

Another assumption we make is that all interventions have known targets.
Assumption 2 (Known-target interventions). All interventions occur with known targets, reducing
permutation indeterminacy for intervened variables.

That is, for each interventional distribution we have, we know the interventions that occurred and at
which node(s) they occurred. This assumption allows us to reduce the permutation indeterminacy
that would arise if we did not know the intervention targets. In this work, we also are not concerned
with permutation indeterminacy for variables we do not necessarily intervene on because we will
mostly be concerned with disentanglement wrt the intervened variables (see Appendix Section A.4).
It would be interesting for future work to consider unknown intervention targets.

Assumptions for Distributions In Sec. 2, we discuss that each distribution resulting from an
intervention is sufficiently distinct from another distribution Assumption 4. Here we formally define
and illustrate what is "change sufficiently".
Assumption 4 (Changing Sufficiently). Consider a collection of ASCMs M and a set of distribution
P induced by M from a collection of interventions Σ. Let the LSD induced by M be GS . Let
PT = {P (a0), P (a1), . . . , P (aL)} ⊆ P be any collection of distributions such that T = do[I(a0)] ⊆
do[I(al)] for l ∈ [L], meaning for the baseline distribution all perfect interventions must be exactly
on T, and all other distributions must at least contain T in their perfect interventions. Let Q =⋃

l∈[L] ∆Q[I(al), I(0),T, GS ] (Def. 3.1). It is assumed:

1. The probability density function of V is smooth and positive, i.e. p(al)
T (v) is smooth and

p
(al)
T (v) > 0 almost everywhere.

2. First-order discrepancy. If there exists {a′1, . . . , a′|Q|} ⊆ {a1, . . . , aL} such that ∀ Vq ∈
Q, Vq ∈ ∆Q[I(a

′
q), I(a0),T, GS ], then {ω1(v, a1),ω1(v, a2), . . . ,ω1(v, aL)} are linearly

independent, where

ω1(v, al) =

(
⊕ (

∂ log p
(al)
T (v)− log p

(a0)
T (v)

∂vq
)Vq∈Q

)
(5)
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3. Second-order discrepancy. Let a set E consist of pairs of (Vp, Vq) such that (Vp, Vq) appears
at least in one ∆Q and Vp is connected with Vq conditioning on V\{Vp, Vq} in GT (Q).
Namely,

E ={ϵj = {Vk, Vr} |
(i) ∃al, {Vp, Vq} ∈ ∆Q(al),(a0);

(ii) Vp is d-connected to Vq conditioned on Vtar\{Vp, Vq} in GT(V
tar)},

(6)

If there exists {a′1, . . . , a′2|Q|+|E|} ∈ {a1, . . . , aL} such that ∀ Vq ∈ Q, Vq ∈
∆Q(a′

i),(a0)], Vq ∈ ∆Q(a′
|Q|+i),(a0) and for all ϵj ∈ E, ϵj ⊆ ∆Q(a′

2|Q|+j),(a0), then
{ω2(v, a1),ω2(v, a2), . . . ,ω2(v, aL)} are linearly independent, where

ω2(v, al) =

(
⊕ (

∂ log p
(al)
T (v)− log p

(a0)
T (v)

∂vq
)Vq∈Q,

⊕ (
∂2 log p

(al)
T (v)− log p

(a0)
T (v)

∂v2q
)Vq∈Q,

⊕ (
∂2 log p

(al)
T (v)− log p

(a0)
T (v)

∂vpvq
)(Vp,Vq)∈E(GT (Q))

)
(7)

At a high level, this assumption will be naturally satisfied if the ASCMs and interventions are
randomly chosen and only will be violated if the probability density of P (j) and P (k) are fine-tuned
to each other [51]. This kind of assumption is generally included in the causal representation learning
literature, such as the "genericity" assumption [51], the "interventional discrepancy" assumption [21],
and the "sufficient changes" assumption [10, 22].

To illustrate, the assumptions contain two linear independence constraints. Specifically, the first-order
and second-order partial derivatives of the log discrepancy from P (al) to P (a0) should be independent
of each other. Specifically, The two conditions are made because of necessity, since the linear
independence constraints can hold only if these conditions hold. The following example illustrates
the necessity of the first-order condition:

Example 8 (Distributions do not change sufficiently). Consider ∆Q obtained after comparisons as

∆Q(1),(0) = {V1},∆Q(2),(0) = {V1},∆Q(1),(0) = {V1, V2, V3}, (8)

Let Q = {V1, V2, V3}. We have

log p
(1)
T (v)− log p

(0)
T (v)

∂v2
= 0 (9)

Since V2 ̸∈ ∆Q(1),(0). Similarly, we know

ω1(v1, v2, v3, 1) = (
∂ log p

(1)
T (v)− log p

(0)
T (v)

∂v1
, 0, 0)

ω1(v1, v2, v3, 2) = (
∂ log p

(2)
T (v)− log p

(0)
T (v)

∂v1
, 0, 0)

ω1(v1, v2, v3, 3) = (
∂ log p

(3)
T (v)− log p

(0)
T (v)

∂v1
,
∂ log p

(3)
T (v)− log p

(0)
T (v)

∂v2
,
∂ log p

(3)
T (v)− log p

(0)
T (v)

∂v3
)

(10)

And this implies ω1(v1, v2, v3, 1),ω1(v1, v2, v3, 2),ω1(v1, v2, v3, 3) are for sure not linearly inde-
pendent.

On the other perspective, violating these assumptions is like stating the probability densities are
fine-tuned to each other [51]. Here we give an example of how this assumption can be violated.
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Domain Observational Interventional
Π1 P 1

{}(X) P 1
vi(X) P 1

vj (X) P 1
vi,vj (X) . . .

Π2 P 2
{}(X) P 2

vi(X) P 2
vk
(X) P 2

vi,vk
(X) . . .

...
...

...
...

...
...

ΠN PN
{}(X) PN

vl
(X) PN

vm(X) PN
vl,vj

(X) . . .
Table S1: Possible distributions observed for any given causal representation learning task -
Each domain Π = {Π1,Π2, ...,ΠN} may contain observational and interventional distributions over
latent variables V, which are mixed via fX to generate X ∈ Rm. The first row and column are
studied in the existing literature under the lens of the multi-domain intervention exchangeability
assumption [32]. Prior work also requires distributions across the entire column (i.e. many domains
must be observed), or entire row (i.e. an intervention per latent variable). This paper discusses a more
general disentangled representation learning setting when an arbitrary combination of distributions
from interventions and domains can be input (i.e. any combination of cells in yellow, and green).

Example 9 (Distributions do not change sufficiently). Consider intervention targets

Ψ = {I(1) = {{}Π1}, I(2) = {V Π1,{1}
1 }, I(3) = {V Π1,{2}

2 }, I(4) = {V Π1,{1}
1 , V

Π1,{2}
2 }} (11)

Choosing I(1) as the baseline, T = {}. The corresponding ∆Q sets are {{V1}, {V2}, {V1, V2}}. Let
Q be the union of ∆Q sets, which is {V1, V2}. One can verify

ω1(v, 2) + ω1(v, 3) = ω1(v, 4) (12)

since I(4) is designed as a combination of I(2) and I(3).

We provide the following Lemma to justify Assumption 4 formally.
Lemma 1. Assumption 4 almost surely holds.

A.3 Domains vs Interventions

In previous studies, there has been a tendency to conflate the notions of interventions and domain shifts
[65–69]. However, it is essential to recognize their distinctiveness, particularly when considering
various real-world examples spanning different scientific domains that utilize observational and
interventional data. The differentiation between interventions and domains is not only conceptually
significant but also holds implications for causal inference and the characterization of corresponding
causal structures as noted by [32]. Moreover, it is crucial to avoid conflating these qualitatively
distinct concepts of interventions and domains, as highlighted in transportability analysis [62]. Pearl
and Bareinboim have introduced clear semantics for (S) nodes (environments), presenting a unified
representation in the form of selection diagrams [33, 35, 36].

By recognizing these differences, this work leverages any combination of observational and/or
interventional data arising from multiple domains to present a general approach to disentanglement
learning compared to prior work (see Table S1). Prior work generally considered either interventions
in a single domain (top row in Π1), where there must be an intervention per latent variable [14, 21], or
observational distributions from many domains Π1,Π2, ...,ΠN (first column under "Observational").
However, this paper considers a general setting where we may have an arbitrary collection of
interventions, or observations from any combination of domains (green section).

Here, we illustrate some examples of the CRID algorithm using distributions from multiple domains.
Example 10 (Example illustrating CRID with domains). Consider the LSD shown in Fig. 4(a).
We have the following distributions P = {P (1), P (2)} = {PΠ1(X), PΠ2(X) from interventions
Σ = {σ(1), σ(2)} = {{}, {}}. Applying CRID algorithm, we can determine that V1 is ID wrt V2 and
V3.

This example illustrates that observational data in two domains can help disentangle a root variable
(V1) from all its descendants.
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Example 11 (Example illustrating CRID with interventions across domains with different mech-
anisms). Consider the LSD shown in Fig. 4(a). We have the following distributions P =
{P (1), P (2)} = {PΠ1(X), PΠ2(X) from interventions Σ = {σ(1), σ(2)} with targets Ψ =
{{V2}Π1 , {}Π2 . Applying CRID algorithm, we can determine that V2 and V1 is ID wrt V3.

This example demonstrates that when comparing observational data from domain Π1 with in-
terventional data from a different domain Π2, the only invariant factor is P (V3|V2), with
∆V [{{V2}Π1 , {}Π2 , GS ] = {V1, V2}. The canceled variable is V3, and thus we achieve our identifia-
bility result.
Example 12 (Example illustrating CRID with interventions across domains with the same
mechanisms). Consider the LSD shown in Fig. 4(a). We have the following distributions
P = {P (1), P (2), P (3)} from interventions Σ = {σ(1), σ(2), σ(3)} with targets Ψ =

{{V [i]
1 , V2}Π1 , {}Π2 , {V [i]

1 }Π2 . Applying CRID algorithm, we can determine that V1 is ID wrt
{V2, V3}, and V2 is ID wrt {V3}.

Even with an intervention that changes both V1, V2. When comparing the distributions P (1) and P (3),
the P (V1) term becomes an invariant factor because the intervention has the same mechanism. This
removes the possible difference encoded by the S-node on V1 between domains Π1,Π2.

These examples further demonstrates the importance of distinguishing domains and interventions
because a difference in mechanism is present when comparing all distributions between a pair of
domains, Πi ̸= Πj . This in principle, results in additional variables in the ∆Q set. However,
interventions may allow us to remove variables from this set by increasing the number of invariant
factors.

A.4 Permutation Indeterminancy

In the context of causal representation learning, permutation indeterminacy is a significant challenge
that arises when attempting to identify latent variables from observed data. This phenomenon occurs
when the ordering of latent variables is not uniquely determined, leading to multiple equivalent
representations (i.e. permutations of the latent variables) that can explain the observed data equally
well.

In the earliest results of disentangled representation learning, linear ICA was known to be identifiable
only up to permutation and scaling indeterminacies [6]. Permutation indeterminacy is still present in
nonlinear ICA [7], since the independent components may be permuted arbitrarily.

Interestingly, when generalizing the problem to the Markovian setting where latent variables have
causal structure (i.e. edges in a causal graph), permutation indeterminacy can be reduced to a graph
isomorphism in certain cases. That is, latent variables are exchangeable with other latent variables that
preserve the topological ordering of the latent causal graph (rather than permuted with any arbitrary
latent variable) [13, 22, 51]. When the interventions occur with known targets on the latent space,
and intervention occurs uniquely on every latent variable, then there is no permutation indeterminacy
[21].

In this work, we assume intervention targets are known, but do not necessarily occur on all latent
variables, and they may occur on multiple variables at once. For variables that are intervened on
uniquely (i.e. one intervention applied on only that variable), there is no permutation ambiguity. For
variables that are intervened on in groups, or not intervened on at all, there still exists permutation
ambiguity:

1. (Grouped variables) These variables are all intervened on in the same group. In the context
of our paper, these variables are consistently in the same ∆Q set. For example, consider the
following LCG V1 → V2 ← V3. If we have distributions arising only from interventions
on {V1, V3} and the observational distribution, and assume the learned representation is
fully disentangled, then the learned representation still has a permutation indeterminacy wrt
{V1, V3}. That is, V̂1 could be the representation for V1, or V3 and similarly for V̂3 (See why
permutation can hold for details in Example 18).

2. (Non-intervened variables) These variables do not contain any interventions. Then there is
still permutation ambiguity among these variables. However, instead of a graph isomorphism
ambiguity, these variables form a subgraph isomorphism problem because there may be other
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variables that change across distributions (i.e. via interventions, or changes in domains),
which are not permutable with respect to these invariant variables.

Specifically, the identifiability we talk about (Def. 2.3) is considered after a subgraph isomor-
phism permutation. For example, in the collider example setting where permutation can happen
between V1 and V3. The "V1 is ID w.r.t {V2, V3}" should implies there exists a function τ such that
π(V)[V1] = τ(π(V)[V1]), where π(V)[Vi] means variable Vi after the permutation on V and π
denotes a permutation only in this text. In our paper, we are primarily concerned with disentangle-
ment and determining if the learned representation is disentangled in some general sense, and the
permutation part is out of our scope.

B CRID Algorithm Details

Here, we provide additional pseudocode for the CRID Alg. 1.

First, the following algorithm illustrates how to initialize a fully connected bipartite graph GV,V̂. In

the initial GV,V̂, the true underlying factors V points to representations each V̂i ∈ V̂, which means
each variable Vi ∈ V is entangled with all other variables.

Algorithm F.2 FullyConnectedBipartiteGraph: Initialization step - Initialize a fully connected
bipartite graph.

Input: V, V̂
Output: GV,V̂

1: Initialize an empty graph GV,V̂

2: for Vi in V do
3: for Vj in V̂ do
4: Add edge (Vi, Vj) to GV,V̂

Then, after constructing Q from comparisons of distributions, the Alg. F.3 illustrates the details to
check whether V\Q can be disentangled from Q according to Proposition 3. To illustrate, each
variable Z ∈ V\Q is checked one by one. The variables that have already been disentangled
from Z are collected in the list Mem through procedure CheckMemoize. Next, check if there is
a sub-collection of Q that satisfy the [1-3] conditions in Proposition 3. The checking procedure is
shown in Alg.F.5. If conditions are satisfied the edges from Z to Q̂ are removed to demonstrate
disentanglement. Based on the Lemma 2, the condition [3] in Prop. 3 can be reduced to a weaker
condition [4] leveraging existing disentanglements in CDM.

Lemma 2. Consider variables Vtar ⊆ V and Z ∈ V\Vtar. Suppose Mem = {Vj ∈ Vtar |
Vj is ID w.r.t. Z}. Consider, PT and its corresponding intervention targets that hold conditions [1-2]
in Prop. 3. If the new version of the condition [3] is also satisfied:

[4] there exists {a′1, . . . , a′|Vtar|} ⊆ {a1, . . . , aL} such that for all V tar
i ∈

Vtar\Mem, V tar
i ∈ ∆Q[I(a

′
i), I(a0),T, GS ].

then Vtar is ID w.r.t Z.

To illustrate, the above lemma indicates not all variables in Vtar needed to be covered uniquely.
Variables that have been already disentangled (in Mem) do not need to be considered.

Example 13. Consider the LSD GS and intervention targets I(1) = {} and I(4) = {V Π1,do
2 }.

Comparing I(4) and I(1) taking T = {}, ∆Q = {V1, V2}. Based on Prop. 3, we cannot get V2 is ID
w.r.t V3 since to cover V1 and V2 separately, at least two ∆Q sets are needed.

Now assume it is known that V1 is ID w.r.t. V3, namely Mem = {V1}. ∆Q sets only need to cover
V2 and does not need to cover V1 from condition [4] in Lemma 2. Then V2 is ID w.r.t. V3.
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Algorithm F.3 Dis∆QfromCancel - Check whether canceled variables V\Q can be disentangled
from the LQ factors Q. GV,V̂ is the current bipartite graph; GT is the LCG after the perfect

intervention on T; Ψperf
X is the intervened sets that contains perfect interventions on X; I ∈ Ψperf

T is
the chosen baseline distribution; Q is the collection of ∆Q sets after comparing intervention targets
J ∈ Ψperf

X \I with the baseline.

Input: Q, GV,V̂, GX,Ψperf
X , I,Q

Output: GV,V̂

1: for all Z ∈ V\Q do
2: Mem← CheckMemoize(GV,V̂, Z,Q) ▷ Variables in Q has been already ID w.r.t. Z.
3: if CheckConsition3(Q,Q,Mem) then ▷ Check conditions in Prop. 3 and Lem. 3
4: remove edge Z → Q̂ in GV,V̂

5: return GV,V̂

Algorithm F.4 CheckMemoize: Memoization step - The variables in Q is ID w.r.t Z already.

Input: GV,V̂ , Z, Q
Output: Mem

1: Mem← {}
2: for all V̂ ∈ Q do
3: if Z → V̂ ̸∈ GV,V̂ then
4: Mem.append(V )

5: return Mem

Algorithm F.5 CheckCondition3: Check conditions in Proposition 3 and Lemma 2. Q is the
collection of ∆Q sets; Q are target variables;Mem are variables in Q have already been disentangled.

Input: Q, Q, Mem
Output: True or False

1: L← {}
2: for Qk ∈ Q do
3: if Qk ⊆ Q then
4: L.append(Qk)

5: Qre = {Q1, . . . , Qd′} ← Q\Mem, d′ ← |Qre|
6: if Q1 ∈ L1, Q2 ∈ L2, . . . , Qd′ ∈ Ld′ after a permutation of L then
7: return True
8: return False
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Algorithm F.6 DisWithin∆Q - Check the disentanglement of variables within Q. GV,V̂ is the

current bipartite graph; GT is the LCG after the perfect intervention on T; Ψperf
T is the intervened

sets that contains perfect interventions on X; I ∈ Ψperf
T is the chosen baseline distribution; Q is the

collection of ∆Q sets after comparing intervention targets J ∈ Ψperf
X \I with the baseline.

Input: Q, GV,V̂, GT,Ψ
perf
T , I,Q

Output: GV,V̂

1: for for all pair Vi, Vj ∈ Q do
2: if Vi ⊥ Vj | Q\{Vi, Vj} then
3: Memi ← CheckMemoize(GV,V̂, Vi,Q) ▷ Variables in Q is ID w.r.t Vi already.
4: Memj ← CheckMemoize(GV,V̂, Vj ,Q) ▷ Variables in Q is ID w.r.t Vj already.
5: if CheckConsition4(Q,Q,Memi,Memj , GT) then ▷ Check conditions in Prop. 4

and Lem. 3
6: remove edge Z → Q̂ in GV,V̂

7: return GV,V̂

Next, the Alg. F.6 illustrates the details to check whether Vi, Vj ∈ Q such that Vi and Vj are
independent of each other conditioning on other variables in Q can be disentangled according to
Proposition 4. To illustrate, two lists of variables that have already been disentangled from Vi and Vj

are constructed as Memi and Memj respectively through CheckMemoize. Next, check if there
is a sub-collection of Q that satisfy the [1-3] conditions in Proposition 3. The checking procedure
is shown in Alg.F.7. If conditions are satisfied the edges from Z to Q̂ are removed to demonstrate
disentanglement. Based on the Lem. 3, the condition [3’] in Prop. 4 can be reduced to a weaker
condition [4’] leveraging existing disentanglements in CDM.

Lemma 3 (ID of variables within ∆Q sets). Consider variables Vtar ⊆ V. For any pair of
Vi, Vj ∈ Vtar such that Vi ⊥⊥ Vj |Vtar\{Vi, Vj} in GT(V

tar), let Memi be a list of variables in
Q that have been ID w.r.t. Vi and let Memj be a list of qvariables in Q that have been ID w.r.t. Vj .
If there exists PT that satisfies conditions [1-2] in Prop. 3 and the following condition [4’].

[4’] (Enough changes occur across distributions) Let Qre = Vtar\(Memi

⋃
Memj) and

d′ = |Qre|. And

Eij ={ϵj = {Vk, Vr} | i) ∃al, {Vk, Vr} ∈ ∆Q(al),(a0);

ii) Vk is connected toVr conditioning Vtar\{Vk, Vr} in GT(V
tar)

iii) Vk, Vr /∈Memi ∪Memj}
(13)

there exists {a′1, . . . , a′2d′+|E|} ∈ {a1, . . . , aL} such that for all Qi ∈ Qre, Qi ∈
∆Q(a′

i),(a0)], Qi ∈ ∆Q(a′
d′+i

),(a0) and for all ϵl ∈ Eij , ϵl ⊆ ∆Q(a′
2d′+l

),(a0).

, then Vi is ID w.r.t Vj .
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Algorithm F.7 CheckCondition4: Check conditions in Proposition 4 and 3. Q is the collection
of ∆Q sets; Q are target variables;Memi are variables in Q have already been disentangled with
Vi;Memj are variables in Q have already been disentangled with Vj ; GT is the diagram after
removing incoming edge to T.

Input: Q, Q, Memi, Memj , GT
Output: True or False

1: L← {}
2: for Qk ∈ Q do
3: if Qk ⊆ Q then
4: L.append(Qk)

5: E ← {}
6: for {Vk, Vr} ⊆ Q do
7: if (i) ∃L ∈ L such that {Vk, Vr} ⊆ L (ii) Vk is conditionally connected to Vl (iii) {Vk, Vr} ̸⊆

Memi ∪Memj then
8: E.append((Vk, Vr)) ▷ Construct E according to Lem. 3
9: Qre+ = {Q1, . . . , Qd′} ← (Q\(Memi ∪Memj)) ∪ E , d+ ← |Qre|

10: if Q1 ∈ L1, Q2 ∈ L2, . . . , Qd′ ∈ Ld′ after a permutation of L then
11: return True
12: return False

Lastly, we leverage the independence and current disentangled results stored in GV,V̂. Canceled
variables with V\Q can be disentangled with each other according to Proposition 5. The following
algorithm illustrates this step.

Algorithm F.8 Dis∆QFromCancel - Disentangle canceled variables from ∆Q. GV,V̂ is the current
bipartite graph; GT is the LCG after the perfect intervention on T.

Input: Q, GV,V̂, GX

Output: GV,V̂

1: for for all Z such that Z ⊥ V\Z in GT do
2: if there are no edges from V\Z to Z then
3: remove edges from Z to V\Z
4: return GV,V̂
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C Proofs

Here, we provide detailed proofs of theoretical results in the main paper.

C.1 "Distribution Change Sufficiently" - Proof of Lemma 1

We assume "distributions changes sufficiently" in Sec. 2. This assumption is formally defined in
Assumption 4 and will be used as a technique assumption in the proof of propositions in this work.
Lemma 1 provides the justification of this assumption. It suggests Assumption 4 almost surely holds.
We first provide proof here.
Assumption 4 (Changing Sufficiently). Consider a collection of ASCMs M and a set of distribution
P induced by M from a collection of interventions Σ. Let the LSD induced by M be GS . Let
PT = {P (a0), P (a1), . . . , P (aL)} ⊆ P be any collection of distributions such that T = do[I(a0)] ⊆
do[I(al)] for l ∈ [L], meaning for the baseline distribution all perfect interventions must be exactly
on T, and all other distributions must at least contain T in their perfect interventions. Let Q =⋃

l∈[L] ∆Q[I(al), I(0),T, GS ] (Def. 3.1). It is assumed:

1. The probability density function of V is smooth and positive, i.e. p(al)
T (v) is smooth and

p
(al)
T (v) > 0 almost everywhere.

2. First-order discrepancy. If there exists {a′1, . . . , a′|Q|} ⊆ {a1, . . . , aL} such that ∀ Vq ∈
Q, Vq ∈ ∆Q[I(a

′
q), I(a0),T, GS ], then {ω1(v, a1),ω1(v, a2), . . . ,ω1(v, aL)} are linearly

independent, where

ω1(v, al) =

(
⊕ (

∂ log p
(al)
T (v)− log p

(a0)
T (v)

∂vq
)Vq∈Q

)
(5)

3. Second-order discrepancy. Let a set E consist of pairs of (Vp, Vq) such that (Vp, Vq) appears
at least in one ∆Q and Vp is connected with Vq conditioning on V\{Vp, Vq} in GT (Q).
Namely,

E ={ϵj = {Vk, Vr} |
(i) ∃al, {Vp, Vq} ∈ ∆Q(al),(a0);

(ii) Vp is d-connected to Vq conditioned on Vtar\{Vp, Vq} in GT(V
tar)},

(6)

If there exists {a′1, . . . , a′2|Q|+|E|} ∈ {a1, . . . , aL} such that ∀ Vq ∈ Q, Vq ∈
∆Q(a′

i),(a0)], Vq ∈ ∆Q(a′
|Q|+i),(a0) and for all ϵj ∈ E, ϵj ⊆ ∆Q(a′

2|Q|+j),(a0), then
{ω2(v, a1),ω2(v, a2), . . . ,ω2(v, aL)} are linearly independent, where

ω2(v, al) =

(
⊕ (

∂ log p
(al)
T (v)− log p

(a0)
T (v)

∂vq
)Vq∈Q,

⊕ (
∂2 log p

(al)
T (v)− log p

(a0)
T (v)

∂v2q
)Vq∈Q,

⊕ (
∂2 log p

(al)
T (v)− log p

(a0)
T (v)

∂vpvq
)(Vp,Vq)∈E(GT (Q))

)
(7)

Lemma 1. Assumption 4 almost surely holds.

Proof. We will prove the first-order discrepancy and second-order discrepancy almost surely hold,
which means the situations where first-order discrepancy and second-order discrepancy do not hold
have Lebesgue measure 0.

We first consider the first-order discrepancy. Denote {ω1(v, a1),ω1(v, a2), . . . ,ω1(v, aL)} as A.
And every entry in A is

alq =
∂ log p

(al)
T (v)− log p

(a0)
T (v)

∂vq
(14)
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According to Eq. (3), we know log p
(al)
T (v) − log p

(a0)
T (v) is a function of only variables in ∆Q.

Thus, if Vq ̸∈ ∆Q[I(a
′
l), I(a0),T, GS ], alq = 0; if Vq ∈ ∆Q[I(a

′
l), I(a0),T, GS ], we assume alq

follows a standard normal distribution, which means the non-zero entries in matrix A are randomly
sampled and are not fine-tuned. Thus, to prove this lemma, it is equivalent to prove if there exists
{a′1, . . . , a′|Q|} ⊆ {a1, . . . , aL} such that ∀ Vq ∈ Q, Vq ∈ ∆Q[I(a

′
q), I(a0),T, GS ], the row of A

are almost surely linear independent. W.O.L.G, we let {a′1 = a1, . . . , a
′
Q = aL. Then, it is equivalent

to prove that A is a full rank matrix.

In order to prove that A is a full-rank matrix, we prove that the determinant of A is almost surely
non-zero. Since ∀ Vq ∈ Q, Vq ∈ ∆Q[I(aq), I(a0),T, GS ], there exists A such that det(A) is
non-zero, and then det(A) is non-trivial. Based on a simple algebraic lemma in [70], the subset of
{A | det(A) = 0} of the real space has Lebesgue measure 0. Then det(A) = 0 almost surely holds.

The second-order discrepancy proof is similar. Denote {ω2(v, a1),ω2(v, a2), . . . ,ω2(v, aL)} as B.
And every entry of B is

alq =
∂ log p

(al)
T (v)− log p

(a0)
T (v)

∂vq
, q ≤ |Q|

alq =
∂2 log p

(al)
T (v)− log p

(a0)
T (v)

∂v2q
, |Q|+ 1 ≤ q ≤ 2|Q|

alϵ =
∂2 log p

(al)
T (v)− log p

(a0)
T (v)

∂vp∂vq
, 2|Q|+ 1 ≤ ϵ ≤ 2|Q|+ |E|, {Vp, Vq} ∈ E

(15)

According to Eq. (3), we know log p
(al)
T (v) − log p

(a0)
T (v) is a function of only variables in ∆Q.

Thus, if Vq ̸∈ ∆Q[I(a
′
l), I(a0),T, GS ], alq = 0; if Vq ∈ ∆Q[I(a

′
l), I(a0),T, GS ], we assume

alq follows a standard normal distribution, which means the non-zero entries in matrix B are
randomly sampled and are not fine-tuned. If {Vp, Vq} ̸⊆ ∆Q[I(a

′
l), I(a0),T, GS ], alϵ = 0; if

{Vp, Vq} ⊆ ∆Q[I(a
′
l), I(a0),T, GS ], we assume alϵ follows a standard normal distribution, which

means the non-zero entries in matrix B are randomly sampled and are not fine-tuned. Following the
same discussion above, the subset of {B | det(B) = 0} of the real space has Lebesgue measure 0.
Then det(B) = 0 almost surely holds.

C.2 Distribution comparison - Proof of Proposition 1

Proposition 1 (Distribution Comparison). Consider a pair of collections ASCMs M and M̂
that matches with the distribution P resulting from interventions Σ and LSD GS . Consider two
distributions PΠ(j)

(X;σ(j)) and PΠ(k)

(X;σ(k)). Suppose perf(T) is in both intervention sets, then,
d∑
i

log p
(j)
T (vi | paT+

i )− p
(k)
T (vi | paT+

i ) =

d∑
i

log p
(j)
T (v̂i | p̂aT+

i )− log p
(k)
T (v̂i | p̂aT+

i ), (2)

where p
(j)
T (·) and p

(k)
T (·) are density functions.

Proof. According to the ASCM definition Def .2.1, the mapping from V to X, and the mapping X

to V̂ can be expressed as:
V̂ = f̂−1

X (X) = f̂−1
X (fX(V)) (16)

Then based on the change variable formula, we have

p(v) = p(v̂)|Jϕ| (17)

where ϕ = f̂−1
X ◦ fX and Jϕ is the Jacobian matrix of ϕ. Leveraging the factorization in Eq. 1 and

taking log of the above equation,
d∑

i=1

log pT(vi | paT+) =

d∑
i=1

log pT(v̂i | p̂aT+
) + log |Jϕ| (18)

Subtract the above factorization of density function induced by I(j) and I(k), and we have Eq.( 2).
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Eq 2 naturally gives a connection from V to V̂. Comparing two factorization for Fig. 4(c),
the connection connections are made from P (v1), p(v2 | v1), p(v3 | v2, v1), P (v4 | v3) or
P (v1), p(v3), p(v2 | v1, v3), P (v4 | v3).

C.3 Invariant factors - Proof of Proposition 2

Proposition 2 (Invariant Factors). Consider two distributions P (j), P (k) ∈ P with intervention
targets σ(j) and σ(k) containing perf(T). Construct the changed variable set ∆V[I(j), I(k), GS ] (for
short ∆V) with target sets I(j), I(k) as follows: (1) Vl ∈ ∆V if V πl,{bl},tl

l ∈ I(j) but V π′
l,{bl},t

′
l

l ̸∈
I(k), or vice versa; (2) Vl ∈ ∆V if i) SΠ(j),Π(k)

point to Vl and ii) V πl,{bl},tl
l ̸∈ I(j) ∪ I(k). If

Vi ∈ V\C(∆V), then p
(j)
T (vi | paT+

i ) = p
(k)
T (vi | paT+

i ) (denoted invariant factors).

Proof. Consider an arbitrary order. Based on the proposition, ∆V[I(j), I(k), GS ] includes all vari-
ables that the mechanism fV or exogenous U possibly change when the intervention changes from
I(k) to I(j). In other words, for any Vl ∈ V\∆V[I(j), I(k), GS ], fVl

and exogenous Ul are invariant.

Let Vi ∈ V\C(∆V). Z = C(Vi) ∪PaT+. We have Z ⊆ V\C(∆V) according to the definition of
C-component.

According to the definition of PaT
+

i , we know PaT
+

i \Z = Pa({Vi} ∪ Z). Now reconsider the
distribution PΠ(j)(Vi | PaT+

i ;σ(j)) and PΠ(k)(Vi | PaT+
i ;σ(k)),

PΠ(j)

T (Vi | PaT+
i ;σ(j)) = PΠj

T (Vi,Z | Pai({Vi} ∪ Z);σ(j))/PΠ(j)

T (Z | Pai({Vi} ∪ Z);σ(j))

(19)

PΠ(k)

T (Vi | PaT+
i ;σ(k)) = PΠ(k)

T (Vi,Z | Pai({Vi} ∪ Z);σ(k))/PΠ(k)

T (Z | Pai({Vi} ∪ Z);σ(k))
(20)

Since the mechanism and exogenous variables of Vi and Z are invariant, both the nominators and
denominators are the same. Namely,

PΠj

T (Vi,Z | Pai({Vi} ∪ Z);σ(j)) = PΠk

T (Vi,Z | Pai({Vi} ∪ Z);σ(k)) (21)

PΠ(j)

T (Z | Pai({Vi} ∪ Z);σ(j)) = PΠ(k)

T (Z | Pai({Vi} ∪ Z);σ(k)) (22)

which implies the density functions are invariant,

p
(j)
T (vi | paT+

i ) = p
(k)
T (vi | paT+

i ) (23)

C.4 ID ∆Q w.r.t Canceled Factors - Proof of Proposition 3 and Lemma 2

Proposition 3 (ID the ∆Q set w.r.t Canceled Variables). Consider variables Vtar ⊆ V. Let
PT = {P (a0), P (a1), . . . , P (aL)} ⊆ P be a collection of distributions such that (1) ∀ l ∈ [L],
T = Perf[I(a0)] ⊆ Perf[I(al)] 18; (2)

⋃
l∈[L] ∆Q[I(al), I(a0),T, GS ] = Vtar; (3) there exists

{a′1, . . . , a′d′} ⊆ {a1, . . . , aL} such that for all V tar
i ∈ Vtar, V tar

i ∈ ∆Q[I(a
′
i), I(a0),T, GS ],

where d′ = |Vtar|. Then, Vtar is ID w.r.t V\Vtar.

Proof. We denote Vtar as Q for convenience. Notice that the Assumption 4 will be used in the
proof.

18Recall we use the notation Perf[I] to denote that all variables that have perfect interventions on I.
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Comparing PΠ(al)(V;σ(al)) with PΠ(a0)

(V;σ(a0)), we have∑
Vi∈Ṽ

log p
(al)
T (vi | paT+

i )− p
a0)
T (vi | paT+

i ) =
∑
Vi∈Ṽ

log p
(al)
T (v̂i | p̂aT+

i )− log p
(a0)
T (v̂i | p̂aT+

i )

= log p
(al)
T (v̂)− log p

(a0)
T (v̂)

(24)

from Eq. (3).

Notice that the left side only involves variables in Q =
⋃

l∈[L] ∆Q[I(al), I(a0),T, GS ] based on the
Def. 3.1. Thus, for any Z ∈ V\Q,

∀l ∈ [L],
∂ log p

(al)
T (v̂)− log p

(a0)
T (v̂)

∂ẑ
= 0 (25)

Take partial of the above equation w.r.t. Z, we have:

∀l ∈ [L], 0 =
∑
vi∈V

∂ log p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂i

∂v̂i
∂z

(Chain Rule) (26)

=
∑
vq∈Q

∂ log p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂q

∂v̂q
∂z

(Eq.( 25)) (27)

Eq. (27) is a linear system for unknowns {∂V̂q/∂Z}Vq∈Q. When distribution changes sufficiently,
namely under Assumption 4, the row factor of the coefficient matrix of the linear system is linearly
independent. When L ≥ |Q| (implied by condition [3]), the matrix is full rank, thus,

∀ Vq ∈ Q,
∂v̂q
∂z

= 0 (28)

Recall that Vq = ϕVq
(V). For any Z ∈ V\Q, Eq.( 28) holds. Thus, Q is enough to be the input of

ϕVq
, which means there exists Vq = ϕVq

(Q).

Lemma 2. Consider variables Vtar ⊆ V and Z ∈ V\Vtar. Suppose Mem = {Vj ∈ Vtar |
Vj is ID w.r.t. Z}. Consider, PT and its corresponding intervention targets that hold conditions [1-2]
in Prop. 3. If the new version of the condition [3] is also satisfied:

[4] there exists {a′1, . . . , a′|Vtar|} ⊆ {a1, . . . , aL} such that for all V tar
i ∈

Vtar\Mem, V tar
i ∈ ∆Q[I(a

′
i), I(a0),T, GS ].

then Vtar is ID w.r.t Z.

Proof. For all Vm ∈ Mem, ∂Vm/∂Z = 0. Thus, the unknown in Eq.( 27) exclude ∂vm
∂z . Then,

when [3’] holds, the system will have zero solutions and Eq.( 28) will hold.

C.5 ID within ∆Q set - Proof of Proposition 4 and Lemma 3

The next result provides us with an additional way of disentangling latent variables within the same
∆Q-factor leveraging second-order conditions and conditional independence. We will first prove the
following stronger result.

Definition 6.1 (Markov Network). Let MV be the Markov network over variables V with ver-
tices {Vi}ni=1 and E(MV ) denote the set of edges. An edge (Vi, Vj) is added to E(MV ) if
Vi��⊥⊥Vj |V\{Vi, Vj}.
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Proposition 6 (ID of variables within ∆Q sets). Consider the variables Vtar ⊆ V. Define E as
the set of edges within the Markov Network of GT(V

tar) that are contained within a ∆Q set.

E ={ϵj = {Vk, Vr}
∣∣∣∣

(i) ∃al, {Vk, Vr} ⊆ ∆Q(al),(a0);

(ii) Vk is d-connected to Vr conditioned on Vtar\{Vk, Vr} in GT(V
tar)},

(29)

For any pair of Vi, Vj ∈ Vtar such that Vi ⊥⊥ Vj | Vtar\{Vi, Vj} in GT(V
tar), if there exists

PT = {P (a0), P (a1), . . . , P (aL)} ⊆ P that satisfies conditions (1-2) in Prop. 3 and the following
condition (3’).

(3’) Enough changes occur across distributions, i.e., Formally, there exists {a′1, . . . , a′2d′+|E|} ∈
{a1, . . . , aL} such that for all V tar

i ∈ Vtar, i) V tar
i ∈ ∆Q(a′

i),(a0), ii) V tar
i ∈

∆Q(a′
d′+i

),(a0), and iii) for all ϵj ∈ E, ϵj ⊆ ∆Q(a′
2d′+j

),(a0), where d′ = |Vtar|

then, Vi is ID w.r.t. Vj .

Proof. We denote Vtar as Q for convenience. Notice that Assumption 4 will be used in the proof.
From Eq. 3, we have∑
Vi∈Ṽ

log p
(al)
T (vi | paT+

i )− p
a0)
T (vi | paT+

i ) =
∑
Vi∈Ṽ

log p
(al)
T (v̂i | p̂aT+

i )− log p
(a0)
T (v̂i | p̂aT+

i )

= log p
(al)
T (v̂)− log p

(a0)
T (v̂)

(30)

Notice that the left side only involves variables in Q =
⋃

l∈[L] ∆Q[I(al), I(a0),T, GS ] based on the
Def. 3.1.

We first argue that if Vi ⊥⊥ Vj |Q\{Vi, Vj} in GT then Vi ̸∈ PaT+
j , Vj ̸∈ PaT+

i and Vi, Vj ̸∈ PaT+
m

for any Vm ∈ Q.

First, since Vi ⊥⊥ Vj |Q\{Vi, Vj}, Vi and Vj cannot be directly connected by edges in GT, which
implies Vi ̸∈ C(Vj) and Vi ̸∈ PaT+(Vj). Also, the outgoing edge from Vi and Vj cannot point to the
same C-component. Otherwise, the path is active from Vi and Vj is active when conditioning on other
variables (collider structure). Thus, Vi ̸∈ PaT+

j , Vj ̸∈ PaT+
i and Vi, Vj ̸∈ PaT+

k where Vk ∈ Q.

This implies Vi and Vj will not appear to the same factor p(al)
T (vm | paT+

m ) for any Vm ∈ Ṽ. Thus,

∂2 log p
(al)
T (vm | paT+

m )

∂vivj
= 0 (31)

Thus, for any pair of Vk, Vr such that Vk ⊥⊥ Vr|Q\{Vk, Vr},

∀l ∈ [L],
∑

Vm∈Ṽ

∂2 log p
(al)
T (v̂m | paT+

m )

∂v̂kv̂r

=
∂2 log p

(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂kv̂r
= 0

(32)

On the other hand, when either Vk or Vr is in Q\∆Q(al),(a0) for l ∈ [L],

∀l ∈ [L], =
∂2 log p

(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂kv̂r
= 0 (33)

since
∂p

(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂k
= 0 or

∂p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂r
= 0 (34)
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Upon Eq. (31), taking the second partial derivative on both sides of Eq. (30), the left side will be 0,
and then ∀ l ∈ [L], we have

0 =
∑

Vk,Vr∈Q

∂ log p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂kv̂r

∂v̂k
∂vi

v̂r
∂vj

Chain Rule

(35)

=
∂2 log p

(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂2i

∂v̂i
∂vi

∂v̂i
∂vj

+
∂2 log p

(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂2j

∂v̂j
∂vi

∂v̂j
∂vj

+
∑
Vq∈Q

∂2 log p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂2q

∂v̂q
∂vi

∂v̂q
∂vj

+
∑
Vq∈Q

∂ log p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂q

∂2v̂q
∂vivj

+
∑

(Vk,Vr)∈E

∂ log p
(al)
T (v̂)− log p

(a0)
T (v̂)

∂v̂kv̂r

∂v̂k
∂vi

v̂r
∂vj

Eq. (32) and (32)

(36)

Eq.( 36) is also a linear system. When distribution changes sufficiently, namely under Assumption
4, the row factor of the coefficient matrix of the linear system is linearly independent. When
L ≥ 2|Q|+ δ ̸⊥ (implied by condition 4), the matrix is full rank, thus,

∂v̂i
∂vi

∂v̂i
∂vj

= 0,
∂v̂j
∂vi

∂v̂j
∂vj

= 0 (37)

Then we have
∂v̂i
∂vj

= 0,
∂v̂i
∂vj

= 0 (38)

up to a permutation of Vi and Vj . This implies that Vi is ID w.r.t Vj and Vj is ID w.r.t Vi.

When ∆Q(a1),(a0) = · · · = ∆Q(aL),(a0)Vtar

Then we can get Prop. 4 directly from the above result.
Proposition 4 (ID of variables within ∆Q sets). Consider the variables Vtar ⊆ V,PT that satisfies
conditions (1) in Prop. 3 and ∆Q(al),(a0) = Vtar, for l ∈ [L]. For any pair of Vi, Vj ∈ Vtar such
that Vi ⊥⊥ Vj |Vtar\{Vi, Vj} in GT(V

tar), Vi is ID w.r.t. Vj if L ≥ 2|Vtar| + δ ̸⊥, where δ ̸⊥
is the number of pair Vk, Vr ∈ Vtar such that Vk and Vr are connected given Vtar\{Vk, Vr} in
GT(V

tar).

Proof. Taking ∆Q(a1),(a0) = · · · = ∆Q(aL),(a0)Vtar, the condition (2) is satisfied. When L ≥
2|Vtar|+ δ ̸⊥, condition (3) is satisfied. Thus, Prop. 4 holds.

Lemma 3 (ID of variables within ∆Q sets). Consider variables Vtar ⊆ V. For any pair of
Vi, Vj ∈ Vtar such that Vi ⊥⊥ Vj |Vtar\{Vi, Vj} in GT(V

tar), let Memi be a list of variables in
Q that have been ID w.r.t. Vi and let Memj be a list of qvariables in Q that have been ID w.r.t. Vj .
If there exists PT that satisfies conditions [1-2] in Prop. 3 and the following condition [4’].

[4’] (Enough changes occur across distributions) Let Qre = Vtar\(Memi

⋃
Memj) and

d′ = |Qre|. And

Eij ={ϵj = {Vk, Vr} | i) ∃al, {Vk, Vr} ∈ ∆Q(al),(a0);

ii) Vk is connected toVr conditioning Vtar\{Vk, Vr} in GT(V
tar)

iii) Vk, Vr /∈Memi ∪Memj}
(13)

there exists {a′1, . . . , a′2d′+|E|} ∈ {a1, . . . , aL} such that for all Qi ∈ Qre, Qi ∈
∆Q(a′

i),(a0)], Qi ∈ ∆Q(a′
d′+i

),(a0) and for all ϵl ∈ Eij , ϵl ⊆ ∆Q(a′
2d′+l

),(a0).
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, then Vi is ID w.r.t Vj .

Proof. The unknown in the linear system

∂v̂q
∂vi

∂v̂q
∂vj

= 0, (39)

if Vp is ID w.r.t Vi or Vq is ID w.r.t Vj .
∂2v̂q
∂vivj

= 0 (40)

If Vq is ID w.r.t Vi or Vj . Even these terms are excluded in [4’], the system still has the zero solutions.

C.6 ID-reverse of existing disentangled variables - Proof of Proposition 5

The next Proposition provides an additional tool to achieve identifiability and leverages the fact
that other variables may have previously been disentangled and independence relationships in the
factorization.
Proposition 5 (ID of canceled variables w.r.t. ∆Q sets). Suppose Ψ contains perf(T). Given
V\V tar is ID w.r.t. a single variable V tar, V tar is ID w.r.t. V\V tar if V tar ⊥⊥ V\V tar in GT.

Proof. We first introduce a lemma for distribution preserving from [20].

Lemma 4 (Lemma 2 of [20]). Let A = C = R and B = Rn. Let f : A×B → C be differentiable.
Define differentiable measures PA on A and PC on C. Let ∀b ∈ B, f(·, b) : A → C be measure-
preserving. Then f is constant in b.

Denote V\Vtar as Z. V tar ⊥⊥ Z in GT implies that

PT(V) = PT(V
tar)PT(Z) (41)

With the change of variable formulation and taking log:

log pT(v
tar) + log pT(z) = log pT(v̂

tar) + log pT(ẑ) + log |Jϕ| (42)

Since Z is ID w.r.t V tar, ∂Ẑ/∂Vtar = 0. In other words, the elements ∂ϕZ/∂V
tar = 0 for every

Z ∈ Z in Jacobian matrix are 0, where ϕZ is a function mapping from V to Ẑ. Then

log |Jϕ| = log |JZ|+ log |JVtar | (43)

where |JZ| =


∂ϕZ1

/∂z1 ∂ϕZ1
/∂z2 . . . ∂ϕZ1

/∂zd−1

∂ϕZ2
/∂z1 ∂ϕZ2

/∂z2 . . . ∂ϕZ2
/∂zd−1

...
...

. . .
...

∂ϕZd−1
/∂z1 ∂ϕZd−1

/∂z2 . . . ∂ϕZd−1
/∂zd−1

 and log |JVtar | =

|∂ϕV tar/∂vtar|.

Again, since Z is ID w.r.t Vtar, Ẑ = ϕZ(Z). Thus,

log pT(z) = log pT(ẑ) + log |JZ| (44)

Subtracting this to Eq. (42)

log pT(v
tar) = log pT(v̂

tar) + log |JVtar | (45)

Denote ϕVtar (z, ·) as ϕz
Vtar (·), which is the function ϕVtar fixing value Z = z mapping from Vtar

to V̂. This suggests for every z,

PT(V̂
tar) = PT(ϕ

z
V tar (V tar)) (46)

Apply Lemma 2 of [20], ϕV tar should be a constant regarding Z. Thus,

∀ Z ∈ Z,
∂V tar

∂Z
= 0 (47)
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C.7 Soundness of LatentID Algorithm - Proof of Thm. 1

The following provides the proof of the soundness of our proposed graphical algorithm for determining
whether or not two variables are disentangleable given a collection of distributions from multiple
domains and interventions.
Theorem 1 (Soundness of CRID). Consider a LSD GS and intervention targets Ψ. Consider the
target variables Vtar and Ven ⊆ V\Vtar. If no edges from Vtar points to V̂en in the output causal
disentanglement map (CDM) from CRID, GV,V̂ , then Vtar is ID w.r.t Ven.

Proof. In LatentID, for each epoch, we iterate to choose T and the baseline distribution to execute
procedure Alg. F.3 and Alg. F.6. Any time an edge is removed, Proposition 3 and/or 4 are applied. At
the end of epoch, Alg. F.8 is executed and edges will be removed only if Proposition 5 is applied.
Thus the edge removals are all sound. The algorithm will stop when no edge will be removed,
and terminate giving the causal disentanglement map GV,V̂ , which is a valid summary of what is
disentangleable.
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Figure S3: Latent causal graph and the desired causal disentanglement map.

D Examples and Discussion

D.1 Additional Example Illustrating Motivation of Causal Disentangled Learning

In the introduction, we illustrated a medical example for why it is important to learn disentangled
representations.

Require  to be disentangled from Age Gender

Do not require  being disentangled from Age Haircolor

C
ha

ng
e 

G
en

de
r

Figure S2: The disentanglement requirements
in face examples

An additional motivating example can be seen
through the lens of generating realistic face images
[27]. Consider an image dataset of human faces.
Based on our understanding of anatomy and facial
expressions, we know that both Gender and Age are
not causally related, while age does directly affect
HairColor. There is a strong spurious correlation
between age and gender, where there are many old
males and young females in the dataset. In addition,
let there be face images from both a senior and teen
center building. The change in domain (i.e. popula-
tion center) impacts the age distribution, as senior cen-
ter faces are older than teen center faces. Given these
images and knowledge of the latent causal graph, one
would ultimately like to generate realistic face images
given perturbations of Age. If the variable represen-
tations are entangled, then it is possible for changes in age to also spuriously change gender. This
is undesirable, and thus our goal is to achieve disentanglement of age and gender. Note that we
do not require Age to be disentangled from HairColor necessarily since changing Age and also
simultaneously changing Haircolor would be a realistic image generation. Here, we would seek a
causal disentanglement map shown in Fig. S3.

If we could get the causal disentanglement map, then we know that when the representations are
fully learned, we can intervene on Age, an without changing the Gender of the face. This motivates
the need for a general approach to identifiability, compared to the scaling indeterminacy in Def. 6.5,
which requires all variables to be disentangled from each other.

As another motivating example, consider a marketing company creating faces for a female product.
The relevant latent factors are Gender↔ Age→ Hair Color (see Appendix D.1 for details). If Gender
and Age are entangled, changing Age might also alter Gender, which is undesirable. The company
needs a model where Age is disentangled from Gender, while correlation with Hair Color is allowed.
Our paper addresses the problem of determining whether a given set of input data and assumptions in
the form of a LSD is sufficient to learn such a disentangled representation.

D.2 Examples for non-Markovian Factorization

In this section, we centralize theoretical results in relation to the theory presented in this paper.

Unless specified, we denote the natural log as log.

We first provide more discussion about non-Markovian factorization Eq. (1). First, the concept
C-component is formally defined as follows:
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Figure S4: Causal graph with four C-components.

Definition 6.2 (Confounded Component). Let {C1,C2, . . . ,Ck} be a partition over the set of
variables V, where Ci is said to be a confounded component (for short, C-component) of the
selection diagram GV if for every Vi, Vj ∈ Ci there exists a path made entirely of bidirected edges
between Vi and Vj in GV , and Ci is maximal.

This construct represents clusters of variables that share the same exogenous variations regardless of
their directed connections. The selection diagram in Figure 2 has a bidirected edge indicating the
presence of unobserved confounders affecting the pairs (V1, V2) and contains two C-components,
namely, C1 = {V1, V2},C2 = {V3}.
Akin to parents within a Markovian SCM, the c-components play a fundamental role in factorizing
the joint distribution of the observed variables V.

Let < be a topological order V1, . . . , Vn of the variables V in GS . Then define the PaT+
i =

Pa({V ∈ C(Vi) : V ≤ Vi})\{Vi}. The Pa+(Vi) set consists of the nodes in the same c-component
that are "≤" in topological order as Vi, their corresponding parents, minus the node Vi itself. For
instance, in Fig. S4, Pa+(E) = {D,C,A} and Pa+(D) = {B,C,A}.
The general factorization formula Eq. (1) factorizes not only the joint observational distribution
related to a causal graph, but also interventional distributions. With a perfect intervention on T, the
factorization follows the corresponding graph is GT, where the incoming arrows towards T are cut.
This factorization encompasses both Markovian and non-Markovian SCM models. When there are
no bidirected edges in the diagram, PaT+

i reduce to Pa in FT.

Next, we introduce the Markov blanket, a fundamental idea in characterizing certain conditional
independences in a causal graph [71, 72].

Definition 6.3 (Markov Blanket). Let G be a causal graph over variables V. A Markov blanket of a
random variable Y ∈ V is any subset V1 ⊆ V such that conditioned on V1, Y is independent of all
other variables.

Y ⊥⊥ V\V1|V1

The Markov blanket is an important object that captures conditional independences between variables
when conditioned on all other variables in the graph.

Definition 6.4 ("Global" Markov property of DAGs [73]). Consider a joint probability distribution,
P over a set of variables V satisfies the Markov property with respect to a graph G = (V ∪L,E) if
the following holds for, (X,Y,Z) disjoint subsets of V:

P (y|x, z) = P (y|z) if Y ⊥⊥ X|Z in G (that is Y is d-separated from X given Z)

The global Markov property maps graphical structure in causal directed acyclic graphs (DAGs) to
conditional independence (CI) statements in the relevant probability distributions from data. The
distributions we consider P are considered Markov wrt the graph, thus mapping d-separations in the
graph to conditional independences in the distributions. This allows us to leverage factorizations,
such as the one presented in Section 2.
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E Examples for Proposition 2

The following example illustrates more about the invariant factors.

Example 14. (Example 1 continued.) Choose P (1) as the baseline and T = {}. The factorization of
P (V) is P (V1)P (V2 | V1)P (V3 | V2). The changed variable set ∆V[I(2), I(1), GS ] = {V3} since
the S-node points to V3 in GS and ∆V[I(3), I(1), GS ] = {V3} since V3 ∈ I(3) while V3 ̸∈ I(1). Thus,
comparing P (2) and P (3) with the baseline P (1), p(v2 | v1) and p(v1) are invariant factors while
p(v3 | v2) possibly changes.

E.1 The detailed examples of Proposition 3 and 4

We show another example of using Proposition 3 to solve an ID task in Example 1.

Example 15. (Example 14 continued.) Consider Vtar = {V2, V3}, Ven = V\{V2, V3} = {V1}.
When comparing {P (2), P (3)} with the baseline P (1), T = σM [I(1)] = {}, and then

∆Q[I(2), I(1),T, GS ] = ∆Q[I(3), I(1),T, GS ] = Vtar (48)

Thus, these two comparisons satisfy the three conditions in Prop.3. Because the number of compared
distribution {P (2), P (3)} is 2, which is equal to |Vtar|, then we know Vtar is ID w.r.t Ven by
Prop. 3. This demonstrates that a variable V2 can be disentangled from another variable that is in
the C-component (V1). See Appendix Ex. 16 for a detailed derivation.

Proposition 3 and 4 disentangle variables through comparing distributions. With enough distributions,
one can build a linear system (illustrated in Appendix C.4 and C.5).

Example 16. (details for Example 15). By comparing distribution resulting from σ(2) and σ(3) with
the baseline σ(1),

log p(2)(v3 | v2)− log p(1)(v3 | v2) = log p(2)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2)
log p(3)(v3 | v2)− log p(1)(v3 | v2) = log p(3)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2)

(49)

Taking the first order partial derivative w.r.t. V1:

0 =
∂ log p(2)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2)

∂v̂2

∂v̂2
∂v1

+
∂ log p(2)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2)

∂v̂3

∂v̂3
∂v1

0 =
∂ log p(3)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2)

∂v̂2

∂v̂2
∂v1

+
∂ log p(3)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2)

∂v̂3

∂v̂3
∂v1

(50)

In this system, notice that

log p(2)(v̂3 | v̂2)− log p(1)(v̂3 | v̂2) = log p(2)(v̂1, v̂2, v̂3)− log p(1)(v̂1, v̂2, v̂3) (51)

Then since the coefficient is linear independent assumed in Assumption 4, we have

∂v̂2
∂v1

= 0,
∂v̂3
∂v1

= 0 (52)

Then V2 = τ2(V2, V3), and V3 = τ3(V2, V3).

First, this example shows we can disentangle two variables in the same C-component (V!, V2).
Second, Compared with the baseline, one can disentangle variable V with its descendants when soft
interventions are given per node, and V is considered to be still entangled with its ancestral (see
Sec. F.6). The above result shows that it is possible to disentangle variables from their ancestors using
only soft interventions. More interestingly, no intervention is performed on V2 while we disentangle
V2 from V1. Compared with [22], one can disentangle V1 and V3 using 10 distributions and we
demonstrate 3 distributions are enough.

Example 17. (details for Example 4). Choosing order V1 < V3 < V2 < V4.

P (V) = P (V1)P (V3)P (V2 | V1, V3)P (V4 | V3) (53)
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as the factorization. By comparing distribution resulting from σ(2) and σ(3) with the baseline σ(1),

log p(2)(v2 | v1, v3)− log p(1)(v2 | v1, v3) = log p(2)(v̂2 | v̂1, v̂3)− log p(1)(v̂2 | v̂1, v̂3)
log p(3)(v3)− log p(1)(v̂3) + log p(3)(v2 | v1, v3)− log p(1)(v2 | v1, v3) =
log p(3)(v̂1)(v̂3)− log p(3)(v̂3) + log p(2)(v̂2 | v̂1, v̂3)− log p(1)(v̂2 | v̂1, v̂3)
log p(4)(v1)− log p(1)(v1) = log p(4)(v̂1)− log p(1)(v̂1)

(54)

Taking the first order partial derivative w.r.t. V4:

0 = h2,1
∂v̂1
∂v4

+ h2,2
∂v̂2
∂v4

+ h2,3
∂v̂3
∂v4

0 = h3,1
∂v̂1
∂v4

+ h3,2
∂v̂2
∂v4

+ h3,3
∂v̂3
∂v4

0 = h4,1
∂v̂1
∂v4

(55)

where

h2,i =
∂ log p(2)(v̂2 | v̂1, v̂3)− log p(1)(v̂2 | v̂1, v̂3)

∂v̂4
for i = 1, 2, 3

h3,i =
∂ log p(3)(v̂3)− log p(1)(v̂3) + log p(3)(v̂2 | v̂1, v̂3)− log p(1)(v̂2 | v̂1, v̂3)

∂v̂4
for i = 1, 2, 3

h4,1 =
∂p(4)(v̂1)− log p(1)(v̂1)

∂v̂4
(56)

Then since the coefficient is linear independent assumed in Assumption 4, we have
∂v̂1
∂v4

= 0,
∂v̂2
∂v4

= 0,
∂v̂3
∂v4

= 0 (57)

Then V1 = τ1(V1, V2, V3), and V2 = τ2(V1, V2, V3) and V3 = τ3(V1, V2, V3).
Example 18. The factorization based on GS choosing T = {} is

P (V) = P (V1)P (V3)P (V3 | V1, V2) (58)

By comparing distribution resulting from σ(2) and σ(3) with the baseline σ(1), for j = 2, 3, 4, 5

log p(j)(v1) + log p(j)(v3)− log p(1)(v1)− log p(1)(v3)

= log p(j)(v̂‘) + log p(j)(v̂3)− log p(1)(v̂1)− log p(1)(v̂3)
(59)

Taking the second order partial derivative w.r.t. V1, V3:

0 =
∂2 log p(j)(v̂1)p

(j) − log p(1)(v̂1)

∂v̂21

∂v̂1
∂v1

∂v̂1
∂v3

+
∂2 log p(j)(v̂3)p

(j) − log p(1)(v̂3)

∂v̂23

∂v̂3
∂v1

∂v̂3
∂v3

+
∂ log p(j)(v̂1)p

(j) − log p(1)(v̂1)

∂v̂1

∂2v̂1
∂v1∂V3

+
∂ log p(j)(v̂3)p

(j) − log p(1)(v̂3)

∂v̂3

∂2v̂3
∂v1∂v3

(60)
Then since the coefficient is linear independent assumed in Assumption 4, we have

∂v̂1
∂v1

∂v̂1
∂v3

= 0,
∂v̂3
∂v1

∂v̂3
∂v3

= 0 (61)

Then after permutation,
∂v̂1
∂v3

= 0,
∂v̂3
∂v1

= 0 (62)

which implies that V3 is ID w.r.t V1 and V1 is ID w.r.t V3.

The following example shows how Proposition 5 achieves disentanglement for the ID task in Example
1.
Example 19. (Example 15 (continued).) Let P (4) with intervention target I(4) = {V 1,{1},do

2 } be
another distribution added to the original setting. Consider Vtar = {V1}. From Ex. 14, {V2, V3} is
ID w.r.t. V1. Consider T = {V2} (from I(4)). Since V1 ⊥⊥ {V2, V3}, then V1 is ID w.r.t {V2, V3}.
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F Related Work Discussion

Disentangled representation learning aims to obtain approximations V̂ = {V̂1, . . . , V̂d} that separate
the distinct, informative generative factors of variations [5] from the observations of X and inductive
bias ofM. In other words, the learning goal is an unmixing function f̂−1

X that maps from X to V̂

(namely V̂ = f̂−1
X (X)), where V̂i is some transformation of W ⊆ V. The goal of disentangled

representation learning is to have V̂i be a function only of Vi, i.e. W = {Vi}. This is not always
possible, and different assumptions, data and relaxed versions of disentanglement may be studied
to theoretically ground representation learning. The disentangled representation learning tasks
are studied with various assumptions and input. In the following, we discuss related tasks and
identifiability results in context of this paper. We also present a few case studies on the nuances
between Markovian and non-Markovian ASCM setting.

First, we review the main goal of identifiability in all prior works. It is what is known as scaling
identifiability. A special case of our ID definition in Def. 2.3.

Definition 6.5 (Scaling indeterminancy). Consider a collection of ASCM M that induces an LSD
GS and a collection of distribution P . We say V is identifiable up to scaling indeterminacy if for every
M̂ matches with the GS and P , there exists functions {h1, . . . , hd} such that V̂i = hi(Vi), i ∈ [d],
where hi is a diffeomorphism in R.

F.1 Causal representation learning with unknown latent causal structure

In many prior works, the goal has been not only identifiability of the underlying latent variables, but
also the discovery of the causal relationships among the latent variables [4, 22, 51]. That is, the latent
causal graph is unknown. The work proposed in this paper is a foundation for the first step of causal
representation learning, i.e. identifying the distributions of the latent causal variables. It would be
interesting future work to explore how the results proposed in this paper extend to the case when the
latent causal graph is unknown.

F.2 Comparisons with other identifiability criterion

We also consolidate other definitions of identifiability from the literature using the notion of an
ASCM. We have already defined identifiability up to scaling ambiguity in Def. 6.5.

Corollary 2 (Scaling ID is a case in general ID). Let M be a collection of ASCM with GS the LSD
over the latent causal variables V. If Ṽ ⊆ V is identifiable up to scaling indeterminacy, then it is
identifiable wrt V\Ṽ .

Proof. The proof follows from the application of Def. 2.3 and Def. 6.5.

Definition 6.6 (Identifiability up to ancestral mixtures [21]). Let M be a collection of ASCM with
GS the LSD over the latent causal variables V. We say a variable Ṽ ∈ V is identifiable up to
ancestral mixtures if for every M̂ matches with the GS and P , there exists functions {h1, . . . , hd}
such that V̂i = hi(Anc(Vi)), i ∈ [d].

Corollary 3 (Ancestral ID is a case in general ID). Let M be a collection of ASCM with G the
LSD over the latent causal variables V. If Ṽ ⊆ V is identifiable up to ancestral mixtures, then it is
identifiable wrt V\Anc(Ṽ ).

Proof. The proof follows from the application of Def. 2.3 and Def. 6.6.

The following definitions are inspired by the identifiability results from [22].

Definition 6.7 (Intimate Neighbor Set). We say εMG,Vi := {Vj | j ̸= i, but Vj is adjacent to Vi and
all other neighbors of Vi in MG.

The intimate neighbor set for a variable dictates a set of neighbors that are adjacent to all of that
variable’s neighbors. It is used in the following definition from [22].
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Definition 6.8 (Identfiability up to intimate neighbor set of Markov Network [22]). Let M be a
collection of ASCM with GS the LSD over the latent causal variables V. We say a variable Ṽ ∈ V

is identifiable up to intimate neighbors in the Markov Network if for every M̂ matches with the GS

and P , there exists functions {h1, . . . , hd} such that V̂i = hi(ε(MG, Vi)), i ∈ [d], and MG is the
Markov network of G and ε(MG, Vi) is the intimate neighbor set of Vi in MG.
Corollary 4 (Intimate Neighbor Markov Network ID is a case in general ID). Let M be a collection
of ASCM with G the LSD over the latent causal variables V. If Ṽ ⊆ V is identifiable up to intimate
neighbor set of the Markov Network, then it is identifiable wrt V\ϕ(MN(G); Ṽ ).

Proof. The result follows from the application of Def. 2.3 and Def. 6.8.

Thus, we showed that each of these identifiability definitions imply a general ID for a non-trivial
subset of latent variables Ṽ ⊆ V with respect to Ven ⊂ V.

F.3 Case study on challenges when disentangling variables in a non-Markovian setting

Prior results suggest that in a Markovian setting, given a perfect intervention on every node, the latent
variables V are ID up to scaling indeterminancies according to Def. 6.5 [14, 21].

One would suspect that ID may still hold in non-Markovian ASCMs, but the following result states
that even with one perfect intervention per node, it is not possible to disentangle latent variables
within the same c-component.
Lemma 5 (Challenges of identifability in non-Markovian causal models). Consider the ASCM
M that induces the diagram V1 ↔ V2. Suppose the intervention set includes an observational
distribution, and perfect interventions on both V1 and V2: Ψ = ⟨σ{}, σM ({V1}), σM ({V2})⟩. Then
V1 is not ID w.r.t V2 and vice versa.

Proof. We prove this by construction of a counter-example.

Consider an ASCM M∗ that is constructed as follows:

F∗ =


V1 ← U1,2

V2 ← U1,2 + UV2

X1 ← V1, X2 ← V2

U1,2 ∼ N (0, 1), UY ∼ N (0, 3)

σV1 = P (ŨV1), ŨV1 ∼ N (0, 2)

σV2
= P (ŨV2

), ŨV1
∼ N (0, 7)

Consider a separate ASCM M (1) that is constructed as follows:

F (1) =



V
(1)
1 ← −U (1)

1,2

V
(1)
2 ← 0.5U

(1)
1,2 + 1.5UY

X1 ← 1/3V
(1)
1 + 2/3V

(1)
2 ,

X2 ← 2/3V
(1)
1 − 2/3V

(1)
2

U
(1)
1,2 ∼ N (0, 3), U

(1)
V2
∼ N (0, 1)

σV1
= P (ŨV1

(1)
), Ũ

(1)
V1
∼ N (0, 6)

σV2 = P (ŨV2

(1)
), Ũ

(1)
V2
∼ N (0, 7)

M∗ and M (1) induce the same observational distribution P (X) ∼ N (0,

[
1 1
1 4

]
), and interventional

distributions P (X;σV1) ∼ N (0,

[
2 0
0 4

]
), P (X;σV2) ∼ N (0,

[
1 0
0 7

]
)
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However, V (1)
1 = V1 − V2, which implies V (1)

1 is not ancestral mixture or rescaling of the original
V1. Therefore, V1 is not identifiable up to ancestral mixtures, or rescaling.

F.4 ID within c-components

Lemma 5 shows that even with one perfect intervention on each node, it is not possible to disentangle
variables within the same c-component. The next lemma provides a means of doing so using two
perfect interventions on the same node. This provides some intuition for the usefulness of perfect
interventions in the CRID setting.
Lemma 6 (Two perfect interventions can disentangle within a c-component). Let GS be the LSD
induced from a collection of ASCM M. Suppose Vi, Vj ∈ V are in the same c-component, and
there are L + 1 perfect interventions distributions PVi = {P (a0), P (a1), . . . , P (aL)} such that
Vi ∈ do[I(al)] and ∆Q[I(al), I(a0), Vi, G

S ] are equivalent (denoted as Q) for l ∈ [L]. When Vj /∈ Q
and if L ≥ |Q|, Vi is identifiable wrt Vj . When Vj ∈ Q and if L ≥ 2|Q|+ δ ̸⊥, Vi is identifiable wrt
Vj .

Proof. The result follows from the application of Proposition 3 and Proposition 4.

Example 20. In most simple case. Let’s have do[I(j)] = do[I(k)] = Vi and ∆Q = Vi. Let
Vi, Vj ∈ Ck be two arbitrary latent variables in the same c-component. By comparing distributions,
we have

p
(2)
Vi

(vi)− p
(1)
Vi

(vi) = p
(2)
Vi

(v̂i)− p
(1)
Vi

(v̂i) (63)
Taking partial w.r.t. Vj , we have

0 =
p
(2)
Vi

(v̂i)− p
(1)
Vi

(v̂i)

v̂i

v̂i
vj

(64)

which implies v̂i
vj

= 0.

Notice that this is not the only way to disentangle to variables in the C-Component. In Example 6, V1

and V2 are disentangled from each other without leveraging two perfect interventions.

F.5 Case study on disentangling variables in a Markovian setting

This next example works out the algebraic derivations for analyzing Fig. 4(a). This derivation is
provided to provide additional intuition on the theory presented in Section 3, and how these concepts
apply in a simple 3-dimensional latent causal graph.
Example 21 (Algebraic derivation of disentanglement in a simple 3-node chain graph). Given
the graph shown in Figure 4(a), we can factorize the joint observational distribution of the latent
variables

P (V) = P (V3|V2)P (V1|V2)P (V2) (65)

By the probability transformation formula, we can similarly write the distribution in terms of its
estimated sources via function ϕ = f̂−1

X ◦ fX for its distribution Q.

P (V) = P (ϕV3(V)|ϕV2(V))P (ϕV1(V)|ϕV2(V)P (ϕV2(V))|detJϕ| (66)

Now, consider the interventional distributions: P (V;σ
V

(1)
3

) and P (V;σ
V

(2)
3

). Here, we will use
shorthand ϕi to indicate ϕVi(V). Similarly, we can factorize the distribution P (V;σ

V
(1)
3

):

P (V;σ
V

(1)
3

)

= P (V3|V2;σV
(1)
3

)P (V1|V2;σV
(1)
3

)P (V2;σV
(1)
3

) (Conditional independence)

= P (ϕ3|ϕ2;σ3(1))P (ϕ1|ϕ2;σV
(1)
3

)P (ϕ2;σV
(1)
3

)|detJϕ| (Probability transformation formula)
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Similarly, we can decompose the interventional distribution P (V;σ
V

(2)
3

). Now, comparing the log
observational distribution with the log intervention σ

V
(i)
3

, we get:

log p(V;σ
V

(i)
3

)− log p(V)

= log p(V3|V2;σV
(i)
3

) + log p(V1|V2;σV
(i)
3

) + log p(V2;σV
(i)
3

)

− log p(V3|V2)− log p(V1|V2)− log p(V2)

= log p(V3|V2;σV
(i)
3

)− log p(V3|V2)

Where the last line applies the invariance of P (Vi|Vj ;σVk
) = P (Vi|Vj) if (Vi ⊥⊥ Vk|Vj)GV

V3

. In
the space mapped by ϕ, we similarly get:

log p(ϕ;σ
V

(i)
3

)− log p(ϕ)

= log p(ϕ3|ϕ2;σ3(i)) + log p(ϕ1|ϕ2;σV
(i)
3

) + log p(ϕ2;σV
(i)
3

)

− log p(ϕ3|ϕ2)− log p(ϕ1|ϕ2)− log p(ϕ2)

= log p(ϕ3|ϕ2;σ3(i))− log p(ϕ3|ϕ2)

When comparing the distributions of V̂, interestingly the log of the determinant of the Jacobian
cancels out. Combining the two, we get:

log p(V3|V2;σV
(u)
3

)− log p(V3|V2) = log p(ϕ3|ϕ2;σ3(u))− log p(ϕ3|ϕ2) (67)

Taking the partial derivative now with respect to V1, we get that the LHS equals 0 and the RHS
becomes:

0 =
∂

∂V1
log p(ϕ3|ϕ2;σ3(i))− log p(ϕ3|ϕ2)

=
∂ log p(ϕ3|ϕ2;σ3(i))

∂ϕ3

∂ϕ3

∂V1
+

∂ log p(ϕ3|ϕ2;σ3(i))

∂ϕ2

∂ϕ2

∂V1

− ∂ log p(ϕ3|ϕ2)

∂ϕ3

∂ϕ3

∂V1
− ∂ log p(ϕ3|ϕ2)

∂ϕ2

∂ϕ2

∂V1
(Chain rule)

=
∂ϕ3

∂V1

(
∂ log p(ϕ3|ϕ2;σ3(i))

∂ϕ3
− ∂ log p(ϕ3|ϕ2)

∂ϕ3

)
+

∂ϕ2

∂V1

(
∂ log p(ϕ3|ϕ2;σ3(i))

∂ϕ2
− ∂ log p(ϕ3|ϕ2)

∂ϕ2

)
(Collect terms)

Thus, we have two unknowns ∂ϕ2

∂V1
and ∂ϕ3

∂V1
. Given the two interventions with different mechanisms on

V3 compared to the observational distribution, we have two equations that result in a 2-dimensional
linear system. We are able to determine that ∂ϕ2

∂V1
= ∂ϕ3

∂V1
= 0 thus demonstrating that our approach

disentangles V̂3 = ϕ3(V) and V̂2 = ϕ2(V) from V1.

F.6 Comparing different identifiability results

In this section, we explicitly compare and discuss our work compared to a non-exhaustive list of
related disentangled learning in the setting of causally related latent components. Different from
previous literature, we do not make common assumptions such as (1) each intervention is applied to a
single node [55]; (2) idle interventions (observational distribution) are present within each domain
[21, 22]; (3) exactly one intervention is applied per node [13]; (4) at least one intervention is applied
per node [21, 55].

42



V1 V3V2

S1,2

(a)

V1 V3V2
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Figure S5: Reproduced Fig. 4 for convenience.

Causal component analysis [21] The closest work to ours is [21], which also presupposes knowl-
edge of the latent causal graph and focuses solely on learning the unmixing function and the
distributions of the causal variables. In [21], the results emphasized the need for interventions that
occur only on a single node in the latent causal graph. However, Lemma 5 demonstrates challenges
that are not addressed in the prior work. In addition, in our work, we propose a more general concept
of identifiability in Def. 2.3. As a result, Thm. 1 makes significantly weaker assumptions to still
achieve identifiability. Exs.2-6 illustrate also the nuances addressed by our work, but not in [21].

Another interesting concept introduced by [21] is the "fat-hand" interventions, which intervene on
groups of variables within different groups, and the concept of "block-identifiability".

Here, we illustrate some examples and discussion on how our work compares with that of [21] that
also provides sufficient conditions for identifiability given a causal graph over the latent variables.
One key difference between our work is that we do not assume Markovianity in the underlying SCM,
whereas they do.

Example (Ex. 6 cont.). This example continues off of Ex. 6. Consider the motivating example in
healthcare depicted in Fig. 2. In hospitals from different countries Πi and Πj , drug treatment (V1)
affect length of ICU stay (V2), and ultimately whether or not the patient lives or dies (V3). Our task
is to learn representations of the high-level latent variables (V1, V2, V3) that are not collected given a
collection of low-level input such as EMRs, imaging and bloodwork data (high-dimensional data X).
In existing work [21], there are no guarantees that variables {V2, V3} are disentangled from their
ancestor V1 from soft interventions per nodes. However, Proposition 3 demonstrates two comparisons
are enough to disentangle both V2 and V3 from their ancestor V1.

Even in the Markovian setting, where the LSG does not contain bidirected edges, our results can also
guarantee identifiability in this setting.

Example 22 ([21] approach). Given the graph shown in Figure 4(a), [21] requires an observational,
and tuple of intervention sets Ψ = ⟨{}, {V1}, {V2}, {V3}⟩. Provided these four distributions, there
is still no disentanglement of V̂3 with respect to any variables, Vi ∈ V.

Causal Representation Learning from Multiple Distributions: A General Setting [22] Another
approach to achieving disentanglement among the latent variables is similar to nonlinear-ICA, but
leverages the conditional independence properties within a Markov Network of the causal graph.
Then the proof strategy of [22] considers the second order derivative, which leverages the conditional
independence constraints.

However, this results in a required 2d+ |E(MG)|+ 1 number of distributions that satisfy Assump. 4.
In addition, this strategy states that in a collider graph V1 → V2 ← V3, that V1 is not ID wrt V2, and
V3 is not ID wrt V2.

Another example, continues off of Ex. 6.

Example (Ex. 6 cont.). This example continues off of Ex. 6. Consider the motivating example in
healthcare depicted in Fig. 2. In hospitals from different countries Πi and Πj , drug treatment (V1)
affect length of ICU stay (V2), and ultimately whether or not the patient lives or dies (V3). Our task
is to learn representations of the high-level latent variables (V1, V2, V3) that are not collected given a
collection of low-level input such as EMRs, imaging and bloodwork data (high-dimensional data
X). According to [22], 10 distributions can disentangle V3 from V1 when V3 ⊥⊥ V1 | V2. However,
Proposition 3 demonstrates two comparisons are enough to disentangle both V2 and V3 from their
ancestor V1.
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Linear ICA Linear ICA has been extensively studied over decades, and is applied in magnetic
resonance imaging (MRI) [74], astronomy [75], image processing [76], finance [77] and document
analysis [78]. In linear ICA settings, the generative factors are assumed to be independent of each
other and the mixture function fX) is considered to be an invertible matrix A ∈ Rd×d. Formally, the
mechanism F and the distribution P (U) of the true ASCMM∗ are written as:


Vj ← fj(Uj),∀j ∈ [d]

X← AV

Ui ⊥ Uj ,∀i, j ∈ [d]

(68)

Notice that X is d dimensional variable here and Xi ←
∑d

j=1 aijVj = aiV,∀i ∈ [d]. Given the

observational distribution P (X), the goal of linear tasks is to learn Â such that V̂j is a scaling of a
true underlying generative factors Vi, where V̂ = Â−1X. The scaling and permutation identifiability
is defined as follows to denote the achievability of linear ICA tasks.

Definition 6.9 (Scaling and Permutation Identifiability). The representation V̂ is said to be identifiable
up to scaling and permutation V(2) = CPV(1) if for every pair of ASCMM(1) andM(2) such that
(1) PM(1)

(X) = PM(2)

(X), PM(1)

(X;σvk
) = PM(2)

(X;σvk);
(2)M(1) andM(2) are constrained by the modeling process in Eq. 68,
where C = diag(c1, . . . , cd) is a scaling diagonal matrix and P is a permutation matrix.

Def. 6.9 says that if every pair modelM(1) andM(2) in linear ICA settings match the observational
distributions, the generative variables can be transformed by permutation and scaling. This implies
once one finds a proxy ASCMM that matches P (X), V̂ is guaranteed to be a scale and permutation
representation of the true generative variable if the identifiability is achieved. The next example
illustrates ASCMs in linear ICA settings and Def. 6.9.
Example 23 (ICA Identifiability Is Not Achieved). We consider the three augmented generative
processesM∗,M(1) andM(2) with linear ICA constraints.

{
V1 ← U1, V2 ← U2

X1 ← V1, X2 ← V2

U1, U2 ∼ N (0, [1, 0; 0, 1])

M∗

{
V

(1)
1 ← U1, V

(1)
2 ← U2

X1 ← 2V
(1)
1 , X2 ← 0.5V

(1)
2

U1, U2 ∼ N (0, [1/4, 0; 0, 4])

M(1)


V

(2)
1 ← U1, V

(2)
2 ← U2

X1 ←
√
2
2 V

(2)
1 +

√
2
2 V

(2)
2

X2 ←
√
2
2 V

(2)
1 −

√
2
2 V

(2)
2

U1, U2 ∼ N (0, [1, 0; 0, 1])

M(2)

It is verifiable that X1, X2 ∼ N (1, 0; 0, 1) induced by all three models. The latent generative
variables inM(1) are scaled and permuted representations of the true factorsM∗, namely V

(1)
1 =

2V
(2)
2 and V (1)

2 = 0.5V
(1)
2 . In other words, V (1) and V (2) distinctly represents V2 and V1 respectively.

However, the representations V (2)
1 and V

(2)
2 inM(2) are mixture of true generative factors V1 and

V2, i.e.,

V
(2)
1 =

2

2
V1 +

2

2
V2

V
(2)
2 =

2

2
V1 −

2

2
V2

(69)

which implies this is not a scaling and permutation transformation. Thus,M(2) demonstrates that
the scaling and permutation identifiability is not achieved in this setting.

The above example shows a famous result of linear ICA: the representations are not identifiable if
generative factors follow a multi-gaussian distribution. This result comes from the symmetricity
of gaussian distributions: any white gaussian variables are still white gaussian after an orthogonal
transformation. However, orthogonal transformations are not guaranteed to be a scaling or permutation
thus a proxy model may have generative factors that are mixtures of the true V (V(2) in Example 23).
Further, the identifiability result can be concluded as follows with the non-Gaussian assumption.
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Nonlinear ICA [7, 10] Compared to linear ICA, nonlinear ICA assumes the mixing function is a
nonlinear bijective function (i.e. invertible and differentiable).

In linear ICA settings, the generative factors are assumed to be independent of each other and the
mixture function fX) is considered to be an invertible matrix A ∈ Rd×d. Formally, the mechanism
F and the distribution P (U) of the true ASCMM∗ are written as:


Vj ← fj(Uj),∀j ∈ [d]

X← fX(V)

Ui ⊥ Uj ,∀i, j ∈ [d]

(70)

The traditional approaches for proving identifiability from [7, 8, 10] has the following settings:

• (Assumptions) A parametric exponential family is assumed in [7]. In addition, the causal
assumptions of the latent variables is fully disconnected graph, where all variables are
mutually independent. Our work assumes a nonparametric mixing model, and only requires
the mixing function to be a bijection. In addition, we allow a non-Markovian causal model
among the latent variables, which is the first to our knowledge to analyze identifiability in
this general setting.

• (Data) Nonlinear ICA assumes that 2d+1 number of distributions with mechanism changes
of the latent variables such that a version of the Assump. 4 holds. One instantiation of
this in real-world data is time-series with non-stationary changes. Our work leverages
arbitrary combinations of interventional data arising from multiple domains, and also does
not necessarily require observational data.

• (Output) The focus of nonlinear ICA was typically on achieving disentanglement of la-
tent variables up to scaling indeterminancy (Def. 6.5). Our work approaches the goal of
identifiability from a more general setting according to Def. 2.3.

Interventional causal representation learning [52] Another potentially promising approach to
improving identifiability results lies in assuming a parametric form to the mixing function. [52]
considers the setting of having a mixing function that is a composition of polynomial functions (i.e. a
polynomial decoder).

Thus, [52] is able to achieve identifiability of latent variables up to an affine transformation:

V̂ = AV + c

where A ∈ Rd×d and c ∈ Rd make up an invertible affine transformation of the true latent variables V.
In our work, we consider a nonparametric form of the mixing function. However, future work could
consider relaxing this assumption in the direction of a parametric mixing function with polynomial
functions.

Learning Causal Representations from General Environments: Identifiability and Intrinsic
Ambiguity [25] In this paper, identifiability results for a linear ASCM with a linear mixing function
is provided, with access to multi-distributional data arising from different environments.

In addition, they prove identifiability up to "surrounded-nodes" in [25, Thm. 3]. Specifically, any
linear proxy model that is compatible with the observed distributions P , the causal graph, and satisfies
a few technical assumptions will achieve identifiability for each variable with respect to variables not
in the surrounded-set. Similar to ancestral identifiability (Def. 6.6), surrounded-set disentanglement
is a special case of our proposed identifiability definition (Def. 2.3). Our work proposes a graphical
criterion and an algorithm for determining a causal disentanglement map, which may contain different
disentanglements compared to a surrounded-set. Besides our notion of identifiability (goal), our paper
also allows arbitrary distributions from multiple domains (input), and non-parametric non-Markovian
ASCMs (assumptions).

Definition 6.10 (Surrounded set from [79]). For two nodes, Vi, Vj ∈ V in graph G, we say that
Vi ∈ sur(Vj) if Vi ∈ Paj and Chj ⊆ Chi.
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Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions [80] In
this paper, the authors explore identifiability results in an ASCM with a linear mixing function, where
interventions occur on multiple latent variables at the same time (i.e. multi-node interventions).
Further, they assume that interventions are perfect interventions and sufficiently diverse, and have a
sparse effect on the set of latent variables. Finally, their goal of identifiability is a full disentanglement,
which is a special case of the general disentanglement we provide in Def. 2.3, where any variable
may be ID w.r.t. a subset of latent variables.

Our paper also allows multi-node interventions within our graphical criterion (Props. 3, 4, and 5). In
terms of the identifiability goal (output), ASCM model (assumptions), and distributions (input), our
paper is more general notion of identifiability in the form of a causal disentanglement map (goal);
our paper also allows arbitrary distributions (soft, and/or perfect interventions with same/different
mechanisms) from multiple domains compared to only perfect interventions in a single domain that
meet a sparsity constraint (input), and non-parametric non-Markovian ASCMs vs linear Markovian
ASCMs (assumptions).

Linear Causal Representation Learning from Unknown Multi-node Interventions [79] In this
paper, identifiability results are provided in a linear ASCM with a linear mixing function, where
soft, or perfect interventions occur on multiple nodes. The authors establish full disentanglement
results, or disentanglement up to ancestors, which is similar to the results demonstrated in "Causal
Component Analysis" [21].

Our paper also allows multi-node interventions within our graphical criterion (Props. 3, 4, and 5). In
terms of the identifiability goal (output), ASCM model (assumptions), and distributions (input), our
paper is more general notion of identifiability in the form of a causal disentanglement map (goal);
our paper also allows arbitrary distributions (soft, and/or perfect interventions with same/different
mechanisms) from multiple domains (input), and non-parametric non-Markovian ASCMs vs linear
Markovian ASCMs (assumptions).

Learning Causal Representations from General Environments: Identifiability and Intrinsic
Ambiguity [24] In this paper, the authors propose a partial disentanglement goal in a linear, or
non-parametric Markovian ASCM with a sparse causal structure.

Their notion of the disentanglement goal introduces so-called entanglement graphs (output), which is
interestingly exactly what we call the causal disentanglement map. Though the proposed output is
the same, the identifiability results are not the same even in the Markovian case.

In addition, in terms of the distributions leveraged (input), our work differs in considering arbitrary
combinations of distributions (soft, or perfect, or observational) from heterogenous domains. In terms
of modeling the ASCM (assumptions), our work considers completely non-parametric non-Markovian
ASCMs instead of non-parametric Markovian ASCMs with sparse connectivity. In future work, we
believe it will be interesting to explore the assumption of sparsity in the context of our work.

G Experimental Results

G.1 Synthetic data-generating process

We generate data according to latent causal diagrams shown in Fig. 4. Specifically, we analyze the
chain graph V1 → V2 → V3, and collider graph V1 → V2 ← V3 with different input distributions.

Each graph is constructed according to an ASCM, where the latent variables are related linearly:

Vi :=
∑

j∈Pai

αi,jVj + ϵi

where linear parameters are drawn from a uniform distribution αi,j ∼ U(−a, a), and the noise is
distributed according to the standard normal distribution ϵi ∼ N (0, 1).

Generating Multiple Domains To generate a new domain, where Si,j → Vi indicates a change in
mechanism for Vi due to the change in ASCMs between M i and M j , we start from the first ASCM
generated, and then we modify the distribution of the noise variable with a mean-shift.
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Generating Interventions Within Each Domain To generate interventional datasets within each
domain Πi ∈ Π, we modify the Mi ∈M by additionally modifying the SCM, and shifting its mean
for a variable. Therefore for distribution k in Πi, with perfect intervention I, we will have:

Vk := ϵ′k, with ϵ′k ∼ N (µk, σk), ∀Vk ∈ I

such that µk is not within +/ − 1 of any other distribution for variable Vk ∈ V. This ensures the
Assumption of Generalized Distribution Change (Assump. 4). With a soft intervention J that is not
perfect:

Vk :=
∑

j∈Pak

αi,jVk + ϵ′k, with ϵ′k ∼ N (µk, σk), ∀Vk ∈ J

For each distribution over V ∈ Rd, we generate 200,000 data points resulting in d× 200, 000 data
points in total for N total distributions.

We modify the mean and the variance to ensure that the Assumption of distribution change is met
(Assump. 4).

Mixing function In order to generate the low-level data X, we will apply a mixing function fX
to the generated latent variables V. Following [21, 51], to generate an invertible mixing function,
we will use a multilayer perceptron fX = σ ◦AM ◦ ... ◦ σA1, where AM ∈ Rd×d for m ∈ [1,M ]
denotes invertible linear matrices and σ is an element-wise invertible nonlinear function. In our case,
we will use the tanh functio as done in [81]:

σ(x) = tanh(x) + 0.1x

In addition, each sampled matrix Ai is re-drawn if |detAi| < 0.1. This ensures that the linear maps
are not ill-conditioned and close to being singular. Once the mixing function is drawn for a given
simulation, it is fixed across all domains and interventions according to Assump. 4, and then P is
drawn according to all ASCMs instantiated.

G.2 Image Editing Using Disentangled Representations

We demonstrate qualitatively that the generalized disentanglement proposed in this work is valuable
for downstream tasks, such as counterfactual image editing [27]. Consider the graph shown in Fig. S8.
Specifically, we use our learned proxy model to generate initial images and perform interventions
on learned representations V̂ to edit images. We generate initial image samples from observational
distribution of Π1, and then perturb the relevant representations with random Gaussian noise to edit
the image. This is done for the color of the bar, color of the digit, and the digit representations. If the
learned V̂ satisfy the CRID output disentanglement,

1. editing the color of the digit (σV̂2
) should keep the original digit and writing style but may

change the color of the bar since V2 has a causal effect on V3.
2. editing the color of the bar (σV̂3

) should keep the original digit and writing style but may
change the color of the digit since V3 is not disentangled with V2.

3. editing digit (σV̂1
) may change all variables since no disentanglement of V1 is claimed by

CRID.

The editing results are shown in Fig. S7. All editing results are aligned with the CDM output as
expected, which are illustrated above. Specifically, Fig. S7(a) shows the learned VAE-NF model can
change the color of the bar without arbitrarily changing the digit, or writing style. Fig. S7(b) shows
the learned VAE-NF model can change the color of the digit without arbitrarily changing the digit,
or writing style. Finally, Fig. S7(c) shows the learned VAE-NF model did not learn a disentangled
representation for "digit". When perturbing the representation for digit, sometimes the digit does not
change, while the color of the bar, color of the digit, or the writing style changes. This experiment
also demonstrates one usage of CRID. Before training a model that is potentially computationally
and time-intensive, one can leverage CRID to determine if their input data and input assumptions are
sufficient for learning a relevant disentangled representation for their downstream task.
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Figure S7: Editing the image using the learned representations - The representation of the color of
the digit (a), color of the bar (b), and the digit (c) is perturbed. Only (a) and (b) show robust editing
due to the learned representation being relatively disentangled as predicted by CRID.
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Figure S8: Color MNIST with bar data generation. The ground-truth LSD is shown in (a). Four
distributions are generated with observations in domain Π1 (b), observations in domain Π2 (c), soft
intervention on the color-bar (V3) in Π1 (d), and a perfect intervention on the color-digit (V2) in Π1.

G.3 Model

We train invertible MLPs with normalizing flows. The parameters of the causal mechanisms are
learned while the causal graph is assumed to be known. We leverage the implementation in [21], and
extend it for our experiments.

The encoder is trained with the following objective that estimates the inverse function f−1, and the la-
tent densities P (V) reproducing the ground-truth up to certain mixture ambiguities (c.f. Lemmas 3, 6).
The encoder parameters is estimated by maximizing the likelihood..

Normalizing flows We use a normalizing flows architecture [82] to learn an encoder gθ : Rd → Rd.
Therefore, the observations X will be the result of an invertible and differentiable transformation:
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X = gθ(V)

Specifically, gθ will comprise of Neural Spline Flows [83] with a 3-layer feedforward neural network
with hidden dimension 128 and a permutation in each flow layer.

Base distributions Normalizing flows require a base distribution. We leverage one baseline
distribution per sampled dataset, (p̂kθ)k∈[d] over the base noise variables V. The conditional density
of any variable is given by:

p̂kθ(vi|Pai) = N
( ∑

j∈Pai

α̂i,jvj , σ̂i

)

where the parameters are replaced by their corresponding counterparts if there is a change-in-domain,
or an intervention applied. When a perfect intervention is applied, we have that:

p̂kθ(vi) = N (µ̂i, σ̂i

)
G.4 Training details

We use the ADAM optimizer [84].We start with a learning rate of 1e-4. We train the model for 200
epochs with a batch size of 4096.

The learning objective is expressed as:

θ∗ = argmax
θ

N∑
k=0

( 1

nk

nk∑
n=1

log pkθ(X
(k))

)
where nk represents the size of the dataset P k, which is 200,000 in our simulations. We perform
10 training runs over different seeds for each experiment, and show the distributions of the mean-
correlation coefficient (MCC). Using the output of Alg. 1, we compare variables that are expected to
be entangled and disentangled. We use NVIDIA H100 GPUs to train the neural network models.

G.5 Evaluation metrics

The output of our trained model is V̂ = gθ(X), which is a d-dimensional representation. We will
compare this representation with our ground-truth latent variable distributions V by computing the
mean correlation coefficients (MCC) between the learned and ground-truth latents. We expect there
to be an overall lower MCC for variables that are predicted to be disentangleable by Alg. 1 relative to
variables that are not deemed disentangleable.

Note that our algorithm is not shown to be complete, so there may be variables that are disentangled
at the end of our training process that are not captured by the output of Alg. 1. Characterizing when
this occurs and coming up with a complete theoretical characterization of disentanglement is a line
for future work.

For the evaluation, we follow a standard evaluation protocol taken in prior work [18]. We expect low
MCC values when predicting variables that are disentangled, and higher MCC values when predicting
variables that are still entangled.

G.6 Limitations

A major limitation of normalizing flows is that the input and output dimensions of the encoder must be
the same. This is due to the fact that we wish to constrain the layers to be invertible transformations.
It is easy to define invertible transformations for the same input/output dimensions, but it is non-trivial
to do so when input/output dimensions vary widely.
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Besides the technical limitations of the implementation, it is important to note that our theoretical
results are asymptotic results. The theory claims we can achieve ID when the neural network is trained
to zero error. However, in practice, this is not always simple to do and may require hyperparameter
tuning and a very large sample size.

For example, when we consider Fig. 6, we observe that the disentanglement of (b,c) is significantly
better than (a,d). In the experiment involving the collider graph from Fig. 4(b), we sample four
distributions each with 200,000 samples, and thus we have almost 2x the data points compared to
the settings in Fig. 6(a,c). We illustrate this point to emphasize that there is no correct way to set the
sample sizes, hyperparameters, or model architecture as each simulation will be different. We chose
a sample size, model architecture, and default hyperparameters based on prior literature [21] instead
of biasing our experimental results by tuning significantly for each simulation.

G.7 Discussion of Results

In Fig. S9, we show the MCC values for each learned latent representation V̂ and the corresponding
ground-truth latents V for the three different LSDs shown in Fig. 4. Based on the causal disentan-
glement map (CDM) output from the CRID algorithm, the disentangled variables are shown in red,
while the entangled variables are shown in gray.

In Fig. S9(a), the MCC(V̂3, V1) is low relative to the MCC(V̂3, V3), which is predicted by the CRID
algorithm’s CDM output (right plot). This suggests that V1 is disentangled from V3. In addition, we
observe that all MCC values wrt V̂1 are relatively similar, which makes sense as we do not obtain any
disentanglement wrt V1 (left plot). CRID also predicts that V2 is ID wrt V1 (middle plot). However,
we observe quite a large range of MCC values, possibly due to variance, default hyperparameter
settings, or insufficient sample size. Importantly, this experiment verifies that two soft interventions
on V3 in the chain graph of Fig. 4(a) can ID V3 wrt V1, whereas previous literature suggested that V3

is not ID wrt V1 because V1 ∈ Anc(V3) [21].

In Fig. S9(b), we now have an observational, two soft interventions on V3, and a perfect intervention
on V2. In addition to ID V2 wrt V3 (middle plot), we are also able to obtain full disentanglement of
V1 from {V2, V3} (left plot). Interestingly, we are able to fully disentangle the representation for V1

without intervening on it. This is the first theoretical (and empirical) result to our knowledge that
shows this in a causal representation learning setting.

In Fig. S9(c), we have an observational and four interventional distributions applied on {V1, V3}
all with different mechanisms. We observe that V1 and V3 are fully disentangled. MCC(V̂3, V3) >

MCC(V̂3, {V1, V2}), and MCC(V̂1, V1) > MCC(V̂1, {V2, V3}). CRID does not predict disentan-
glement for the V2 representation (middle plot), yet interestingly we still see some disentanglement.
[21] analyzes a similar setup using "fat-hand interventions", and the corresponding theory does
predict V1 and V3 is ID wrt V2. However, we also disentangle V1 and V3 from each other using
many interventions. [22] presents a similar approach by leveraging 2d+ |E(MG)|+ 1 distributions
that "sufficiently change" (i.e. Assumption 4) to disentangle variables. However, the corresponding
theory suggests that V1 and V3 are still entangled because they are adjacent in the Markov Network
of G (MG). These results demonstrate theoretically (and empirically) that V1 and V3 are in fact
disentangled from each other in a fundamentally important causal graph (i.e. the collider).

In Fig. S9(d), we consider disentanglement in a non-Markovian LSD. We leverage two perfect
interventions on V3 (c.f. Lemma 6), and verify that even without observational distributions and the
challenging setting of confounding among the latent variables, we can achieve disentanglement of V3

wrt all other variables. MCC(V̂3, V3) > MCC(V̂3, {V1, V2, V4}), which is predicted by the CRID
algorithm’s CDM output (3rd plot from left). As expected, V1 and V2 are still fully entangled with all
other variables (1st and 2nd plot from left).
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Figure S9: Mean correlation coefficient (MCC) of latent ground truth variables with the learned
representation V̂, and expected disentanglement (red) according to the CRID algorithm. Each plot
corresponds to an experimental setting using the graphs shown in Fig. 4: chain graph with two
interventions on V3 (a). chain graph with two interventions on V3 and a perfect intervention on V2

(b), collider graph with four interventions on {V1, V3} (c) and the non-markovian graph with two
perfect interventions on V3 (d).
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H Broader Impact and Forward-Looking Statements

The development of learning disentangled causal representations has the potential to improve our
understanding of complex systems, and to help identify the generative factors for many important
problems. By improving our ability to leverage observational and interventional data across multiple
domains, this work could ultimately lead to more realistic generative AI. Beyond the machine learning
and causal inference community, we expect that our results will enable fundamental contributions in
various fields, including biology [85], epidemiology [86], economics [37] and neuroscience [38].

I Frequently Asked Questions

Q1. What’s the learning goal of the paper? This work claims to be causal representation learning,
but why do we not learn the structure over the latent variables while assuming it as given?
Answer.
Causal representation learning may comprise of two parts: i) learning the distributions
of the latent variables and ii) learning the causal structure among these latent variables.
Learning the distribution over latent variables is a non-trivial problem, especially in the
context of non-Markovian ASCMs and the general multi-domain context. For example,
consider nonlinear ICA, where the structure of the latent variables is the fully disconnected
graph. It was shown to be non-ID with only iid data [9]. Although ID results eventually
came about for nonlinear ICA, it was nontrivial to derive. In the same spirit, we seek to
analyze the most general setting possible when assuming knowledge of the causal structure.
This is analogous to the causal inference task of identification [87, 88], where the goal is
to determine if a causal effect over observed variables is estimable given infinite data from
some given distributions on the observed variables. Put similarly, our work’s goal is to
determine if a latent variable Vi ∈ V is disentangleable given infinite data from some given
distributions over the observed variables X. In traditional causal inference, when the causal
graph is unknown, then one is typically interested in causal discovery, or structure learning
of the graph over the observed variables given distributions over the observed variables.
Future work may assume that even the latent causal structure is unknown, and pursue the
structure learning of the LCG given distributions over the observed variables.

Q2. Is it reasonable to expect that the causal diagram is available? How do you get the graph?
Answer.
The assumption of the causal diagram is made out of necessity. Even existing methods is
able to learn the casual diagram at the same time, however, the setting is more restricted.
For example, the SCM should be Markovian and the intervention data per node should
be given. In our setting, the underlying SCM can be non-Markovian and the given data
can be any observational and interventional data from an arbitrary domain. In the general
setting, even when the generative factors are all observed, learning the causal diagram task
(structural learning task) is still difficult. Interestingly, recovering the full true diagram is
even impossible, and existing works aim to recover an equivalence class of diagrams [32,
89–91]. Thus, in this general setting for causal representation learning, we first provide
identification results given a causal diagram and leave structure learning for future work.
We follow closely to the disentangled representation learning works that assume the causal
diagram is given. ICA/Nonlinear ICA assumes the diagram G is given and restricts the
setting where no edges are in G. Later, [18] assumes focus on disentangling the content
variable from the style variable and assumes the knowledge of the diagram is given (Content
is the ancestral of Style). Recently, [21] focuses on the setting that the given diagram is
Markovian. We extend the setting to non-Markovain settings. Notice that our generalization
is not only related to diagram assumption but involves more general assumption, data, and
output (please see Sec. 1, Tab. 1 and Tab. S1 for details.)
In practice, knowledge of the latent causal graph is typically provided by domain experts, or
a modeling assumption. As an example of a realistic setting where the latent causal graph
can be assumed, consider generating realistic face images [27]. Here, the latent causal
structure comprises of Gender, Age, and Hair Color. Knowledge of the graph is provided
due to our understanding of what comprises realistic changes in a face. For a detailed
discussion on this, see Appendix Section D.1.
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Q3. Why CRID (Alg. 1) only takes intervention targets Ψ and LSG GS as input? Do you need
distributions P? If not, how do you learn representations?
Answer. CRID leverages the intervention targets Ψ and the LSG GS to determine the
invariant and changing factors when considering the generalized factorization of probability
distributions Markov relative to the provided graph. These invariant and changing factors
are what give rise to the theory we develop in Section 3. The CRID algorithm leverages this
theory to provide an identifiability algorithm, which answers the question: If we fully learn
a representation V̂ (given the diagram and the distributions), which variables are expected
to be disentangled with which variables? This is an asymptotic question and assumes the
representation is fully learned.
To fully learn the representations, one can search a proxy model that matches P and GS and
the V̂. Then the proxy model is the learned representation. We do this in the Experiments
Section, but note we do not claim that this method of learning the representations is superior
to any prior work. Specifically, we implement an approach to train a neural model that is
compatible with the diagram to match the given distribution based on normalizing flows.
Recently, many graphical constraints proxy neural models have been proposed, and they
are trained to fit the given distribution for causal representation learning and downstream
tasks [20, 27, 55, 92–94]. Without our work, one can still try to use these models to learn
representations. However, there is no guarantee about how these learned representations is
entangled with each other. Our work is the first one to provide general answers for this
identification problem. This process can be compared with the identification and estimation
problem in classic causal inference. The identification of a specific query given a causal
diagram can be answered in symbolic ways [87, 95–99], and then if the query is identifiable,
one can take the distribution (or data) as input and use estimation methods to obtain the
estimated query. Without the identifiability result, there are no guarantees for the estimation.

Q4. Why not just use observational distributions in each domain as the baseline in the CRID
algorithm described in Section 4?
Answer. One may surmise that this is not efficient and propose to choose the observational
distribution in each domain alternatively. However, we argue that this enumeration is needed
from two perspectives. First, the observational distributions, namely the idle interventions,
are not always given. Second, comparing with observational distributions is not guaranteed
to offer diverse ∆Q sets. For example, consider intervention targets I(1) = {}Π1 , I(2) =

{V Π1,[1]
1 , V

Π1,[1]
2 }, I(3) = {V Π1,[1]

1 , V
Π1,[2]
2 } all applied to the same domain Π1. Choosing

T = {} and comparing I(2) and I(3) with the idle intervention I(1),

∆Q[I(2), I(1),T] = ∆Q[I(3), I(1),T] = {V1, V2}. (71)

Comparing I(1) and I(3) with the idle intervention I(2),

∆Q[I(1), I(2),T] = ∆Q[I(3), I(2),T] = {V2}. (72)

Then using Proposition 3, it is possible to disentangle V2 from V1 with the latter choice. This
demonstrates that the observational distribution is not always necessarily the best baseline.
Furthermore, consider the challenge of disentangling V1 from V2 in the LCG V1 L9999K V2.
As Lemma 6 demonstrates, one can compare two perfect intervention distributions on V1 to
achieve ID of V1 wrt V2. In this case, one would not even need the observational distribution.

Q5. Why distinguish domains and interventions? Are they not the same thing?
Answer. The literature has typically conflated domains and interventions in the context of
causal inference.
Many examples across scientific disciplines demonstrate that the notions of do-
main/environment and interventions are distinct. For example, when making inferences
about humans based on data from bonobos, this distinction becomes clear. The difference
between the two species is depicted as the environment/domain in this context. A scientist
might perform an intervention on a bonobo’s kidney (specifically, what we’re representing
as Z), and try to determine the effect of medication (X) on fluid equilibrium in the body
(Y ). Although we could intervene on Z in bonobos and observe its effect on X and Y ,
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our ultimate goal might be to understand the effect of X on Y in humans. It’s generally
invalid to conflate these two qualitatively different indices, a point first noted by [62] in
the context of transportability analysis. The distinct environments exist regardless of any
intervention, such as medication. Also, an intervention on kidney function is different across
the two species. [62] formalized this setting, introducing clear semantics for the S-nodes
(environments) that essentially offer a combined representation for both environments. With
this foundation, we can now address the more general problem of analyzing data generated
from interventions across multiple domains in the latent space.
We point the reader to Appendix Section A.3 for a discussion and some examples of how
CRID leverages this distinction. More recently,
In addition, we provide the following example that we hope further motivates the necessity
of distinguishing interventions and domains.

Example 24 (Disentangled representation with interventions in different domains). Consider
a ASCM,M over domains bonobos (Π1) and humans (Π2) that induces the causal chain
V1 → V2 → V3 ← S1,2. The latent variables are sun exposure (V1), Age (V2), Hair Color
(V3). Sun exposure causes aging over time, and aging causes changes in hair color. Hair
color looks different across species, which is represented by the S-node. We collect images of
their faces, X = fX(V1, V2, V3). Assume we are able to collect images in two interventional
settings {V1}Π1 and {V1}Π2 , where we modify the level of sun exposure each participant is
exposed to.
Now, assume we ignore the domain index, and simply treat these two distributions as
interventional, since we are intervening on V1. Then prior results would state that a soft
(or perfect) intervention on V1 allows it to be disentangled from V3. However, this is
incorrect.

Q6. Is the relaxation of Markovianity important? Since all V are already latent, can one
regard the confounding U as V to transfer the model in the non-Markovianity setting to a
Markovanity model?
answer
Yes the distinction between Markovianity and non-Markovianity is important both qualita-
tively and quantitatively.
Qualitatively, consider the following example in healthcare, where one has access to high-
dimensional T1 MRI scans. Let the LCG comprise of Drug Treatment → Outcome, but
they are confounded by socioeconomic status (Drug Treatment L9999K Outcome). The
drug treatment and outcome are visually discernable on the MRI. However, socioeconomic
status does not directly impact how the MRI appears, except through how it impacts the
drug treatment efficacy or outcome. The socioeconomic status is therefore an unaccounted
confounder in the LCG, and it is important to model this spurious association. If unac-
counted for, one may assume that it is possible to disentangle Drug Treatment and Outcome
leveraging existing ID results in the literature [11, 13, 14, 21, 22] even if the results do not
apply in this setting.
Regarding modeling, an ASCM with confounding cannot be reduced to a Markovian ASCM.
Although U and V are both latent, every U is not the direct parents of X, which means U
cannot be uniquely determined by value of X. Take the example where V1 L9999K V2 is
the LCG G. Since U12 does not point to X, we cannot let U12 be another latent generative
factor V.
Regarding results, we point the reader to Lemma 5, where it is shown that even with one
perfect interventions per node, it is not possible to disentangle variables within the same
c-component. This in contrast with results in the Markovian setting, where it is shown in
[21] that one perfect intervention per latent variable allows us to achieve full identifiability
of every latent variable up to scaling indeterminancies.
More broadly, it is noteworthy that transitioning causal reasoning from Markovian to non-
Markovian settings was not trivial. For example, it is known that interventional distributions,
such as P (y | do(x)), are always identifiable from the causal graph and observational
distribution in Markovian settings in all models. Moving to non-Markovian settings, the
celebrated do-calculus is developed primarily to address the decision problem of whether
an interventional distribution can be uniquely computed from a combination of causal
assumptions (in the form of a causal diagram) and the observational distribution [61].

54



Naturally, the issue of non-identifiability is much more acute in this setting, due to the
existence of unobserved confounding.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that we introduce graphical criteria and an algorithm for determining
whether latent variables are ID or not from our general definition of ID. We then provide our
results in Section 3 and 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the assumptions made in this paper in Appendix Section A.2, and
how future work can potentially improve upon our limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each proposition and Theorem stated in the main text: Propositions
1, 2, 3, 4, 5 and Theorem 1 are stated in the main text, and proved in Appendix Section C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details of our experiments in Appendix Section G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code we used to run experiments is here:
https://github.com/tree1111/CDRL.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details of our experiments in Appendix Section G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show distribution plots, and do not compute any pvalues.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of our experiments in Appendix Section G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix Section H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited [21], which we leveraged their code to produce experimental results
shown in the paper. We do not repackage any datasets, or code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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