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ABSTRACT

Vision-and-language (VL) models with separate encoders for each modality (e.g.,
CLIP) have become the go-to models for zero-shot image classification and image-
text retrieval. The bulk of the evaluation of these models is, however, performed
with English text only: the costly creation of language-specific image-caption
datasets has limited multilingual VL benchmarks to a handful of high-resource
languages. In this work, we introduce Babel-ImageNet, a massively multilingual
benchmark that offers (partial) translations of 1000 ImageNet labels to 92 lan-
guages, built without resorting to machine translation (MT) or requiring manual
annotation. We instead automatically obtain reliable translations of ImageNet
concepts by linking them – via shared WordNet synsets – to BabelNet, a mas-
sively multilingual lexico-semantic network. We evaluate 8 different publicly
available multilingual CLIP models on zero-shot image classification (ZS-IC) for
each of the 92 Babel-ImageNet languages, demonstrating a significant gap be-
tween English ImageNet performance and that of high-resource languages (e.g.,
German or Chinese), and an even bigger gap for low-resource languages (e.g.,
Sinhala or Lao). Crucially, we show that the models’ ZS-IC performance on
Babel-ImageNet highly correlates with their performance in image-text retrieval,
validating that Babel-ImageNet is suitable for estimating the quality of the mul-
tilingual VL representation spaces for the vast majority of languages that lack
gold image-text data. Finally, we show that the performance of multilingual CLIP
for low-resource languages can be drastically improved via cheap, parameter-
efficient language-specific training. We make our code and data publicly available:
https://anonymous.4open.science/r/Babel-ImageNet-EDBB

1 INTRODUCTION

CLIP models (Radford et al., 2021; Jia et al., 2021; Pham et al., 2021) have arguably become the
most widely used vision-and-language (VL) models, owing popularity to efficient inference based
on separate yet semantically aligned encoders for the two modalities. Their bi-encoder architecture
makes them ideal for efficient image-text retrieval (Lin et al., 2014; Plummer et al., 2015) and zero-
shot image classification (Radford et al., 2021). They can also produce input vectors for supervised
tasks such as image generation (Rombach et al., 2022) or cross-modal reasoning (Eichenberg et al.,
2022; Li et al., 2023).

Motivated by the observation that performance on ImageNet classification translates well to perfor-
mance in many other image tasks (Recht et al., 2019; Fang et al., 2023), CLIP models are typically
evaluated on zero-shot image classification (ZS-IC), i.e., by comparing the representation of an image
with text representations of class labels, whereby ImageNet (Deng et al., 2009) is the most prominent
benchmark. With ImageNet class labels available only in English, this supports only evaluation
of monolingual English models (i.e., models trained with English captions only). Although most
CLIP models are trained on English-only image-caption data, some effort has been put into creating
multilingual and monolingual non-English models by (1) training them from scratch (Bianchi et al.,
2021; Ilharco et al., 2021; Yang et al., 2022; Jain et al., 2021) or (2) distilling them from English
models (Carlsson et al., 2022; Chen et al., 2022; Zhang et al., 2022), typically using parallel data as
supervision. Despite attempts to translate ImageNet labels to other languages (Bianchi et al., 2021;
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Yang et al., 2022), the language coverage remains very limited. Because of this, multilingual CLIP
models have mainly been benchmarked on image-text retrieval datasets (Aggarwal & Kale, 2020;
Bugliarello et al., 2022, inter alia), which predominantly cover only limited sets of mid-to-high
resource languages.
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Figure 1: Babel-ImageNet translations in 92
languages for the ImageNet class 309 (synset
n02206856: “bee”). Font size of the language is
proportional to the number of translated ImageNet
classes. [Image by Charles J. Sharp, CC BY-SA
3.0, via Wikimedia Commons]

Rationale. Creating massively multilingual
gold-standard datasets for VL tasks (e.g., image-
text retrieval) is prohibitively expensive. Exist-
ing efforts (Aggarwal & Kale, 2020; Bugliarello
et al., 2022; Thapliyal et al., 2022) either hire
native speakers to write image captions in tar-
get languages or resort to machine translation
(MT) of English data, followed by manual post-
editing by native speakers. The MT approach
(the cheaper of the two), is, we argue, still too
expensive for low-resource languages because
MT models are less accurate when translating
to those languages, which implies a bigger post-
editing effort for bilingual annotators, native in
the low-resource language and fluent in English;
in addition, such annotators are more difficult
to find for low-resource than for high-resource
target languages (compare, e.g., Sinhala and
German). In this work, we thus seek to create
a robust massively multilingual benchmark for
evaluating the quality of representation spaces
of multilingual VL models, without resorting to
MT or requiring any manual annotation effort.
To be useful, such a benchmark needs to sat-
isfy a crucial requirement: models’ performance
across languages must be indicative of their per-
formance for the same languages in tasks such
as image-text retrieval, for which creating mas-
sively multilingual (gold-standard) evaluation
datasets is too expensive.

Contributions. With this in mind, we create Babel-ImageNet, a massively multilingual dataset for
zero-shot image classification that offers (partial) translations of the 1000 ImageNet-1k classes to
92 languages. To obtain robust translations of ImageNet labels in other languages, we leverage the
connection between ImageNet classes, which are derived from WordNet (Miller, 1994) synsets, and
BabelNet (Navigli & Ponzetto, 2010), a massively multilingual lexico-semantic network, also (in
part) derived from WordNet. Relying on the multilingual BabelNet synsets (and WordNet synset
identifiers of ImageNet classes) to pivot between languages we avoid problems known to occur with
machine translation of short phrases without context, e.g., due to polysemy1. Exploiting BabelNet
allows us to automatically obtain labels for ImageNet concepts in many languages, removing the
need for MT and manual annotation.

We evaluate 8 different multilingual CLIP models on Babel-ImageNet, observing that all of them
exhibit poor performance for low-resource languages. Crucially, we validate that Babel-ImageNet is
a meaningful benchmark for measuring the quality of multilingual VL representations by comparing
models’ performance on Babel-ImageNet against their performance on established multilingual
image-text retrieval datasets. Babel-ImageNet thus allows us to evaluate models in languages not
covered by those datasets and it additionally expands the retrieval-focused evaluation with the ZS-
IC task in languages included in the established datasets. Finally, we propose a computationally
efficient approach for improving multilingual CLIP models for low-resource languages. This modular
language specialization approach yields large performance gains (>20% for some of the low-resource
languages).

1For example, the ImageNet class walking stick refers to the insect and not the inanimate object.
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2 RELATED WORK

We first provide an overview of existing benchmarks for evaluating multilingual VL models, followed
by a brief overview of multilingual CLIP models, commonly used for efficient image-text retrieval.

2.1 MULTILINGUAL VISION-AND-LANGUAGE BENCHMARKS

Early multilingual VL models (Gella et al., 2017; Wehrmann et al., 2019; Kim et al., 2020; Burns
et al., 2020; Ni et al., 2021; Geigle et al., 2022; Zhou et al., 2021) were often evaluated in image-text
retrieval on Multi30k (Elliott et al., 2016; 2017; Barrault et al., 2018), an extension of Flickr30k
(Plummer et al., 2015) to German, French, and Czech, as well as on the Japanese (Yoshikawa et al.,
2017) and Chinese (Li et al., 2019) translations of MSCOCO (Lin et al., 2014). More recent models
were evaluated on multilingual image-text retrieval benchmarks: XTD (Aggarwal & Kale, 2020) (10
languages) and WIT (Srinivasan et al., 2021) (108 languages). Both these benchmarks, however, have
prominent shortcomings. XTD predominantly contains examples from Karpathy’s training portion
of MSCOCO (Karpathy & Fei-Fei, 2017), which is commonly used for pretraining of VL models:
this constitutes a case of data leakage because XTD’s multilingual captions are directly translated
from the original English captions (Bugliarello et al., 2022). WIT collects image-caption pairs from
Wikipedia(s), which leads to two problems: (1) Wikipedia captions are abundant with named entity
mentions, which are often identical across a number languages – this artificially equates the difficulty
of retrieval across languages (Zhai et al., 2022); (2) The number of image-caption pairs for a language
depends on the size of its Wikipedia: this not only prevents direct performance comparisons across
languages but also results in overly optimistic performance estimates for low-resource languages with
merely a few hundred image-caption test pairs. More recently, IGLUE (Bugliarello et al., 2022) was
introduced as the first benchmark to also include reasoning tasks like visual QA (Pfeiffer et al., 2022),
primarily meant to test cross-encoder models that jointly encode image-text pairs (Ni et al., 2021;
Zhou et al., 2021; Zeng et al., 2022). IGLUE also introduces the image-caption dataset xFlickrCo, a
combination of Flickr30k and MSCOCO with captions in 7 languages. A recent dataset, XM3600
(Thapliyal et al., 2022), encompasses 3600 images (balanced by geography of origin) with captions
in 36 languages. Despite high-quality2, it has yet to become widely adopted – along with Zhai et al.
(2023), we are among the first to use it.

Motivated by monolingual CLIP models in other languages, translations of ImageNet classes have
emerged for a handful of high-resource languages: Italian (obtained with MT) (Bianchi et al., 2021),
Chinese (human translations) (Yang et al., 2022), and Japanese3 and Arabic4 (undisclosed translation
methods). Extending ImageNet to more languages, however, is not feasible at scale: on the one
hand, manual translation requires finding native speakers of low-resource languages (additionally
fluent in English), which is challenging; machine translation of concepts (i.e., words and short
phrases) out of context, on the other hand, is problematic due to polysemy – it thus also requires
validation of the translated senses by bilingual annotators: this is especially critical for low-resource
languages for which current MT systems are still lacking (Costa-jussà et al., 2022). In contrast,
by exploiting the fact that ImageNet classes correspond to Wordnet synsets which, in turn, have
corresponding massively multilingual synsets in BabelNet, we are able to create the first robust
massively multilingual translation of ImageNet classes, avoiding the caveats of polysemy associated
with automatic translation of concepts.

2.2 MULTILINGUAL CLIP

While CLIP Radford et al. (2021) is not the first model for embedding images and text in the shared
representation space, it has arguably become the most widely used one, owing its effectiveness –
especially in ZS-IC – to the immense pretraining corpus. Older models, not exposed to large-scale VL
pretraining, e.g., (Faghri et al., 2018) for English and (Gella et al., 2017; Wehrmann et al., 2019; Kim
et al., 2020; Burns et al., 2020) multilingually, focused predominantly on text-to-image retrieval and
were not shown to exhibit ZS-IC abilities. MURAL (Jain et al., 2021) was the first – albeit not publicly

2The authors explicitly acknowledge the very high cost of human captioning of images in 36 languages
(regretfully, they do not explicitly disclose the cost).

3https://github.com/rinnakk/japanese-clip
4https://github.com/LAION-AI/CLIP_benchmark/pull/68
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released – multilingual CLIP model, trained on billions of multilingual image-caption pairs. To the
best of our knowledge, the only publicly available multilingual CLIP models trained “from scratch”
are the OpenCLIP models (Ilharco et al., 2021) – pretrained using the full multilingual LAION5B
dataset (Schuhmann et al., 2022), consisting of 5B image-caption pairs covering 100+ languages.
Monolingual CLIP models for a few languages other than English (e.g., Italian, Chinese) have also
been released (Bianchi et al., 2021; Yang et al., 2022): due to comparatively small pretraining data,
they trail the English performance. Given the huge computational cost of training a multilingual CLIP
from scratch, teacher distillation (Reimers & Gurevych, 2020) has become popular as an efficient
alternative (Carlsson et al., 2022; Chen et al., 2022; Zhang et al., 2022): a pretrained multilingual text
encoder (e.g., XLM-R Conneau et al. (2020)) is forced (commonly using parallel sentences) to align
its representation space to the text encoder of English CLIP.

3 BABEL-IMAGENET: MASSIVELY MULTILINGUAL ZERO-SHOT IMAGE
CLASSIFICATION

Why (massively) multilingual ZS-IC? With class labels in a particular language we can evaluate
VL models in language-specific ZS-IC. Note that the goal is not to improve the image classification
performance – using labels in any other language yields worse performance compared to using
English labels. Instead, we argue that a model’s language-specific ZS-IC performance is a good
estimate of the quality of its multilingual VL representation space for the language, and thus a good
predictor of the model’s performance for that language in “real” tasks (e.g., image-caption retrieval).

WordNet as a matchmaker for ImageNet and BabelNet. Unlike in most image classification
datasets (e.g., CIFAR10, Oxford Pets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008)),
where image classes are words, ImageNet (Deng et al., 2009) links images to concepts, represented
with sets of synonyms (synsets) from English WordNet (Miller, 1994). BabelNet (Navigli & Ponzetto,
2010) is a massively multilingual lexico-semantic network, automatically created by merging and
consolidating numerous lexico-semantic resources: from WordNets in dozens of languages (e.g.,
Hamp & Feldweg (1997); Pianta et al. (2002)) to (massively multilingual) Wikipedia and WikiData
Vrandečić (2012).5 Crucially for our efforts, BabelNet is (1) also organized in (multilingual) synsets,
containing synonyms across many languages and (2) each of its synsets has an explicit link to
the corresponding (English) WordNet synset (if such exists). With WordNet as the seam between
ImageNet and BabelNet, we are able to create a massively multilingual ZS-IC benchmark, without
resorting to manual annotation or MT.

Language Selection. While one could obtain ImageNet class translations in all BabelNet languages,6
we limit our evaluation to 92 non-English languages (counting unique ISO codes) covered by the
pretraining corpora of XLM-R (Conneau et al., 2020). The motivation for this decision is twofold:
(1) 50K images in ImageNet and up to 80K label + prompt combinations per language – to be
embedded with each model included in our comparative evaluation – make even the ZS-IC evaluation
computationally intensive, limiting the total number of languages for which we could carry it out
with our computational resources; (2) the majority of publicly available multilingual CLIP models
have been derived precisely from XLM-R as the initial multilingual text encoder (see Table 1).

Class Label Translation and Cleaning Process. For each ImageNet class, we first fetch all words
of each synsets in any of the 92 languages (where available) and English from the corresponding
BabelNet synset (using the WordNet synset ID for matching). We next remove words from other
languages for which an identical English word exists. We do this because having target language
labels identical to English labels would allow multilingual VL models to rely on their high-quality
English representations. With those being semantically (much) better than representations of other
languages, this would lead to misleadingly optimistic estimates of models’ multilingual abilities. On
average, this removes 84± 39 classes from a language-specific benchmark (i.e., we lose classes for
which all available BabelNet words in a language also exist as English words in the same synset).
Next, we eliminate all words that were added to BabelNet via machine translation, removing the
potential negative effects of context-agnostic MT from our benchmark. This mostly affects high(er)-

5We use BabelNet v5.2, which consolidates 53 sources: https://babelnet.org/statistics
6BabelNet v5.2 covers 520 languages. We found 298 of them present in at least 10 synsets that correspond to

classes of ImageNet-1K; we release labels for these 298 languages with at least 10 classes. We also release our
code, so that anyone with access to BabelNet can create translations in additional languages.

4

https://babelnet.org/statistics


Under review as a conference paper at ICLR 2024

resource languages and removes on average 148± 184 classes. Finally, we select for every remaining
class the first words in the respective language (according to the order in BabelNet) as our final
language-specific class label. While the above process is not error-free, we estimate7 that less than 1%
of labels are incorrect. We believe this to be a very acceptable error rate, considering (i) that around
6% of ImageNet images are mislabeled (Northcutt et al., 2021) in the first place and (ii) that there are
also erroneous mappings between ImageNet images and (English) WordNet synsets (Nielsen, 2018;
Radford et al., 2021).

Grouping Languages in Evaluation. On the one hand, comparing models’ performance over 92
languages (+English) is unwieldy; averaging performance across all languages, on the other hand, is
too reductive and consequently not particularly informative. We thus opt for the middle ground: we
group Babel-ImageNet languages in three buckets based on their number of classes (less than 333,
334 to 667, and 668 to 1000). We argue that the number of classes is a reasonable proxy for general
“resourceness” of a language (see §B.1 for the full list of languages and corresponding numbers of
classes) and accordingly designate the three groups as low-, mid-, and high-resource, encompassing
41, 35, and 16 languages, respectively. Additionally, given that ZS-IC becomes easier with fewer
classes, averaging results across languages with more comparable numbers of classes (i.e., within
each of our groups) makes more sense than averaging them across all languages. Nonetheless, due
to differing sets of classes, we caution against direct performance comparisons of results between
groups or across individual languages. Instead, for any particular language or language group
Babel-ImageNet allows for a direct comparison of competing multilingual VL models.

4 COMPARATIVE EVALUATION OF CLIP MODELS

Models. We briefly describe the public CLIP variants we benchmark on Babel-ImageNet (overview
in Table 1). All of them encode images with Vision Transformers (ViT) (Dosovitskiy et al., 2021)
albeit of different sizes and with differently sized input patches (e.g., B-32 = Base Transformer with
32×32-pixel patches).

OpenAI: The original CLIP model (Radford et al., 2021), trained contrastively on 400M English-
only image-caption pairs. The text encoder is trained from scratch (i.e., not initialized with any
pretrained weights).

OpenCLIP: The OpenCLIP project (Ilharco et al., 2021) aims to replicate the OpenAI models using
the public Laion datasets (Schuhmann et al., 2021; 2022). Two multilingual models have been trained
on the the multilingual LAION5B dataset: the B-32 model with the text encoder initialized with the
weights of XLM-R-Base and the H-14 model is initialized with XLM-R-Large. The B-32 variant is
trained with the original contrastive CLIP objective, whereas the H-14 model was trained via locked
image tuning (LiT, (Zhai et al., 2022)) in which the pretrained image encoder of the English H-14
OpenCLIP model is frozen and only the parameters of the text encoder are updated.

SentenceTransformer(ST):One of the first distillation-based multilingual CLIP-like models.
It was obtained via the distillation approach of Reimers & Gurevych (2020),8, using over 50M EN-X
parallel sentences (X being one of 49 other languages) as supervision. They distill an (distilled,
sentence-based) mBERT student (Devlin et al., 2019) from the English OpenAI B-32 teacher.

M-CLIP: Multilingual-CLIP (M-CLIP) Carlsson et al. (2022) is another model distilled using
mBERT and OpenAI B-32. Unlike ST, they use automatic translations of 3M English image captions
(from public image-text datasets) to 69 languages as parallel supervision for the distillation training.
Post-publication, the authors additionally released a set of models9 with XLM-R-Large (instead
of mBERT) as the student initialization and (English) OpenAI B-32, L-14, and OpenCLIP B-16+
as teachers, respectively. These models were trained on 7M captions provided by Li et al. (2022),
machine-translated to 48 languages. The original English captions were not used in training.

AltCLIP: This model by Chen et al. (2022) distills an XLM-R-Large student with OpenAI L-14 as
teacher, targeting 9 languages and using as training data a mix of machine-translated captions, multi-

7Based on manual inspection of class labels for a handful of languages that the authors speak.
8https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
9https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/larger_

mclip.md
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Table 1: CLIP variants benchmarked on Babel-ImageNet with the following information: (i) the
source (who trained the model), (ii) the text encoder, (iii) the image encoder (all ViT (Dosovitskiy
et al., 2021)), (iv) the training objective (CLIP: contrastive training as in Radford et al. (2021), LiT:
locked image tuning Zhai et al. (2022), distill: MSE teacher distillation (Reimers & Gurevych, 2020)),
(v) the amount of training data (for “distill” the number of caption pairs, for CLIP/LiT the number of
image-text pairs), and (vi) the number of languages covered by the training data.

Source Text Image Objective #Data #Langs

OpenAI Base B-32 CLIP 400M 1
OpenCLIP XLM-R-Base B-32 CLIP 5B >100
OpenCLIP XLM-R-Large H-14 LiT 5B >100
M-CLIP mBERT B-32 distill 3M 69
M-CLIP XLM-R-Large B-32 distill 7M 48
M-CLIP XLM-R-Large B-16+ distill 7M 48
M-CLIP XLM-R-Large L-14 distill 7M 48
SentenceTransformer (distilled) mBERT B-32 distill >50M 49
AltCLIP XLM-R-Large L-14 distill+LiT 50M+100M 9

lingual captions sampled from LAION5B, and aligned English-X sentence pairs. After distillation,
the authors additionally fine-tune the model via LiT using selected image-text pairs from LAION5B
in the 9 target languages.

Zero-Shot Image Classification Setup. We adopt the ZS-IC setup of Radford et al. (2021): for an
image-label pair, the image embedding is obtained directly from the image encoder; the label is in-
serted into 80 different prompt templates (from Radford et al. (2021)), each of which is independently
embedded by the text encoder – the final label representation is then the mean of prompt embeddings.
The class with the label embedding that is most similar to the image embedding (according to cosine
similarity) is taken as the prediction; accuracy (top-1) is the evaluation metric.

Translating Prompts. We translate the 80 English prompts used by Radford et al. (2021) to our
92 languages using NLLB (Costa-jussà et al., 2022) (model: nllb-200-distilled-1.3B; see §B.2 for
details). We show (see §C.1) that translated, language-specific prompts lead to better performance
compared to using only the class labels or inserting them into the original English prompts. Moreover
(see §C.2), we show that translated prompts yield similar performance as human-crafted prompts in
ar, it, ja, and zh.

Table 2: ZS-IC performance on Babel-ImageNet:
average results for low-/mid-/high-resource lan-
guages and English. Bold: best result in each
column, both between models with base (B) and
large (L/H) image encoders.

Model low mid high en

OpenAI B-32 4.2 4.9 9.0 61.3
OpenCLIP XLMR B-32 15.0 31.0 39.7 62.8
M-CLIP XLMR-L B-32 25.7 32.8 33.3 42.6
M-CLIP XLMR-L B-16+ 25.8 34.5 36.0 46.4
M-CLIP mBERT B-32 14.8 19.3 18.9 29.2
ST mBERT B-32 9.2 15.1 17.1 38.2

M-CLIP XLMR-L L-14 28.1 37.7 39.5 51.6
AltCLIP XLMR-L L-14 14.2 21.1 33.6 69.9
OpenCLIP XLMR-L H-14 19.5 41.1 52.4 77.1

ZS-IC Results. Table 2 summarizes the results
for the low-, mid-, and high-resource language
groups, alongside the English performance. The
full results for all 92 languages can be found in
the Appendix (Table 7).

Although differing subsets of ImageNet classes
across language-specific benchmarks (see §3)
prevent direct comparison of numbers between
the language groups, these results make it abun-
dantly clear that multilingual CLIP models per-
form dramatically worse (i) for high-resource
languages than for English, and (ii) for low- and
mid-resource languages than for high-resource
languages. Note that this is despite the classifica-
tion tasks a priori being easiest for low-resource
languages (fewer than 333 classes) and hardest for English, where models must distinguish between
all 1000 classes of ImageNet-1k.

The English ImageNet performance of the models is not indicative of their ZS-IC performance for
other languages, especially low-resource ones: for example, OpenCLIP XLMR-L H-14 outperforms
M-CLIP XLMR-L L-14 by 25 accuracy points on English ImageNet, yet trails it 8.6 points on average
for low-resource languages. We believe that this points to the “curse of multilinguality” of the text
encoder – namely that, under a fixed model capacity, an improvement of representation quality for
some language(s) comes at the expense of representational deterioration for others. This phenomenon

6



Under review as a conference paper at ICLR 2024

200 400 600 800 1000
Sampled ImageNet classes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

model
OpenAI B-32
OpenAI L-14

Figure 2: English ImageNet results with random
subset of the 1k classes (5 random seeds each).

Figure 3: Multilingual ZS-IC results when consid-
ering the same number of classes for each language
(we report averages over 5 random subsets of 100
classes per language). For the 12 low-resource
Babel-ImageNet languages with <100 classes, we
take the single result on all classes.

Model low mid high en

OpenAI B-32 5.0 7.7 15.5 84.1
OpenCLIP XLMR B-32 16.4 39.5 56.2 85.3
M-CLIP XLMR-L B-32 26.1 41.2 47.3 66.3
M-CLIP XLMR-L B-16+ 26.6 42.2 48.6 70.7
M-CLIP mBERT B-32 15.9 26.5 30.3 49.9
ST mBERT B-32 10.4 22.3 28.6 60.1

M-CLIP XLMR-L L-14 28.2 45.2 51.9 72.2
AltCLIP XLMR-L L-14 15.7 27.5 45.7 90.9
OpenCLIP XLMR-L H-14 20.0 48.7 66.5 92.6

has been well-documented in particular for XLM-R Conneau et al. (2020); Pfeiffer et al. (2020b).
Among the model variants obtained with the same training procedure (e.g., four variants of M-CLIP),
English performance does seem to correlate with the performance on other languages.

The OpenCLIP models, trained on the massive LAION5B data, yield good results for high- and
mid-resource languages but perform poorly (in comparison with M-CLIP variants) for low-resource
languages. In §C.4, we demonstrate that OpenCLIP performance strongly correlates with the
distribution of languages in LAION5B: this would suggest that contrastive training (i.e., CLIP and LiT)
leads to poor generalization across languages. In contrast, the best performance of M-CLIP models
(with XLM-R as text encoder) on low-resource languages suggests that distillation-based training
offers better cross-lingual generalization (and yields best performance even for languages unseen in
distillation training, see §C.3). We hypothesize that by aligning representations of captions in all other
languages to the representations of corresponding English captions results in a more language-agnostic
representation space. At the same time, in line with the “curse of multilinguality”, this improved
generalization is paid with reduced quality of representations of high-resource languages, where
M-CLIP models fall well behind OpenCLIP. This trade-off between cross-lingual generalization and
per-language performance is best exemplified with AltCLIP: the model is exceptionally good for
the 9 languages present in its large-scale distillation training (§C.3), yet performs (comparatively)
poorly for most other languages – training on a very large dataset for only a few languages simply
overwrites the XLM-R’s knowledge of other languages, obtained in its original pretraining.

The two mBERT-based models significantly underperform all other models. This is in part due to
mBERT being generally a weaker multilingual text encoder than XLM-R (Hu et al., 2020; Lauscher
et al., 2020). On top of that, M-CLIP mBERT variants have been trained on less data than XLM-
R-based counterparts (3M vs. 7M captions) and ST is distilled with parallel sentences that are not
image captions.

5 VALIDATING BABEL-IMAGENET

We perform two additional analyses that establish the validity of Babel-ImageNet as a benchmark:
(1) how different number of classes affects performance and findings across languages and (2) how
multilingual ZS-IC performance on Babel-ImageNet relates to multilingual image-text retrieval
performance. We provide further analyses in the Appendix.

Effect of number of classes on ZS-IC accuracy. Babel-ImageNet is an incomplete translation of the
1k ImageNet classes (see §3). Intuitively, classification tasks with fewer classes are easier and result
in higher absolute performance for all models. We first analyze how the number of classes affects the
ZS-IC performance on the English ImageNet-1K, for OpenAI CLIP models (B-32 and L-14). Figure
2 summarizes the results. The task difficulty (i.e., ZS-IC performance) is a log-linear function of the
number of classes: this makes intuitive sense – moving from 50 to 100 classes increases the task
difficulty much more than going from 900 to 950 classes.

We next fix the number of classes to 100 for all Babel-ImageNet languages (except for languages
with <100 classes, for which we make no changes) and report the performance in Table 3 (for each
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Figure 4: R@1 text-to-image retrieval results on three datasets plotted against Babel-ImageNet
performance for 8 CLIP models (each dot denotes the performance of one model for one language)
together with a linear regression estimate (95% CI).

language, we average the results over 5 different randomly selected subsets of 100 classes).10 While
in absolute terms the ZS-IC performance increases compared to full class sets (Table 2), and gaps
between the language groups widen (especially between mid- and high-resource, and English to all
three), our observations do not change: M-CLIP (XLMR-L) still exhibits the best performance for
low-resource languages, whereas OpenCLIP is the best for high-resource languages. This renders the
(full) Babel-ImageNet a reliable benchmark for directly comparing multilingual VL models.

Multilingual ZS-IC vs. multilingual image-text retrieval. The aim of Babel-ImageNet, which
measures multilingual ZS-IC performance, is to reflect the quality of the multilingual embedding
spaces of VL models. Proving that this is the case implies showing that the models’ ZS-IC perfor-
mance on Babel-ImageNet is indicative of their multilingual performance on tasks that – unlike ZS-IC
itself – make sense in a multilingual formulation. The existing body of work commonly evaluates
multilingual VL models in image-text retrieval. We thus compare how models’ performance on
Babel-ImageNet correlates with their performance on three different multilingual image-text retrieval
datasets: xFlickrCo (Bugliarello et al., 2022), XTD (Aggarwal & Kale, 2020), and XM3600 (Thap-
liyal et al., 2022), covering 7, 10, and 3611 languages, respectively. We use R@1 in text-to-image
retrieval as the evaluation metric: it captures the percentage of examples where a correct image is
top-ranked for a given caption. We report the full text-to-image retrieval results in the Appendix
(Tables 8, 9, and 10).

Figure 4 displays the retrieval results on xFlickrCo, XM3600, and XTD, respectively, against the
ZS-IC accuracy on Babel-ImageNet: each dot represents one model-language combination. The
plots reveal high correlation between the Babel-ImageNet and text-to-image retrieval scores across
model-language pairs: 0.82 for xFlickrCo, 0.87 for XM3600, and 0.85 for XTD. It is particularly
positive that Babel-ImageNet shows the highest correlation with XM3600, with which it intersects in
most languages (33). Balancing the number of classes to 100 for each language results in even higher
correlations, e.g., 0.89 against XM3600. These results confirm that Babel-ImageNet is a sensible
benchmark for comparing proficiency of VL models for a multitude of languages not covered in
task-specific (e.g., image-text retrieval) benchmarks.

6 IMPROVING MULTILINGUAL CLIP FOR LOW-RESOURCE LANGUAGES

Finally, we improve the performance for low-resource languages by resorting to parameter-efficient
fine-tuning with adapters (Houlsby et al., 2019; Pfeiffer et al., 2020b), trainable bottleneck layers
that we insert into the text encoder. We only update adapter parameters, keeping the original CLIP
parameters frozen. We train a separate adapter for each language on top of the same CLIP model,
which is computationally much cheaper than fine-tuning a specialized CLIP model for each language.

10It is not possible to select the exact same set of classes across all Babel-ImageNet languages because only
one ImageNet-1k class (bee, Figure 1) has BabelNet translations in all 92 languages.

11For correlation analysis, we exclude fil, mi and quz as they are not within the 92 languages in Babel-
ImageNet; we still report the models’ image-text retrieval performance for those languages in Table 9
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Table 3: Results of adapter-based language adaptation of M-CLIP and OpenCLIP with three objectives
(Text Contrastive, Text MSE, and LiT). Comparison against (i) the model without language adaptation
and (ii) best-performing of all 8 CLIP models (see Table 1) for each language. Colors denote the
size of change in performance w.r.t. original model: ≤ −5, ≤ 0, ≤ 5, ≤ 10, ≤ 20, > 20 (best
viewed in color). We additionally report language statistics: the number of classes in Babel-ImageNet,
the number of tokens used in XLM-R pre-training (in millions, log10), the number of examples in
LAION5B (log10) and whether the language was used in M-CLIP training (True/False).

Model Loss xh si lo ur my hi ms et sk lt eu ar ko fa de zh

Overall Best No training 27.8 36.3 18.0 37.2 22.4 41.1 48.5 48.1 58.8 45.7 21.4 41.7 53.2 42.6 61.2 53.5

M-CLIP XLMR-L B-32 No training 17.7 33.6 12.5 29.4 14.6 36.4 36.6 41.4 39.7 27.5 18.3 30.1 21.4 25.0 38.7 32.7

Text Contrastive 49.0 46.1 23.4 38.4 33.3 36.2 34.0 34.6 35.8 30.5 27.1 25.3 23.4 26.1 31.4 28.8
LiT 44.5 49.9 24.7 40.8 29.4 37.3 36.1 33.6 35.2 31.2 29.0 25.9 24.7 27.0 33.6 28.1
MSE 46.8 53.3 26.9 43.0 37.2 42.5 39.3 38.5 41.0 35.3 34.8 29.1 29.9 31.8 38.1 31.3

OpenCLIP XLMR B-32 No training 24.4 3.1 0.7 25.8 5.8 25.8 37.4 29.8 45.1 35.2 17.1 24.6 33.8 32.7 47.8 40.9

Text Contrastive 44.0 26.3 16.0 38.7 26.8 32.0 37.8 30.0 39.0 31.0 26.8 21.0 25.0 26.6 39.0 33.8
LiT 47.7 33.7 19.7 37.5 23.0 30.6 35.5 28.2 38.7 30.4 28.9 22.7 27.4 27.7 39.5 30.7
MSE 47.6 38.7 24.7 42.8 30.4 39.0 44.0 34.6 44.2 36.7 36.2 26.9 31.9 33.0 45.9 33.6

# Classes 35 97 141 220 232 342 419 496 509 535 625 636 648 682 738 885
# XLM-R Tokens 1.11 2.39 1.23 2.86 1.85 3.23 3.12 2.93 3.55 3.26 2.43 3.46 3.75 4.12 4.01 2.64
# LAION5B Examples 6.71 4.11 4.07 6.13 4.49 7.18 7.05 7.01 7.06 6.98 6.73 7.35 7.01 7.32 8.18 8.16
M-CLIP Distilled T F F T F T F T F F F T F F T T

Setup. We train language-specific adapters on top of (a) OpenClip B-32 model (trained from scratch)
and (b) M-CLIP XLMR-L B-32 (obtained via distillation). We experiment with three training
objectives: English-target language distillation with (i) MSE and (ii) contrastive loss, and (iii) LiT
on image-caption pairs. The former two require parallel data, whereas the latter requires images
paired with target-language captions. For comparability between languages, we follow Carlsson
et al. (2022) and sample 100K captions (with corresponding images) from the synthetic dataset
provided by Li et al. (2022) and translate them automatically to all target languages with NLLB. We
perform adapter-based specialization for 16 languages. One run (i.e., one model-language-objective
combination) takes 3h on a single Nvidia RTX 3090 card (see §B.3 for details).

Results. Table 3 displays the results of language adaptation. For low-resource languages (xh, si, lo,
my, and eu), we observe massive improvements, outperforming prior best results by wide margins. In
contrast, the adaptation brings performance losses for high-resource languages (e.g., de and zh). We
hypothesize that constraining the representation space of a target language to English representations
is beneficial for low-resource languages with semantically poor initial representations, but detrimental
for high-resource languages with semantically accurate initial representations. For both OpenCLIP
and M-CLIP, adaptation with the MSE objective on parallel sentences yields the best results. Overall,
the trends in performance changes from language adaptation are very similar between OpenCLIP and
M-CLIP, despite the fact that they were obtained using very different training procedures and trained
on datasets with different language distributions. This suggests that this commonality in language
adaptation behavior stems from the initialization of the text encoder with XLM-R weights.

7 CONCLUSION

We introduced Babel-ImageNet, the first massively multilingual translation of the ImageNet-1k classes
to 92 languages. We leverage the WordNet synsets as the link between ImageNet and BabelNet to
obtain high-quality translations without relying on MT or human annotators. Using Babel-ImageNet,
we carried out the most comprehensively multilingual comparative evaluation of 8 publicly available
CLIP models on zero-shot image classification, demonstrating that all models fail for low(er)-resource
languages. Crucially, we validate our benchmark by showing that models’ text-to-image retrieval
performance (on three datasets) strongly correlates with their ZS-IC performance on Babel-ImageNet
for the corresponding languages. Finally, we proposed a parameter-efficient fine-tuning procedure
that drastically improves the performance of multilingual CLIP models for low-resource languages.

The wide range of languages encompassed by our benchmark reveals that the theoretical “multilin-
guality” of CLIP models is practically very limited and points to the need for methods that derive
robust VL encoders with much stronger performance especially for low-resource languages: e.g.,
better distillation procedures that retain more of the impressive performance of English CLIP.
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8 ETHICS STATEMENT

While Babel-ImageNet greatly improves language coverage for the evaluation of multilingual vision-
language models, there are some limitations of our work:

For one, the set of classes in ImageNet-1k tend to be Anglo-centric due to inherited biases from
WordNet (Shankar et al., 2017; DeVries et al., 2019; Liu et al., 2021) so while our benchmark
evaluates the performance on languages from all over the globe, we do not evaluate the model
performance on concepts specific (or even unique) to cultures in which the languages are spoken. As
a result, Babel-ImageNet may overestimate the actual usability of an VL model for real-world uses in
some cultures and geographies.

Further, we select for Babel-ImageNet the 92 languages used in XLM-R pretraining as a tradeoff
between language coverage and usability. This selection reinforces research focus on those languages
to the detriment of other (mainly extremely low-resource) languages. However, we release our code,
as well as data for labels of 298 languages and encourage future research to consider an even wider
set of languages.

9 REPRODUCIBILITY STATEMENT

All data, code to generate the data (both Babel-ImageNet and MT prompts), and evaluation code
can be found at https://anonymous.4open.science/r/Babel-ImageNet-EDBB. All
datasets and models used in the paper are publicly accessible.
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Table 4: The 92 languages of Babel-ImageNet in alphabetical order with the corresponding number
of classes in Babel-ImageNet.

af 303 am 85 ar 636 as 98 az 365 be 415 bg 602 bn 282 br 297
bs 156 ca 767 cs 615 cy 407 da 610 de 738 el 572 eo 603 es 845
et 496 eu 625 fa 682 fi 973 fr 799 fy 155 ga 502 gd 217 gl 473
gu 106 ha 47 he 648 hi 342 hr 347 hu 594 hy 454 id 463 is 409
it 773 ja 733 jv 183 ka 438 kk 365 km 167 kn 175 ko 648 ku 101
ky 247 la 276 lo 141 lt 535 lv 392 mg 64 mk 453 ml 281 mn 201
mr 140 ms 419 my 232 ne 134 nl 749 no 599 om 18 or 71 pa 128
pl 778 ps 112 pt 667 ro 687 ru 748 sa 66 sd 61 si 97 sk 509
sl 393 so 58 sq 273 sr 468 su 98 sv 699 sw 220 ta 346 te 202
th 896 tl 272 tr 559 ug 106 uk 640 ur 220 uz 254 vi 523 xh 35
yi 175 zh 885
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Figure 5: Number of classes in Babel-ImageNet plotted against the number of tokens (millions,
log10) in the XLM-R pretraining corpus. When taking the XLM-R tokens as proxy for ”resourceness”
of a language, we see that this generally correlates with the number of classes. Vertical lines indicate
the grouping of languages for evaluation.

A LICENSE

Babel-ImageNet is a processed version of BabelNet v5.2 downloaded from https://babelnet.
org, made available with the BabelNet Non-Commercial License (see https://babelnet.
org/full-license).

B DATA AND TRAINING DETAILS

B.1 BABEL-IMAGENET

Table 4 lists of the 92 Babel-ImageNet languages with their corresponding number of classes.

Figure 5 visualizes the relationship between the number of classes of a language in Babel-ImageNet
and the number of tokens for the language in the XLM-R pretraining corpus (which we use as a
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proxy for the language “resourceness”). We see that the two are generally correlated (Spearman rank
correlation of 0.78), albeit with some expected outliers, e.g., Chinese is ”token-compact“ so the token
count does not reflect its high-resourceness well.

B.2 PROMPTS

We use NLLB (Costa-jussà et al., 2022) (nllb-200-distilled-1.3B) to translate the 80 prompts used
by Radford et al. (2021) to our 92 languages. The exceptions are fy, la, and br, which are not
supported by NLLB; for those languages we report the better results between: (1) using only the
language-specific labels and (2) inserting ‘labels’ into English prompts. For the ISO 639-1 languages
corresponding to macrolanguages, there is only one corresponding ISO 639-3 language in NLLB,
except for no where we choose Bokmål and for az where we choose North Azerbaijani. We translate
the prompts in their template form with the {} placeholders. We use a range of different methods
like HTML tags or other special characters to increase the likelihood of preserving the placeholders
during translation and then select the first successful approach. If no method worked, we append
{} to the end of the sentence. We perform no language-specific adaptions like combining prompt
variants with definite and indefinite articles for languages where this distinction does not exist (or
articles do not exist at all) nor do we account for the grammatical gender of the classes when inserting
them in the template.

B.3 TRAINING

Training Data: For the language-specific adaptation training in §6, we leveraged the BLIP (Li et al.,
2022) image-caption dataset CCS SYNTHETIC FILTERED LARGE.JSON12.

Hyperparameters: We train with AdamW (Loshchilov & Hutter, 2019), 0.1 weight decay, a linear
learning rate schedule with 20% warmup, learning rate 1e-3 (chosen with sweep over 1e-3, 5e-4,
3e-4, 1e-4), batch size 512 (OpenCLIP)/ 192 (M-CLIP), for 100 epochs (OpenCLIP)/ 15 epochs
(M-CLIP; longer training yielded no improvements). Hyperparameters are chosen based on results
on Sinhala. We perform no early stopping and use the last epoch for evaluation. The temperature
for the contrastive loss is a trainable parameter as in Radford et al. (2021) but we freeze it for text
contrastive loss (training it resulted in worse results). The maximum text sequence length is 70.
For adapters, we use the Pfeiffer architecture (Pfeiffer et al., 2020b) (task adapters, not language
adapters) with reduction factor 16 with the implementation from AdapterHub (Pfeiffer et al., 2020a).
We pre-encode images and English captions; i.e. the English embeddings for MSE and contrastive
loss are not computed by the trained model but come from the model before training. We do not use
any type of image augmentation.

Negative results: We experimented with the following methods but did not pursue them further due
to not-better or poor results.

1. Training with MSE loss using aligned English-X sentences from WikiMatrix (Schwenk
et al., 2021), similar to the ST and (in part) AltCLIP models, resulted in a performance
decrease throughout (except for si with OpenCLIP) as Table 5 shows. This suggests that it
is important to use “visually-descriptive” parallel data (i.e., parallel image captions), rather
than any parallel data.

2. LoRA fine-tuning (Hu et al., 2022) (α = 8, r = 16, lr 1e-3 after sweep) significantly (>10%
on si) underperformed adapter-based fine-tuning.

3. SimCSE loss (a self-supervised objective) (Gao et al., 2021) based only on target-language
captions yielded no improvements compare to the initial model, i.e., without any additional
language-specialization training (experimented with OpenCLIP and batch size 256).

4. Multitask training with both LiT and MSE distillation objectives produced no gains com-
pared to training only with the MSE objective.

12https://github.com/salesforce/BLIP#pre-training-datasets-download
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Table 5: Results of adapter-based language adaptation of M-CLIP and OpenCLIP with TextMSE loss
using aligned sentences from WikiMatrix. Colors denote the size of change in performance w.r.t.
original CLIP model: ≤ −5, ≤ 0, ≤ 5, ≤ 10, ≤ 20, > 20 (best viewed in color).

Model Loss xh si lo ur my hi ms et sk lt eu ar ko fa de zh

M-CLIP XLMR-L B-32 No training 17.7 33.6 12.5 29.4 14.6 36.4 36.6 41.4 39.7 27.5 18.3 30.1 21.4 25.0 38.7 32.7

MSE (WikiData) — 25.0 — — — 22.2 — 21.3 23.3 21.8 16.9 24.0 16.3 22.5 31.4 24.3

OpenCLIP XLMR B-32 No training 24.4 3.1 0.7 25.8 5.8 25.8 37.4 29.8 45.1 35.2 17.1 24.6 33.8 32.7 47.8 40.9

MSE (WikiData) — 17.1 — — — 18.1 — 18.5 25.0 23.0 17.7 21.1 14.7 23.0 38.6 28.5
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Figure 6: Average increase within the low/mid/high language groups (with 95% CI) over only labels
using English prompts (with non-English labels) and our machine-translated prompts.

C FURTHER EXPERIMENTS AND ANALYSIS

C.1 EXPERIMENTAL VALIDATION OF MACHINE-TRANSLATED PROMPTS

We show in Figure 6 that our translated prompts produce better results (on average, across all
languages), compared to (i) using just the labels and (ii) inserting the translated labels into the original
English prompts created by Radford et al. (2021). With the translated prompts, we get gains of over 2
points for low-resource languages and up to 5 points for high-resource languages.

C.2 COMPARISON WITH EXISTING IMAGENET TRANSLATIONS

Prior work has created full translations of the 1k ImageNet classes into ar, zh, jp, it along with human-
written prompts for those languages. We use those translations to validate our BabelNet-derived
labels and MT prompts: We evaluate models on the subset of ImageNet classes available for each
language in Babel-ImageNet and compare a) only labels and b) human-created templates vs. our MT
prompts. Results are shown in Figure 7. While results for ar and it are slighly higher in absolute
numbers on the existing translation, the relative order of models on the Babel-ImageNet benchmarks
of those languages is nearly identical to their relative ranking on the respective benchmarks with
manually translated ImageNet labels.

We observe that the human-written prompts do not result in a relative improvement over our MT
prompts (i.e. no down-shift parallel to the x = y line). In fact, for it, our MT prompts even close the
gap slightly compared to the label-only setup.

C.3 PERFORMANCE DIFFERENCES BETWEEN DISTILLED AND NOT-DISTILLED LANGUAGES

With teacher distillation, one would expect the performance in the languages seen in the distillation
data to be better than in other languages, not used for distillation. With the wide language selection
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Figure 7: Results on Babel-ImageNet against results on existing ImageNet translations (“labels only”
in top row and with our MT prompts vs. human-created prompts in bottom row) for four languages:
ar, zh, jp, it. Relative model ranking is nearly identical between Babel-ImageNet and manually
translated ImageNet benchmarks of respective languages.

Table 6: Average results for the “distilled” languages in the low/mid/high-resource language groups
and the ∆ difference to the other “non-distilled” languages of the groups. OpenCLIP H-14 serves
as control for language-specific differences in performance not caused by distillation. For M-CLIP,
14/41, 18/35, and 13/16 languages per group are distilled; For AltCLIP, 0/41, 2/35, and 6/16 are
distilled.

Model low ∆low mid ∆mid high ∆high

M-CLIP XLMR-L L-14 37.6 +14.4 45.9 +16.8 41.6 +11.3
OpenCLIP XLMR-L H-14 26.1 +10.1 47.5 +13.2 55.3 +15.8

AltCLIP XLMR-L L-14 — — 47.5 +28.0 51.7 +28.9
OpenCLIP XLMR-L H-14 — — 37.8 -3.5 57.0 +7.4

of our benchmark, we can analyze in-depth how performance on “distilled” languages differs from
the performance on “non-distilled” languages.

We compare results for distilled languages on the low/mid/high-resource language groups for M-CLIP
and AltCLIP in Table 6; we use the OpenCLIP H-14 model as reference for an expected ‘baseline’
∆-difference in performance between the distilled/not-distilled language groups that is due to other
factors inherent to the specific languages and not the distillation. For AltCLIP, we see that the the
performance on the 8 distilled languages is significantly better than on the non-distilled languages.
Moreover, the performance on its distilled languages is even comparable to that of the larger H-14
model. For M-CLIP, the performance on the distilled languages is only slightly better than on the
non-distilled low- and mid-resource languages when compared to the OpenCLIP model and the
gap is even smaller for high-resource languages. Interestingly, the performance on non-distilled
low-resource languages is still noticeably better for M-CLIP than for the OpenCLIP H-14 model.
We speculate that the shorter training of M-CLIP compared to OpenCLIP might retain more of the
language-specific competences for low-resource languages, obtained in XLM-R pretraining.

C.4 LAION5B: LANGUAGE DISTRIBUTION AND PERFORMANCE

The distillation-based models evaluated in our benchmark use the same number of training examples
for every language. The OpenCLIP models, on the other hand, are trained on LAION5B which
follows a more ‘natural’ distribution of image-caption pairs across languages, as found on the web:
Figure 8b shows that over half the data is English, 7 high-resource languages account for another
25% of the data, whereas all remaining languages “share” the remaining 25%.
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Figure 8: The relationship between the LAION5B language distribution with the performance of
OpenCLIP models trained on that data.

We can see in Figure 8a that the OpenCLIP’s ZS-IC performance for Babel-ImageNet languages
highly depends on the number of instances of those languages in the LAION5B dataset. The
Spearman rank correlation between the number of language-specific LAION5B examples and the
respective Babel-ImageNet accuracy for the language is 0.76. This suggests that pure image-text
contrastive pre-training results in poor generalization and limited cross-lingual gains to languages
unseen in pretraining. Additional training objectives that aim to better align the multilingual space for
example using paired text like in MURAL (Jain et al., 2021) might be necessary to improve results of
OpenCLIP-like models (trained from scratch) for low-resource languages.
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D FULL RESULTS

We report full results for all languages on (i) Babel-ImageNet and (ii) each of the three image-text
retrieval datasets: xFlickrCo, XM3600, and XTD.

Table 7: Babel-ImageNet results for all languages (sorted alphabetically expect for English). To save
space, we shorten sources (OAI: OpenAI; OC: OpenCLIP; MC: M-CLIP; ST: SentenceTransformer,
AC: AltCLIP) and remove the text model if possible.

lang OAI B32 ST B32 MC mB B32 OC B32 MC B32 MC B16+ MC L14 AC L14 OC H14

en 61.3 38.2 29.2 62.8 42.6 46.4 51.6 69.9 77.1
af 10.7 14.8 24.9 36.7 46.9 49.9 55.2 22.2 47.4
am 1.5 0.9 1.4 1.0 28.8 27.1 29.0 7.6 2.7
ar 0.5 10.6 13.8 24.6 30.1 31.5 35.9 41.7 31.9
as 1.0 2.9 17.5 5.4 22.6 21.4 24.4 6.5 9.8
az 7.0 12.6 23.2 26.0 25.2 26.1 28.6 16.3 37.1
be 0.7 9.9 14.1 27.1 32.1 34.6 36.4 27.1 40.2
bg 0.8 18.9 21.1 41.5 39.5 42.3 46.8 34.0 54.1
bn 0.2 3.0 25.7 8.7 29.1 31.1 35.1 7.1 19.6
br 7.8 7.5 7.8 12.8 12.0 11.8 13.2 12.3 16.0
bs 12.9 35.3 38.9 56.6 58.9 59.5 65.2 29.4 70.1
ca 11.2 17.2 19.5 33.3 33.9 36.9 39.6 31.4 46.8
cs 6.3 19.2 21.6 42.1 35.7 38.0 41.5 19.6 54.1
cy 4.9 5.5 19.4 12.0 10.9 11.1 12.6 12.6 16.4
da 12.1 22.4 22.3 43.4 43.3 46.6 51.0 24.7 55.5
de 15.3 18.3 19.4 47.8 38.7 41.7 45.6 27.6 61.2
el 0.9 15.1 16.3 37.2 38.5 41.2 45.2 4.9 51.0
eo 5.8 10.7 12.9 21.9 24.0 24.7 28.0 24.7 28.7
es 16.6 20.4 19.7 45.2 35.4 38.2 41.4 51.2 57.6
et 4.5 13.3 19.6 29.8 41.4 44.7 48.1 15.5 37.8
eu 7.5 8.7 9.5 17.1 18.3 18.7 21.0 17.6 21.4
fa 0.4 13.6 20.3 32.7 25.0 27.8 28.7 20.1 42.6
fi 3.8 11.1 14.1 25.2 25.1 27.1 29.7 10.4 35.7
fr 20.7 20.6 19.8 46.6 35.0 38.4 41.7 53.6 59.9
fy 12.8 17.8 17.5 35.9 35.8 35.6 37.0 25.8 42.1
ga 2.6 2.1 3.0 6.6 8.2 9.1 9.4 8.3 9.5
gd 3.0 2.7 3.4 6.0 7.3 8.4 10.4 6.1 7.4
gl 15.3 23.6 22.5 44.3 39.6 40.9 44.5 43.4 54.6
gu 0.4 7.4 28.5 6.8 26.7 27.8 32.4 11.2 12.0
ha 1.5 1.8 19.8 2.2 4.5 4.6 5.3 3.3 3.6
he 0.3 12.7 16.5 26.7 20.7 21.9 23.5 7.0 35.9
hi 0.1 17.3 20.9 25.8 36.4 37.0 41.1 12.8 38.9
hr 8.6 25.2 29.7 45.1 50.0 50.6 56.7 21.4 58.3
hu 5.4 16.8 19.8 41.1 41.8 44.9 49.8 16.4 53.7
hy 0.2 7.3 16.5 9.9 17.6 18.2 18.2 5.3 17.5
id 15.7 23.1 26.2 44.2 46.8 50.0 54.6 26.2 57.6
is 2.9 6.1 18.7 13.6 39.3 41.4 45.3 10.6 19.3
it 15.1 19.3 19.6 42.1 34.7 37.6 40.6 48.6 55.1
ja 4.1 15.5 18.1 42.7 24.6 25.0 28.7 55.6 57.3
jv 15.0 15.0 19.2 31.8 32.6 33.4 37.1 21.4 40.6
ka 0.2 8.5 15.1 11.0 21.6 22.5 23.8 8.9 20.4
kk 0.6 10.7 19.7 28.1 25.5 26.2 27.9 31.5 34.8
km 0.9 0.7 0.6 3.3 17.5 16.5 19.3 6.7 3.3
kn 1.0 2.1 21.1 4.0 27.2 27.2 29.2 10.8 5.7
ko 0.4 12.2 15.9 33.8 21.4 23.7 24.7 53.2 43.7
ku 5.1 8.9 9.4 14.2 14.1 12.5 14.6 11.2 16.0
ky 0.6 13.9 18.3 32.3 28.3 28.3 31.4 32.1 38.6
la 12.3 12.5 10.5 22.2 20.2 19.8 22.2 23.9 28.0
lo 0.7 0.7 0.7 0.7 12.5 12.4 13.0 9.9 2.1
lt 5.9 18.2 21.4 35.2 27.5 29.4 31.4 18.5 45.7
lv 7.8 23.4 25.7 38.8 33.5 33.4 36.7 21.3 47.2
mg 4.1 9.0 8.6 14.0 14.2 13.0 14.0 13.5 14.8
mk 1.3 20.0 23.3 36.0 45.6 47.2 50.9 31.1 49.6
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ml 0.2 1.3 19.9 1.7 38.3 38.3 43.5 7.6 4.5
mn 1.0 13.9 28.0 18.7 19.4 20.9 21.5 20.2 26.9
mr 1.2 29.2 25.7 32.4 45.1 45.2 47.5 17.4 41.9
ms 14.4 18.8 21.6 37.4 36.6 38.6 43.1 20.9 48.5
my 0.5 10.2 2.4 5.8 14.6 14.5 16.0 9.4 10.4
ne 0.6 16.6 17.2 25.3 39.5 37.5 39.2 16.3 36.5
nl 12.7 18.5 18.2 42.0 36.5 38.6 43.9 24.7 55.1
no 9.2 19.2 20.7 42.1 39.7 43.0 46.9 23.1 53.7
om 5.0 8.9 3.8 5.7 8.8 11.9 10.0 8.2 13.3
or 1.9 1.7 1.7 3.2 31.0 30.8 35.9 12.4 1.7
pa 1.5 4.0 8.0 1.8 32.2 33.7 31.5 11.5 2.8
pl 7.4 15.9 17.9 39.3 32.6 35.4 38.4 19.6 51.4
ps 1.3 11.6 11.1 21.7 18.8 19.4 23.0 17.9 24.9
pt 14.1 22.6 21.1 47.6 39.5 42.8 46.8 37.1 59.7
ro 9.9 15.9 18.5 35.2 36.8 39.9 43.7 23.9 47.8
ru 0.6 15.8 18.0 43.2 34.5 36.3 41.3 48.3 58.4
sa 0.6 9.5 9.4 10.9 17.0 17.3 18.8 11.0 11.5
sd 1.7 8.6 20.8 15.0 27.9 27.6 29.6 16.0 17.0
si 2.7 2.1 2.2 3.1 33.6 33.4 36.2 18.7 5.6
sk 8.5 22.4 24.9 45.1 39.7 42.5 45.5 22.7 58.8
sl 5.9 22.0 24.2 36.9 42.3 44.4 48.4 17.2 48.8
so 2.4 5.0 17.6 6.3 12.7 10.1 12.4 3.9 7.4
sq 8.1 24.3 25.5 33.9 47.1 49.3 53.6 21.6 43.6
sr 1.2 17.1 18.9 33.8 43.7 45.5 49.5 30.4 47.8
su 12.1 11.6 15.9 27.9 29.2 27.8 29.2 18.6 30.6
sv 8.9 19.2 20.6 43.1 41.2 45.5 48.9 20.9 55.3
sw 4.7 6.4 17.0 10.1 36.2 36.5 38.7 10.3 13.0
ta 0.3 2.2 18.4 4.5 18.0 18.7 20.6 5.5 6.7
te 0.5 3.1 24.7 2.7 31.0 32.4 34.1 10.8 3.5
th 1.3 10.5 15.3 28.7 27.2 29.3 32.4 11.7 40.2
tl 7.8 8.2 15.8 17.6 31.9 33.0 37.6 18.0 21.8
tr 7.5 19.2 22.6 41.5 41.7 44.5 47.9 17.4 53.0
ug 1.3 2.3 2.1 3.2 11.5 12.7 12.5 9.0 4.8
uk 0.6 14.9 17.3 39.2 35.1 36.1 40.5 34.4 53.4
ur 0.6 17.5 26.8 25.8 29.4 26.9 30.8 18.6 37.2
uz 6.2 9.7 21.5 21.4 22.0 21.7 23.7 17.1 28.2
vi 6.8 17.5 18.7 41.0 37.0 39.2 43.7 11.5 53.4
xh 18.7 14.2 15.8 24.4 17.7 19.1 20.2 22.2 27.7
yi 0.6 1.3 1.0 2.5 18.7 18.1 19.3 5.3 4.9
zh 1.8 19.3 21.7 40.9 32.7 36.0 40.4 52.7 53.5

Table 8: xFlickrCo T2I R@1. Average is without English.

model en de es id ja ru tr zh average

OpenAI B32 51.8 10.7 20.9 4.1 1.7 0.5 2.1 0.5 5.8
OpenCLIP XLMR B32 62.9 53.6 61.6 48.0 48.6 63.3 52.2 53.2 54.3
OpenCLIP XLMR H14 73.9 67.6 77.0 65.6 65.2 77.6 68.7 70.0 70.2
M-CLIP XLMR B32 53.3 47.1 52.8 48.1 39.1 55.2 51.0 49.2 48.9
M-CLIP XLMR B16+ 65.3 60.4 66.7 61.0 49.7 70.6 65.0 61.2 62.1
M-CLIP XLMR L14 60.6 52.5 60.3 55.3 44.6 61.3 58.1 53.5 55.1
AltCLIP XLMR L14 64.6 32.5 64.8 19.8 55.1 65.5 9.7 60.3 43.9
M-CLIP mBERT B32 47.0 38.1 45.5 38.7 36.4 44.6 40.8 41.9 40.8
ST mBERT B32 46.3 31.7 39.6 31.1 28.1 35.2 29.4 34.7 32.8
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Table 9: XM3600 T2I R@1 results. Average is without English.

lang OAI B32 OC B32 OC H14 MC B32 MC B16+ MC L14 AC L14 MC mB B32 ST B32

en 40.4 49.9 55.5 39.6 49.5 40.9 43.9 32.4 32.7
average 4.2 43.2 51.4 41.5 52.1 44.5 21.6 29.1 20.6
ar 0.2 38.9 48.3 41.6 51.9 43.9 43.8 24.7 17.0
bn 0.0 2.1 5.5 25.1 36.5 26.3 1.3 15.1 0.2
cs 1.8 47.3 56.0 42.0 53.4 44.2 10.0 29.9 23.1
da 3.5 53.1 63.6 50.6 63.2 55.1 12.1 34.3 27.0
de 9.8 64.5 73.2 53.8 67.8 57.6 30.0 37.6 30.1
el 0.1 45.9 55.5 43.3 52.9 46.7 3.9 26.9 18.8
es 15.4 54.6 62.8 46.4 56.3 49.1 49.6 33.3 27.3
fa 0.1 49.4 58.2 41.4 52.5 44.0 13.1 31.9 21.7
fi 1.6 44.6 58.1 47.1 58.8 49.8 5.7 32.6 22.3
fil 3.7 7.2 9.8 36.6 47.3 40.0 7.3 22.9 3.7
fr 19.5 61.2 70.5 51.2 63.9 55.5 55.8 37.9 31.9
he 0.2 48.9 58.5 38.3 50.2 42.8 6.3 32.2 19.1
hi 0.1 17.5 22.3 20.6 30.7 23.3 3.1 11.7 8.2
hr 1.7 49.8 61.1 49.9 62.0 53.1 8.5 36.8 27.3
hu 1.8 50.4 63.8 51.8 63.6 55.9 9.4 30.6 23.1
id 5.7 56.7 67.1 53.2 65.9 57.4 18.8 38.3 30.8
it 8.0 59.3 68.6 50.5 63.0 53.4 51.9 35.7 26.6
ja 1.7 59.7 69.4 42.8 54.1 46.6 58.3 35.3 27.0
ko 0.1 44.5 53.7 36.6 46.7 41.1 51.7 27.5 17.6
mi 0.2 0.5 0.4 0.2 0.3 0.3 0.3 0.1 0.2
nl 8.0 49.3 57.3 44.8 54.8 47.6 21.2 31.2 25.1
no 3.5 50.1 61.0 48.8 60.4 52.1 12.7 34.9 24.0
pl 1.7 55.8 65.5 49.0 59.9 53.3 13.5 33.3 26.8
pt 10.1 55.5 65.4 46.5 57.8 51.0 37.7 32.4 28.3
quz 1.2 3.0 3.5 1.8 2.0 1.9 3.0 1.3 1.2
ro 3.4 57.4 68.2 51.9 65.9 55.9 16.5 33.6 25.2
ru 0.5 64.6 72.7 53.0 65.6 56.6 56.1 38.1 30.1
sv 3.0 52.9 61.5 49.4 60.4 53.1 12.7 34.0 25.3
sw 1.1 2.3 3.2 30.0 39.3 32.6 2.5 17.5 0.9
te 0.0 0.3 0.6 20.1 27.6 21.2 4.1 18.3 0.0
th 1.3 45.3 55.4 42.2 54.0 44.7 13.3 28.1 15.8
tr 1.4 47.2 58.0 45.0 56.1 48.9 7.2 29.9 21.0
uk 0.2 56.2 65.9 51.8 62.8 54.9 33.3 35.6 26.8
vi 0.8 54.9 65.4 48.8 60.9 51.3 5.6 33.9 26.6
zh 0.3 56.4 62.9 46.4 58.3 50.1 54.8 36.5 28.3

Table 10: XTD T2I R@1 results. Average is without English.

model en de es fr it jp ko pl ru tr zh average

OpenAI B32 54.6 12.9 18.8 22.1 11.5 2.1 0.2 2.7 0.7 1.6 1.2 7.4
OpenCLIP XLMR B32 63.0 54.4 56.7 54.9 55.1 45.8 44.3 55.0 50.5 50.0 51.0 51.8
OpenCLIP XLMR H14 72.4 66.1 66.8 66.4 64.1 62.1 56.1 69.2 61.8 63.3 63.8 64.0
M-CLIP XLMR B32 54.7 50.2 49.0 50.9 49.0 38.4 41.5 52.7 47.3 50.3 49.1 47.8
M-CLIP XLMR B16+ 66.6 63.9 62.8 63.5 62.9 49.6 53.5 63.9 57.1 62.7 60.6 60.1
M-CLIP XLMR L14 59.1 54.6 56.8 56.5 56.4 43.2 45.1 57.3 51.7 55.6 55.6 53.3
AltCLIP XLMR L14 62.9 35.6 58.8 60.5 56.8 52.2 55.6 18.0 53.6 11.0 59.7 46.2
M-CLIP mBERT B32 50.4 45.0 45.3 45.8 45.0 38.2 41.7 47.1 40.1 44.6 45.2 43.8
ST mBERT B32 49.2 36.8 38.2 41.0 38.5 28.7 25.9 36.1 32.4 33.2 37.6 34.8
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