

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  

# RL FINE-TUNING HEALS OOD FORGETTING IN SFT

Anonymous authors

Paper under double-blind review

## ABSTRACT

The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reasoning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still underexplored and inconclusive. To figure out this issue, we dissect the Out-Of-Distribution (OOD) and In-Distribution (ID) reasoning performance of LLM at different checkpoints of the fine-tuning (full-parameter, rather than LoRA) process, and conduct fine-grained analysis. We find the well-known claim "SFT memorizes, RL generalizes" is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an **OOD restoration** role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, *i.e.*, **if SFT trains for too short or too long, RL cannot improve the OOD ability**; (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the **rotation of singular vectors**. In a nutshell, SFT performs hard alignment of the crucial parameter directions to the target tasks, leading to **rapid and greedy adjustment, but also quick forgetting**; RL then **conditionally re-aligns singular vectors softly and slowly** towards a more robust configuration, healing the forgetting and learning the downstream tasks simultaneously. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning, discover the key mechanism and provide new insights to fine-tuning.

## 1 INTRODUCTION

Supervised Fine-Tuning (SFT) is the most widely used method for the post-training of Large Language Models (LLMs) (Howard & Ruder, 2018; Radford et al., 2018). Recent work demonstrates that Reinforcement Learning Fine-Tuning (RLFT), especially when applying after SFT (DeepSeek-AI, 2025), can achieve much better performance on complex reasoning tasks, such as symbolic math reasoning (DeepSeek-AI, 2025; xAI, 2025), code generation (Mirzadeh et al., 2024; Jiang et al., 2024; Anthropic, 2025), embodied tasks (Lin et al., 2025; Li et al., 2025; Zhao et al., 2021), video prediction (Shi et al., 2025), *etc*. Such two-stage fine-tuning paradigm has rapidly become popular because of its advantages over the one-stage SFT (Hugging Face, 2025; Wang et al., 2025).

Numerous studies have explored how RL helps SFT in post-training: a growing body of work argues that SFT tends to memorize or overfit the training distribution, whereas RL yields better out-of-distribution (OOD) generalization (Kirk et al., 2023; Chu et al., 2025); others emphasize that KL-regularized RL counteracts SFT's drift from the base model (Fu et al., 2025), and that rule-based or structure-aware RL can significantly strengthen reasoning (Xie et al., 2025). The authors in (Xie et al., 2025) note that SFT pulls the policy of a model away from its base initialization, and specific RL recipes can boost reasoning. These empirical findings help to partially explore the high-level picture of two-stage fine-tuning, however, the understanding on the synergy of SFT and RL is still inconclusive. In addition, the evolution of OOD performance during the two-stage fine-tuning also lacks a deeper investigation.

To fill the gaps in the above issues, we perform full-parameter SFT and RLFT and study the Out-Of-Distribution (OOD) and In-Distribution (ID) reasoning behaviors of two popular open-sourced models: LLaMA-3.2-11B-Vision (Grattafiori et al., 2024) and Qwen-2.5-7B (Team, 2024). Specifically, we

track their ID and OOD performance at different checkpoints on various reasoning tasks, including the *GeneralPoints*, *Navigation* and *Rank-Determinant Computation* tasks. These controlled environments allow us to monitor and disentangle the evolution of model performance and investigate the roles of SFT and RL in the whole process.

During fine-tuning, we observed that: (1) OOD reasoning performance will **peak rapidly in very early stage of SFT** and then degrades slowly as SFT continues. Such **OOD forgetting** is hard to capture by the traditional overfitting detection methods, as the learning curves for ID training/test loss will continue to decline. (2) **RL is not black magic for reasoning**. It can recover the OOD forgetting in SFT but barely surpass its peak performance. The recovery is only effective within a certain range of SFT checkpoints and we identify the shape of advantage distribution as the main cause of it.

To uncover the underlying factors that have high impacts on the fine-tuned models, we analyze the Singular-Value Decomposition (SVD) of parameter matrices and conduct ablation studies on their influence to model performance. Unlike some recent studies (Bartlett et al., 2017; Yoshida & Miyato, 2017; Li et al., 2024b), in our experiments, we notice that the singular values remain essentially constant throughout both SFT and RL stages. Instead, OOD forgetting and recovery highly correlate with the rotations of the singular vectors. In addition, we provide fine-grained layer-wise and top- $k$  analysis on the singular values/vectors and develop insights for SFT to mitigate OOD forgetting.

## 2 PRELIMINARIES

### 2.1 BASIC CONCEPTS AND NOTATIONS

**Self-Attention in Transformer.** Transformers use self-attention to capture global dependencies between each pair of nodes. The attention mechanism is defined as:

$$\mathbf{H} = \text{softmax} \left( \frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_k}} \right) \mathbf{V}, \text{ where } \mathbf{Q} = \mathbf{X}\mathbf{W}_Q, \mathbf{K} = \mathbf{X}\mathbf{W}_K, \mathbf{V} = \mathbf{X}\mathbf{W}_V \quad (1)$$

where  $\mathbf{X}$  is input node feature matrix, and  $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$  are learnable parameter matrices for query, key, and value matrices. An MLP layer is then applied to each row of  $\mathbf{H}$

$$\text{MLP}(\mathbf{H}) = \sigma(\mathbf{H}\mathbf{W}_{\text{MLP}} + \mathbf{b}_{\text{MLP}})$$

**Supervised Fine-Tuning (SFT).** SFT adapts a pre-trained model to a specific task using a labeled dataset  $\mathcal{D} = \{(x_i, y_i)\}$  (Howard & Ruder, 2018; Radford et al., 2018). The standard objective is to minimize the negative log-likelihood (NLL) of the target outputs given the inputs:

$$\mathcal{L}_{\text{SFT}}(\theta) = - \sum_{(x_i, y_i) \in \mathcal{D}} \log p_\theta(y_i | x_i) \quad (2)$$

**Reinforcement Learning (RL) Fine-Tuning** In contrast to SFT, RL essentially fine-tunes the model by optimizing the policy  $\pi_\theta$  based on a reward signal  $R(\cdot)$ . The general objective is to maximize the expected reward of the actions made by the model

$$\max_{\theta} \mathbb{E}_{x \sim \pi_\theta}[R(x)]$$

The reward function  $R(x)$  evaluates the quality of an action  $x$  based on desired attributes, like correctness (Ouyang et al., 2022), clarity (Wang et al., 2023), or adherence to rules (Bai et al., 2022). In this paper, we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), a popular RL algorithm that stabilizes training by optimizing a clipped surrogate objective. The PPO objective is:

$$\mathcal{L}_{\text{PPO}}(\theta) = \mathbb{E}_t [\min(r_t(\theta)A_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t)] \quad (3)$$

where  $r_t(\theta) = \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)}$  is the probability ratio for state  $s_t$  and action  $a_t$  at step  $t$ ,  $A_t$  is the advantage estimate, and  $\epsilon$  is a hyperparameter that constrains the policy update step to avoid excessive shift of policy. The advantage  $A_t$  measures how much better (or worse) taking action  $a_t$  in state  $s_t$  is compared to the average action at that state, as estimated by a value function  $V_\phi(s_t)$ . A common estimator is the *generalized advantage estimation (GAE)* (Schulman et al., 2016), defined as

$$A_t = \sum_{l=0}^{\infty} (\gamma\lambda)^l \delta_{t+l} \quad \text{with} \quad \delta_t = r_t + \gamma V_\phi(s_{t+1}) - V_\phi(s_t),$$

where  $\gamma \in [0, 1]$  is the discount factor,  $\lambda \in [0, 1]$  controls the bias-variance trade-off, and  $r_t$  is the reward at step  $t$ . Intuitively,  $A_t$  is positive when an action yields higher return than expected and negative otherwise, guiding PPO to reinforce beneficial actions while discouraging harmful ones.

108 **Singular Value Decomposition (SVD)** For a parameter matrix  $M \in \mathbb{R}^{m \times n}$ , its SVD is given by:  
 109 
$$M = U \Sigma V^\top$$

110 where  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  are orthogonal matrices whose columns are the left and right  
 111 singular vectors, respectively.  $\Sigma \in \mathbb{R}^{m \times n}$  is a rectangular diagonal matrix containing the non-  
 112 negative singular values,  $\sigma_1 \geq \sigma_2 \geq \dots \geq 0$ .

113 In the context of a neural network, the singular values  $\{\sigma_i\}$  are often interpreted as the importance of  
 114 different representational modes (Bartlett et al., 2017; Schulman et al., 2016; Raghu et al., 2017),  
 115 while the singular vectors (the columns of  $U$  and  $V$ ) define the directions of these modes. SVD on  
 116 parameter matrices can help us to understand the internal mechanisms of SFT and RL fine-tuning,  
 117 and investigate their correlation with the ID and OOD reasoning performance of models.  
 118

### 119 3 EVALUATION AND ANALYSIS

120 In this section, we investigate the evolution of OOD reasoning ability of LLMs by analyzing the model  
 121 performance at different checkpoints in SFT and RL stages. More specifically, in Section 3.1, we in-  
 122 troduce the experimental settings, including the tasks, models and evaluation methods. In Section 3.2,  
 123 we present the results and conduct detailed analysis on ID and OOD reasoning performance.  
 124

#### 125 3.1 EVALUATION SETTINGS

126 **Task Description** We use *GeneralPoints*, *Navigation* (Chu et al., 2025) and *Rank-Determinant*  
 127 *Computation* (Sun et al., 2025)<sup>1</sup> to evaluate the arithmetic, spatial and cross-concept math reasoning  
 128 abilities of models. The detailed task descriptions and prompts are shown in Appendix B.1 and we  
 129 only use *GeneralPoints as an example* in main paper. The *GeneralPoints* environment (Chu et al.,  
 130 2025) is instantiated on top of the *Points24* environment (Zhai et al., 2024). Each state  $s$  contains  
 131 four poker cards, described in text directly. The goal is to produce an equation that equals a target  
 132 number (24 by default), with four numbers from the cards used only once. Particularly, the cards  
 133 ' $J, Q, K$ ' are all interpreted as the same number 10 in the original setting (for training). For example,  
 134 provided with four cards [5, 4, 10, 7], we aim to output the equation  $(7-5)*10+4$  as the desired output.  
 135

136 **Evaluation of OOD Generalization** To disentangle the evaluation of superficial format learning  
 137 and real arithmetic reasoning ability, we tweak the rule of *GeneralPoints* as (Chu et al., 2025) and test  
 138 both ID and OOD reasoning performance of models. Specifically, instead of interpreting ' $J, Q, K$ '  
 139 all as the same number 10, the new rule interprets them as 11, 12, and 13, respectively. If the model  
 140 can really obtain arithmetic reasoning ability, they should perform well on such OOD settings. We  
 141 record the model performance at different checkpoints to show how the ID and OOD generalization  
 142 abilities evolve. See the ID and OOD evaluation setups of other tasks in Appendix B.1.  
 143

144 **Models and Setup** We use two most popular open-sourced base models LLaMA-3.2-11B-  
 145 Vision (Grattafiori et al., 2024) and Qwen-2.5-7B (Team, 2024) as the base models. Following  
 146 the commonly used two-stage pipeline for post-training (DeepSeek-AI, 2025), we first warm-up  
 147 the model with SFT, and then run RL on top of SFT checkpoint. The format of the prompt is the  
 148 same as (Chu et al., 2025). For *GeneralPoints*, we follow the setup in (Chu et al., 2025) as our  
 149 standard setting, which is to run 1100 SFT checkpoints in total for LLaMA-3.2-11B-Vision<sup>2</sup>, 800  
 150 SFT checkpoints for Qwen-2.5-7B, and then 15 RL checkpoints for both of them. We denote the  
 151 checkpoints when SFT and RL end as  $SFT_{End}$  and  $RL_{End}$ . Besides the standard setting, to track the  
 152 impact of RL on the SFT model more carefully, we apply RL at different SFT checkpoints  $\{0, 90,$   
 153  $140, 200, 300, 400, \dots, 1600\}$ , and evaluate the ID and OOD reasoning performance before and after  
 154 RL<sup>3</sup>. See the computational resources and setups in Appendix B.2. We use PPO in the main paper,  
 155 and see the results of GRPO in Appendix C.2.  
 156

<sup>1</sup>See Appendix C.4 for experimental results on other five benchmark datasets.

<sup>2</sup>We adjust the number of checkpoints of SFT from 400 to 1100 as we employ 4 H100 GPUs for SFT instead  
 158 of 8 H800 in the original paper.

<sup>3</sup>We only use LLaMA with GeneralPoints as an example to do the checkpoint-wise analysis, as the checkpoint  
 160 sweep across all models and tasks is prohibited due to computational constraints. For example, in RL stage, we  
 161 need to use 4 H100 GPUs to train for 24 hours or 8 H100 GPUs to train for 12 hours for each single setting of  
 [model, checkpoint, task].

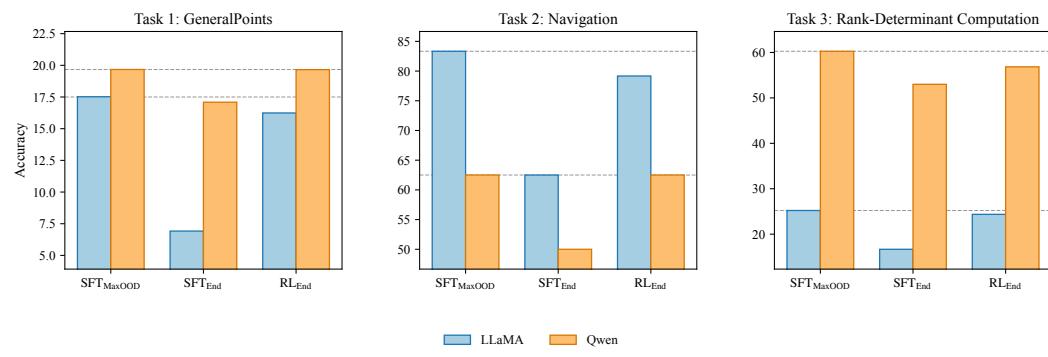


Figure 1: Comparison of OOD performance in three tasks for LLaMA and Qwen at different checkpoints (SFT<sub>MaxOOD</sub>, SFT<sub>End</sub> and RL<sub>End</sub>).

### 3.2 RESULTS AND ANALYSIS

**What Is Missing in "SFT memorizes, RL generalizes"?** It has recently been found that, in the two-stage fine-tuning pipeline, SFT can stabilize the model output before RL, and RL can enhance the OOD generalization capability of the SFT model (Chu et al., 2025). It highlights the complementary roles of SFT and RL, and the claim "SFT memorizes, RL generalizes" has become popular in AI community. As shown in Figure 1, we managed to reproduce the results in (Chu et al., 2025), where the RL fine-tuned models at RL<sub>End</sub> significantly outperform models at the checkpoint SFT<sub>End</sub> on three different tasks. However, when tracking the evolution of OOD performance in the whole SFT process, we can always find a checkpoint (e.g., 140 for LLaMA and 120 for Qwen in GeneralPoints) where the SFT models outperform the RLFT models. This indicates that the conclusion that RL can enhance the OOD reasoning capacity of SFT model is over-simplified and the best overall OOD performance has already been achieved at certain SFT checkpoint. We denote this checkpoint as SFT<sub>MaxOOD</sub>. However, SFT<sub>MaxOOD</sub> is hard to capture only based on ID training/test losses as shown in Figure 2a. People still tend to manually set up a terminal checkpoint SFT<sub>End</sub> and then do RL.

LLM keeps losing OOD capability from SFT<sub>MaxOOD</sub> to SFT<sub>End</sub>. The claim "SFT memorizes, RL generalizes" made in (Chu et al., 2025) is only based on the observations that, starting from SFT<sub>End</sub>, the continued RLFT model is better than SFT model. However, SFT<sub>End</sub> already suffers from severe OOD forgetting. Therefore, its evidence at a single fixed checkpoint is insufficient to provide a comprehensive and strict comparison between SFT and RL. Their claim reflects only one aspect of a broader picture, where RL recovers the degradation in SFT<sub>End</sub>, but barely surpasses the best of SFT. To depict the whole story and verify our new claim, we track the OOD performance at various SFT checkpoints and apply RLFT (As stated before, we only use LLaMA on GeneralPoints as example due to the prohibitive computational cost of this experiment<sup>4</sup>). Our observations of the whole fine-tuning process are as follows.

**SFT forgets.** The training loss and ID test loss during SFT are shown in Figure 2a, the format loss is shown in Figure 2b, and the OOD and ID test accuracy curve (take LLaMA as an example) is shown in Figure 2c and 2d. As shown in Figure 2b, the format loss converges at checkpoint 50 and stays almost unchanged afterwards, which means the model completes format alignment at SFT<sub>50</sub>. During 50 to 140 checkpoints, the performance gain in OOD reasoning is mainly from the improved arithmetic reasoning ability. As shown in Figure 2c, the OOD test accuracy declines after SFT<sub>MaxOOD</sub>, although the training loss and ID test loss continue to decrease. This performance divergence indicates that the model starts to focus too much on adapting to the rules of the target game, instead of really learning the arithmetic reasoning ability. Such over-specialization causes the model to forget the acquired OOD reasoning ability. Note that we **do not have an overfitting problem** here, because ID test loss keeps decreasing and ID test accuracy continues to increase. However, in this situation, we still keep losing the OOD reasoning ability, and we call such a phenomenon **OOD forgetting**.

**RL recovers.** As shown in Figure 2c, there exists an interval of SFT checkpoints where RL (orange) curve is higher than SFT (green) curve, which means RL can heal the OOD ability of the model

<sup>4</sup>See Appendix C.4 for more evidence about the existence of SFT<sub>MaxOOD</sub> on five more benchmark datasets.

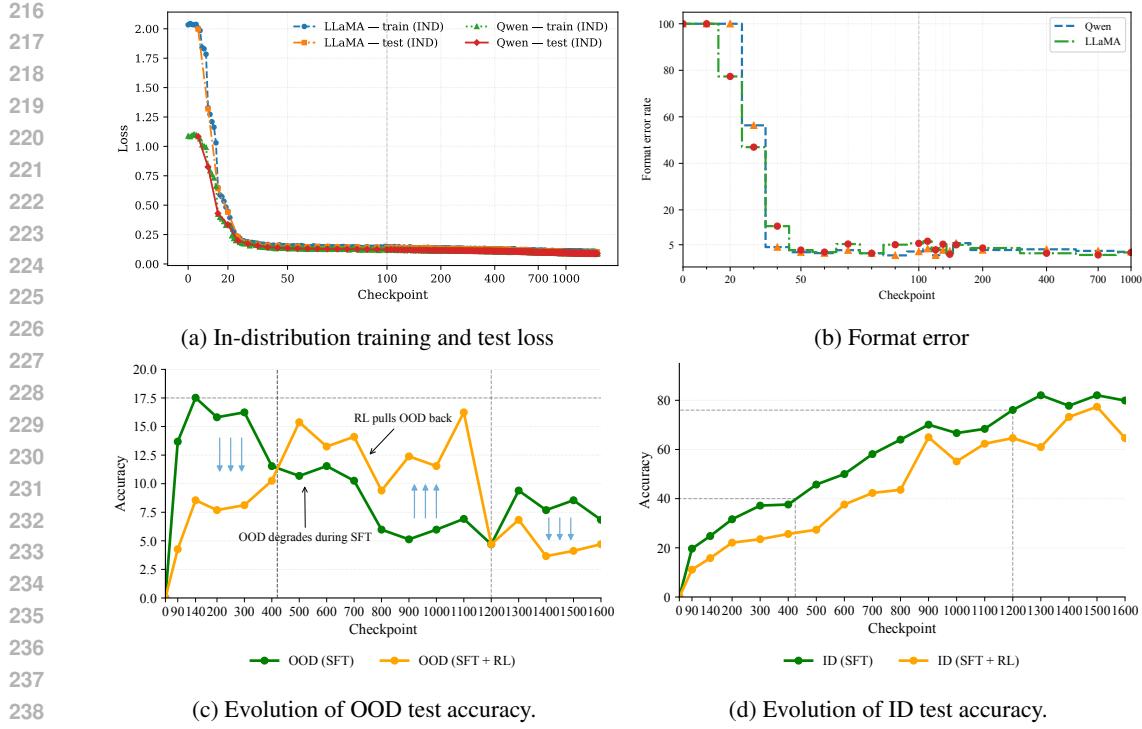


Figure 2: (2a) Training and test loss, and (2b) format error curves during SFT. Evolution of (2c) OOD and (2d) ID test accuracy of SFT and RL at different checkpoints (take LLaMA as the main example).

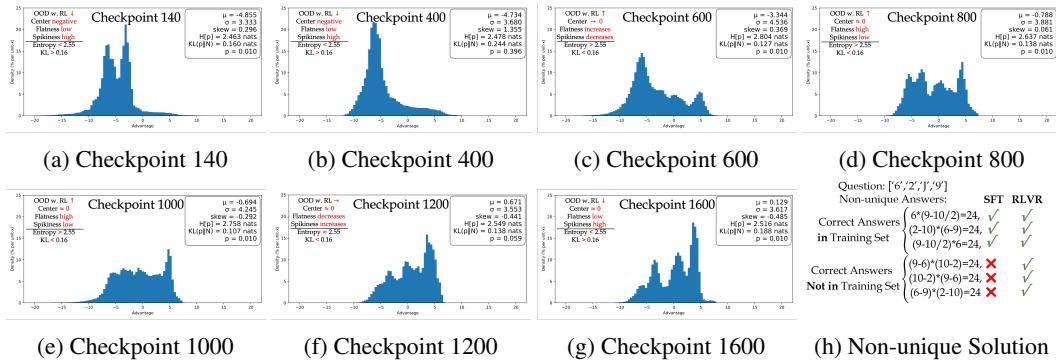


Figure 3: Advantage estimation distribution (a-g) and demonstration of questions with non-unique solutions (h).

that is lost in SFT, with a bit sacrifice of the specialization on ID data<sup>5</sup> (see Figure 2d). Note that, in our experiments, RL cannot help SFT model surpass its peak OOD performance at  $SFT_{MaxOOD}$  and fails to generate fundamentally new solutions in most cases, which means that RL barely helps the fine-tuned model escape the constraint of its base model.

Interestingly, there exists a **clear boundary for the recovery effect of RL**, i.e., RL can only restore the lost OOD capability in SFT within checkpoint [420, 1200]. The reason is that PPO needs a balanced ratio of positive vs. negative reward signals to be trained stably and effectively. Highly skewed reward distribution can lead to high variance in advantage estimates, poor exploration, and

<sup>5</sup>The decrease of ID performance is not due to inadequate training issue in our RL setting, as we follow the same setup as Chu et al. (2025), i.e., we use 4 H100 GPUs to train 24 hours or 8 H100 GPUs to train 12 hours depending on the availability of resources. Continued RLFT will lead to further decline for both ID and OOD performance. Such model deterioration of long-term RL training was also found by other researchers or practitioners. Therefore, we believe that there is no inadequate training problem.

unstable policy updates. Empirically, the proper ratio of positive reward in our experiment can be roughly estimated by the ID accuracy of SFT model as shown in Figure 2d, *i.e.*, around [40%, 80%].

**Robustness** We have verified the robustness of our results with five random seeds at three representative SFT checkpoints (400, 900, and 1600) and do RLFT. The results align with our claim and the variances among seeds are around 1.5, which means that our claim is statistically robust. We also adopted different seeds to evaluate the model and the variance is negligible.

**Advantage Distribution** To further understand how does the distribution of received rewards impact the effectiveness of RLFT, we go deeper into the advantage estimation distribution, which is important to study the policy update in PPO as shown in equation 3. For better analysis, we calculate some basic statistics of the advantage distributions, *e.g.*, center  $\mu$ , standard deviation  $\sigma$ , and skewness (Zwillinger & Kokoska, 1999). Besides, to investigate the distributions more deeply, we use: (1) entropy to measure its flatness and uniformity, and flat distributions without pronounced modes have higher entropy than sharply peaked (concentrated) distributions (Petty, 2018)<sup>6</sup>; (2) KL divergence *w.r.t.* the matched normal distribution<sup>7</sup> to measure its non-Gaussianity (Hyvärinen, 1997; Hyvärinen & Oja, 2000) (or negentropy (Hyvärinen, 2013)), and a large value indicates that it has more structures than a normal distribution<sup>8</sup>, *e.g.*, sharper peaks, multiple modes, heavier tails, asymmetry, *etc.*; (3) the p-value of Silverman's test<sup>9</sup> to study its multi-modality (Silverman, 1981).

The results are demonstrated in Figure 3(a-g) (See full results in Appendix C.12). Through the comparison of the statistics, we observe that, for the checkpoints within the effective boundaries of RL (1) the centers do not significantly deviate from 0; (2) empirically, the entropy is larger than 2.55 and KL divergence against the matched normal distribution is smaller than 0.16, and these two empirical thresholds indicate that the efficacy of RL fine-tuning highly correlates with flat, less spiky and structured advantage signals; (3) moderate skewness and multi-modality are acceptable.

Note that our observations of the boundary also echo some empirical observations in recent studies (Liu et al., 2025; Wang et al., 2025) that we need the base model to be strong enough (*e.g.*, more than 420 SFT checkpoints) for RL to be effective; on the other hand, too much SFT (*e.g.*, over 1200 checkpoints) will lead to policy entropy collapse and hurt exploration (Lanchantin et al., 2025).

**Verifiable Reward Shines in Problems With Non-Unique Solutions** RL recovers the OOD ability lost in SFT by providing better gradient directions through more accurate evaluations, especially for the questions with non-unique solutions. We demonstrate it in Figure 3h and the example in Appendix B.1. As shown in the "number" and "formula" steps, multiple correct formulas can be derived based on the same set of question numbers. However, the token-level cross-entropy loss in SFT will only give "positive reward" to the correct answers that exist in training data. For other newly explored correct solutions, it will give "negative rewards", which provides incorrect gradient directions and leads to high perplexity on them. This is pronounced on reasoning tasks with multiple answers. Therefore, as long as RL can stably work within the boundary, it heals the OOD forgetting.

#### 4 ROTATION MATTERS: A SVD ANALYSIS ON PARAMETER MATRICES

Based on our "SFT forgets, RL recovers", found in Section 3.2, we would like to understand what is the underlying mechanism that causes the different behaviors of SFT vs. RL. Recent work has shown that the spectrum of parameter matrices can offer an interpretable window on how its internal representations evolve and how they relate to downstream performance (Staats et al., 2025; Yunis et al., 2024). With this lens, we can track the changes in parameter space during SFT and RL stages with Singular Value Decomposition (SVD) (Aghajanyan et al., 2020; Yunis et al., 2024) and conduct ablation studies to explore the impacts of singular values/vectors of weight matrices on model

<sup>6</sup>This is because for a distribution defined on finite discrete support set, the discrete uniform distribution has the maximum entropy (Hyvärinen, 1997).

<sup>7</sup>For checkpoint  $k$ , suppose the mean and standard deviation of the advantage distribution is  $\mu_k, \sigma_k$ , then the matched normal distribution is  $N(\mu_k, \sigma_k^2)$ .

<sup>8</sup>This is because, given a fixed second moment or variance constraint, the Gaussian distribution achieves maximum differential entropy (Tse, 2017). Among all continuous approximations of the advantage distribution, the matched Gaussian distribution has the least structure, which can be used as a reference to compare.

<sup>9</sup>P-value less than 0.05 indicates significant multi-modality, and p-value greater than 0.05 but less than 0.10 suggests marginal multi-modality (Freeman & Dale, 2013).

324 performance. We introduce the experimental setup in Section 4.1, present the results and analysis in  
 325 Section 4.2 and 4.3, and provide actionable insights in Section 4.4 (initial results in Appendix C.5).  
 326

#### 327 4.1 SETUP

328 Based on some recent findings (Staats et al., 2025; Wu et al., 2023; Yuan et al., 2024), which highlight  
 329 the significance of self-attention parameter matrices in weight adaptation, our analysis focuses on  
 330 two sets of parameter matrices:

- 331 •  **$W_Q, W_K, W_V$  in self-attention matrices** are the core components of the self-attention  
 332 mechanism (Vaswani et al., 2017). They function by projecting the input embeddings into  
 333 distinct subspaces to compute attention scores and construct context-aware representations.
- 334 •  **$W_{MLP}$  in MLP layer** in both LLM models, every MLP block uses an up-projection to  
 335 widen the hidden state, a gate-projection to apply the SwiGLU gate (Shazeer, 2020), and a  
 336 down-projection to shrink it back. We did not include the bias term  $b_{MLP}$  in SVD analysis  
 337 because this term is found to only have minor impact on model performance.

338 To investigate how does the SFT- and RL-reshaped parameter matrices impact the model performance,  
 339 we conduct ablation studies on the singular values/vectors of the above parameter matrices (we use  
 340 the result on *GeneralPoints* as example). Specifically,

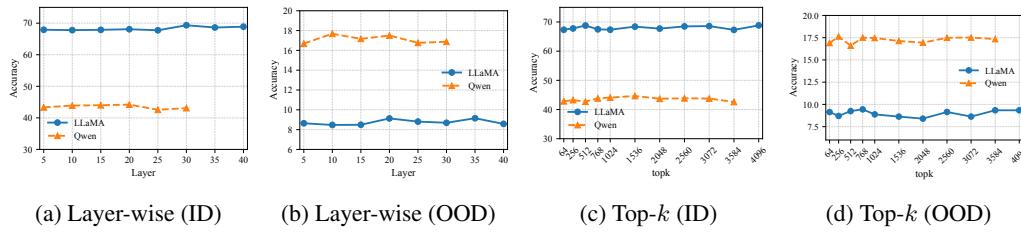
- 341 • for singular values, we restore the singular values of the fine-tuned parameter matrices,  
 342 while keep the corresponding singular vectors unmodified, and see if the model performance  
 343 (OOD forgetting and recovery) will be reverted accordingly. In other words, we roll back  
 344  $\Sigma_{SFT_{End}} \rightarrow \Sigma_{SFT_{MaxOOD}}$ ,  $\Sigma_{RL_{End}} \rightarrow \Sigma_{SFT_{End}}$ , and evaluate the models with parameter matrices  
 345  $U_{SFT_{End}} \Sigma_{SFT_{MaxOOD}} V_{SFT_{End}}^\top$  and  $U_{RL_{End}} \Sigma_{SFT_{End}} V_{RL_{End}}^\top$  and check the performance shifts.
- 346 • Similar to the restoration of singular vectors, we evaluate the model performance with  
 347 parameter matrices  $U_{SFT_{MaxOOD}} \Sigma_{SFT_{End}} V_{SFT_{MaxOOD}}^\top$  and  $U_{SFT_{End}} \Sigma_{RL_{End}} V_{SFT_{End}}^\top$ .

348 For LLaMA  $SFT_{MaxOOD} = 140$ ,  $SFT_{End} = 1100$  and for Qwen  $SFT_{MaxOOD} = 120$ ,  $SFT_{End} = 800$ .  
 349

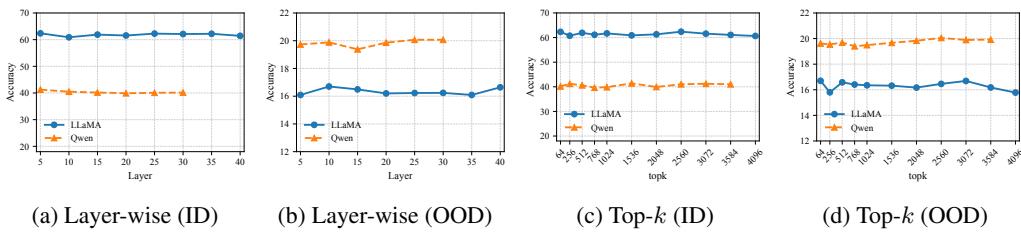
350 To identify which layers and which set of singular values/vectors play a more important role in OOD  
 351 forgetting and recovery, we proceed the restoration process step by step according to different layers,  
 352 and top- $k$  singular values/vectors. More specifically,

- 353 • for layer-wise study, we restore the singular values/vectors for every top- $k$  layer, where  
 354  $k = 5, 10, 15, 20, \dots, L$  and  $L$  is the total number of layers;
- 355 • for singular values and vectors, we restore the top- $k$  singular values/vectors for all layers,  
 356 where  $k = 64, 256, 512, 768, 1024, 1536, 2048, 2560, 3072, 3584, (4096$  for LLaMA);

357 The results are shown in Section 4.2 and 4.3.



366 Figure 4: Singular value restoration for SFT stage.



373 Figure 5: Singular value restoration for RL stage.

#### 374 4.2 ABLATION STUDIES ON SINGULAR VALUES

375 It is found in existing literature that the intrinsic capacity of the model is mainly reflected by the  
 376 singular values (Bartlett et al., 2017; Yoshida & Miyato, 2017; Li et al., 2024b). However, from our

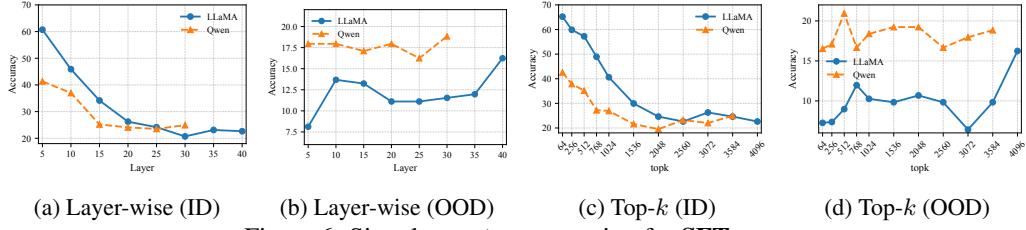
378 results of singular value restoration in SFT stage shown in Figure 4, and the results in RL stage shown  
 379 in Figure 5<sup>10</sup>, we observe that: **the restoration of the singular values of parameter matrices has**  
 380 **negligible impact on ID and OOD performance for both SFT and RL fine-tuned models.**

381 Besides, as the additional evidence shown in Appendix C.8, compared to the original values, the  
 382 differences of singular values caused by fine-tuning only fluctuate from 0 to 0.005, which act almost  
 383 as zero-centered noisy signals. This indicates that the fine-tuning process does not significantly  
 384 amplify or diminish specific singular values. And we do not observe significant shifts concentrated in  
 385 any particular region, such as the head (largest values) or tail (smallest values), which is found in  
 386 previous studies (Staats et al., 2025; Thamm et al., 2022; Saada et al., 2025; Cancedda, 2024; Hsu  
 387 et al., 2022).

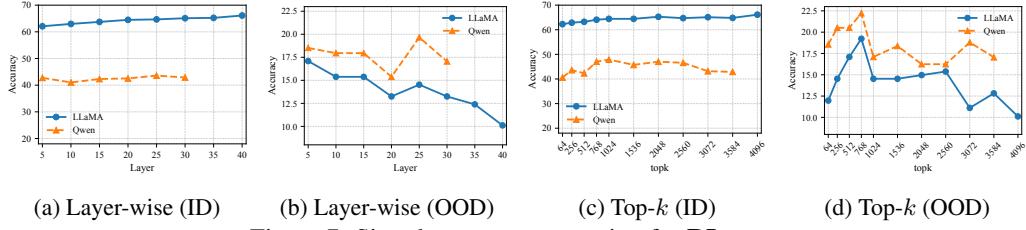
### 388 4.3 ABLATION STUDIES ON SINGULAR VECTOR DIRECTIONS

390 The results of singular vector restoration in SFT and RL stage are shown in Figure 6 and Figure 7. It  
 391 is quite clear that **the rotation of the singular vectors plays a more important role than singular**  
 392 **values in fine-tuning**, as the ID and OOD performance shift much more significantly. We analyze  
 393 their fine-grained correlations in SFT stage as follows,

- 394 • **Layer-wise Analysis** As shown in Figure 6a and 6b, restoring the singular vectors of first  
 395 30 layers of LLaMA and first 15 layers of Qwen causes significant degradation of ID  
 396 performance. And the restoration of first 10 and last 5 layers leads to the recovery of OOD  
 397 performance in LLaMA, however, Qwen stays relatively robust. This suggests that, in SFT  
 398 stage, the task-specific knowledge does not depend too much on the last several layers and  
 399 OOD capabilities are highly impacted by the the top and bottom blocks of the models.
- 400 • **Top- $k$  Analysis** As shown in Figure 6c and 6d, restoring the top 2560 singular vectors  
 401 of LLaMA and top 2048 singular vectors of Qwen causes significant degradation of ID  
 402 performance. And the restoration of top 768 singular vectors and last 1024 singular vectors  
 403 leads to the recovery of OOD performance in LLaMA, however, Qwen stays relatively  
 404 robust again. This indicates that, in SFT stage, the task-specific knowledge mainly stores in  
 405 the first several singular vectors and OOD capabilities in the the top and bottom blocks.



411 Figure 6: Singular vector restoration for SFT stage.



412 Figure 7: Singular vector restoration for RL stage.

413 In RL stage, we observe that

- 414 • **Layer-wise Analysis** As shown in Figure 7a and 7b, the restoration of singular vectors  
 415 consistently causes performance degradation of ID and OOD performance for LLaMA, with  
 416 some perturbations in intermediate (15 – 25) layers for OOD performance. ID and OOD  
 417 performance of Qwen is relatively robust, and also have some perturbations in intermediate  
 418 (15 – 25) layers for OOD performance. This indicates that RL uniformly impacts each  
 419 layers in LLaMA for both task-specific knowledge and OOD ability.
- 420 • **Top- $k$  Analysis** As shown in Figure 7c and 7d, the restoration of singular vectors uniformly  
 421 causes a performance degradation of ID performance for LLaMA, Qwen is relatively robust.

422 <sup>10</sup>See a more detailed study in Appendix C.8

432 For OOD performance, the top (1024) and bottom (2560 – 4096 for LLaMA, 2560 – 3584  
 433 for Qwen) singular vectors are highly relevant.

#### 434 4.4 INSIGHTS

435 As shown in Figure 6d, the restoration of top singular vectors significantly recover OOD performance  
 436 in both models. Therefore, we penalize the rotations of singular vectors in the top ranks during SFT  
 437 without additional RL stage. Compared to vanilla full-parameter SFT, this strategy shows promising  
 438 results in mitigating OOD forgetting. See Appendix C.5 for details and results.

## 440 5 RELATED WORK ON RL REASONING

### 441 5.1 RL IMPROVES REASONING AND OOD GENERALIZATION

442 Following the introduction of DeepSeek-R1 (DeepSeek-AI, 2025), large-scale RL has emerged as a  
 443 principal driver of improved reasoning, directly eliciting long chain-of-thought behavior and strong  
 444 math/coding performance. Notably, the zero-SFT variant (R1-Zero) is trained solely with RL yet  
 445 already exhibits powerful reasoning. This has motivated work that explicitly disentangles the roles of  
 446 supervised fine-tuning (SFT) and RL for reasoning and out-of-distribution (OOD) generalization.

447 Several studies suggest that the two objectives induce different competencies: authors in (Ma et al.,  
 448 2025) report that RL is more effective on low to medium-difficulty tasks, whereas SFT performs  
 449 better on harder problems; authors in (Chu et al., 2025) further find that PPO-based RL generalizes  
 450 better than SFT, which tends to memorize training data rather than acquire transferable reasoning  
 451 skills. Authors in (Xie et al., 2025) support this claim by demonstrating that rule-based RL enhances  
 452 LLM reasoning and achieves generalization to challenging benchmarks such as AIME and AMC  
 453 after training on synthetic logic puzzles (Knights-and-Knaves).

454 Motivated by the gap between these two paradigms, recent work integrates SFT and RL to improve  
 455 performance. In particular, UFT (Liu et al., 2025) unifies supervised and reinforcement fine-tuning  
 456 within a single stage and injects supervision into the RL phase through a hybrid objective. Authors  
 457 in (Huang et al., 2025) proposes "prefix-RFT", which seeds each rollout with an supervised prefix  
 458 and trains the continuation with policy-gradient RL.

### 459 5.2 "COMPARED WITH SFT, DOES RL REALLY HELP?"

460 On the other hand, there is skepticism about the effectiveness of RL for reasoning. Authors in (Yue  
 461 et al., 2025) argue that current RLVR mostly improves sampling efficiency rather than expanding  
 462 a model's reasoning capability boundary, and that at high  $k$  (pass@ $k$ ) base models can outperform  
 463 their RL-trained counterparts. They conclude that the seemingly "new" reasoning patterns are better  
 464 attributed to distillation than to RL itself. Authors in (Kim et al., 2025) argue that RLVR does not  
 465 enhance a model's reasoning ability; rather, it mainly boosts accuracy on easier problems while  
 466 hurting performance on harder ones. Authors in (Zheng et al., 2025) find that reasoning models  
 467 augmented by RL significantly underperform their corresponding base models in parody detection  
 468 tasks, which demonstrate the limitation of RL in general reasoning tasks.

### 469 5.3 OUR CONTRIBUTIONS

470 Compared with prior work, we offer a different perspective, which track the evolution and synergy of  
 471 SFT and RL in reasoning ability. Specifically, we re-investigate the popular claim "SFT memorizes,  
 472 RL generalizes" and demonstrate its deficiencies. Our results and analysis illustrate that SFT causes  
 473 the model to lose OOD capability, a phenomenon we name as **OOD forgetting**. RL can only restore  
 474 the OOD ability lost during the SFT phase, and only within a certain range of checkpoints.

## 475 6 CONCLUSIONS

476 In this paper, we study the roles of SFT and RL in the two-stage fine-tuning process and generalize the  
 477 common belief "SFT memorizes, RL generalizes" to "SFT forgets, RL recovers". More specifically,  
 478 we found the OOD forgetting issue in SFT stage, the OOD recovery effect in RL stage, and the  
 479 existence of RL effectiveness boundary. In addition, we observe that RLFT does not endow LLMs  
 480 with fundamentally new OOD reasoning abilities and rarely surpasses the best OOD checkpoint  
 481 achieved during SFT. The analysis on advantage distribution reveals that flat, less spiky and structured  
 482 advantage signals are critical for the effectiveness of RL. We have verified that our claims are robust  
 483 and generalizable across diverse benchmark tasks and various RL algorithms. SVD analysis further  
 484 shows that the key factor correlating with OOD forgetting and recovery is not the change in singular  
 485 values of weight matrices, but the rotation of singular vectors. Based on this, we develop new insight  
 to mitigate OOD forgetting during SFT, which is verified to be effective.

486 REPRODUCIBILITY STATEMENT  
487488 We have provided the codebase in supplementary material and all the results in this paper are  
489 reproducible. Implementation details and experimental setups can be found in Section 3.1, 4.1 and  
490 Appendix B  
491492 ETHICS STATEMENT  
493494 All of the authors in this paper have read and followed the ethics code.  
495496 REFERENCES  
497498 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the  
499 effectiveness of language model fine-tuning. *arXiv preprint arXiv:2012.13255*, 2020.  
500501 Anthropic. Claude 3.7 sonnet and claude code, 2025. URL <https://www.anthropic.com/news/clause-3-7-sonnet>.  
502503 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna  
504 Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness  
505 from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.  
506507 Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural  
508 networks, 2017. URL <https://arxiv.org/abs/1706.08498>.  
509510 Ëeke Björck and Gene H Golub. Numerical methods for computing angles between linear subspaces.  
511 *Mathematics of computation*, 27(123):579–594, 1973.  
512513 Nicola Cancedda. Spectral filters, dark signals, and attention sinks, 2024. URL <https://arxiv.org/abs/2402.09221>.  
514515 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.  
516 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation  
517 model post-training, 2025. URL <https://arxiv.org/abs/2501.17161>.  
518519 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and  
520 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.  
521 *arXiv preprint arXiv:1803.05457*, 2018.  
522523 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,  
524 2025. URL <https://arxiv.org/abs/2501.12948>.  
525526 Jonathan B Freeman and Rick Dale. Assessing bimodality to detect the presence of a dual cognitive  
527 process. *Behavior research methods*, 45(1):83–97, 2013.  
528529 Yuqian Fu, Tinghong Chen, Jiajun Chai, Xihuai Wang, Songjun Tu, Guojun Yin, Wei Lin, Qichao  
530 Zhang, Yuanheng Zhu, and Dongbin Zhao. Srf: A single-stage method with supervised and  
531 reinforcement fine-tuning for reasoning. *arXiv preprint arXiv:2506.19767*, 2025.  
532533 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
534 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of  
535 models. *arXiv preprint arXiv:2407.21783*, 2024.  
536537 Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In  
538 *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume  
539 1: Long Papers)*, pp. 328–339, 2018.  
540541 Yen-Chang Hsu, Ting Hua, Sungjen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model  
542 compression with weighted low-rank factorization, 2022. URL <https://arxiv.org/abs/2207.00112>.  
543

540 Jiaji Huang, Qiang Qiu, and Robert Calderbank. The role of principal angles in subspace classification.  
 541 *IEEE Transactions on Signal Processing*, 64(8):1933–1945, 2015.  
 542

543 Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M Ponti, and Ivan  
 544 Titov. Blending supervised and reinforcement fine-tuning with prefix sampling. *arXiv preprint*  
 545 *arXiv:2507.01679*, 2025.

546 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.  
 547

548 Aapo Hyvärinen. New approximations of differential entropy for independent component analysis  
 549 and projection pursuit. *Advances in neural information processing systems*, 10, 1997.  
 550

551 Aapo Hyvärinen. Independent component analysis: recent advances. *Philosophical Transactions  
 552 of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 371(1984):20110534,  
 553 2013.

554 Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.  
 555 *Neural networks*, 13(4-5):411–430, 2000.  
 556

557 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language  
 558 models for code generation. *arXiv preprint arXiv:2406.00515*, 2024.

559 Minwu Kim, Anubhav Shrestha, Safal Shrestha, Aadim Nepal, and Keith Ross. Reinforcement  
 560 learning vs. distillation: Understanding accuracy and capability in llm reasoning, 2025. URL  
 561 <https://arxiv.org/abs/2505.14216>.  
 562

563 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward  
 564 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and  
 565 diversity. *arXiv preprint arXiv:2310.06452*, 2023.

566 Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting  
 567 in language models via implicit inference. In *The Twelfth International Conference on Learning  
 568 Representations*, 2024.

569 Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu, Ping  
 570 Yu, Weizhe Yuan, Jason E Weston, et al. Bridging offline and online reinforcement learning for  
 571 llms. *arXiv preprint arXiv:2506.21495*, 2025.

572 Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting in large  
 573 language model tuning. In *Findings of the Association for Computational Linguistics: EMNLP  
 574 2024*, pp. 4297–4308, 2024a.

575 Yixia Li, Boya Xiong, Guanhua Chen, and Yun Chen. Setar: Out-of-distribution detection with  
 576 selective low-rank approximation, 2024b. URL <https://arxiv.org/abs/2406.12629>.  
 577

578 Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan  
 579 Jiang, Xintong Wang, Jifang Wang, et al. Perception, reason, think, and plan: A survey on large  
 580 multimodal reasoning models. *arXiv preprint arXiv:2505.04921*, 2025.

581 Bingqian Lin, Yunshuang Nie, Khun Loun Zai, Ziming Wei, Mingfei Han, Rongtao Xu, Minzhe  
 582 Niu, Jianhua Han, Liang Lin, Cewu Lu, et al. Evolvenav: Self-improving embodied reasoning for  
 583 llm-based vision-language navigation. *arXiv preprint arXiv:2506.01551*, 2025.

584 Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement  
 585 fine-tuning. *arXiv preprint arXiv:2505.16984*, 2025.

586 Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu, Chengyu  
 587 Shen, Runming He, Bin Cui, et al. Learning what reinforcement learning can’t: Interleaved online  
 588 fine-tuning for hardest questions. *arXiv preprint arXiv:2506.07527*, 2025.

589 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad  
 590 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large  
 591 language models. *arXiv preprint arXiv:2410.05229*, 2024.

592

594 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 595 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow  
 596 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–  
 597 27744, 2022.

598

599 Grant W Petty. On some shortcomings of shannon entropy as a measure of information content in  
 600 indirect measurements of continuous variables. *Journal of Atmospheric and Oceanic Technology*,  
 601 35(5):1011–1021, 2018.

602 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language  
 603 understanding by generative pre-training. 2018.

604

605 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector  
 606 canonical correlation analysis for deep learning dynamics and interpretability, 2017. URL <https://arxiv.org/abs/1706.05806>.

607

608 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,  
 609 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In  
 610 *First Conference on Language Modeling*, 2024.

611

612 Thiziri Nait Saada, Alireza Naderi, and Jared Tanner. Mind the gap: a spectral analysis of rank  
 613 collapse and signal propagation in attention layers, 2025. URL <https://arxiv.org/abs/2410.07799>.

614

615 John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-  
 616 dimensional continuous control using generalized advantage estimation. In *Proceedings of the  
 617 International Conference on Learning Representations (ICLR)*, 2016. URL <https://arxiv.org/abs/1506.02438>. arXiv:1506.02438.

618

619

620 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 621 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

622

623 Noam Shazeer. Glu variants improve transformer, 2020. URL <https://arxiv.org/abs/2002.05202>.

624

625 Yudi Shi, Shangzhe Di, Qirui Chen, and Weidi Xie. Enhancing video-llm reasoning via agent-of-  
 626 thoughts distillation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,  
 627 pp. 8523–8533, 2025.

628

629 Bernard W Silverman. Using kernel density estimates to investigate multimodality. *Journal of the  
 630 Royal Statistical Society: Series B (Methodological)*, 43(1):97–99, 1981.

631

632 Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,  
 633 Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune. In  
 634 *Forty-second International Conference on Machine Learning*, 2025.

635

636 Max Staats, Matthias Thamm, and Bernd Rosenow. Small singular values matter: A random matrix  
 637 analysis of transformer models, 2025. URL <https://arxiv.org/abs/2410.17770>.

638

639 Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn  
 640 Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,  
 and transformative generalization. *arXiv preprint arXiv:2506.18880*, 2025.

641

642 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question  
 643 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of  
 644 the North American Chapter of the Association for Computational Linguistics: Human Language  
 645 Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June  
 2019. Association for Computational Linguistics.

646

647 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

648 Matthias Thamm, Max Staats, and Bernd Rosenow. Random matrix analysis of deep neural network  
 649 weight matrices. *Physical Review E*, 106(5), November 2022. ISSN 2470-0053. doi: 10.1103/  
 650 physreve.106.054124. URL <http://dx.doi.org/10.1103/PhysRevE.106.054124>.  
 651

652 David Tse. Information theory. *Stanford EE/Stats 376A Lecture 15, March 2, 2017*.

653 Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah,  
 654 and Bill Lin. Efficient distribution similarity identification in clustered federated learning via  
 655 principal angles between client data subspaces. In *Proceedings of the AAAI conference on artificial  
 656 intelligence*, volume 37, pp. 10043–10052, 2023.

657

658 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz  
 659 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing  
 660 systems*, 30, 2017.

661 Hanyin Wang, Zhenbang Wu, Gururaj Kolar, Hariprasad Korsapati, Brian Bartlett, Bryan Hull, and  
 662 Jimeng Sun. Reinforcement learning for out-of-distribution reasoning in llms: An empirical study  
 663 on diagnosis-related group coding. *arXiv preprint arXiv:2505.21908*, 2025.

664 Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,  
 665 Rui Xie, Jindong Wang, Xing Xie, et al. Pandalm: An automatic evaluation benchmark for llm  
 666 instruction tuning optimization. *arXiv preprint arXiv:2306.05087*, 2023.

667

668 Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and  
 669 Sanjiv Kumar. Two-stage llm fine-tuning with less specialization and more generalization. In *The  
 670 Twelfth International Conference on Learning Representations*, 2024a.

671 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming  
 672 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-  
 673 task language understanding benchmark. *Advances in Neural Information Processing Systems*, 37:  
 674 95266–95290, 2024b.

675

676 Yifan Wu, Shichao Kan, Min Zeng, and Min Li. Singularformer: Learning to decompose self-attention  
 677 to linearize the complexity of transformer. In Edith Elkind (ed.), *Proceedings of the Thirty-Second  
 678 International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 4433–4441. International  
 679 Joint Conferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/493.  
 680 URL <https://doi.org/10.24963/ijcai.2023/493>. Main Track.

681 xAI. Grok 3 beta - the age of reasoning agents, 2025. URL <https://x.ai/blog/grok-3>.

682

683 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,  
 684 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement  
 685 learning, 2025. URL <https://arxiv.org/abs/2502.14768>.

686

687 Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability  
 688 of deep learning, 2017. URL <https://arxiv.org/abs/1705.10941>.

689

690 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-  
 691 aware singular value decomposition for compressing large language models, 2024. URL <https://arxiv.org/abs/2312.05821>.

692

693 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.  
 694 Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?,  
 695 2025. URL <https://arxiv.org/abs/2504.13837>.

696

697 David Yunis, Kumar Kshitij Patel, Samuel Wheeler, Pedro Savarese, Gal Vardi, Karen Livescu,  
 698 Michael Maire, and Matthew R Walter. Approaching deep learning through the spectral dynamics  
 699 of weights. *arXiv preprint arXiv:2408.11804*, 2024.

700

701 Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann  
 702 LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via  
 703 reinforcement learning. *Advances in neural information processing systems*, 37:110935–110971,  
 704 2024.

702 Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang, Doina Precup, and Yoshua Bengio. A  
703 consciousness-inspired planning agent for model-based reinforcement learning. *Advances in*  
704 *neural information processing systems*, 34:1569–1581, 2021.

705

706 Yilun Zheng, Sha Li, Fangkun Wu, Yang Ziyi, Lin Hongchao, Zhichao Hu, Cai Xinjun, Ziming  
707 Wang, Jinxuan Chen, Sitao Luan, Jiahao Xu, and Lihui Chen. FanChuan: A multilingual and  
708 graph-structured benchmark for parody detection and analysis. In *Findings of the Association*  
709 *for Computational Linguistics: ACL 2025*, pp. 21937–21957. Association for Computational  
710 Linguistics, July 2025. ISBN 979-8-89176-256-5.

711

712 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny  
713 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*  
714 *arXiv:2311.07911*, 2023.

715 Daniel Zwillinger and Stephen Kokoska. *CRC standard probability and statistics tables and formulae*.  
716 Crc Press, 1999.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 THE USE OF LARGE LANGUAGE MODELS (LLMs)  
757758 Large language models (LLMs) were used in the preparation of this manuscript to improve grammar,  
759 clarity, and readability. We also use LLMs to search for related studies.  
760761  
762 A CLARIFICATION: FORGETTING, OVER-SPECIALIZATION, OVER-FITTING,  
763 OVER-TRAINING  
764765 We would like to clarify the differences between the following concepts to highlight the uniqueness  
766 of our study on OOD forgetting and avoid confusion.  
767

- 768 • **Catastrophic Forgetting** means that a model loses prior knowledge or skills when trained  
769 on new data (Li et al., 2024a; Kotha et al., 2024). More specifically, when we fine-tune an  
770 LLM on a new task, it underperforms the original LLM on previously learned tasks/domains.
- 771 • **Over-Specialization** refers to format specialization (Wang et al., 2024a), which means  
772 that a model becomes narrowly specialized to the format of a task during fine-tuning, even  
773 on some inappropriate places. It is a form of forgetting and will lead to failure of OOD  
774 generalization. It often happens rapidly at the early stage of forgetting, but may not degrade  
775 the deeper knowledge of the LLM.
- 776 • **Over-Fitting** happens when a model becomes too much tailored to the training (fine-tuning)  
777 data, instead of capturing the general patterns of the corresponding domain. We will observe  
778 a decrease in training loss and an increase in validation and test loss. Note that over-fitting  
779 is only relevant to the in-distribution generalization settings, but not OOD generalization.
- 780 • **Over-Training** happens in model pre-training stage. It means that when pretraining extends  
781 too long, even though the base model improves, the post-training performance will drop due  
782 to the increased sensitivity to parameter modification (Springer et al., 2025).

783  
784 B MORE DETAILS OF EXPERIMENTAL SETTINGS  
785786 B.1 TASK DESCRIPTIONS AND PROMPTS  
787788 **GeneralPoints** Prompts and examples for the GeneralPoints game are shown as follows.  
789

```

790 [Task Description]
791 You are an expert 24 points card game player. You will receive a set of 4 cards. Note that 'J', 'Q', and 'K'
792 count as '10', and each card must be used once. Your goal is to output a formula that evaluates to 24 using
793 numbers from the cards and operators such as '+', '−', '∗', '÷', and '='.
794 [Input]
795 Cards: [1, 3, K, 6]
796 [Output]
797 { "cards": [x, y, z, w], where {face_card_msg},
798 "number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
799 "formula": 'an equation that equals 24',
800 }
801 For In-distribution Response:
802 {
803 "cards": [1, 3, K, 6],
804 "number": [1, 3, 10, 6],
805 "formula": "(10 × 3) − (6 ÷ 1) = 24"
806 }
807 For Out-of-Distribution Response:
808 {
809 "cards": [1, 3, K, 6],
810 "number": [1, 3, 13, 6],
811 "formula": "(6 × (13 − 1)) ÷ 3 = 24"
812 }

```

810     **Navigation** For the Navigation task, which is used in (Chu et al., 2025), we train the model with  
 811     an absolute direction *e.g.*, turn (source west), then we evaluate the model’s OOD performance by  
 812     relative direction *e.g.*, turn(left). Prompts and examples for Navigation are shown as follows.  
 813

814     [Task Description]

815     You are an expert in navigation. You will receive a sequence of instructions to follow. You are also provided  
 816     with your observation and action history in text. Your goal is to first analyze the instruction and identify the  
 817     next sentence to be executed. Then, you need to provide the action to be taken based on the current observation  
 818     and instruction.

819     [Instruction]

1. First, turn right to face north.
2. Move forward until you reach next intersection.
3. Turn left to face west.
4. Move forward until you reach next intersection.
5. Turn left to face north.
6. Move forward until you reach next intersection.
7. Turn right to face east.
8. Move forward until you reach next intersection where Levi & Korsinsky, LLP is on your right behind.
9. Turn left to face north.
10. Move forward until you reach next intersection.
11. Turn slightly right to face northeast.
12. Move forward until you reach next intersection.
13. Turn right to face northwest.
14. Move forward until you reach next intersection where Mr Goods Buy & Sell is on your left front.
15. Turn left to face northeast.
16. Move forward until you reach next intersection where Skullfade Barbers is on your left front.
17. Turn right to face northwest.
18. Move forward until you reach destination where The destination Ann Cleaners is on your left.

834     [Action space]

835     forward(): indicates moving forward one step  
 836     turn direction(x): indicates adjust the ego agent direction towards x direction. x could be any following 8  
 837     directions ['north', 'northeast', 'east', 'southeast', 'south', 'southwest', 'west', 'northwest']  
 838     stop(): indicates the navigation is finished.

839     vspace6pt

840     [Observations and action sequence]

841      $O_1$ : No landmarks nearby;

842      $A_1$ :

843     For In-distribution Response:

```
844     {
 845       "current observation": "No landmarks nearby; "
 846       "current instruction": "First, turn right to face north."
 847       "action": "turn direction(north)"
 848     }
```

849     For Out-of-Distribution Response:

```
850     {
 851       "current observation": "No landmarks nearby; "
 852       "current instruction": "First, turn right to face north."
 853       "action": "turn direction (right)"
 854     }
```

855  
 856  
 857  
 858     **Rank-Determinant Computation** For the matrix computation task, we train LLaMA and Qwen  
 859     to compute the rank of a matrix with given dimension, *e.g.*,  $4 \times 5$ , then we employ the determinant  
 860     compute as an OOD task to evaluate both models, which is adapted from (Sun et al., 2025). It  
 861     evaluates not only the math computation, but also the cross-concept math reasoning ability, which is  
 862     much more complex than the task in (Sun et al., 2025).

863     For in-distribution training, the prompt is:

864 [Task Description]  
 865 You are an expert in linear algebra. You will receive a square matrix. Find the rank of the matrix and output  
 866 the integer result.  
 867 [Input]  
 868 Matrix: [[-1, -2, 9, 3, -5], [0, -3, 9, 9, -6], [-2, -2, 12, 0, -6], [3, -2, -3, 15, -1]]  
 869 [Output]  
 870 { "answer": 2,  
 871 }  
 872

For out-of-distribution evaluation, the prompt is:

873 [Task Description]  
 874 You are an expert in linear algebra. You will receive a square matrix. Compute its determinant and output the  
 875 integer result.  
 876 [Input]  
 877 Matrix: [[-4, 3], [-3, -2]]  
 878 [Output]  
 879 { "answer": 12,  
 880 }  
 881

## B.2 COMPUTATIONAL RESOURCES AND SETUPS

883 All our RL fine-tuning is implemented on 8xH100 GPUs. SFT utilizes 4xH100 GPUs, the learning  
 884 rate is 1e-6, a mini batch size of 64, and cosine is used as the learning rate schedule. We use PPO  
 885 with rollout 256 to fine-tune the model after supervised fine-tuning. The checkpoint for different  
 886 checkpoints may vary slightly due to the precision or computational resources.  
 887

| task         | model | MaxOOD | SFT data | RL_begin | #RL ck | RL data | eval data |
|--------------|-------|--------|----------|----------|--------|---------|-----------|
| GeneralPoint | LLaMA | 140    | 100k     | 500–1100 | 15     | 60k     | 234       |
| GeneralPoint | Qwen  | 120    | 80k      | 400–800  | 15     | 60k     | 234       |
| Navigation   | LLaMA | 45     | 5k       | 60       | 15     | 60k     | 234       |
| Navigation   | Qwen  | 95     | 10k      | 100      | 15     | 60k     | 234       |
| Matrix       | LLaMA | 50     | 15k      | 140      | 24     | 10k     | 234       |
| Matrix       | Qwen  | 650    | 80k      | 800      | 39     | 20k     | 234       |

895 Table 1: Details of implementation configurations.  
 896 For more details, please refer to the supplementary material.  
 897

## C MORE EXPERIMENTAL RESULTS

### C.1 ID AND OOD LOSS IN SFT

901 After 50 checkpoints, we find that the ID and OOD cross-entropy losses go to different directions.  
 902 The ID loss approaches 0.15, then keeps stable, and OOD loss increases after the same checkpoints.  
 903 However, based on the results in Figure 2c, the OOD accuracy still increases during checkpoint 50  
 904 to 140. Such **loss-accuracy discrepancy** exists for both LLaMA and Qwen. After going through  
 905 the training and test data as shown in Appendix B.1 during these checkpoints, we found that such  
 906 discrepancy is caused by OOD rule forgetting and OOD reasoning enhancement. To be more specific,  
 907 after the completion of format alignment at checkpoint 50, the model starts to suffer from over-  
 908 specification to the ID rule, failing to turn ' $J, Q, K$ ' as number 11, 12, 13, *i.e.*, error in "number" step  
 909 in OOD response will increase. The failure of "number" step will be very likely to cause failure in  
 910 "formula" step, which will result in large OOD cross-entropy loss. However, during checkpoint 50  
 911 to 140, the arithmetic reasoning ability keep improving, *i.e.*, once the model succeed to interpret  
 912 ' $J, Q, K$ ' as number 11, 12, 13, the model has much higher probability to get a correct "formula".  
 913 But compared with the increased loss in both "number" and "formula" steps, the improved accuracy  
 914 in "formula" step will only cause a relative smaller decline of loss. So overall, in such mixture of  
 915 status, we will observe and increased OOD loss together with increased OOD accuracy. From another  
 916 perspective, the loss-accuracy discrepancy tells us that the token-level cross-entropy loss cannot fully  
 917 reflect the real reasoning capacity of model.

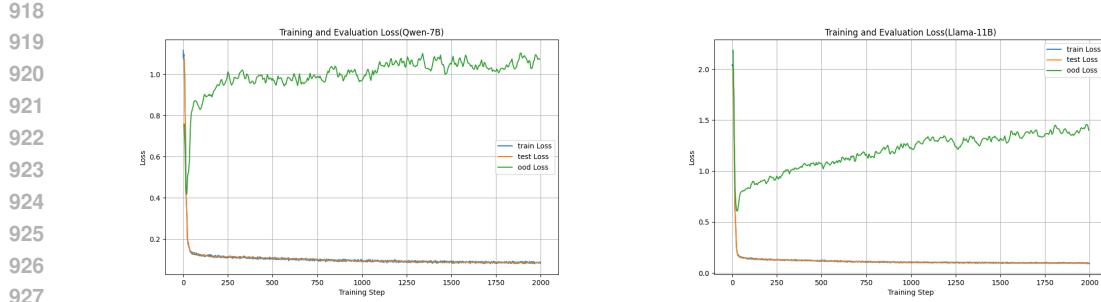


Figure 8: In-distribution training/test loss and OOD loss curves for LLaMA-3.2-11B-Vision and Qwen-2.5-7B during SFT.

## C.2 RESULTS WITH GRPO

We have verified our claims with GRPO (group size = 4) and the OOD and ID results of LLaMA and Qwen on GeneralPoints are shown in Figure 9 and Figure 10. Interestingly, GRPO performs better than PPO in terms of ID performance and worse than PPO for OOD; and overall, both algorithms align with our claim that RL heals OOD forgetting but does not surpass the best of SFT.

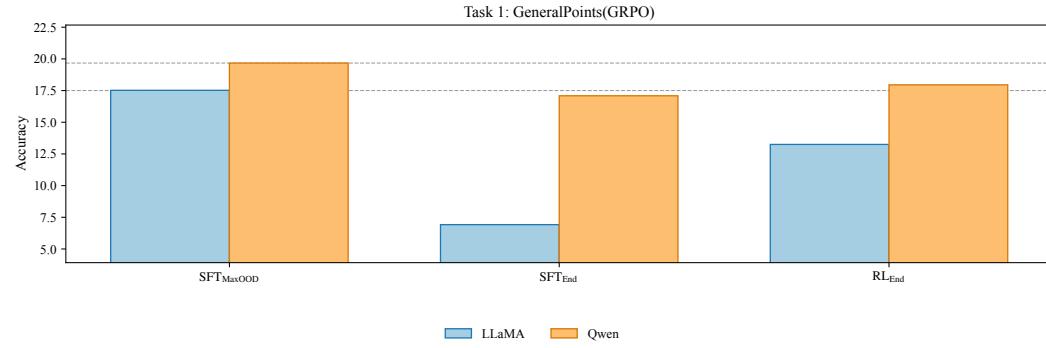


Figure 9: Results of GRPO on GeneralPoints (OOD)

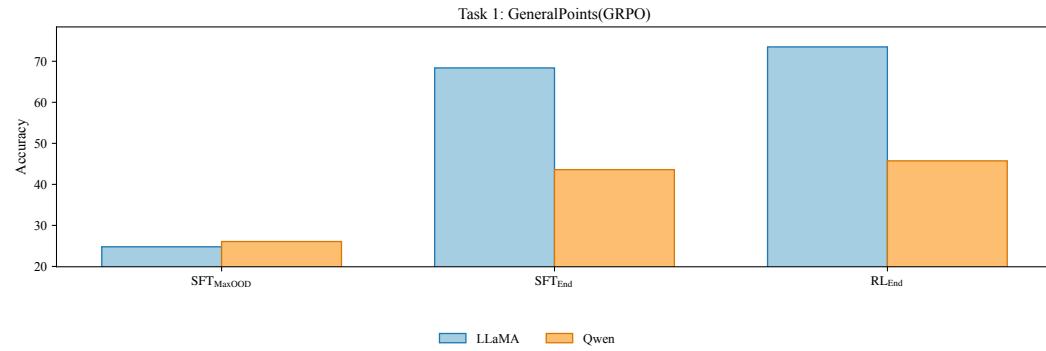


Figure 10: Results of GRPO on GeneralPoints (ID)

## C.3 MORE RESULTS OF IN-DISTRIBUTION GENERALIZATION PERFORMANCE

The in-distribution performance on *GeneralPoints*, *Navigation* and *Rank-Determinant Computation* are shown in Figure 11.

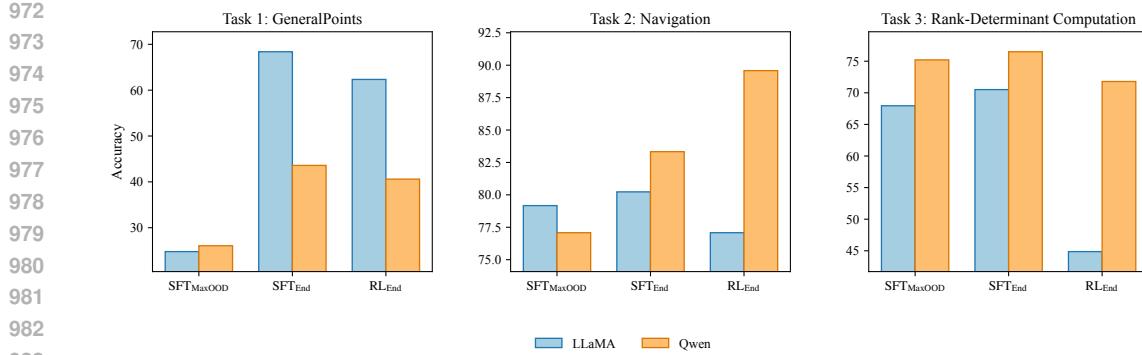


Figure 11: ID performance on three tasks

#### C.4 OOD RESULTS ON OTHER BENCHMARK TASKS

|       | Model/Tasks   | Checkpoints           |                    |                   |
|-------|---------------|-----------------------|--------------------|-------------------|
|       |               | SFT <sub>MaxOOD</sub> | SFT <sub>End</sub> | RL <sub>End</sub> |
| LLaMA | ARC-Challenge | 0.8                   | 0.7                | 0.8               |
|       | CommonsenseQA | 0.81                  | 0.62               | 0.69              |
|       | GPQA          | 0.44                  | 0.32               | 0.44              |
|       | IFEval-loose  | 0.27                  | 0.27               | 0.27              |
|       | MMLU-Pro      | 0.46                  | 0.36               | 0.37              |
| Qwen  | ARC-Challenge | 0.92                  | 0.88               | 0.88              |
|       | CommonsenseQA | 0.79                  | 0.73               | 0.75              |
|       | GPQA          | 0.44                  | 0.42               | 0.44              |
|       | IFEval-loose  | 0.63                  | 0.67               | 0.7               |
|       | MMLU-Pro      | 0.73                  | 0.66               | 0.66              |

Table 2: OOD results at checkpoints SFT<sub>MaxOOD</sub>, SFT<sub>End</sub> and RL<sub>End</sub> on five more benchmark datasets for LLaMA and Qwen

We have verified our claims on other diverse benchmark datasets: ARC-Challenge Clark et al. (2018), CommonsenseQA Talmor et al. (2019), GPQA Rein et al. (2024), IFEval-loose Zhou et al. (2023), MMLU-Pro Wang et al. (2024b). The results are shown in Table 2 and they align with our observations that the RL heals the OOD forgetting in SFT but barely surpasses the best of SFT. This indicates that our conclusion is robust and generalizable across different tasks.

#### C.5 EVOLUTION OF ROTATION-AWARE FINE-TUNING

Inspired by our previous experiments in Section 4, we find that the top singular vectors dominate around 70% of the performance of ID and OOD, and the recovery of singular vectors nearly rolls back the performance for both models to the previous stage. Then we penalize the singular vectors in the top rank (*e.g.*, 128, 256, 512, 1024) to preserve the main directions in high-dimensional space while learning the new task. This strategy reduces catastrophic forgetting compared with the vanilla full-parameter SFT as shown in Figure 12. We plan to expand this method to more generic tasks in future experiments.

#### C.6 LOSS OF SINGLE-STAGE RL FINE-TUNING

As summarized in Section 5, there are numerous studies that give completely different conclusions about the effectiveness of RL fine-tuning, especially for single-stage RL. So in this paper, we also verify RL fine-tuning without SFT as cold start.

From Figure 13, we observe that RL can hardly converge without SFT. This is because the base model has poor task-following ability, which would give overwhelmingly low scores for RL, leading to unstable updates and collapse in training. On the other hand, SFT can provide a safe starting point and policy initialization, where the model can at least align the format and generate reasonable candidates for the reward model to evaluate.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

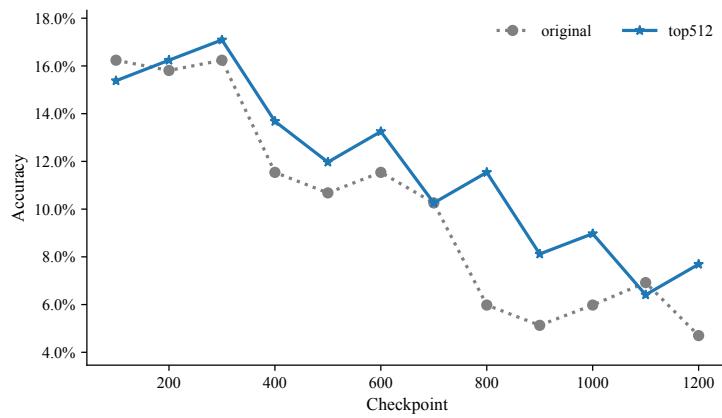


Figure 12: OOD performance after penalty of top 512 rank in singular vectors compared to the original fine-tuning, as shown in the figure, the OOD accuracy is nearly always higher than the original fine-tuning, while maintaining the comparable performance in terms of ID accuracy.

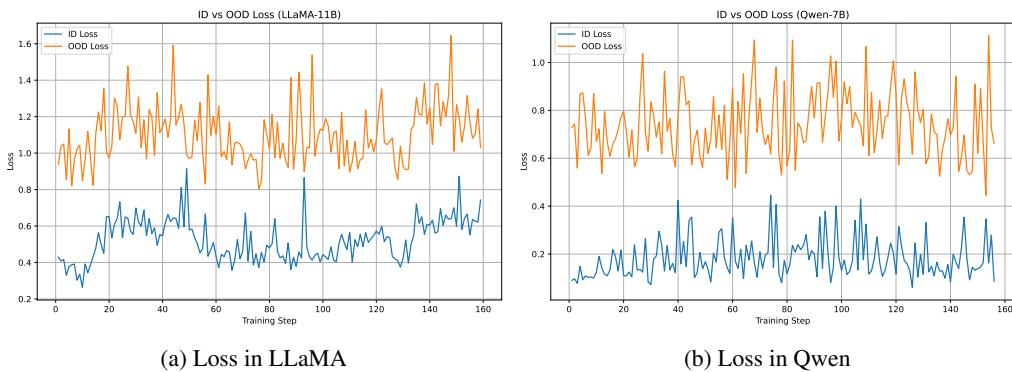
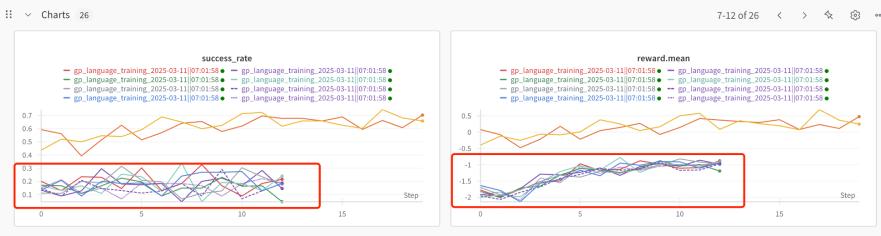
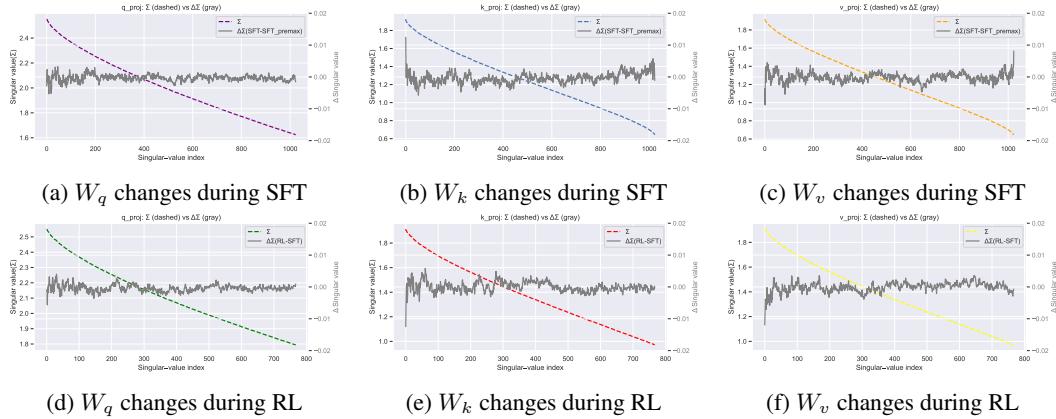


Figure 13: Loss of single-stage RL fine-tuning

1080 C.7 EXAMPLES FOR REWARD HACKING  
10811082 Inconsistent with previous research (DeepSeek-AI, 2025), as demonstrated below, reward hacking  
1083 occurs when we fine-tune the models by pure RL from scratch or an early SFT checkpoint.  
10841092 Figure 14: An example of *reward hacking*. The RL-only curve sees an increasing reward signal (right  
1093 panel) but stagnant or low success rates (left panel).  
10941095 C.8 CHANGES OF SINGULAR VALUES  
10961097 To investigate how does SFT and RL reshape the spectral structure of the parameter matrices, we  
1098 analyze the singular values of  $W_q$ ,  $W_k$ ,  $W_v$  and their differences ( $\Delta\sigma_i = \sigma_i^{\text{SFT}_{1100}} - \sigma_i^{\text{SFT}_{140}}$  for  
1099 LLaMA and  $\sigma_i^{\text{SFT}_{1100}} - \sigma_i^{\text{SFT}_{140}}$  for Qwen) before/after different training stage. The results are shown  
1100 in the Figure 15. We found that: **the changes of singular values of the  $Q$ ,  $K$ ,  $V$  matrices are**  
1101 **negligible after both SFT and RL stages across all experiments**. Compared to the original singular  
1102 values,  $\Delta\sigma$  fluctuates from 0 to 0.005, which acts similar as a low-magnitude, zero-centered noisy  
1103 signals. This indicates that the fine-tuning process does not significantly amplify or diminish specific  
1104 singular values.  
11051111 Figure 15: Singular value changes in the  $q_{\text{proj}}$ ,  $k_{\text{proj}}$ , and  $v_{\text{proj}}$  matrices of the first  
1112 self-attention layer ( $\text{layers}[5].\text{self\_attn}$ ) in LLaMA-3.2-11B-Vision. Panels (a)–(c)  
1113 illustrate the impact of supervised fine-tuning (SFT) on  $W_q$ ,  $W_k$ , and  $W_v$ , respectively, while panels  
1114 (d)–(f) depict the corresponding changes following reinforcement learning (RL). Each panel shows  
1115 the difference in singular values before and after the respective post-training stage. For LLaMA, SFT  
1116 starts from  $\text{SFT}_{\text{MaxOOD}}$  (checkpoint 140), RL stage begins from  $\text{SFT}_{\text{End}}$  (checkpoint 1100).  
11171118 C.9 EXPLORING THE ROTATION OF SINGULAR VECTOR WITH PRINCIPAL ANGLES  
11191120 There exists two ways to measure the changes of singular vectors during fine-tuning: vector-level  
1121 metrics and subspace-level metrics.  
11221123 Principal angles (or canonical angles) quantify how far two subspaces are within the same Euclidean  
1124 space. To quantify the differences between the subspaces spanned by the singular vectors of base  
1125 model  $W_{\text{Base}}$  and fine-tuned model  $W_{\text{FT}}$ , we measure the amount of rotations between two subspaces  
1126 by how much their dominant singular vector directions have *rotated*, which is a commonly used  
1127 method in machine learning (Huang et al., 2015; Vahidian et al., 2023) and numerical computation  
1128

(Björck & Golub, 1973). We provide a brief introduction and we take the left singular vectors for example and the computation includes,

**(i) SVD.** For each matrix, we keep all singular vectors in our experiments,

$$W = U \Sigma V^\top, \quad U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}, \quad (2.4.1)$$

where the columns of  $U$  and  $V$  are orthonormal and  $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r)$  with  $\sigma_1 \geq \dots \geq \sigma_r \geq 0$ ,  $r$  is the rank.

**(ii) Computation of Principal Angles Between Subspaces (PABS).** Let  $U_{\text{Base}}, U_{\text{FT}} \in \mathbb{R}^{m \times k}$  be the left singular blocks from the previous step. Define  $M := U_{\text{Base}}^\top U_{\text{FT}} \in \mathbb{R}^{r \times r}$ . Since both of them are orthonormal, the singular values of  $M$  lie in  $[-1, 1]$  (Björck & Golub, 1973). Suppose the SVD of  $M$  is

$$M = U_M \text{diag}(s_1, \dots, s_r) V_M^\top,$$

the *principal angles*  $\theta_i \in [0, \pi/2]$  between  $U_{\text{Base}}^\top$  and  $U_{\text{FT}}$  are

$$\theta_i = \arccos(s_i), \quad i = 1, \dots, r. \quad (2.4.2)$$

The computational complexity is  $O(\min\{m, n\}^3)$ . An identical procedure on  $V_{\text{Base}}, V_{\text{FT}}$  yields angles for the right subspaces. In practice we clamp the numerical values of  $s_i$  to  $[-1, 1]$  before calling  $\arccos$  to avoid floating-point overflow. The Principal angles measure the 'tilt' between corresponding singular vectors of two matrices, *i.e.*, the degree to which two parameter matrices are different from each other in terms of singular vectors under the rank  $r$ . The angle set  $\{\theta_i\}$  serves as a fine-grained measure of subspace rotation:  $\theta_i = 0$  means the  $i$ -th principal direction is preserved, whereas values approaching  $\pi/2$  indicate maximal misalignment.

## Advantages of PABS

- **Numerical Stability:** Consider when two singular values are very close and their corresponding singular vectors are orthogonal. After one step of SFT, the singular values and vectors might only make subtle shifts but the singular values might swap orders. Therefore, the pairwise cosine similarity might demonstrate a very large angle, while the parameter matrices only make subtle changes. Therefore, vector-level metrics are not as robust as subspace-level metrics like PABS.
- Cosine similarity between singular vectors only compares one dimension at a time, without accounting for interdependence between directions. PABS derives angles that reflect the relative orientation of the entire subspace, providing a more informative measure than isolated vector-to-vector comparisons.
- PABS is a true metric for comparing subspaces, ideal for measuring alignment or divergence holistically.

We use principle angle to analyze the pattern of subspace rotation during SFT and RL. To this end, we calculate the principal angle spectrum of the layer-0  $k_{\text{proj}}$  matrix between checkpoint 0 vs.  $\text{SFT}_{\text{End}}$ , and checkpoint 0 and  $\text{RL}_{\text{End}}$ , and plot them in Figure 16. For both SFT and RL, the two monotonically increasing curves overlap each other: the smallest angle is around 25 – 30 degrees and the angles increase smoothly and linearly toward 90 degree in the tail.

These curves imply that both of the two fine-tuning stages adjust the model primarily by rotating its singular vectors, which is already verified in Section 4. However, we cannot find out the differences in their rotation patterns. The exact mechanism of the rotation patterns remains unresolved and understanding the two fine-tuning behaviors in parameter space, especially in high-dimensional space, is an open question that we will investigate in future work.

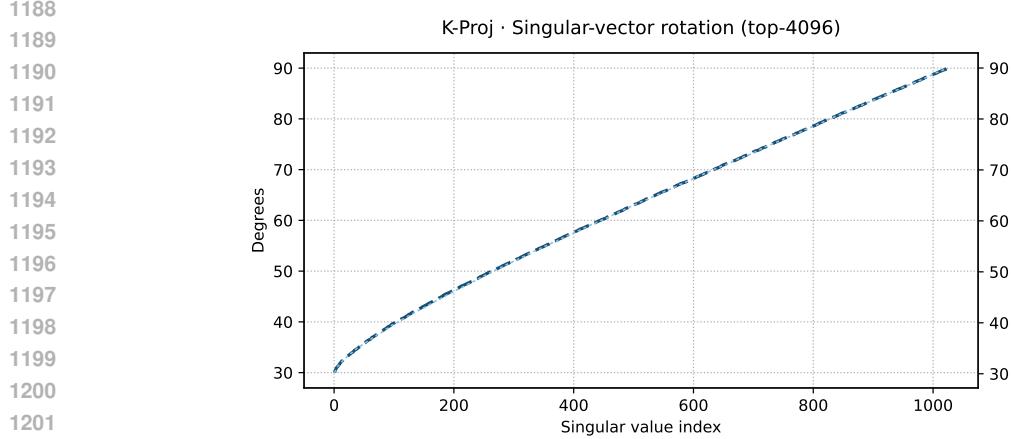
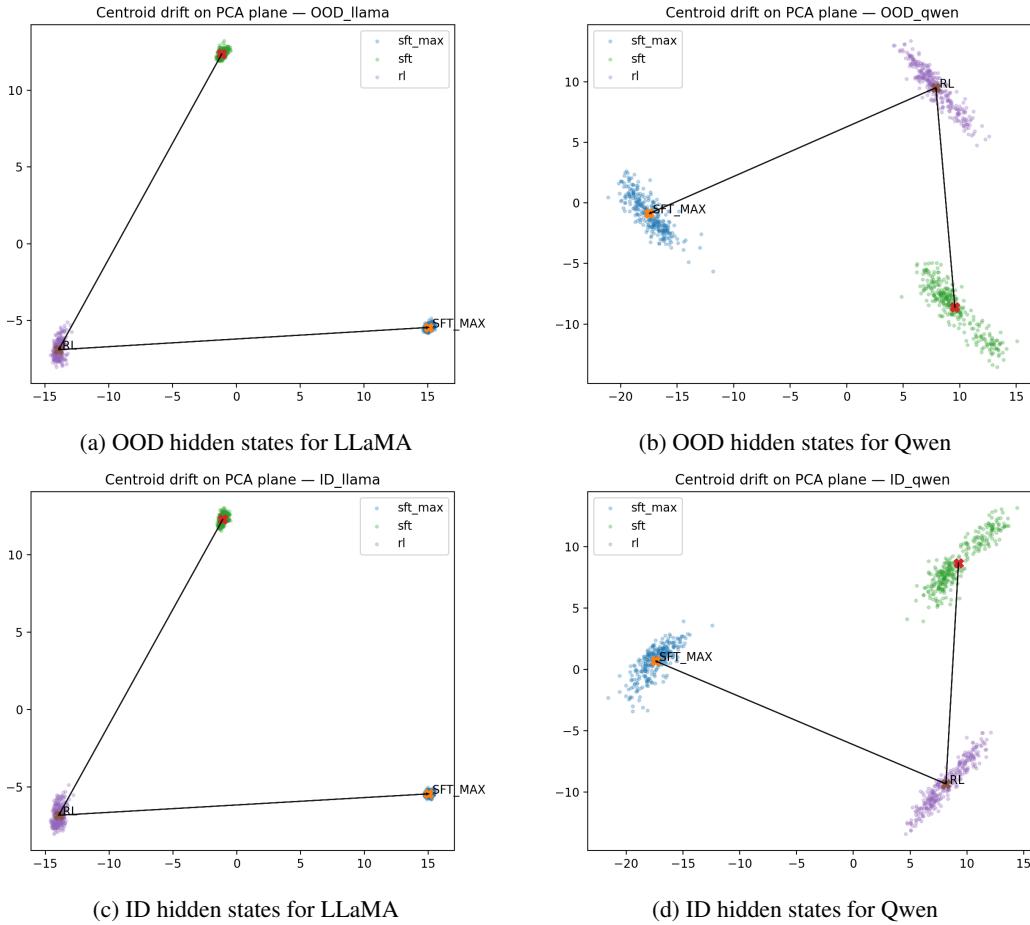


Figure 16: An example of rotation between SFT and RL.

## C.10 PCA VISUALIZATION OF EMBEDDING SHIFTS

Figure 17: PCA visualization of the hidden representations at checkpoints  $SFT_{\text{MaxOOD}}$ ,  $SFT_{\text{END}}$  and  $RL_{\text{END}}$ .

1236  
1237  
1238  
1239  
1240  
1241

We use 300 in-distribution prompts and 300 out-of-distribution prompts to activate hidden states respectively at certain fine-tuning checkpoint, compute PCA for the representation matrix and use the first two principle components to visualize the embedding shifts for both models. We find that RL fine-tuning slightly drags the hidden representation away from the  $SFT_{\text{MaxOOD}}$ , *i.e.*, the embedding distance between  $RL_{\text{END}}$  and  $SFT_{\text{MaxOOD}}$  is farther than the  $SFT_{\text{END}}$  and  $SFT_{\text{MaxOOD}}$ . The representation shift

1242 for Qwen is smaller than LLaMA. This also indicates Qwen is a more robust model than LLaMA  
 1243 during SFT and RL fine-tuning.  
 1244

1245 **C.11 POTENTIAL OOD FORGETTING EXPLANATION**  
 1246

1247 **Setting** We do SFT with cross-entropy (CE) on the train set. We evaluate OOD on 24 problems.  
 1248 For each problem we sample up to 6 attempts. Loss is CE on train tokens. OOD accuracy is pass@6  
 1249 over the 24 OOD problems.  
 1250

1251 **Verifier and check order (per step)** 1. Format parse: if parse fails → ILLEGAL\_FORMAT. Stop  
 1252 other checks for that step.  
 1253 2. Number check: if numbers in formula are invalid (not from set, wrong count, etc.) → INCOR-  
 1254 RECT\_NUMBER.  
 1255 3. Solution check: if no valid “final answer” after format checking → NO\_SOLUTION.  
 1256 4. Aggregation: if  $\geq 2$  of the above are true for a step → also count AGGREGATED\_ERR.  
 1257

1258 **How we compute metrics** - Loss: mean token-level CE on train data (OOD).  
 1259 - CORRECT\_SOLUTION(CS): a problem is correct if any of its 6 attempts ends with a correct final  
 1260 answer; accuracy is the fraction over 24.  
 1261 - Step-level rates (NO\_SOLUTION(NS), ILLEGAL\_FORMAT(IF), INCORRECT\_NUMBER(IN),  
 1262 AGGREGATED\_ERR(AE)): count steps with the label divided by all steps. Rates can co-occur and  
 1263 do not sum to 1.

| ck  | CS     | NS     | IF     | IN     | AR     | Loss   |
|-----|--------|--------|--------|--------|--------|--------|
| 10  | 0      | 0.1895 | 0.8006 | 0.0078 | 0.0021 | 1.5411 |
| 20  | 0.0128 | 0.3357 | 0.5462 | 0.0759 | 0.0401 | 0.6293 |
| 30  | 0.1026 | 0.6368 | 0.0099 | 0.2059 | 0.1292 | 0.4262 |
| 40  | 0.094  | 0.8407 | 0.0023 | 0.0713 | 0.069  | 0.5994 |
| 50  | 0.1239 | 0.9109 | 0.0008 | 0.043  | 0.023  | 0.6944 |
| 60  | 0.1624 | 0.9095 | 0.0008 | 0.037  | 0.0228 | 0.7076 |
| 70  | 0.1624 | 0.8644 | 0      | 0.0534 | 0.0527 | 0.7211 |
| 80  | 0.1325 | 0.908  | 0      | 0.0449 | 0.0232 | 0.7273 |
| 90  | 0.141  | 0.8264 | 0      | 0.0797 | 0.068  | 0.7212 |
| 100 | 0.1709 | 0.8776 | 0      | 0.0474 | 0.0434 | 0.7166 |
| 110 | 0.1538 | 0.8854 | 0      | 0.0569 | 0.0292 | 0.7267 |
| 120 | 0.1538 | 0.9182 | 0      | 0.0417 | 0.0118 | 0.7350 |
| 130 | 0.1581 | 0.9066 | 0      | 0.0314 | 0.033  | 0.7625 |
| 140 | 0.1752 | 0.9013 | 0      | 0.0382 | 0.0287 | 0.7660 |
| 150 | 0.1496 | 0.9255 | 0      | 0.029  | 0.018  | 0.7581 |

1276 Table 3: OOD accuracy (trajectory-level pass@6 on 24 problems), step-level error rates, and train CE  
 1277 loss.  
 1278

1279 **Observation** - Loss is lowest at ck=30 (0.426) and later rises.  
 1280 - CORRECT (OOD) grows from 0.00 (ck=10) to  $\approx 0.17$  (ck=100–150).  
 1281 - ILLEGAL\_FORMAT drops to 0 by ck $\geq 70$  (better syntax).  
 1282 - INCORRECT\_NUMBER falls after peaking near ck=30 (better number use).  
 1283 - AGGREGATED\_ERR stays low and trends down.  
 1284

1285 **Why loss and OOD move differently** - Different targets: CE fits train tokens; CORRECT measures  
 1286 end-to-end success on OOD with a verifier and pass@6 with verifier feedback.  
 1287 - Structure over tokens: cleaner format and number use can boost pass@6 even if CE rises.  
 1288 - Search effect: as more attempts are valid, at-least-one-success increases.  
 1289 - Apparent “forgetting”: later checkpoints may drift from train token distribution (higher CE) while  
 1290 generalizing structure better on OOD (higher CORRECT).  
 1291

1292 **C.12 FULL RESULTS OF ADVANTAGE DISTRIBUTION**  
 1293

1294  
 1295

1296

1297

1298

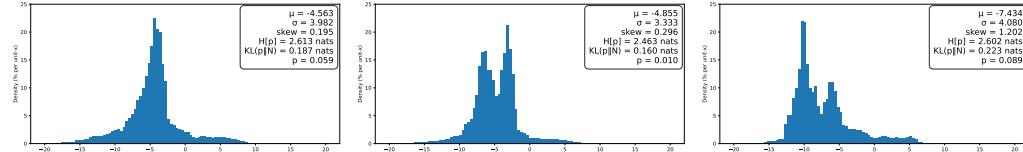
1299

1300

1301

1302

1303



(a) Checkpoint 90

(b) Checkpoint 140

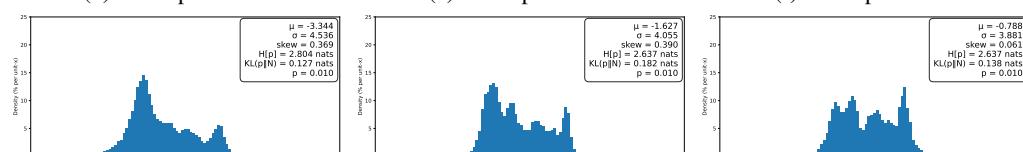
(c) Checkpoint 200



(d) Checkpoint 300

(e) Checkpoint 400

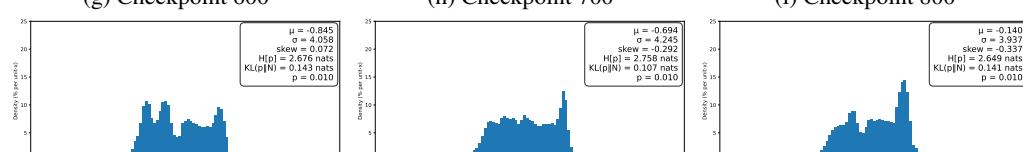
(f) Checkpoint 500



(g) Checkpoint 600

(h) Checkpoint 700

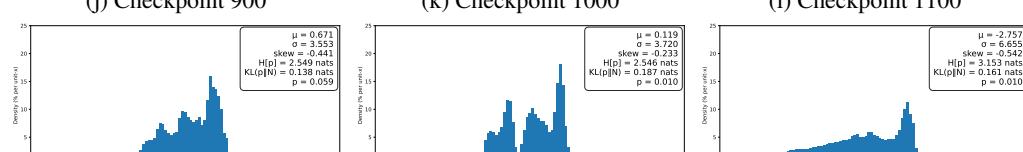
(i) Checkpoint 800



(j) Checkpoint 900

(k) Checkpoint 1000

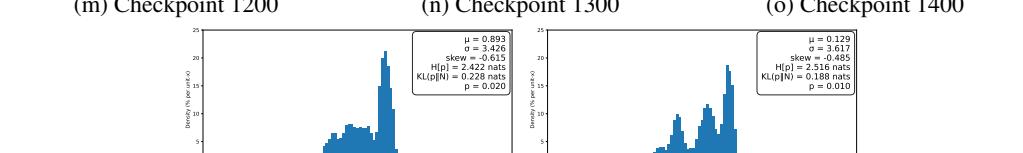
(l) Checkpoint 1100



(m) Checkpoint 1200

(n) Checkpoint 1300

(o) Checkpoint 1400



(p) Checkpoint 1500

(q) Checkpoint 1600

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

