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Abstract

In gradient descent dynamics of neural networks, the top eigenvalue of the loss1

Hessian (sharpness) displays a variety of robust phenomena throughout training.2

This includes early time regimes where the sharpness may decrease during early3

periods of training (sharpness reduction), and later time behavior such as pro-4

gressive sharpening and edge of stability. We demonstrate that a simple 2-layer5

linear network (UV model) trained on a single training example exhibits all of the6

essential sharpness phenomenology observed in real-world scenarios. By analyzing7

the structure of dynamical fixed points in function space and the vector field of8

function updates, we uncover the underlying mechanisms behind these sharpness9

trends. Our analysis reveals (i) the mechanism behind early sharpness reduction10

and progressive sharpening, (ii) the required conditions for edge of stability, (iii)11

the crucial role of initialization and parameterization, and (iv) a period-doubling12

route to chaos on the edge of stability manifold as learning rate is increased. Finally,13

we demonstrate that various predictions from this simplified model generalize to14

real-world scenarios and discuss its limitations.15

1 Introduction16

Over the last several years, it has been observed that the training dynamics of neural networks17

exhibits a rich and robust set of unexpected phenomena, stemming from the non-convexity of the loss18

landscape. These phenomena not only challenge our existing understanding of loss landscapes but19

also open avenues for significantly enhancing model performance through improved optimization20

techniques. In particular, the unexpected and robust phenomenology is mainly associated with the21

evolution of the Hessian of the loss function, which provides a measure of the local curvature of the22

loss landscape and plays an important role in understanding generalization performance [18, 11, 16].23

On the one hand, it has been observed that at late training times, gradient descent (GD) typically24

exhibits “progressive sharpening," where the top eigenvalue of the loss Hessian λH , referred to as25

the sharpness, gradually increases with time, until it reaches roughly 2/η, where η is the learning26

rate. Once the sharpness reaches roughly 2/η, it stops increasing and typically oscillates near 2/η, a27

late-time training phenomenon referred to as the “edge of stability (EoS)" [7]. On the other hand,28

during early training, a decrease in sharpness is observed —referred to as “sharpness reduction" [17]29

—before hitting a temporary plateau.30

For large enough learning rates, training temporarily destabilizes early on, and the network “catapults"31

out of its local basin, leading to a temporary sudden increase in the loss in the first few steps, before32

eventually settling down in a flatter region of the loss landscape characterized by lower sharpness [22].33

Similar to the loss, sharpness may also spike within the first few steps of training and quickly decrease34
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Figure 1: Training loss and sharpness trajectories of ReLU FCNs trained on a 5k subset of CIFAR-10
examples using MSE loss and GD: (a, d) SP with σ2

w = 0.5, (b, e) SP with σ2
w = 2.0, (c, f) µP with

σ2
w = 2.0. The dashed lines in the sharpness figures show the 2/η threshold.

(sharpness catapult). A rich phase diagram as a function of network depth, width and learning rate35

summarizes the early training dynamics [17].36

The discovery of these intriguing sharpness phenomena has attracted significant attention, with an37

emphasis on various toy models that exhibit similar phenomenology. Yet, the specific conditions and38

reasons why these phenomena occur still remain elusive. In this paper, we analyze a simple toy model,39

a 2-layer linear network trained on one example, referred to as the UV model. We show that all of the40

phenomena described above can be observed in the UV model for appropriate choices of learning41

rate, initialization, parameterization, and choice of training example. Through this exploration, we42

provide novel insights into the mechanisms at play and offer predictions that we validate in realistic43

architectures with both real and synthetic datasets.44

Our Contributions. We revisit the four training regimes identified by Ref. [17] (early time transient,45

intermediate saturation, progressive sharpening, and late time EoS) in Section 3, focusing on the46

crucial role of initializations and parameterizations. Our findings reveal that models in Standard47

Parameterization (SP) with large initializations do not exhibit EoS, even at late training times.48

Moreover, we show that models in Maximal Update Parameterization (µP) [35] do not experience an49

early sharpness reduction. This result also holds for models in SP with small initializations.50

We show the UV model exhibits all four training regimes and also captures the effect of initializations51

and parameterization discussed above. Through fixed-point analysis of the UV model in the function52

space, we analyze the origins of the various dynamical phenomena exhibited by the sharpness.53

Specifically, we demonstrate in Sections 4 and 5: (i) the emergence of various sharpness phenomena54

arising from the stability and position of the dynamical fixed points, (ii) a critical learning rate ηc,55

above which the model exhibits EoS on a sub-quadratic manifold, and (iii) a period-doubling route56

to chaos of sharpness fluctuations as learning rate is increased in the EoS regime. In Appendix A,57

we verify various non-trivial predictions from the UV model in realistic architectures with real and58

synthetic datasets. Our findings reveal: (i) a sharpness-weight norm correlation before the training59

enters the EoS regime, (ii) a phase diagram of EoS, revealing initializations and parameterizations60

that do not exhibit EoS, and (iii) a period-doubling route to chaos in real architectures trained on61

synthetic datasets, while those trained on real datasets exhibit long-range correlations at the EoS,62

with a remnant of the period doubling route to chaos.63

Given that our analysis spans the entire training trajectory, it relates to numerous studies. Hence, we64

defer a comprehensive discussion of related works to Appendix B.65

2 Notations and Preliminaries66

This section describes the fundamental concepts and notations that form the basis of our analysis.67
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Dynamical Systems and Fixed Points: Consider a discrete dynamical system described by θt+1 =68

M(θt). A fixed point θ∗ of the dynamics satisfies M(θ∗) = θ∗. The linear stability of a fixed point69

θ∗ is determined by analyzing the eigenvalues {λJ∗

i } of the Jacobian JM (θ∗) := ∇θM(θ) |θ=θ∗ .70

An eigendirection uJ∗

i of a fixed point θ∗ is stable if |λJ∗

i | < 1 and unstable if |λJ∗

i | > 1 [25]. The71

dynamics is captured by the vector field of updates G(θ) := M(θ)−θ. The corresponding unit vector72

is denoted Ĝ(θ) := G(θ)/∥G(θ)∥. Nullclines refer to curves where one of the variables, θi, remains73

invariant, i.e., θi;t = Mi(θt).74

Parameterizations in Neural Networks: Sharpness phenomena in neural networks are intrinsically75

tied to network parameterization. Standard Parameterization (SP) [29] and Neural Tangent Parame-76

terization (NTP) [14] are two commonly used parameterizations, which converge to kernel methods77

at infinite width. Ref. [35] proposed Maximal update Parameterization (µP), which allows for feature78

learning at infinite width. For implementation details, see Appendix C.2.1.79

UV Model: The UV model refers to a 2-layer linear network f : Rd → R trained on a single example.80

We parameterize f as f(x; θ) = 1√
n1−p

vTUx, where x ∈ Rd is the input, n is the network width,81

and v ∈ Rn, U ∈ Rn×d are trainable parameters, with each component drawn i.i.d. at initialization82

from a normal distribution N (0, σ2
w/n

p). Here, p ∈ [0, 1] is a parameter that interpolates between83

NTP and µP, and neff := n1−p is referred to as the effective width. We consider the network trained84

on a single training example (x, y) using MSE loss ℓ (f(x; θ), y) = 1
2 (f(x; θ)− y)

2.85

3 Review of The Four Regimes of Training86

Typical training trajectories of neural networks can be categorized into four training regimes [17], as87

shown in Figure 1(a, d):88

(T1) Early time transient: This corresponds to the first few steps of training. At small learning rates89

(η < ηloss), loss and sharpness decrease monotonically. At larger learning rates (η > ηloss), training90

catapults out of the initial basin, temporarily increasing the loss, and finally converges to a flatter91

region [22]. By the end of this regime, sharpness has decreased from initialization for all learning92

rates, and more substantially at larger learning rates.93

(T2) Intermediate saturation: Following the initial transient regime, sharpness approximately plateaus94

before gradually increasing.95

(T3) Progressive sharpening: In this regime, sharpness continues to increase until it reaches λH ≈ 2/η96

[15, 7]. At large effective widths or small learning rates, training may conclude before reaching this97

threshold.98

(T4) Late-time dynamics (EoS): After progressive sharpening, for MSE loss, sharpness oscillates99

around 2/η. For cross-entropy loss, the sharpness oscillates when reaching approximately 2/η, while100

decreasing over longer time scales [7].101

In this work, we show that the sharpness dynamics heavily depends on the initialization and param-102

eterization of the network and not every training trajectory shows all four regimes. For instance,103

Figure 1(b, e) shows that FCNs in SP with large initialization (or large effective width) do not exhibit104

EoS, even when loss decreases to a value below 10−5. Following the early transient regime, sharpness105

monotonically decreases, with only a nominal increase towards late training. In contrast, Figure 1(c,106

f) shows that FCNs in µP (or small effective width) do not experience an initial sharpness reduction at107

small learning rates (η < ηloss). Rather, sharpness continues to increase until it reaches 2/η and then108

oscillates around it. At large learning rates (η > ηsharp), sharpness catapults and eventually settles into109

the same trend as above. In Appendix D, we show that these trends remain consistent when NTP is110

used instead of SP. Given this similarity in the training dynamics between SP and NTP, we use NTP111

for theoretical analysis for clarity and SP in realistic experiments for implementation convenience.112

Figure 2 (and Figure 8 in Appendix E.5) demonstrates that the UV model displays all four training113

regimes. It also captures the cases where sharpness reduction or EoS is not observed. Therefore, the114

simplified UV model can serve as an effective model for understanding these universal behaviors in115

the sharpness dynamics. In the subsequent section, we perform fixed point analysis of the UV model116

and probe the origin of these complex phenomena in later sections.117
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4 Fixed Point Analysis of the UV model118

Under GD, the parameters of the UV model are updated as Ut+1 = Ut − η∆ftvtx
T

√
neff

, vt+1 =119

vt − η∆ftUtx√
neff

, where η is the learning rate and ∆ft := f(x; θt)− y is the residual at training step120

t. In function space, the dynamics can be completely described using the residual ∆ft and trace of121

the loss Hessian λ := Tr H = 1
neff

(
xTUTUx+ vTv xTx

)
, which is also the scalar neural tangent122

kernel in this case. The function space dynamics of the UV model can be fully described using two123

coupled non-linear equations (for derivation, see Appendix E.1):124

∆ft+1 = ∆ft

(
1− ηλt +

η2∥x∥2
neff

∆ft(∆ft + y)

)
, (1)

λt+1 = λt +
η ∥x∥2
neff

∆f2
t

(
ηλt − 4

(∆ft + y)

∆ft

)
, (2)

with effectively three parameters: η, ∥x∥/√neff and y. While similar equations have been considered125

in previous works [22, 36, 1], the generalization to generic parameterizations is novel and would be126

crucial in observing different sharpness phenomena such as EoS. The y = 0 case has been analyzed127

in prior works [22, 17] for understanding catapult dynamics. Here, λ can only decrease with time, as128

can be seen from Equation (2) with η < ηmax = 4/λ0 (training diverges if η > ηmax). As a result, the129

model does not exhibit progressive sharpening and EoS. Below we focus on the case y > 0, which130

allows for λ to increase in time and consequently, much richer dynamics.131

Equations (1) and (2) have four distinct fixed points/lines (referred to as I-IV) as detailed in Table 1132

of Appendix E.3. The fixed line I defines a zero-loss line, meaning ℓ = 0 for all points in I; the points133

in I are stable for ηλ < 2 and unstable otherwise. Fixed point II at (−y, 0) corresponds to the origin134

in parameter space (U,v = 0) and it is a saddle point of the dynamics for convergent learning rates135

η. Both I and II are also fixed points of the GD optimization, i.e., critical points of the loss. The136

loss Hessian at I is positive definite, while fixed point II is a saddle point in the loss landscape. The137

remaining two fixed points III and IV are unstable and exist only in function space, representing138

non-trivial parameter space dynamics that leave the function space dynamics invariant.139

Figure 2 shows the fixed points and the vector field Ĝ(∆f, λ) determined by Equations (1) and (2),140

which illustrates the direction of the updates at each point. Note that the stability of the fixed line141

(I) does not follow from Ĝ alone, as the magnitude G is required to determine stability. Figure 2142

also shows training trajectories for various parameter values. Using λ as a proxy for sharpness, we143

see there are regions where λ increases (colored yellow) and decreases (colored green) along the144

flow, which we refer to as progressive sharpening and sharpness reduction, respectively. It follows145

from Equation (2) that the condition ηλ∆f = 4(∆f + y) separates these regions. Importantly, the146

parameters η, ∥x∥/√neff and y influence the position of the fixed points. This, in turn, affects the extent147

of different regions and the vector field Ĝ, as illustrated in Figure 2. In particular, on decreasing148

effective width neff, or increasing learning rate η, fixed points III and IV move inward (see fixed point149

expressions in Table 1), which relatively enlarges the progressive sharpening region while shrinking150

the overall convergent region. Overall, these illustrations demonstrate how the local stability and151

relative position of the fixed points collectively impact the dynamics. In the subsequent section, we152

discuss the dynamics in detail.153

5 Understanding Sharpness Dynamics in the UV model154

In this section, we describe the origin of different robust phenomena in the dynamics of sharpness155

using the fixed point and linear stability analysis from the previous section. This explains the four156

training regimes observed in the UV model. We will discuss the influence of effective width and157

initializations, shedding light on the differences between NTP and µP. For simplicity, we assume158

∥x∥ = 1, while allowing neff to vary continuously. Note that we use λ := Tr H from the previous159

section as a proxy for sharpness; we have verified that the top eigenvalue of the Hessian of the loss160

also follows λ (see Appendix E.5), although it is more difficult to analyze analytically.161
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Figure 2: Training trajectories of the UV model with ∥x∥ = 1 and y = 2 in the (∆f, λ) plane for
different values of n, neff and η. The columns show initializations with different n and neff, while the
rows represent increasing learning rates for fixed initializations. The horizontal dash-dot line ηλ = 2
separates the stable (solid black vertical line) and unstable (dashed black vertical line) fixed points
along the zero loss fixed line I. Forbidden regions, 2∥x∥|∆f + y|/√neff > λ, (see Appendix E.2)
are shaded gray. The nullclines ∆ft+1 = ∆ft and λt+1 = λt are shown as orange and white dashed
curves, respectively. Sharpness reduction, progressive sharpening, and divergent regions are colored
green, yellow, and blue. The gray arrows indicate the local vector field Ĝ(∆f, λ), which is the
direction of the updates. The training trajectories are depicted as black lines with arrows, with the
star marking the initialization. In all cases, ηc =

√
neff/2 (introduced in Section 5.2).

5.1 Understanding Sharpness Trends Throughout Training162

Figure 2 shows that the training dynamics can exhibit different behavior depending on the initial163

region. Below we summarize these based on empirical observations.164

(R1) Progressive sharpening region: As shown in Figure 2(a, d), initialization in this region experi-165

ences an upward push due to the flow originating from fixed point II, resulting in a steady increase in166

λ. Depending on η relative to a critical learning rate ηc (introduced in Section 5.2) different late-time167

dynamics arises. For η < ηc, training converges to stable fixed points on the zero-loss line (I), as168

shown in Figure 2(a). When η > ηc, all points along the zero-loss line (I) become unstable, as shown169

in Figure 2(d). In this case, the network eventually converges to a line segment joining fixed points II170

and IV (the EoS manifold), where it continues to oscillate indefinitely between these fixed points,171

leading to the EoS phenomena. This will be analyzed in more depth in the subsequent section.172

(R2) Sharpness reduction region between fixed points II and III: Figure 2(b, e) show that initializations173

in this region undergo a decrease in λ as the flow is towards saddle point II. On approaching this174

saddle point, the dynamics slows down, resulting in the intermediate saturation regime. Eventually,175

training moves away from this saddle and enters the progressive sharpening region. From here on,176

the dynamics becomes akin to the case (R1).177

(R3) Sharpness reduction region b/w fixed line I and point IV: Initializations in this region either178

converge to the nearby zero-loss solution for (η < ηc) or enter the progressive sharpening region for179

(η > ηc). In the latter case, the dynamics resembles those of case (R1).180

So far, we have described the resultant dynamics when training is initialized in different regimes.181

Below, we describe the conditions which typically exhibit initialization these regimes.182

Neural Tangent Parameterization: In NTP, ∆f and λ follow normal distributions: ∆f0 ∼183

N (−y, σ4
w) and λ0 ∼ N (2σ2

w, 4σ
4
w/n). Hence, the model can be initialized in any of the three184

regions described above. Moreover, fixed points III and IV move outward with increasing width,185

affecting the local vector field Ĝ(∆f, λ). At large widths n ≫ 1, Ĝ(∆f0, λ0) at initialization points186

along [1 0]
T towards the zero-loss line. For small learning rates (η < 2/λ0), training exponentially187

converges to the nearest zero-loss solution (see Figure 2(c)). Regardless of the initialization region,188

5
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Figure 3: (left) Bifurcation diagram depicting limiting values of λ obtained by simulating Equation (3).
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the change in λ is minimal, receiving O(1/n) updates as per Equation (2). For large learning rates189

(η > 2/λ0), the nearby zero-loss solution becomes unstable. Consequently, training catapults to a190

region with smaller λ, while bouncing between fixed points III and IV. This is the catapult effect191

studied in [22] and Figure 2(f) demonstrates such a trajectory. By comparison, at small widths, the192

dynamics follows cases (R1-R3) discussed above.193

Maximal Update (µP) Parameterizations: In contrast to NTP, the position of fixed points III-194

IV do not change with width n, and ∆f0 follows the distribution: ∆f0 ∼ N (−y, σ
4
w/n), while195

λ0 distribution remains unchanged. Consequently, at large widths, the model is initialized at196

(−y, 2σ2
w), right above fixed point II in the progressive sharpening region (R1), satisfying the197

condition ηλ0∆f0 < 4(∆f0 + y). Figure 2(a, d) shows such a trajectory. At small widths, fluctua-198

tions increase, making it plausible for µP networks to start in the sharpness reduction regions. In this199

case, the dynamics follow case (R2) or (R3).200

5.2 Understanding Edge of Stability201

This section analyzes the EoS behavior in the UV model, particularly from the fixed point perspective.202

As discussed in the previous section, the EoS behavior in the UV model arises when all fixed points203

along the zero-loss line (I) become unstable wrt the learning rate. Yet, the gradients updates (shown204

as gray arrows in Figure 2) continue to point towards the zero loss line. As a result training is trapped205

in this region, converging to the line segment that joins fixed points II and IV —referred to as the206

EoS manifold —where it oscillates indefinitely.207

EoS Manifold is an Attractor: By examining the two-step dyanmics akin to Ref. [1, 5], we show208

in Appendix E.7 that training converges to the EoS manifold above a critical learning rate ηc. For209

η < ηc, training converges to the stable fixed points on the zero-loss line. By comparison, for η > ηc,210

all points along the zero-loss line become unstable and the EoS manifold becomes a dynamical211

attractor. The critical ηc for which all points on the zero-loss line become unstable thus gives a212

necessary condition for EoS:213

Result 1. A necessary condition for the UV model to exhibit EoS is η > ηc =
√
neff/∥x∥y (see214

Appendix E.8 for details). It is useful to scale the learning rate as η = c/λ0, in which case this215

condition becomes λ0 < c∥x∥y/√neff . For learning rates η > 2/λ0, training can catapult to regions216

with λT < λ0. In such cases, the condition λT < c∥x∥y/√neff also applies.217

Dynamics on the EoS Manifold and Route to Chaos: The dynamics on the EoS manifold satisfies218

λ = 2∥x∥(∆f+y)/√neff, coupling ∆f and λ together. This yields the map ∆ft+1 = Mf (∆ft)219

describing the dynamics on the EoS manifold, with Mf defined as220

Mf (∆ft) :=∆ft +
η∆ft
ηcy

(
η∆ft
ηcy

− 2

)
(∆ft + y). (3)

Figure 3(left) shows the limiting values of λ (i.e. the values of λ that the network jumps between at221

late times) as a function of learning rate, obtained by simulating Equation (3). We refer to this as the222

bifurcation diagram. As mentioned before, for η > ηc, the zero-loss solution becomes unstable with223

λ oscillating around 2/η instead of converging. These fluctuations exhibit a fractal structure, as the224

system undergoes a series of period-doubling transitions with an increasing learning rate. This is the225

well-known period-doubling route to chaos [25]. Figure 3(right) shows the bifurcation diagram of226

the UV model for y = 2. The bifurcation diagram diagram extends up to η ≈ 0.8 before diverging at227

higher learning rates. This leads us to the following corollary of Result 1.228

Corollary 5.1. Let ηmax be the maximum trainable learning rate for a given initialization. The229

bifurcation diagram is observed up to η < ηmax. If ηmax < ηc, the UV model does not exhibit EoS.230
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These results suggest that models with small λ0 and neff are more prone to show EoS behavior. As a231

result, µP networks or those with small initial weight variance are more likely to exhibit EoS. On232

the other hand, large-width NTP networks may not show EoS behavior at all. In Appendix A, we233

validate this prediction in real-world scenarios.234

Connections to sub-quadratic loss: Ref. [23] demonstrated that GD on sub-quadratic loss with235

large learning rates inherently results in EoS behavior. Here, we show that the loss on the EoS236

manifold of the UV model is sub-quadratic near its minimum. As noted above, the dynamics on237

the EoS manifold satisfies λ = 2∥x∥(∆f+y)/√neff. The loss on the EoS manifold is then given by238

L(θ) = 1
2∆f2 = y2

2 (ηcλ
2 − 1)2, where θ denotes the parameters. Since λ ∼ O(∥θ∥2), the loss is239

of the form L(θ) ≈ 1
2 (a∥θ∥2 − b)2 and is sub-quadratic near its minimum. The GD dynamics near240

the minimum is given by a cubic map, which is known to show the period-doubling route to chaos241

[26]. Ref. [6] showed a similar route to chaos by considering a two-layer network with quadratic242

activation, with the last layer vector v fixed through training and each entry set to one. In this model,243

the loss is sub-quadratic by construction ((∥Ux∥2 − y)2 and the dynamics is given by a cubic map.244

6 Discussion245

The applicability of the fixed point analysis extends well beyond the UV model and can be employed246

in settings involving complex architectures and adaptive optimizers. A prerequisite for applying this247

method is the closure of the dynamical equations describing the model. By analyzing the fixed points248

of such equations in broader classes of models, we can gain significant insights into their training249

dynamics, thereby advancing our understanding of non-convex optimization in neural networks.250

Various results such as the phase diagram of EoS, the bifurcation diagram, and the late-time sharpness251

analysis depend on the training time. Nevertheless, we found that training the models longer does252

not impact the conclusions presented. In Appendix F, we show our results are robust for reasonably253

small batch sizes (B ≈ 512). For even smaller batch sizes, the dynamics becomes noise-dominated,254

and separating the inherent dynamics from noise becomes challenging.255
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A Predictions and Verifications in Real-world Scenarios354

The preceding analysis offers broader insights and predictions for optimization in real-world models.355

In this section, we study realistic architectures with real and synthetic datasets and examine the extent356

to which insights from the UV model generalize.357

Experimental Setup: Consider a network f(x; θ), with trainable parameters θ, initialized using358

normal distribution with zero mean and variance σ2
w in appropriate parameterization. In this section,359

we use the interpolating parameterization with s ∈ [0, 1] (detailed in Appendix C.2.1), where networks360

with s = 0 are equivalent to networks in SP as width n goes to infinity and those with s = 1 are in µP.361

The network is trained on a dataset D with P examples using MSE loss and GD. The learning rate is362

scaled as η = c/λH
0 , where c is the learning rate constant, and λH

0 is the sharpness at initialization.363

Additional details provided in figure captions and Appendix C.2.364

Implications of Initialization and Parameterization for Real-world Models: The analysis in365

Section 5.1 unveils crucial insights into the implicit biases of parameterization in real-world networks.366

Figure 2(a, d) shows that µP networks begin training in a flat region of the landscape, where367

gradients point towards increasing sharpness, and approach the zero loss line while maintaining368

a low sharpness bias. In contrast, networks in NTP (or equivalently SP), characterized as large369

initializations, experience sharpness reduction during early training and might not approach with a370

minimal sharpness bias. The agreement of these observations with networks trained on real-world371

datasets (Figure 1) suggests that these inherent biases hold in practical scenarios.372
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Figure 4: (a) Heatmap of ηλ̄H
/2 of ReLU FCNs with s = 0 trained on a 5k subset of CIFAR-10 for

10k steps, with the weight variance σ2
w and learning rate multiplier c = ηλH

0 as axes. λ̄H is obtained
by averaging λH

t over last 200 steps. As the color varies from blue to white, ηλ̄H
/2 increases, where

the brightest white region indicates the EoS regime with ηλ̄H
/2 ≥ 1. (b) Same heatmap with fixed

σ2
w = 2.0, but varying s continuously.
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Figure 5: 2-layer linear FCNs trained on (first row) 5, 000 iid random examples with unit output
dimension and (second row) 5, 000 CIFAR-10 examples. Different columns correspond to the
bifurcation diagram, late-time sharpness trajectories, and the power spectrum of sharpness trajectories.
The power spectrum is computed using the last 1000 steps of the trajectories.

Sharpness & Weight-Norm Correlation and the Origin of Four Regimes: Section 5.1 revealed373

that, for a wide variety of initializations, at early times trajectories move closer to the saddle point374

II, resulting in an interim decrease in λ (also proportional to the weight norm in this case), before375

eventually increasing. This critical point where all parameters are zero also exists in real-world376

models. We thus anticipate that in real-world models, the origin of the four training regimes may377

be related to a similar mechanism. This would predict a decrease in weight norm as training passes378

near the saddle point, followed by an eventual increase. In Appendix G, we validate this hypothesis.379

During the sharpness reduction and intermediate saturation regimes, we see a decrease in the weight380

norm, followed by an increase in the weight norm as the network undergoes progressive sharpening,381

following the prediction from the UV model.382

The Phase Diagram of Edge of Stability: Result 1 presents a necessary condition for EoS to383

occur in the UV model: λ0 < c∥x∥y/√neff. In real-world models, the initial sharpness λH
0 can be384

controlled using the initial variance of the weights σ2
w. Therefore, this result predicts that real-world385

models with (i) small initial weight variance σ2
w, (ii) large interpolating parameter s, or (iii) large386

learning constant c are more likely to exhibit EoS behavior. Figure 4 shows the phase diagram of387

EoS, validating these predictions. Additional phase diagrams in Appendix H indicate an enhanced388

tendency for CNNs and ResNets to exhibit EoS.389

Route to Chaos and Bifurcation Diagrams: The analysis in Section 5.2 unveiled structured390

fluctuations in λ at the EoS, with a period-doubling route to chaos observed as the learning rate is391
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tuned. This motivates us to analyze fluctuations at the EoS in real-world models trained on realistic392

and synthetic datasets. Figure 5 shows the bifurcation diagram, late-time sharpness trajectories, and393

power spectrum of sharpness trajectories for a 2-layer linear FCN. In the first row, the model is394

trained on random synthetic data with 5, 000 iid examples with unit output dimension, whereas, in395

the second row, on a 5, 000 example subset of CIFAR-10. Similar to the UV model, FCNs trained396

on random data exhibit a period-doubling route to chaos, as shown in Figure 5(a). By comparison,397

FCNs trained on CIFAR-10 only show dense bands in the sharpness rather than exhibiting a clear398

period-doubling route to chaos.399

On analyzing the sharpness trajectories at EoS, we observe long-range correlations in time in real400

datasets, with fluctuations increasing with the learning rate (see Figure 5(e)). By comparison,401

sharpness trajectories of models trained on random datasets exhibit short-period oscillations (see402

Figure 5(b)). The power spectrum of these sharpness trajectories further quantifies these observations,403

as shown in Figure 5(c, f). In the random dataset case, high-frequency modes corresponding to the404

period-doubling route to chaos emerge at EoS as shown in Figure 5(c). In contrast, real datasets405

exhibit low-frequency modes at small learning rates. As the learning rate is increased, high-frequency406

modes, reminiscent of the period-doubling route to chaos, start emerging (see Figure 5(f)). In407

Appendix I.1, we demonstrate that CNNs and ResNets trained on image datasets show dense bands408

of sharpness similar to those in FCNs.409

To understand when the period-doubling route to chaos arises, we perform further analysis in410

Appendix I. A key determining feature appears to be whether the singular value spectrum of the411

input-input and output-input covariance matrices are flat or have power-law decay. In Appendix I.2,412

we show that a 2-layer FCNs trained on a random dataset with power-law singular value spectrum413

in the input exhibits dense sharpness bands. In Appendix I.3 we show that linear FCNs trained on414

synthetic datasets with random inputs, such as teacher-student settings and generative settings (details415

in Appendix C.1), exhibit the period-doubling route to chaos. In contrast, non-linear networks trained416

on these tasks exhibit dense sharpness bands as observed in real datasets. These observations shed417

some light on the nature of EoS observed in realistic settings. Nevertheless, a complete understanding418

of sharpness fluctuations at EoS requires a separate detailed examination.419

B Further Discussion on Related Works420

[22] examined the early training dynamics of wide networks at large learning rates. Using the top421

eigenvalue of the Neural Tangent Kernel (NTK) λK at initialization (t = 0), they revealed a ‘catapult422

phase’, 2/λK
0 < η < ηmax, in which training converges despite an initial spike in training loss. [17]423

analyzed early training dynamics for arbitrary depths and width and revealed a ‘sharpness reduction424

phase’, 2/λH
0 < η < closs/λH

0 , which opens up significantly as closs increases with depth and 1/width.425

Beyond early training, sharpness continues to increase, until it reaches a break-even point [15], beyond426

which GD dynamics typically enters the EoS regime [7]. This has motivated various theoretical427

studies to understand GD dynamics at large learning rates: [3, 27, 37, 33, 5, 2, 20, 30, 6]. In particular,428

Ma et al. [23] showed that loss functions with sub-quadratic growth exhibit EoS behavior. [3] show429

that normalized gradient descent reaches the EoS regime. [8] analyze the dynamics of the cubic430

approximation of the loss. Assuming a negative correlation between the gradient direction and the431

top eigenvector of Hessian, they show that gradient descent dynamics enters a stable cycle in the EoS432

regime. [2] analyze EoS in a single-neuron 2-layer network and a simplified three-parameter ReLU433

network assuming the existence of a ‘forward invariant subset’ near the minima. [20] analyzed scalar434

linear networks to show that the sharpness attained by the gradient flow dynamics monotonically435

decreases in the EoS regime. [33] demonstrate that gradient descent, with any learning rate in the436

EoS regime, optimizes logistic regression with linearly separated data over large time scales. Below,437

we discuss closely related works in detail and clarify the distinction with our work.438

[32] analyze EoS in a 2-layer linear network using the norm of the last layer. They solely focus on439

cases that exhibit progressive sharpening right from initializations by considering assumptions (refer440

to Assumptions 4.1 and 4.2 of their paper) on the training dataset. Contrary to these assumptions, Fig-441

ure 1(e) demonstrates that such assumptions are invalid in many realistic settings, where progressive442

sharpening is not observed at all.443

[1] showed that a modified model exhibits progressive sharpening and two-step oscillations at444

EoS using NTK as the proxy. They state that the UV model does not exhibit EoS behavior (see445
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Section 3.2.1 of the referenced paper). This is because their analysis is restricted to the Standard446

Parmaeterization corresponding to Figure 2(c, f) (c.f. Figure 8 of [1]). In contrast, we show that447

the UV model exhibits EoS behavior under the appropriate choice of parameterization and training448

example.449

[37] proved EoS convergence for the loss 1
4 (x

2y2 − 1)2, where x, y ∈ R. Additionally, they450

empirically demonstrated a bifurcation diagram in the space of abstract variables of x and y. It is451

worth noting that while these bifurcations arise from the same underlying behavior, they contrast with452

our route to chaos bifurcation diagrams which quantify sharpness fluctuations with learning rate.453

[5] analyze two-step gradient updates of a single-neuron network and matrix factorization to gain454

insights into EoS. Similar to our work, they show a bifurcation diagram of sharpness against the455

learning rate for the matrix factorization problem. While the scalar matrix factorization problem can456

be mapped to the UV model with a specific choice of ||x||√
neff

, it is not straightforward to apply their457

conclusions to the neural network setting, as it requires the correct choice of parameterization. In458

particular, the UV model under NTP parameterization, as shown in Figure 2(c, f), does not display459

EoS behavior at considerable widths, a finding also noted by [1]. Observing EoS requires the correct460

choice of the parameterization (µP) and training example. Furthermore, although the scalar matrix461

factorization in [5] can be mapped to a special case of the UV model considered in our work, we462

provide significant additional insights. In particular, with respect to the bifurcation phenomena in the463

UV model, we explain the existence of an attractor submanifold on which the EoS behavior occurs.464

We further show that on the EoS submanifold, the loss becomes subquadratic in nature and the465

gradient descent dynamics therefore become approximated by the cubic map, which is well-studied in466

the chaos literature. This makes clear the origin of the period-doubling route to chaos. Additionally,467

in Section 6, we extend the analysis of EoS beyond the UV model, comparing sharpness trajectories468

of synthetic and real datasets at EoS. In contrast to the synthetic datasets, sharpness trajectories469

of real datasets show long-range correlations in time. We take the first steps by attributing these470

long-range correlations to correlations in the dataset. Note that this setting cannot be mapped to the471

matrix factorization setting.472

[30] show that late-time trajectories oscillate around 2f/ηℓ′, where f is the network output and ℓ′ is473

the derivative of the loss. They refer to the term bifurcation diagram to describe these phenomena,474

contrasting with the sharpness versus learning rate bifurcation diagrams presented in our study. We475

quote Section 3 from their paper ”..we plot the bifurcation diagram q = r(p) = ℓ′(p)/p and observe476

that GD trajectories tend to align with this curve..” Here, p and q correspond to ∆f and 2
ηλ in our477

setting. They plot trajectories in the (p, q) ≡ (∆f, 2
ηλ ) plane and their condition q = r(p) simply478

corresponds to the EoS condition λ = 2
η for MSE loss. In contrast, our work presents bifurcation479

diagrams resulting from how the sharpness fluctuations vary with the learning rate. Therefore, the480

bifurcation diagrams from these works are not directly related to the route-to-chaos bifurcation481

diagrams presented in our work.482

[19] were the first ones to show that gradient descent dynamics becomes chaotic at large learning483

rates and converges to a statistical distribution instead of a minimum.484

[6] analyzed large learning rate dynamics of toy models which are characterized by a one-dimensional485

cubic map and demonstrated five different training phases: (a) monotonic, (b) catapult, (c) periodic,486

(d) chaotic, and (e) divergent. In particular, they considered a two-layer network with quadratic487

activation, where the last layer vector v is not trained and each entry is set to one. This model belongs488

to a family that is effectively described by one variable ∆f . In this model, the loss is sub-quadratic489

by construction (||Ux||2− y)2. In contrast, the UV model that we study is an effectively two-variable490

model and in these cases, training dynamically finds the attractive EoS manifold such that the loss491

has a sub-quadratic nature on this submanifold.492

Concurrent work by [31] categorizes training trajectories into three stages: (i) sharpness reduction,493

(ii) progressive sharpening, and (iii) edge of stability. They argue that different large learning rate494

behavior depends on the ‘regularity’ of the loss landscape. Specifically, they generalize toy landscapes495

from existing studies with parameters controlling the regularity. They show that models with good496

regularity first experience a decrease in sharpness and then progressive sharpening and enter the edge497

of stability.498

12



[24] examined the sharpness dynamics of networks with with parameterization. They argue that499

the learning rate transfer property of µP is correlated with consistent sharpness trajectories500

across varying depths and widths.501

C Experimental details502

C.1 Datasets503

Standard image datasets: We considered the MNIST [9], Fashion-MNIST [34], and CIFAR-10504

[21] datasets. The images are standardized to have zero mean and unit variance across the feature505

dimensions, and target labels are represented as one-hot encodings.506

Random dataset: We construct a random dataset (X,Y ) = {(xµ,yµ)}Pµ=1 with xµ ∼ N (0, I)507

and yµ ∼ N (0, I), both sampled independently. Note there is no correlation between inputs and508

outputs.509

Teacher-student dataset: Consider a teacher network f(x; θ0) with θ0 initialized randomly as510

described in Appendix C.2. Then, we construct a teacher-student dataset (X,Y ) = {(xµ,yµ)}Pµ=1511

with xµ ∼ N (0, I) and yµ = f(xµ; θ0).512

Random power-law dataset: Starting with the random dataset (X ′, Y ′), we utilize the singular513

value decomposition of the input and output matrices514

X ′ = PxSx′QT
x , Y ′ = PySy′QT

y . (4)

Next, we rescale the kth singular value of Sx′ and Sy′ as515

(Sx)k = Ax(Sx′)kk
−Bx (Sy)k = Ay(Sy′)kk

−By , (5)

and re-construct input and output matrices as below516

X = PxSxQ
T
x , Y = PySyQ

T
y . (6)

The variables Ax, Bx, Ay , and By uniquely characterize the dataset.517

Generative image dataset: Given a pre-trained network f(x; θ) on a standard image dataset listed518

above, we construct a generative image dataset (X,Y ) = {(xµ,yµ)}Pµ=1 with xµ ∼ N (0, I) and519

yµ = f(xµ; θ).520

C.2 Models521

FCNs: We considered ReLU FCNs without bias with uniform hidden layer width n.522

CNNs: We considered Myrtle family ReLU CNNs [28] without any bias with a fixed number of523

channels in each layer, which we refer to as the width of the network.524

ResNets: We adapted ResNet [12] implementations from Flax examples. Our implementation525

uses Layer norm and initialize the weights as N (0, σ
2
w/fanin). For ResNets, we refer to the number of526

channels in the first block as the width.527

We implemented all models using the JAX [4], and Flax libraries [13].528

C.2.1 Details of network parameterization529

In this section, we describe different parameterizations used in the paper. For simplicity, we describe530

the parameterizations for FCNs. Nevertheless, these arguments generalize to other architectures.531
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Standard Parameterization (SP): Consider a neural network f : Rdin → Rdout with d layers and532

constant width n. Then, standard parameterization is defined as follows:533

h(1)(x) = W (1)x,

h(l+1)(x) = W (l+1)ϕ
(
h(l)(x)

)
,

f(x; θ) = W (d)ϕ
(
h(d−1)(x)

)
, (7)

where W (1) ∼ N (0, σ
2
w/din), W (l) ∼ N (0, σ

2
w/n) for 1 < l < d, and W (d) ∼ N (0, 1/n); ϕ(·) is the534

elementwise activation function. The input is normalized such that ∥x∥2 = din.535

Neural Tangent Parameterization (NTP): Consider a neural network f : Rdin → Rdout with d536

layers and constant width n. Then, the Neural Tangent Parameterization is defined as follows:537

h(1)(x) =
σw√
din

W (1)x,

h(l+1)(x) =
σw√
n
W (l+1)ϕ

(
h(l)(x)

)
,

f(x; θ) =
1√
n
W (d)ϕ

(
h(d−1)(x)

)
, (8)

where W (l) ∼ N (0, 1) for 1 ≤ l ≤ d and ϕ(·) is the elementwise activation function. The input is538

normalized such that ∥x∥2 = din.539

Both SP and NTP are closely related parameterizations, as constant width networks in SP with540

learning rate η = Θ(1/n) learning rate are equivalent to those in NTP [35].541

Interpolating Parameterization: Consider a neural network f : Rdin → Rdout with d layers and542

constant width n. Let W (l) denote the weight matrix at layer l. Then, “interpolating parameterization”543

is defined as follows:544

h(1)(x) = n
s/2W (1)x,

h(l+1)(x) = W (l+1)ϕ
(
h(l)(x)

)
,

f(x; θ) =
1

ns/2
W (d)ϕ

(
h(d−1)(x)

)
, (9)

Here, s is a parameter that interpolates between standard-like parameterization and maximal update pa-545

rameterization. The weight matrices are sampled from Gaussian distributions: W (1) ∼ N (0, σ
2
w/ns),546

W (l) ∼ N (0, σ
2
w/n) for 1 < l < d, and W (d) ∼ N (0, 1/n). We normalize the input such that547

∥x∥ = 1.548

Maximal update Parameterization (µP): The maximal update parameterization corresponds to549

the s = 1 case in the above setting.550

C.3 Details of Figures551

Figure 1: Training loss and sharpness trajectories of 4-layer ReLU FCNs with n = 512, trained on552

a subset of 5, 000 CIFAR-10 examples using MSE loss and GD: (a, d) SP with σ2
w = 0.5, (b, e) SP553

with σ2
w = 2.0, (c, f) µP with σ2

w = 2.0.554

Figure 2 Training trajectories of the UV model with ∥x∥ = 1 and y = 2 in the (∆f, λ) plane for555

different values of n, neff and η. The columns show initializations with different n and neff, while the556
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rows represent increasing learning rates for fixed initializations. The horizontal dash-dot line ηλ = 2557

separates the stable (solid black vertical line) and unstable (dashed black vertical line) fixed points558

along the zero loss fixed line I. Forbidden regions, 2∥x∥|∆f + y|/√neff > λ, (see Appendix E.2)559

are shaded gray. The nullclines ∆ft+1 = ∆ft and λt+1 = λt are shown as orange and white dashed560

curves, respectively. Sharpness reduction, progressive sharpening, and divergent regions are colored561

green, yellow, and blue. The gray arrows indicate the local vector field Ĝ(∆f, λ), which is the562

direction of the updates. The training trajectories are depicted as black lines with arrows, with the563

star marking the initialization. In all cases, ηc =
√
neff/2 (introduced in Section 5.2).564

Figure 3: UV model dynamics on the EoS manifold:(left) Bifurcation diagram depicting late-time565

limiting values of λ obtained by simulating Equation (3). (right) Bifurcation diagram of the UV566

model. In both figures, ∥x∥ = 1, y = 2 and neff = 1 and ηc = 0.5.567

Figure 4: Phase diagram of EoS: (a) Heatmap of ηλ̄H
/2 of 3-layer ReLU FCNs with s = 0 trained568

on a subset of 5, 000 CIFAR-10 examples for 10k steps, with the weight variance σ2
w and learning569

rate multiplier c = ηλH
0 as axes. λ̄H is obtained by averaging λH

t over last 200 steps. As the color570

varies from blue to white, ηλ̄H
/2 increases, where the brightest white region indicates the EoS regime571

with ηλ̄H
/2 ≥ 1. (b) Same heatmap with fixed σ2

w = 2.0, but varying s continuously.572

Figure 5: EoS in synthetic vs real-datasets: 2-layer linear FCN trained on (first row) 5, 000 iid573

random examples with unit output dimension and (second row) 5, 000 CIFAR-10 examples. Different574

columns correspond to the bifurcation diagram, late-time sharpness trajectories, and the power575

spectrum of sharpness trajectories. Both models are trained for 10k steps using GD.576

Figure 10: Two-step phase portrait of UV model in (∆f, β) phase plane: These plots are equivalent577

to Figure 2(d-f), but with training trajectory and local are plotted for every other step.578

Figure 14: Sharpness and Weight Norm of 3-layer ReLU FCNs in SP with σ2
w = 1/3 and width579

200, trained on a subset of CIFAR-10 with 5, 000 examples using GD.580

C.4 Sharpness measurement581

We measure sharpness using the power iteration method with m iterations. Typically, m = 20582

iterations ensure convergence. Exceptions requiring more iterates are discussed separately.583

C.5 Power spectrum analysis584

For a given signal x′(t), we standardize the signal585

x(t) =
x′(t)− µ

σ
, (10)

where µ is the mean and σ2 is the variance of the signal. Subtracting the mean removes the zero586

frequency component in the power spectrum. Next, consider the discrete Fourier transform F(ω) of587

x(t):588

F(ω) =
1

T

T−1∑
t=0

e−
i2πωt/Tx(t), (11)

Then, the power spectrum is P (ω) = |F(ω)|2. The normalization by T in the Fourier transform589

ensures that the sum of the power spectrum is equal to the variance of the signal, i.e.,
∑

ω P (ω) = σ2.590

C.6 Estimation of Computational Resources Used591

Most of our experiments, aside from the phase diagrams, required minimal computational resources,592

estimated to be less than 50 A100 hours. In contrast, each phase diagram required 50 A100 hours,593
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totaling 500 A100 hours for all phase diagrams. Including initial experiments, we expect our total594

usage to be under 600 A100 hours.595

D Sharpness dynamics of NTP networks596
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Figure 6: Training loss and sharpness trajectories of ReLU FCNs in NTP trained on a 5k subset of
CIFAR-10 examples using MSE loss and GD: (a, c) σ2

w = 0.5, (b, d) σ2
w = 2.0.

Figure 6 shows that the sharpness dynamics of FCNs in NTP aligns with the behavior of FCNs in SP597

demonstrated in Figure 1.598

E Properties of the UV model599

E.1 Derivation of the Function Space Dynamics600

Equations (1) and (2) can be derived using the gradient descent update equations:601

Ut+1 = Ut − η
∆ftvtx

T

√
neff

, (12)

vt+1 = vt − η
∆ftUtxt√

neff
. (13)

At step t+ 1, the residual ∆ft+1 can be written in terms of the gradient updates of U and v:602

∆ft+1 = ft+1 − y (14)

=
1√
neff

vT
t+1Ut+1x− y (15)

=
1√
neff

(
vt − η

∆ftUtx√
neff

)T (
Ut − η

∆ftvtx
T

√
neff

)
x− y (16)

= ∆ft −
η∆ft
neff

(
xTUT

t Utx+ vT
t vtx

Tx
)
+

η2∥x∥2∆f2
t

neff

(
1√
neff

xTUT
t vt

)
(17)

= ∆ft

(
1− ηλt +

η2∥x∥2
neff

∆ft(∆ft + y)

)
. (18)
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Here, ∆ft+1 only depends on ∆ft and λt. Similarly, we write down the λt+1 using the gradient603

update equations:604

λt+1 =
1

neff

(
xTUT

t+1Ut+1x+ vT
t+1vt+1x

Tx
)

(19)

= λt − 4
η∥x∥2
neff

∆ft(∆ft + y) +
η2∥x∥2∆f2

t

neff
λt (20)

= λt +
η∥x∥2
neff

∆f2
t

(
ηλt − 4

∆ft + y

∆ft

)
. (21)

Equations (18) and (21) form a closed system. This means that ∆ft+1 and λt+1 are completely605

described using ∆ft and λt. As a result, the complete dynamics of the UV model can be fully606

described using only these two variables with three parameters effective parameters η, ∥x∥2

neff
and y.607

E.2 Forbidden regions of the UV model608

In this section, we utilize the non-negativity of λ to derive the condition for allowed regions within609

the phase plane for the UV model. Consider the function space equations written in terms of the610

pre-activation h(x) = Ux:611

f(x; θ) =
1√
neff

vTh(x) (22)

λ =
1

neff

(
∥v∥2∥x∥2 + ∥h∥2

)
. (23)

Let cos(h,v) denote the cosine similarity between v and h. Then, the network output is bounded as612

| cos(h,v)| =
√
neff|∆f + y|
∥v∥∥h∥ ≤ 1 (24)

Next, using (∥v∥∥x∥ − ∥h∥)2 ≥ 0, we can bound the product ∥v∥∥h∥ using λ613

2∥x∥√
neff

|∆f + y| ≤ λ. (25)

The derived inequality describes the allowed phase plane regions for the UV model.614

E.3 Fixed Points and Line615

To identify the fixed points, we set ∆ft+1 = ∆ft and λt+1 = λt in Equations (1) and (2). This616

yields the dynamical fixed points of the UV model. Table 1 lists these fixed points along with their617

stability. Additionally, it provides the eigenvalues and eigenvectors of the Jacobian for the update618

maps described by Equations (1) and (2), evaluated at the fixed points.619

E.4 The maximum learning rate ηupper620

In Section 4, we stated that for η > ηupper = 2ηc, training diverges for all initializations except for621

those at the fixed points. Here, we justify this claim.622

First, Figure 7 shows that as η approaches ηupper, fixed point III merges with fixed point II, reducing623

the convergence region to the EoS manifold. At this learning rate, the stability of fixed point II changes624

from saddle to unstable as the corresponding eigenvalue (1− η
ηc
)2
∣∣∣
η=2ηc

surpasses 1. Consequently,625

any initialization outside the EoS manifold results in divergence. Next, Figure 3(left) shows that on626

the EoS manifold training diverges for η > ηupper. This corroborates our initial claim.627
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(∆f∗, λ∗) eigenvalues eigenvectors Linear stability

I (0, λ) for λ ≥ 2∥x∥y√
neff

1, 1 − ηλ

0

1

 ,

 neffλ
4∥x∥2y

1

 {
stable ηλ < 2

unstable ηλ > 2

II (−y, 0) (1 − η∥x∥y√
neff

)2, (1 +
η∥x∥y√

neff
)2

−
√

neff
2∥x∥

1

 ,

√
neff

2∥x∥

1

 saddle

III
(

−2
√

neff
∥x∥η , 4

η − 2∥x∥y√
neff

)
9, 5 − 2η∥x∥y√

neff

 neff
η∥x∥2y

1

 ,

−
√

neff
2∥x∥

1

 unstable

IV
(

2
√

neff
∥x∥η , 4

η +
2∥x∥y√

neff

)
9, 5 +

2η∥x∥y√
neff

 neff
η∥x∥2y

1

 ,

√
neff

2∥x∥

1

 unstable

Table 1: Fixed line (I) and points (II-IV) and corresponding eigenvalues and eigenvectors of the
Jacobian of the update map in Equations (1) and (2). The stability is determined for η < ηupper =
2ηc = 2

√
neff/∥x∥y. Above this threshold, training diverges for all initializations except for those at

the fixed points, as demonstrated in Appendix E.4.
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Figure 7: Phase portrait of the UV model for different learning rates η. The critical learning rate is
ηc = 0.5 and the maximum learning rate is ηupper = 1.0.

E.5 Sharpness versus the trace of Hessian628
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Figure 8: Training trajectories of the UV model trained on a single example with ∥x∥ = 1 and y = 2
using MSE loss and GD: (a, d) NTP with n = 1, σ2

w = 0.5, (b, e) NTP with n = 512, σ2
w = 1.0, and

(c, f) µP with n = 512, σ2
w = 1.0.

In this section, we show that the trace of the Hessian λ (which is also the scalar NTK in this case), is629

an adequate proxy for sharpness. Figure 9 shows training trajectories of the UV model, with λ as a630

proxy for sharpness and learning rate scaled as η = k/λ0. These λ trajectories show similar trends to631

those of λH observed in Figure 8, with one key difference: during early training, λ does not catapult632
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Figure 9: UV model shows all four training regimes: Training trajectories of the UV model trained
on a single example (x, y) with ∥x∥ = 1 and y = 2 using MSE loss and gradient: (a, d) NTP with
n = 1 and σ2

w = 0.5 (b, e) NTP with n = 512 and σ2
w = 1.0, and (c, f) µP with n = 1 and σ2

w = 1.0.

during early training at large widths (compare Figure 8(e) and Figure 9(e)). Otherwise, λ effectively633

captures other qualitative behavior of λH .634

E.6 The distribution of residual and NTK at initialization635

In this section, we compute the distribution of ∆f and λ for the UV model at initialization. Consider636

the UV model written in terms of the pre-activation h(x) = Ux,637

f(x; θ) =
1√
n1−p

vTh(x) (26)

λ =
1

n1−p

(
∥v∥2∥x∥2 + ∥h∥2

)
, (27)

with vi, Uij ∼ N (0, σ
2
w/np). Then, each pre-activation hi is normally distributed at initialization with638

zero mean and variance639

Eθ[h
2
i ] =

din∑
j,k=1

⟨UijUik⟩xjxk =

din∑
j,k=1

σ2
w

np
δjkxjxk =

σ2
w∥x∥2
np

. (28)

Hence, each pre-activation is distributed as hi ∼ N (0, σ
2
w∥x∥2

/np). It follows that the network output640

is also normally distributed at initialization with zero mean and variance641

Eθ[f
2
0 ] =

1

n1−p

n∑
i,j=1

⟨vivj⟩⟨hihj⟩ =
1

n1−p

n∑
i=1

σ2
w

np

σ2
w∥x∥2
np

=
σ4
w∥x∥2
np

. (29)

Hence, the residual at initialization is distributed as ∆f0 ∼ N
(
−y, σ

4
w∥x∥2

/np
)
. Similarly, we can642

also compute the distribution of λ at initialization. The mean value of λ is given by643

Eθ[λ0] =
1

n1−p

(
∥x∥2⟨∥v∥2⟩+ ⟨∥h∥2⟩

)
= 2σ2

w∥x∥2, (30)
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where we have used ⟨∥v∥2⟩ = σ2
wn

1−p and ⟨∥h∥2⟩ = σ2
w∥x∥2n1−p. Using similar computations,644

the second moment of λ is given by:645

Eθ[λ
2
0] =

1

n2−2p

(
∥x∥4⟨∥v∥4⟩+ ⟨∥h∥4⟩+ 2∥x∥2⟨∥v∥2∥h∥2⟩

)
=

4(n+ 1)

n
σ4
w∥x∥4 . (31)

Hence, the λ at initialization is distributed as λ0 ∼ N
(
2σ2

w∥x∥2, 4σ4
w∥x∥4

/n
)
.646

E.7 EoS manifold is a dynamical attractor647

To demonstrate that late time trajectories for η > ηc converge to the EoS manifold, we define648

β :=
√
neff

2∥x∥λ − (∆f + y). β lies on the direction orthogonal to the EoS manifold, such that β = 0649

corresponds to the manifold itself, while β < 0 is forbidden. Under this transformation, β updates as650

βt+1 = βt(1 +
η∥x∥∆ft√

neff
)2. It follows that β∗ = 0 stays invariant under the dynamics and defines a651

nullcline.652

Due to oscillations in ∆f near convergence, it is instructive to examine the two-step dynamics [1, 5],653

compactly denoted as (∆ft+2, λt+2) := M (2)(∆ft, λt). Figure 10 shows the two-step trajectories654

and the corresponding vector field Ĝ(2)(∆f, β) in the (∆f, β) plane.655

We observe that there exists a critical ηc such that for η < ηc, Ĝ(2)(∆f, β) points towards the656

stable zero-loss line (see Figure 10(a)). By comparison, for η > ηc, all points along the zero-loss657

line become unstable and the vector field directs towards points on the β = 0 line, as shown in658

Figure 10(b). The critical ηc for which all points on the zero-loss line become unstable thus gives a659

necessary condition for EoS:660
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Figure 10: These plots are equivalent to Figure 2(a, d) (ηc = 0.5), but with training trajectory and
local vector field plotted for every other step in (∆f, β) plane. The tilted dash-dotted line indicates
the ηλ = 2 line.

E.8 Critical learning rate for edge of stability661

In this section, we estimate the required condition on the learning rate for the UV model to exhibit662

EoS. We specifically focus on the case with y > 0 as for y = 0, λ can only decrease. As a result,663

the model does not exhibit progressive sharpening and EoS. In Section 5, we observed that the EoS664

occurs as the zero-loss minima with the smallest λ becomes unstable. From Equation (25) it follows665

that the smallest λ with zero loss is666

λmin =
2∥x∥y√

neff
. (32)

This minimum becomes unstable if the learning rate η exceeds a critical value ηc, given by667
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ηc =

√
neff

∥x∥y (33)

It is worth noting that this is a necessary condition for λ to oscillate around 2/η. Otherwise, training668

converges to the zero-loss minimum with λ = λmin for η < ηmax.669

We can also derive the exact same result by analyzing the dynamics on the EoS manifold. As670

discussed in Section 5.2, the dynamics on the EoS manifold is given by the map ∆ft+1 = M(∆ft),671

where672

M(∆f) = ∆f

(
1− 2η∥x∥√

neff
(∆f + y) +

(
η∥x∥√
neff

)2

∆f(∆f + y)

)
. (34)

As demonstrated in Section 5.2, EoS in the UV model follows the period doubling route to chaos,673

with the period two cycle marking the onset. Hence, the conditions required for emergence of the674

period two cycle are also the necessary conditions for EoS. Consider the two-step dynamics on the675

EoS manifold given by the map M2(∆f) := M(M(∆f)). This map has six fixed points (excluding676

three fixed points of the map M ) summarized below677

∆f∗ =
ηx̃(1− ηx̃y)±

√
η2x̃2(ηx̃y − 1)(3 + ηx̃y)

2η2x̃2
(35)

∆f∗ =
3 + h(η, x̃, y)± ηx̃(±y +

√
2
√

−−5+h(η,x̃,y)+ηx̃y(−2−ηx̃y+h(η,x̃,y))
η2x̃2 )

4ηx̃
. (36)

Here x̃ = ∥x∥√
neff

and h(η, x̃, y) =
√
−7 + x̃yη(2 + x̃yη). For the fixed points to exist, we require the678

expressions inside the square root to be non-negative, i.e.,679

(
η∥x∥y√

neff
− 1

)(
η∥x∥y√

neff
+ 3

)
≥ 0 =⇒ η ≥ η1 =

√
neff

∥x∥y (37)

η∥x∥y√
neff

(
η∥x∥y√

neff
+ 2

)
− 7 ≥ 0 =⇒ η ≥ η2 =

(
√
32− 2)

2

√
neff

∥x∥y . (38)

As η1 < η2, the necessary condition for the period two cycle to emerge is η > η1 =
√
neff/∥x∥y, which680

coincides with the condition obtained earlier in this section.681

F The effect of batch size on the four training regimes682

In this section, we examine the effect of batch size B on the results presented in the main text. We683

find that our conclusions are robust for reasonable batch sizes around B ≈ 512. For even smaller684

batch sizes, the dynamics becomes noise-dominated, and separating the inherent dynamics from noise685

becomes challenging. This observation further supports the use of SGD to reduce the computational686

cost of experiments in the subsequent sections involving CNNs and ResNets.687

Figure 11 shows that SGD trajectories of FCNs in SP begin to deviate from their GD counterpart688

significantly for batch sizes around B ≈ 128. In contrast, for µP networks this deviation begins at a689

larger batch size of B ≈ 512 as shown in Figure 12. Figure 13 show training trajectories of CNNs690

and ResNets trained SGD with batch size B = 512. These results further exemplify that four regimes691

of training are generically observed for reasonable batch sizes.692
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Figure 11: Comparison of SGD trajectories with their GD counterpart for a 3-layer FCNs in SP with
σ2
w = 0.5 trained on a subset of CIFAR-10 consisting of 5, 000 training examples with MSE loss.

The learning rate is scaled as η = c/λH
0 and batch sizes (a-c) B = 512, (d-f) B = 128, (g-i) B = 32

are considered. GD trajectories are plotted using solid lines with transparency.
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Figure 12: Same setting as Figure 11, except we used 3-layer FCNs in µP with σ2
w = 2.0.
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Figure 13: Training trajectories of (a, b) a 5-layer CNN in SP with n = 64, and (c, d) ResNet-18
with LayerNorm in SP, also with n = 64. Both models are trained on the CIFAR-10 dataset with
MSE loss using SGD. The learning rate is scaled as η = c/λH

0 and batch size is B = 512. In panel
(d), λH

t becomes negative during early training. This is due to the power iteration method returning
the largest eigenvalue by magnitude.
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G Sharpness-weight norm correlation693
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Figure 14: Sharpness and Weight Norm of 3-layer ReLU FCNs in SP with σ2
w = 1/3, trained on a

subset of CIFAR-10 with 5, 000 examples using GD.

Section 5.1 reveals that several aspects of the training dynamics are controlled by the fact that, for a694

wide variety of initializations, at early times trajectories move closer to the saddle point II, resulting695

in an interim decrease in λ (also proportional to the weight norm in this case), before eventually696

increasing. This critical point where all parameters are zero also exists in real-world models. We697

thus anticipate that in real-world models, the origin of the four training regimes may be related to a698

similar mechanism. This would predict a decrease in weight norm as training passes near the saddle699

point, followed by an eventual increase.700

Figure 14 validates this hypothesis. During the sharpness reduction and intermediate saturation701

regimes, we see a decrease in the weight norm, followed by an increase in the weight norm as the702

network undergoes progressive sharpening, following the prediction from the UV model. Similar703

correlations between the last layer weight norm and sharpness are utilized by [32] to analyze the704

EoS phase. By comparison, we focus on the correlation between sharpness and weight norm during705

early training to attribute the emergence of four regimes to the critical point corresponding to all706

parameters being zero. In Appendix G, we provide further evidence for this correlation between707

sharpness and weight norm, extending this relationship to CNNs and ResNets.708

This section presents additional results for Appendix A, further supporting the relationship between709

sharpness and weight norm during training.710

Figure 15 is an extended version of Figure 14, where we plotted the whole training trajectories and711

measured Pearson correlation712

Cor(∥θt∥, λH
t /λH

0 ) :=

∑t
t′=1

(
θt′ − θ̄t

) (
λH
t′ /λ

H
0 − (λH/λH

0 )t

)
√∑t

t′=1

(
θt′ − θ̄t

)2∑t
t′=1

(
λH
t′ /λ

H
0 − (λH/λH

0 )t

)2 (39)

Here t ≥ 2 and θ̄t = (
∑t

t′=1 θt′)/t.713

Figure 16 shows the weight norm of each layer separately for the experiment in Figure 14. This result714

shows a high correlation between weight norm and sharpness through training.715

We also confirm these correlations between weight norm and sharpness in CNNs for the experiment716

in Figure 13(a, b).717
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Figure 15: Sharpness and Weight Norm of 3-layer ReLU FCNs in SP with σ2
w = 1/3, trained on a

subset of CIFAR-10 with 5, 000 examples using GD.
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Figure 16: Weight Norm of each layer in 3-layer ReLU FCNs (same experiments as Figure 14): (a,
b, c) SP with σ2

w = 1/3. All results are obtained by training on a subset of CIFAR-10 with 5, 000
examples using GD.
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Figure 17: Weight Norm of each layer for 5-layer CNNs in SP (same experiments as Figure 13(a, b):
(a) Total weight norm; (b-f) Weight norm of each layer. We see that for c = 16, the initial catapult in
sharpness λH (Figure 13(b)) is accompanied by a catapult in total weight norm. Notably, the total
weight norm and per-layer weight norm, whether catapults (a, c-e) or not (b, f), show a decreasing
trend during the early sharpness decreasing stage, followed by an eventual increase.

H Additional Phase diagrams of EoS718

This section demonstrates additional phase diagrams of EoS and quantifies the effect of batch size in719

the EoS regime. Figure 18 shows phase diagrams of EoS for FCNs trained on CIFAR-10 with MSE720
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Figure 18: Phase diagram of EoS for 3-layer FCNs trained on CIFAR-10 with MSE loss using SGD
with three different batch sizes: (a, b) B = 512, (c, d), B = 128, and (e, f) B = 32. The color
indicates the value of ηλ̄H/2, where λ̄H is obtained by averaging λH

t over the last 200 steps. Except
for the batch size, all settings are identical to Figure 4. Black dash-dotted lines indicate the phase
boundary ηλ̄H/2 = 1. For clarity, these lines are generated from data smoothed with a Gaussian
kernel.

loss using SGD for 10, 000 steps for three different batch sizes. We observe that as the batch size721

decreases, λH
t oscillates at a value different from 2/η depending on σ2

w and s. For large σ2
w and small722

s, λH favors a smaller value for smaller batch size, which is in agreement with the observation in [7].723

In contrast, λH can be larger than 2/η for small σ2
w and large s at late training times.724

Figures 19 and 20 show the phase diagrams of EoS for CNNs and ResNets trained on the CIFAR-10725

dataset with MSE loss using SGD for 10, 000 steps with learning rate η = c/λH
0 and batch size726

B = 512. In contrast to the FCN phase diagrams, these architectures exhibit EoS behavior at smaller727

values of s and larger values of σ2
w, indicating their implicit bias towards EoS. Moreover, we observe728

in ResNets, that EoS is less sensitive to change σ2
w, likely due to a combination of LayerNorm and729

residual connections [10].730

It is worth noting that EoS boundaries in these phase diagrams are time-dependent. For instance,731

models close to the EoS boundary may eventually reach EoS on training longer (see Figure 13(b)732

c = 1.0 for example), causing a shift in the EoS boundary. Nevertheless, models with small learning733

rates, large σ2
w, and small s may never show EoS behavior, regardless of training duration, as predicted734

by the UV model and seen in Figure 1(e).735
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Figure 19: Phase diagram of EoS for 5-layer CNNs in SP with width n = 64 trained with MSE loss
using SGD for 10, 000 steps with learning rate η = c/λH

0 and batch size B = 512.
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Figure 20: Phase diagram of EoS for ResNet-18 in SP with width n = 64 trained with MSE loss
using SGD for 10, 000 steps with learning rate η = c/λH

0 and batch size B = 512. For s = 1, the
average eigenvalue λ̄H is observed to be less than 2/η. Upon detailed investigation of the trajectories,
we found that λH

t oscillates around a value lower than 2/η. We leave this anomalous behavior as an
observation.
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I Route to chaos736

I.1 Route to EoS in real datasets737

This section presents additional bifurcation diagrams for different architectures and datasets. Fig-738

ures 21 to 23 show the bifurcation diagrams, sharpness trajectories and the associated power spectrum739

of 4-layer ReLU FCNs in SP trained on MNIST, Fashion-MNIST and CIFAR-10 datasets with MSE740

loss using GD. Similarly, Figures 24 and 25 show these results for CNNs and ResNets trained on741

CIFAR-10 with MSE loss using SGD with batch size B = 512. These results show the reminiscent742

of the period-doubling route to chaos observed in different architectures and datasets. In all figures,743

we choose the smallest and largest learning rate exhibiting EoS for plotting the trajectories and power744

spectrum. The structured route to chaos in realistic experiments can be disrupted due to a variety of745

reasons. Below, we discuss a few of them.746

Measurement of only the top eigenvalue of Hessian: In our experiments, we only measured the747

top eigenvalue of the Hessian. However, when multiple eigenvalues of Hessian enter EoS, plotting748

only the top eigenvalue of Hessian is a projection that could obscure all the structured routes to chaos749

that the system may exhibit.750

The effect of correlations in real-world datasets: Real-world datasets inherently contain751

correlations between different samples (x,y). These correlations can be quantified using the752

input-input covariance matrix ΣXX = XXT ∈ Rdin×din and output-input covariance matrices753

ΣY X = Y XT ∈ Rdout×din . In Appendix I.2, we find that a key determining factor in observing754

route-to-chaos is whether the power spectrum of ΣXX is flat or exhibits power law decay. We show755

that power-law decay in the singular values of the ΣXX results in long-range correlations in time and756

dense sharpness bands observed in real datasets.757
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Figure 21: 4-layer FCN in SP with width n = 512 trained on a subset of 5000 examples of MNIST
with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.
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Figure 22: 4-layer FCN in SP with width n = 512 trained on a subset of 5000 examples of Fashion-
MNIST with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of
the corresponding trajectories.
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Figure 23: 4-layer FCN in SP with width n = 512 trained on a subset of 5000 examples of CIFAR-10
with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.
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Figure 24: 5-layer CNN in SP with width n = 32 trained on a subset of 1000 examples of CIFAR-10
with MSE loss using GD.
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Figure 25: ResNet-18 in SP with width n = 32 trained on a subset of 1000 examples of CIFAR-10
with MSE loss using GD.

I.2 The effect of power-law trends in data on sharpness trajectories758

In this section, we analyze a 2-layer linear FCN trained on the power law dataset described in759

Appendix C.1 to understand the origin of long-range correlations in sharpness trajectories and dense760

sharpness bands in realistic datasets.761

Figure 26 shows the bifurcation diagram, late time trajectories, and the associated power spectrum762

of the network trained on the power-law dataset with the same Ax = 1.0 and Ay = 1.0, for four763

different combinations of power-law exponents: (i) Bx = 0.0, By = 0.0, (ii) Bx = 1.0, By = 0.0,764

(iii) Bx = 0.0, By = 1.0, and (iv) Bx = 1.0, By = 1.0. We observe that a power-law trend to the765

singular values of the input matrix results in dense sharpness bands observed in real datasets. It is766

worth noting that this is one way to obtain dense sharpness bands and in general, there can be many767

other methods.768
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Figure 26: Bifurcation diagrams, late-time sharpness trajectories, and power spectrum of a 2-layer
linear network trained on the power-law dataset for different parameter values: (a-c) Bx = 0.0, By =
0.0, (d-f) Bx = 1.0, By = 0.0, (g-i) Bx = 0.0, By = 1.0, and (j-l) Bx = 1.0, By = 1.0. All power
spectrums are computed using the last 1000 steps of the corresponding trajectories.

I.3 Route to chaos in synthetic datasets769

In this section, we analyze the route to chaos in synthetic datasets to gain insights into the dense770

sharpness bands in realistic datasets. We considered two datasets, defined as follows:771

Teacher-student dataset: Consider a teacher FCN f : Rdin → Rdout with din = 3072, dout = 10,772

depth d, and width n = 512 in Standard Paramaterization. Then, we construct a teacher-student773

dataset (X,Y ) consisting of P = 5000 examples with xµ ∼ N (0, I) and yµ = f(xµ; θ0). Next,774

we train a student FCN with the same depth d and depth n as the teacher FCN on this dataset.775

Figures 27 and 28 show the bifurcation diagram, late time sharpness trajectories and the associated776

power spectrum of linear and ReLU FCNs trained on the teacher-student task. These figures show777
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Figure 27: 2-layer linear FCN in µP trained on the teacher-student task. Both power spectrums are
computed using the last 1000 steps of the corresponding trajectories.
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Figure 28: 4-layer ReLU FCNs in µP trained on the teacher-student task. Both power spectrums are
computed using the last 1000 steps of the corresponding trajectories.

that while linear FCN shows the period-doubling route to chaos, ReLU FCN shows long-range778

correlations as observed in real datasets.779

Generative dataset: Consider a 5-layer CNN f(x, θ) in SP with n = 64, trained on the CIFAR-10780

dataset with MSE loss using SGD with learning rate η = 12/λH
0 and momentum m = 0.9 for 100k781

steps. This model achieves a test accuracy of 76.9%. Then, we construct a generative image dataset782

(X,Y ) consisting of P = 5000 examples with xµ ∼ N (0, I) and yµ = f(xµ; θ). Next, we train an783

FCN in SP with depth d, width n, and weight variance σ2
w = 0.5 on the generated dataset.784
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Figure 29: 4-layer linear FCNs in SP with σ2
w = 0.5 trained on the generative CIFAR-10 task

with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.

Figures 29 and 30 show the bifurcation diagram, late time trajectories and the associated power785

spectrum of a 4-layer ReLU FCN with linear and ReLU activations, trained on the generative CIFAR-786

10 dataset. We observe that while the linear network shows a period doubling route to chaos, the787

ReLU shows long range correlations as observed in real-datasets.788
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Figure 30: 4-layer ReLU FCNs in SP with σ2
w = 0.5 trained on the generative CIFAR-10 task

with MSE loss using GD. Both power spectrums are computed using the last 1000 steps of the
corresponding trajectories.
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