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Abstract

Recently, a series of papers proposed deep
learning-based approaches to sample from unnor-
malized target densities using controlled diffu-
sion processes. In this work, we identify these
approaches as special cases of the Schrödinger
bridge problem, seeking the most likely stochas-
tic evolution between a given prior distribution
and the specified target. We further generalize this
framework by introducing a variational formula-
tion based on divergences between path space
measures of time-reversed diffusion processes.
This abstract perspective leads to practical losses
that can be optimized by gradient-based algo-
rithms and includes previous objectives as special
cases. At the same time, it allows us to consider di-
vergences other than the reverse Kullback-Leibler
divergence that is known to suffer from mode col-
lapse. In particular, we propose the so-called log-
variance loss, which exhibits favorable numerical
properties and leads to significantly improved per-
formance across all considered approaches.

1. Introduction
Given a function ρ : Rd → [0,∞), we consider the task of
sampling from the density

ptarget :=
ρ

Z
with Z :=

∫
Rd

ρ(x) dx,

where the normalizing constant Z is typically intractable.
This represents a crucial and challenging problem in various
scientific fields, such as Bayesian statistics, computational
physics, chemistry, or biology (Liu & Liu, 2001; Stoltz et al.,
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Figure 1. Improved convergence of our proposed log-variance loss
for a double well problem.

2010). Fueled by the success of denoising diffusion prob-
abilistic modeling (Song & Ermon, 2020; Ho et al., 2020;
Kingma et al., 2021; Vahdat et al., 2021; Nichol & Dhari-
wal, 2021) and deep learning approaches to the Schrödinger
bridge (SB) problem (De Bortoli et al., 2021; Chen et al.,
2021a; Koshizuka & Sato, 2022), there is a significant in-
terest in tackling the sampling problem by using stochastic
differential equations (SDEs) which are controlled with
learned neural networks to transport a given prior density
pprior to the target ptarget.

Recent works include the Path Integral Sampler (PIS) and
variations thereof (Tzen & Raginsky, 2019; Richter, 2021;
Zhang & Chen, 2022; Vargas et al., 2023b), the Time-
Reversed Diffusion Sampler (DIS) (Berner et al., 2022),
as well as the Denoising Diffusion Sampler (DDS) (Vargas
et al., 2023a). While the ideas for such sampling approaches
based on controlled diffusion processes date back to earlier
work, see, e.g., Dai Pra (1991); Pavon (1989), the develop-
ment of corresponding numerical methods based on deep
learning has become popular in the last few years.

However, up to now, more focus has been put on genera-
tive modeling, where samples from ptarget are available.
As a consequence, it seems that for the classical sam-
pling problem, i.e., having only an analytical expression
for ρ ∝ ptarget, but no samples, diffusion-based methods
cannot reach state-of-the-art performance yet. Potential
drawbacks might be stability issues during training, the
need to differentiate through SDE solvers, or mode collapse
due to the usage of objectives based on reverse Kullback-
Leibler (KL) divergences, see, for instance, Zhang & Chen
(2022); Vargas et al. (2023a).
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In this work, we overcome these issues and advance the
potential of sampling via learned diffusion processes to-
ward more challenging problems. Our contributions can be
summarized as follows:

• We provide a unifying framework for recently devel-
oped sampling methods based on learned diffusions,
i.e., DIS, DDS, and PIS, from the perspective of mea-
sures on path space and time-reversals of controlled
stochastic processes.

• This path space perspective, in consequence, allows us
to consider arbitrary divergences for the optimization
objective, whereas existing methods are solely based
on minimizing a reverse KL divergence, which is prone
to mode collapse.

• In particular, we propose the log-variance divergence
that avoids differentiation through the SDE solver and
allows to balance exploration and exploitation, result-
ing in significantly improved numerical stability and
performance, see Figure 1.

1.1. Related work

We build our theoretical foundation on the variational for-
mulation of SB problems proposed by Chen et al. (2021a).
While the numerical treatment of SB problems has clas-
sically been approached via iterative nested schemes, the
approach in Chen et al. (2021a) uses backward SDEs (BS-
DEs) to arrive at a single objective based on a KL divergence.
This objective includes the (continuous-time) ELBO of dif-
fusion models (Huang et al., 2021) as a special case, which
can also be approached from the perspective of optimal con-
trol (Berner et al., 2022). For additional previous work on
optimal control in the context of generative modeling, we
refer to De Bortoli et al. (2021); Tzen & Raginsky (2019);
Pavon (2022); Holdijk et al. (2022).

We extend the variational formulation of SBs to different
divergences and, in particular, propose the log-variance loss
that has originally been introduced in Nüsken & Richter
(2021). Variants of this loss have previously only been ana-
lyzed in the context of variational inference (Richter et al.,
2020) and neural solvers for partial differential equations
(PDEs) (Richter & Berner, 2022). Different from previous
works, our objective incorporates the path space measures
of two controlled SDEs.

However, we also show that this objective, as well as the
one in Chen et al. (2021a), does in general not have a unique
solution as it lacks the entropy constraint of classical SB
problems. Specifically, we provide a new derivation only
relying on time-reversals of diffusion processes. The un-
derlying ideas were established decades ago (Nelson, 1967;
Anderson, 1982; Haussmann & Pardoux, 1986; Föllmer,

1988), however, only recently applied to diffusion mod-
els (Song et al., 2020) and SBs (Chen et al., 2021a; Vargas,
2021; Liu et al., 2022). In special cases, we recover unique
objectives corresponding to recently developed sampling
methods, i.e., DIS, DDS, and PIS.

The most common methods to sample from unnormalized
densities and compute normalizing constants are arguably
Monte Carlo (MC) techniques. Specialized variations of,
e.g., Annealed Importance Sampling (AIS) (Neal, 2001)
or Sequential Monte Carlo (Del Moral et al., 2006; Doucet
et al., 2009) (SMC) are often regarded as the “gold standard”
in the literature.

Even though MCMC methods are guaranteed to converge
to the target distribution under mild assumptions, the con-
vergence speed might be too slow in many practical set-
tings (Robert et al., 1999). Variational methods such as
mean-field approximations (Wainwright et al., 2008) and
normalizing flows (Papamakarios et al., 2021; Wu et al.,
2020; Midgley et al., 2022) provide an alternative. By fit-
ting a parametric family of tractable distributions to the
target density, the problem of density estimation is cast into
an optimization problem.

As already observed in Berner et al. (2022); Vargas et al.
(2023a), we note that one cannot directly leverage the con-
nection of diffusion models to score matching (Hyvärinen &
Dayan, 2005) for the application of sampling from densities.
However, the score matching objective has been employed
to approximate the extended target distribution needed in
the importance sampling step of AIS methods (Doucet et al.,
2022) and also in combination with importance sampling
using the likelihood of the partially-trained diffusion model
as proposal distribution (Jing et al., 2022). In this work,
however, we want to focus on variational methods that di-
rectly fit a parametric family of tractable distributions (given
by controlled SDEs) to the target density.

1.2. Outline of the article

The rest of the article is organized as follows. In Section 2
we provide an introduction to diffusion-based sampling from
the perspective of path space measures and time-reversed
SDEs. This can be understood as a unifying framework
allowing for generalizations to divergences other than the
KL divergence. We propose the log-variance divergence
and prove that it exhibits superior properties. In Section 3,
we will subsequently outline multiple connections to known
methods, such as SBs in Section 3.1, diffusion-based gen-
erative modeling (i.e., DIS) in Section 3.2, and approaches
based on reference processes (i.e., PIS and DDS) in Sec-
tion 3.3. For all considered methods, we can find compelling
numerical evidence for the superiority of the log-variance
divergence, see Section 4.
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2. Diffusion-based sampling
In this section, we will reformulate our sampling problem
as a time-reversal of diffusion processes. This perspective
can be understood as a change of measure on path space and
we present two divergences that lend themselves to practical
objectives. Let us first define our notation and setting.

2.1. Notation and setting

We denote the density of a random variable X by pX . For a
suitable Rd-valued stochastic process X = (Xt)t∈[0,T ] we
define its density pX w.r.t. to the Lebesgue measure by

pX(·, t) := pXt , t ∈ [0, T ].

For a suitable functions f ∈ C(Rd × [0, T ],R) and w ∈
C(Rd × [0, T ],Rd), we further define

Rf (X) :=

∫ T

0

f(Xs, s) ds (1)

and

Sw(X) :=

∫ T

0

w(Xs, s) · dWs, (2)

where W is a standard d-dimensional Brownian motion.
We denote by P the set of all probability measures on the
space of continuous functions C([0, T ],Rd) and define the
path space measure PX ∈ P as the law of X . For a time-
dependent function µ, we denote by ⃗µ the time-reversal
given by

⃗µ(t) := µ(T − t).

Finally, we assume that the coefficient functions of all ap-
pearing SDEs are sufficiently regular such that Novikov’s
condition is satisfied and such that the SDEs admit unique
strong solutions with smooth and strictly positive densities
pXt for t ∈ (0, T ).

2.2. Sampling as time-reversal problem

The goal of diffusion-based sampling is to sample from
the density ptarget = ρ

Z by transporting a prior density
pprior via controlled stochastic processes. We consider the
processes described by the generative SDE{

dXu
s = (µ+ σu)(Xu

s , s) ds+ σ(s) dWs,

Xu
0 ∼ pprior,

(3)

and the inference SDE{
dY v

s = (− ⃗µ+ ⃗σ ⃗v)(Y v
s , s) ds+ ⃗σ(s) dWs,

Y v
0 ∼ ptarget,

(4)

where we aim to identify control functions u, v ∈ U in a
suitable space of admissible controls

U ⊂ C(Rd × [0, T ],Rd)

in order to achieve Xu
T ∼ ptarget and Y v

T ∼ pprior. Specifi-
cally, we seek controls satisfying

pprior
Xu

⇄
Y v

ptarget

in the sense that Y v is the time-reversed process of Xu and
vice versa, i.e., ⃗pXu = pY v . In this context, we recall the fol-
lowing well-known results on the time-reversal of stochastic
processes (Nelson, 1967; Anderson, 1982; Haussmann &
Pardoux, 1986; Föllmer, 1988).

Lemma 2.1 (Time-reversed SDEs). The time-reversed SDE
⃗Y
v

given by{
d ⃗Y

v

s =
(
µ+ σũ

)
( ⃗Y

v

s , s) ds+ σ(s) dWs,
⃗Y
v

0 ∼ Y v
T ,

(5)

with ũ := σ⊤∇ log ⃗pY v − v satisfies that p ⃗Y
v = ⃗pY v .

Proof. The result can be derived by comparing the Fokker-
Planck equations governing p ⃗Y

v and pY v , see, e.g., Chen
et al. (2021a); Huang et al. (2021); Berner et al. (2022).

We can now view Problem 2.2 from the perspective of path
space measures on the space of trajectories C([0, T ],Rd),
as detailed in the sequel.

Problem 2.2 (Time-reversal). Let PXu be the path space
measure of the process Xu defined in (3) and P ⃗Y

v the path
space measure of ⃗Y

v
, the time-reversal of Y v, given in (5).

Further, let
D : P × P → R≥0

be a divergence, i.e., a non-negative function satisfying that
D(P,Q) = 0 if and only ifP = Q. We aim to find optimal
controls u∗, v∗ s.t.

u∗, v∗ ∈ argmin
u,v∈U×U

D
(
PXu |P ⃗Y

v

)
. (6)

Let us note that Problem 2.2 aims to reverse the processes
Xu and Y v with respect to each other while obeying the
respective initial values Xu

0 ∼ pprior and Y v
0 ∼ ptarget, as

defined in (3) and (4). For the actual computation of suitable
divergences, the following formula will be helpful.

Proposition 2.3 (Likelihood of path measures). Let Xw be
a process as defined in (3) with u being replaced by w ∈ U .
We can compute the Radon-Nikodym derivative as

dPXu

dP ⃗Y
v
(Xw) = Z exp

(
RfSB

u,v,w
+ Su+v +B

)
(Xw) (7)

with

B(Xw) := log
pprior(X

w
0 )

ρ(Xw
T )
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and

fSBu,v,w := (u+ v) ·
(
w +

v − u

2

)
+∇ · (σv − µ),

where S and R are defined as in (1) and (2).

Proof. The proof mainly relies on Girsanov’s theorem, Itô’s
lemma, and the HJB equation governing log p ⃗Y

v , see Ap-
pendix A.1.

Using the representation of the Radon-Nikodym derivative
in Proposition 2.3, we may, in principle, choose any suitable
divergence in order to approach Problem 2.2. In the follow-
ing we will analyze the default setting, i.e., a KL divergence,
and propose an alternative, the so-called log-variance diver-
gence, which offers several numerical advantages.

2.3. Comparison of the KL and log-variance divergence

Most works in the context of diffusion-based sampling rely
on the KL divergence. Choosing D = DKL, which implies
w = u in (7), we can readily compute

DKL(PXu |P ⃗Y
v ) = E

[(
RfSB

u,v,u
+B

)
(Xu)

]
+ logZ

with

fSBu,v,u =
∥u+ v∥2

2
+∇ · (σv − µ) ,

where we used the fact that the stochastic integral Su+v has
vanishing expectation. Note that in practice we minimize
the objective

LKL(u, v) := DKL(PXu |P ⃗Y
v )− logZ. (8)

This objective is identical to the one derived in Chen et al.
(2021a) for the SB problem, see also Section 3.1 and Ap-
pendix A.2. However, the KL divergence is known to have
some evident drawbacks, such as mode collapse (Minka
et al., 2005; Midgley et al., 2022) or a potentially high vari-
ance of Monte Carlo estimators (Roeder et al., 2017). To
address those issues, we propose another divergence that
has been originally suggested in Nüsken & Richter (2021).

Definition 2.4 (Log-variance divergence). Let P̃ be a ref-
erence measure. The log-variance divergence between the
measures P andQ w.r.t. the reference P̃ is defined as

DP̃LV(P,Q) := V
P̃

[
log

dP

dQ

]
.

Note that the log-variance divergence is symmetric in P
andQ and actually corresponds to a family of divergences,
parametrized by the reference measure P̃. Obvious choices
in our setting are

P̃ := PXw , P := PXu , and Q := P ⃗Y
v ,

resulting in the log-variance loss

Lw
LV(u, v) := DPXw

LV (PXu ,P ⃗Y
v )

= V
[(
RfSB

u,v,w
+ Su+v +B

)
(Xw)

]
.

(9)

Since the variance is shift-invariant, we can omit logZ in
the above objective.

Compared to the KL-based loss (8), the log-variances
loss (9) exhibits the following beneficial properties. First, by
the choice of the reference measure PXw , one can balance
exploitation and exploration. To exploit the current control
u, one can set

w = u,

but one can also deviate from this control to prevent mode
collapse. Next, note that the log-variance loss in (9) does not
require the derivative of the process Xw w.r.t. the control w
(which, for the case w = u, is implemented by detaching or
stopping the gradient, see Appendix A.4). In contrast, the
KL-based loss in (8) demands to differentiate Xu w.r.t. the
control u, requiring to differentiate through the SDE solver
and resulting in higher computational costs. Particularly
interesting is the following property, sometimes referred to
as sticking-the-landing (Roeder et al., 2017). It states that
the gradients of the log-variance loss have zero variance at
the optimal solution. This property does, in general, not
hold for the KL-based loss, such that variants of gradient
descent might oscillate around the optimum.

Proposition 2.5 (Robustness at the solution). Let L̂LV be
the Monte Carlo estimator of the log-variance loss in (9)
and let the controls u = uθ and v = vγ be parametrized by
θ and γ. The variances of the respective derivatives vanish
at the optimal solution (u∗, v∗) = (uθ∗ , vγ∗), i.e.

V
[
∇θL̂w

LV(uθ∗ , vγ∗)
]
= 0

and
V
[
∇γL̂w

LV(uθ∗ , vγ∗)
]
= 0,

for all w ∈ U . For the Monte Carlo estimator L̂KL of the
KL-based loss in (8) the above variances are, in general,
not vanishing.

Proof. The derivative and its variance can be calculated
using Proposition 2.3, see Appendix A.1 and Nüsken &
Richter (2021).

3. Connections and equivalences of
diffusion-based sampling approaches

In general, there are infinitely many solutions to Problem 2.2
and, in particular, to our objectives (8) and (9). In fact,
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Girsanov’s theorem shows that the objectives only enforce
Nelson’s identity (Nelson, 1967), i.e.,

u∗ + v∗ = σ⊤∇ log pXu∗ = σ⊤∇ log ⃗pY v∗ , (10)

see also the proof of Proposition 2.3. In this section, we
show how our setting generalizes existing diffusion-based
sampling approaches which in turn ensure unique solutions
to Problem 2.2. For each approach, we will derive the
corresponding versions of the log-variance loss (9).

3.1. Schrödinger bridge problem (SB)

Out of all possible solutions u∗ fulfilling (10), the
Schrödinger bridge problem considers the solution u∗ that
minimizes the KL divergence

DKL(PXu∗ |PXr )

to a given reference process Xr, defined as in (3) with u
replaced by r ∈ U . Traditionally, the choice r = 0, i.e., the
uncontrolled process X0 is considered. Defining

f refu,r,w := (u− r) ·
(
w − u+ r

2

)
, (11)

Girsanov’s theorem shows that

dPXu

dPXr

(Xw) = exp
(
Rfref

u,r,w
+ Su−r

)
(Xw), (12)

which implies that

DKL(PXu |PXr ) = E
[
Rfref

u,r,u
(Xu)

]
, (13)

see, e.g., Nüsken & Richter (2021, Lemma A.1) and the
proof of Proposition 2.3. The SB objective can thus be
written as

min
u∈U

E
[
Rfref

u,r,u
(Xu)

∣∣∣Xu
T ∼ ptarget

]
, (14)

see De Bortoli et al. (2021); Caluya & Halder (2021); Pavon
& Wakolbinger (1991); Benamou & Brenier (2000); Chen
et al. (2021b); Bernton et al. (2019). We note that the above
can also be interpreted as an entropy-regularized optimal
transport problem (Léonard, 2014). The entropy constraint
in (13) can also be combined with our objective in (6) by
considering, for instance,

min
u,v∈U×U

{
E
[
Rfref

u,r,u
(Xu)

]
+ λD

(
PXu |P ⃗Y

v

)}
,

where λ ∈ (0,∞) is a sufficiently large Lagrange multiplier.
In Appendix A.2 we show how the SB problem (14) can
be reformulated as a system of coupled PDEs or BSDEs,
which can alternatively be used to regularize Problem 2.2,
see also Liu et al. (2022); Koshizuka & Sato (2022). Inter-
estingly, the BSDE system recovers our KL-based objective
in (8), as originally derived in Chen et al. (2021a).

Note that via Nelson’s identity (10), an optimal solution u∗

to the SB problem uniquely defines an optimal control v∗

and vice versa. For special cases of SBs, we can calculate
such v∗ or an approximation

v̄ ≈ v∗.

Fixing v = v̄ in (6) and only optimizing for u appearing in
the generative process (3) then allows us to attain unique
solutions to (an approximation of) Problem 2.2. We note
that the approximation v̄ ≈ v∗ incurs an irreducible loss
given by

dPXu∗

dP ⃗Y
v̄

(Xw) =
dP ⃗Y

v∗

dP ⃗Y
v̄

(Xw), (15)

thus requiring an informed choice of v̄ and pprior, such
that Y v̄ ≈ Y v∗

. We will consider two such settings in the
following sections.

3.2. Diffusion-based generative modeling (DIS)

We may set
v̄ := 0,

which can be interpreted as a SB with

u∗ = r = σ⊤∇ log ⃗pY 0

and pprior = pY 0
T

, such that the entropy constraint (13) can
be minimized to zero. Note though, that this only leads to
feasible sampling approaches if the functions µ and σ in
the SDEs are chosen such that the distribution of pY 0

T
is

(approximately) known and such that we can easily sample
from it. In practice, one chooses functions µ and σ such that

pY 0
T
≈ pprior := N (0, ν2I),

see Section A.4. Related approaches are often called
diffusion-based generative modeling or denoising diffusion
probabilistic modeling since the (optimally controlled) gen-
erative process Xu∗

can be understood as the time-reversal
of the process Y 0 that moves samples from the target den-
sity to Gaussian noise (Ho et al., 2020; Pavon, 1989; Huang
et al., 2021; Song et al., 2020).

Let us recall the notation from Proposition 2.3 and define

fDIS
u,w := fSBu,0,w = u · w − ∥u∥2

2
−∇ · µ.

Setting v = 0 in (8), we directly get the loss

LKL(u) = E
[(
RfDIS

u,u
+B

)
(Xu)

]
,

which corresponds to the Time-Reversed Diffusion Sampler
(DIS) derived in Berner et al. (2022). From (9), we analo-
gously obtain the related log-variance loss

Lw
LV(u) = V

[(
RfDIS

u,w
+ Su +B

)
(Xw)

]
.
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3.3. Time-reversal of reference processes (PIS & DDS)

In general, we may also set

v̄ := σ⊤∇ log pXr − r.

Via Lemma 2.1 this choice implies

PXr = P ⃗Y
v̄,ref , (16)

where Y v,ref is the process Y v as in (4), however, with
ptarget replaced by the density pref := pXr

T
, i.e.,{

dY v,ref = (− ⃗µ+ ⃗σ ⃗v)(Y v,ref , s) ds+ ⃗σ(s) dWs,

Y v,ref ∼ pref .

Since Y v̄,ref is the time-reversal of the reference process
Xr, we note that the optimal control v∗, corresponding to
the solution u∗ of the SB problem in (14), minimizes

DKL(PY v |P ⃗Y
v̄,ref )

among all controls v with Y v
T ∼ pprior.

Using (7) with pref instead of ptarget = ρ
Z , we obtain that

1 =
dPXr

dP ⃗Y
v̄,ref

(Xw)

=
pprior(X

w
0 )

pref(Xw
T )

exp
(
RfSB

r,v̄,w
+ Sr+v̄

)
(Xw).

(17)

This leads to the following alternative representation
of Proposition 2.3.
Lemma 3.1 (Likelihood w.r.t. reference process). Assuming
(16), it holds that

dPXu

dP ⃗Y
v̄

(Xw) = Z exp
(
Rfref

u,r,w
+ Su−r +Bref

)
(Xw),

where f refu,r,w is defined as in (11) and

Bref(Xw) := log
pref
ρ

(Xw
T ).

Proof. The result follows from dividing (7) by (17).

Note that computing the Radon-Nikodym derivative
in Lemma 3.1 requires to choose r, pprior, µ, and σ such
that pref = pXr

T
is tractable1. For suitable choices of

r (see below), one can, for instance, use the SDEs with
tractable densities stated in Appendix A.3 with pprior = δx0

,
pprior = N (0, ν2I), or a mixture of such distributions. Re-
calling (15) and the choice

v̄ := σ⊤∇ log pXr − r,

we also need to guarantee that Y v̄ ≈ Y v∗
. Let us now

outline two such cases in the following.

1In general, it suffices to be able to compute pXr
T

up to its
normalizing constant.

PIS: We first consider the case r := 0. Lemma 3.1 and
choosing D = DKL in Problem 2.2 then yield the objective

LKL(u) = DKL(PXu |P ⃗Y
v̄ )− logZ

= E
[(
Rfref

u,0,u
+Bref

)
(Xu)

]
.

This objective has previously been considered by Tzen &
Raginsky (2019); Dai Pra (1991) and corresponding nu-
merical algorithms, referred to as Path Integral Sampler
(PIS) in Zhang & Chen (2022), have been independently
presented in Richter (2021); Zhang & Chen (2022); Vargas
et al. (2023b). Choosing D = DLV, we get the correspond-
ing log-variance loss

Lw
LV(u) = V

[(
Rfref

u,0,w
+ Su +Bref

)
(Xw)

]
,

which has already been stated in Richter (2021). Typically,
this objective is used with

pprior := δx0
,

since Doob’s h-transform guarantees that v̄ = v∗, i.e., we
can solve the SB exactly, see Rogers & Williams (2000) and
also Appendix A.2.1. In this special case, the SB is often
referred to as a Schrödinger half-bridge.

DDS: Next, we consider the choices

r := σ⊤∇ log ⃗pY 0,ref , v̄ := 0, and pprior := pY 0,ref
T

,

which yields a special case of the setting from Section 3.2.
Using Lemma 3.1, we obtain the objective

LKL(u) = E
[(
Rfref

u,r,u
+Bref

)
(Xu)

]
.

This corresponds to the Denoising Diffusion Sampler (DDS)
objective stated by Vargas et al. (2023a) when choosing
µ and σ such that Y 0 is a VP SDE, see Appendix A.3.
Choosing the invariant distribution

pref := N (0, ν2I)

of the VP SDE, see (33) in the appendix, we have that

pXr (·, t) = ⃗pY 0,ref (·, t) = pref = pprior, t ∈ [0, T ],

and, in particular,

r(x, t) = −σ
⊤x

ν2
.

The corresponding log-variance loss can now readily be
computed as

Lw
LV(u) = V

[(
Rfref

u,r,w
+ Su−r +Bref

)
(Xw)

]
.

We refer to Table 1 for a comparison of our objectives.
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Table 1. Comparison of the objectives with fSB
u,v,w := (u + v) ·

(
w + v−u

2

)
+ ∇ · (σv − µ), f ref

u,r,w := (u − r) ·
(
w − u+r

2

)
,

B(Xw) := log
pprior(X

w
0 )

ρ(Xw
T

)
, Bref(Xw) := log

pXr
T

ρ
(Xw

T ), and ptarget :=
ρ
Z

.

LKL Lw
LV (ours) pprior v r

SB E
[(
RfSB

u,v,u
+B

)
(Xu)

]
V
[(
RfSB

u,v,w
+ Su+v +B

)
(Xw)

]
arbitrary learned –

DIS E
[(
RfSB

u,0,u
+B

)
(Xu)

]
V
[(
RfSB

u,0,w
+ Su +B

)
(Xw)

]
≈ pY 0

T
0 –

PIS E
[(
Rfref

u,0,u
+Bref

)
(Xu)

]
V
[(
Rfref

u,0,w
+ Su +Bref

)
(Xw)

]
δx0

σ⊤∇ log pX0 0

DDS E
[(
Rfref

u,r,u
+Bref

)
(Xu)

]
V
[(
Rfref

u,r,w
+ Su−r +Bref

)
(Xw)

]
pY 0,ref

T
0 σ⊤∇ log ⃗pY 0,ref

Remark 3.2 (Alternative derivations of Lemma 3.1). The
expression in Lemma 3.1 can also be derived via

dPXu

dP ⃗Y
v̄

(Xw) =
dPXu

dPXr

(Xw)
dP ⃗Y

v̄,ref

dP ⃗Y
v̄

(Xw)

=
dPXu

dPXr

(Xw)
pXr

T

ptarget
(Xw

T ),

where the first factor can be computed as in (12). Yet another
viewpoint is based on importance sampling in path space,
see, e.g., Hartmann et al. (2017). Since our goal is to find an
optimal control u∗ such that we get samples Xu∗

T ∼ ptarget,
we may define our target path space measure PXu∗ via

dPXu∗

dPXr

(Xw) =
ptarget
pXr

T

(Xw
T ).

We can then compute

dPXu

dPXu∗
(Xw) =

dPXu

dPXr

(Xw)
dPXr

dPXu∗
(Xw),

which, together with (12), is equivalent to the expression
in Lemma 3.1. Note that in the importance sampling per-
spective we do not need the concept of time-reversals.

4. Numerical experiments
In this section, we compare the KL-based loss with the log-
variance loss on the three different approaches, SB, PIS,
and DIS, introduced in Sections 2.3, 3.2, and 3.3. As DDS
can be seen as a special case of DIS (both with v̄ = 0),
we do not consider it separately. For our PIS experiments,
we follow the implementation of Zhang & Chen (2022)
and only change the objective to Lw

LV with w = u. For
DIS, we also use the models from Zhang & Chen (2022),
incorporating the density pprior and a variance-preserving

SDE (see Appendix A.4) similar to Berner et al. (2022). For
SB, we analogously approach the general loss (8), which
corresponds to the setting in Chen et al. (2021a) adapted to
unnormalized densities.

We can demonstrate that the appealing properties of the
log-variance loss can indeed lead to significant performance
improvements for all approaches. Note that we always
compare the same settings, in particular, the same number
of target evaluations, for both the log-variance and KL-
based losses and use sufficiently many gradient steps to
reach convergence, see Appendix A.4 for details. Still, we
observe that qualitative differences between the two losses
are consistent across various hyperparameter settings.

4.1. Benchmark problems

We shall evaluate the different methods on the following
three numerical benchmark examples.

Gaussian mixture model (GMM): We consider the density

ρ(x) = ptarget(x) =
1

m

m∑
i=1

N (x;µi,Σi).

Specifically, we choose m = 9, Σi = 0.3 I, and

(µi)
9
i=1 = {−5, 0, 5} × {−5, 0, 5} ⊂ R2

to obtain well-separated modes, see also Figure 2.

Funnel: The 10-dimensional Funnel distribution (Neal,
2003) is a challenging example often used to test MCMC
methods. It is given by the density

ρ(x) = ptarget(x) = N (x1; 0, η
2)

d∏
i=2

N (xi; 0, e
x1)

for x = (xi)
10
i=1 ∈ R10 with η = 3.
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Figure 2. KDE plots of (1) samples from the groundtruth distribution, (2 & 3) PIS with KL divergence and log-variance loss, and (4 & 5)
DIS with KL divergence and log-variance loss for the GMM problem (from left to right). One can clearly see that the log-variance loss
does not suffer from the mode collapse of the reverse KL divergence, which only recovers the mode of pprior = N (0, I).
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Figure 3. Marginals of the first two coordinates (left and right) of samples from PIS and DIS (top and bottom) for the DW problem with
d = 5, m = 5, δ = 4. Again one observes the mode coverage of the log-variance loss as compared to the reverse KL divergence.

Double well (DW): A typical problem in molecular dynam-
ics considers sampling from the stationary distribution of
a Langevin dynamics. In our example we shall consider a
d-dimensional double well potential, corresponding to the
(unnormalized) density

ρ(x) = exp

(
−

m∑
i=1

(x2i − δ)2 − 1

2

d∑
i=m+1

x2i

)

with m ∈ N combined double wells and a separation pa-
rameter δ ∈ (0,∞), see also Wu et al. (2020) and Figure 3.
Note that, due to the double well structure of the potential,
the density contains 2m modes. For these multimodal ex-
amples we can compute a reference solutions by numerical
integration since ρ factorizes in the dimensions.

4.2. Results

Let us start with the SB approach and the general losses
in (8) and (9). Table 2 shows that the log-variance loss
can improve our considered metrics. However, we note
that choosing an appropriate prior pprior (with sufficient
mass at the modes of the target) was necessary to make
our algorithms converge, see Appendix A.4. While the
general setting of SB enables us to incorporate such prior
knowledge, the framework suffers from reduced efficiency

and numerical instabilities. These issues are commonly
observed in the context of SBs (De Bortoli et al., 2021; Chen
et al., 2021a; Fernandes et al., 2021) and might be rooted in
the non-uniqueness of the optimal control (cf. Section 3.1)
and the fact that two controls need to be optimized. For
the more challenging problems, the SB approach did not
achieve satisfying results. Since such pathologies do not
appear in the special cases of DIS and PIS, we shall focus
on them separately in the sequel.

We observe that the log-variance loss significantly improves
both DIS and PIS across our considered benchmark prob-
lems and metrics, see Table 3. The improvements are quite
remarkable considering that we only replaced the KL-based
loss LKL by the log-variance loss LLV without tuning the hy-
perparameter for the latter loss. In the few cases, where the
KL divergence performs better, the difference seems rather
insignificant. In particular, Figures 2 and 3 show that the
log-variance loss successfully counteracts mode-collapse,
leading to quite substantial improvements.

5. Conclusion
In this work, we provide a novel unifying perspective on
diffusion-based generative modeling that is based on path
space measures of time-reversed diffusion processes. In



Improved sampling via learned diffusions

Table 2. SB metrics for selected benchmark problems of two dimensions d. We report (average) errors for estimating the log-normalizing
constant logZ as well the standard deviations (std) of the marginals. Furthermore, we report the normalized effective sample size (ESS)
and, for problems where we can compute reference samples (i.e., GMM and Funnel), we report the Sinkhorn distance W2

γ (Cuturi, 2013).
The arrows ↑ and ↓ indicate whether we want to maximize or minimize a given metric and the better loss is formatted bold.

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM (d = 2) SB KL (Chen et al., 2021a) 0.174 0.062 0.7416 0.221
LV (ours) 0.266 0.058 0.9427 0.148

DW (d = 5,m = 5, δ = 4) SB KL (Chen et al., 2021a) 14.204 - 0.0157 0.506
LV (ours) 12.538 - 0.3035 0.050

Table 3. PIS and DIS metrics for the benchmark problems of various dimension d. We report the median over five independent runs,
see Figure 4 for a corresponding boxplot. Note that we omit the Sinkhorn distance W2

γ on DW as ground-truth samples are not available.

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓

GMM (d = 2) PIS KL (Zhang & Chen, 2022) 2.146 1.587 0.0009 3.425
LV (ours) 0.049 0.020 0.9021 0.032

DIS KL (Berner et al., 2022) 1.708 0.080 0.0085 2.718
LV (ours) 0.060 0.020 0.8590 0.017

Funnel (d = 10) PIS KL (Zhang & Chen, 2022) 0.389 5.947 0.0333 6.880
LV (ours) 0.357 5.819 0.0732 6.628

DIS KL (Berner et al., 2022) 0.547 5.111 0.1233 5.361
LV (ours) 0.499 5.170 0.1998 5.143

DW (d = 5,m = 5, δ = 4) PIS KL (Zhang & Chen, 2022) 3.672 - 0.0001 1.793
LV (ours) 0.228 - 0.6537 0.003

DIS KL (Berner et al., 2022) 3.989 - 0.0152 1.712
LV (ours) 0.401 - 0.4335 0.002

DW (d = 50,m = 5, δ = 2) PIS KL (Zhang & Chen, 2022) 0.192 - 0.6739 0.004
LV (ours) 0.110 - 0.8099 0.002

DIS KL (Berner et al., 2022) 23.405 - 0.0000 0.185
LV (ours) 22.889 - 0.0000 0.186

principle, this perspective allows to consider arbitrary diver-
gences between such measures as objectives for the corre-
sponding task of interest.

While the KL divergence yields already known objectives,
we find that choosing the log-variance divergence leads to
novel algorithms which are particularly useful for the task of
sampling from (unnormalized) densities. Specifically, this
divergence exhibits beneficial properties, such as lower vari-
ance, computational efficiency, and exploration-exploitation
trade-offs. We can demonstrate in multiple numerical exam-
ples that the the log-variance loss greatly improves sampling
quality across a range of metrics. We believe that problem
and approach-specific finetuning might further enhance the
performance of the log-variance loss, thereby paving the
way for competitive diffusion-based sampling approaches.

Based on our work, one could also explore more diver-
gences, e.g., the family of α-divergences, see Minka et al.
(2005). Finally, we anticipate further performance improve-
ments by combining diffusion-based samplers with neural
solvers for the optimality PDEs or MCMC methods, as has
been successfully done for normalizing flows (Wu et al.,
2020; Midgley et al., 2022; Máté & Fleuret, 2023).
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via neural Schrödinger–Föllmer flows. Statistics and
Computing, 33(1):1–22, 2023b.



Improved sampling via learned diffusions

Wainwright, M. J., Jordan, M. I., et al. Graphical models,
exponential families, and variational inference. Foun-
dations and Trends in Machine Learning, 1(1–2):1–305,
2008.
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A. Appendix
A.1. Proofs

Proof of Proposition 2.3. Let us define the path space measuresPXu,x andP ⃗Y
v,x as the measures ofXu and ⃗Y

v
conditioned

on Xu
0 = x and ⃗Y

v

0 = x with x ∈ Rd, respectively. We can then compute

log
dPXu

dP ⃗Y
v
(Xw) = log

dPXu,x

dP ⃗Y
v,x

(Xw) + log
dPXu

0

dP ⃗Y
v

0

(Xw
0 ) = log

dPXu,x

dP ⃗Y
v,x

(Xw) + log
pprior(X

w
0 )

p ⃗Y
v (Xw

0 , 0)
. (18)

We follow Liu et al. (2022) and first note that the time-reversal of the process Y v defined in (4) is given by

d ⃗Y
v

s = (µ+ σσ⊤∇g − σv)( ⃗Y
v

s , s) ds+ σ(s) dWs,

where we abbreviate g := log ⃗pY v , see Lemma 2.1. Let us further define the short-hand notations h := u+ v − σ⊤∇g and
b := µ+ σ(u− h). Then, we can write the SDEs in (3) and (4) as{

dXu
s = (b+ σh)(Xu

s , s) ds+ σ(s) dWs,

d ⃗Y
v

s = b( ⃗Y
v

s , s) ds+ σ(s) dWs.

We can now apply Girsanov’s theorem (see, e.g., Nüsken & Richter, 2021, Lemma A.1) to rewrite the logarithm of the
Radon-Nikodym derivative in (18) as

log
dPXu,x

dP ⃗Y
v,x

(Xw) =

∫ T

0

(
σ−⊤h

)
(Xw

s , s) · dXw
s −

∫ T

0

(
σ−1b · h

)
(Xw

s , s) ds−
1

2

∫ T

0

∥h(Xw
s , s)∥2 ds

=

∫ T

0

(
(w − u) · h+

1

2
∥h∥2

)
(Xw

s , s) ds+ Sh(X
w)

=

∫ T

0

(
(w − u) ·

(
u+ v − σ⊤∇g

)
+

1

2
∥u+ v − σ⊤∇g∥2

)
(Xw

s , s) ds+ Sh(X
w)

= RfSB
u,v,w

−
∫ T

0

(
∇ · (σv − µ) + (v + w) · σ⊤∇g − 1

2
∥σ⊤∇g∥2

)
(Xw

s , s) ds+ Sh(X
w),

(19)

Further, we may apply Itô’s lemma to the function g to get

g(Xw
T , T )− g(Xw

0 , 0) =

∫ T

0

(
∂sg +∇g · (µ+ σw) +

1

2
Tr
(
σσ⊤∇2g

) )
(Xw

s , s) ds+

∫ T

0

σ⊤∇g(Xw
s , s) · dWs.

Noting that g = log p ⃗Y
v fulfills the Hamilton-Jacobi-Bellman equation (see, e.g., Berner et al., 2022)

∂sg = −1

2
Tr
(
σσ⊤∇2g

)
+ (σv − µ) · ∇g +∇ · (σv − µ)− 1

2
∥σ⊤g∥2,

we get

g(Xw
T , T )− g(Xw

0 , 0) =

∫ T

0

(
∇ · (σv − µ) + (v + w) · σ⊤∇g − 1

2
∥σ⊤g∥2

)
(Xw

s , s) +

∫ T

0

σ⊤∇g(Xw
s , s) · dWs.

Finally, combining this with (18) and (19) and noting that

g(Xw
T , T ) = log p ⃗Y

v (Xw
T , T ) = log pY v (Xw

T , 0) = ptarget(X
w
T ),

yields the desired expression.

Proof of Proposition 2.5. Let us first recall the notion of Gâteaux derivatives, see Siddiqi & Nanda (1986, Section 5.2). We
say that L : U × U → R≥0 is Gâteaux differentiable at u ∈ U if for all v, ϕ ∈ U the mapping

ε 7→ L(u+ εϕ, v)



Improved sampling via learned diffusions

is differentiable at ε = 0. The Gâteaux derivative of L w.r.t. u in direction ϕ is then defined as

δ

δu
L(u, v;ϕ) := d

dε

∣∣∣
ε=0

L(u+ εϕ, v).

The derivative of L w.r.t. v is defined analogously. Let now u = uθ and v = vγ be parametrized2 by θ ∈ Rp and γ ∈ Rp.
Relating the Gâteaux derivatives to partial derivatives w.r.t. θ and γ, respectively, let us note that we are particularly interested
in the directions ϕ = ∂θiuθ and ϕ = ∂γi

vγ for i ∈ {1, . . . , p}. This choice is motivated by the chain rule of the Gâteaux
derivative, which, under suitable assumptions, states that

∂θiL(uθ, vγ) =
δ

δu

∣∣∣
u=uθ

L (u, vγ ; ∂θiuθ) and ∂γiL(uθ, vγ) =
δ

δv

∣∣∣
v=vγ

L (uθ, v; ∂γivγ) .

Analogous to the computations in Nüsken & Richter (2021), the Gâteaux derivatives of the Monte Carlo estimator L̂w
LV of

the log-variance loss Lw
LV in (9) with K ∈ N samples is given by

δ

δu
L̂w
LV(u, v;ϕ) =

2

K

K∑
k=1

Au,v,w,(k)

((
Rfgen

u,w,ϕ
+ S

(k)
ϕ

)
(Xw,(k))− 1

K

K∑
i=1

(
Rfgen

u,w,ϕ
+ S

(i)
ϕ

)
(Xw,(i))

)
, (20)

where the superscript (k) denotes the index of the k-th i.i.d. sample in the Monte Carlo estimator L̂w
LV and we define the

short-hand notations

Au,v,w,(k) :=
(
RfSB

u,v,w
+ S

(k)
u+v +B

)
(Xw,(k)) + logZ and fgenu,w,ϕ = (w − u) · ϕ.

Now, note that the definition of the log-variance loss and Proposition 2.3 imply that for the optimal choices u = u∗, v = v∗

it holds that
Au∗,v∗,w,(k) = 0

almost surely for every k ∈ {1, . . . ,K} and w ∈ U . This readily implies the statement for the derivative w.r.t. the control
uγ . The analogous statement holds true for the derivative w.r.t. vγ , as we can compute

δ

δv
L̂w
LV(u, v;ϕ) =

2

K

K∑
k=1

Au,v,w,(k)

((
Rf inf

v,w,ϕ
+ S

(k)
ϕ

)
(Xw,(k))− 1

K

K∑
i=1

(
Rf inf

v,w,ϕ
+ S

(i)
ϕ

)
(Xw,(i))

)
,

where
f infv,w,ϕ = (v + w) · ϕ+∇ · (σϕ).

For the derivative of the Monte Carlo version of the loss LKL as defined in (8) w.r.t. to v we may compute

δ

δv
L̂KL(u, v;ϕ) =

1

K

K∑
k=1

∫ T

0

((u+ v) · ϕ+∇ · (σϕ)) (Xu,(k)
s , s) ds.

We note that even for u = u∗ and v = v∗ we can usually not expect the variance of the corresponding Monte Carlo estimator
to be zero. For the computation of the derivative w.r.t. u we refer to Nüsken & Richter (2021, Proposition 5.3).

Remark A.1 (Control variate interpretation). For the gradient of the loss LKL w.r.t. to u we may compute

δ

δu
LKL(u, v;ϕ) = E

[∫ T

0

((u+ v) · ϕ) (Xu
s , s) ds+

(
RfSB

u,v,u
(Xu) +B(Xu)

)
Sϕ(X

u)

]
= E

[
Au,v,uSϕ(X

u)

]
,

where we used Girsanov’s theorem and the Itô isometry. Comparing with (20), we realize that the derivative of LLV w.r.t. u
for the choice w = u can be interpreted as a control variate version of the derivative of LKL, thereby promising reduced
variance of the corresponding Monte Carlo estimators, cf. Nüsken & Richter (2021); Richter et al. (2020).

2We only assume that θ and γ are in the same space Rp for notational simplicity.
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A.2. The Schrödinger bridge problem

In the following, we will formulate optimality conditions for the Schrödinger bridge problem defined in (14) for the standard
case r = 0. Moreover, we outline how the associated system of BSDE system leads to the same losses as given in (8)
and (9), respectively. The ideas are based on Chen et al. (2021a); Vargas (2021); Liu et al. (2022); Caluya & Halder (2021).

First, we can define the

ϕ(x, t) := min
u∈U

E

[∫ T

t

1

2
∥u(Xu

s , s)∥2 ds

∣∣∣∣∣Xu
t = x, Xu

T ∼ ptarget

]
.

By the dynamic programming principle it holds that ϕ solves the Hamilton-Jacobi-Bellman (HJB) equation

∂tϕ = −µ · ∇ϕ− 1

2
Tr
(
σσ⊤∇2ϕ

)
+

1

2

∥∥σ⊤∇ϕ
∥∥2 (21)

(with unknown boundary conditions) and that the optimal control satisfies

u∗ = −σ⊤∇ϕ.

Together with the corresponding Fokker-Planck equation for Xu∗
, this yields necessary and sufficient conditions for the

solution to (13). Now, we can transform the Fokker-Planck equation and the HJB equation (21) into a system of linear
equations, using the exponential transform

ψ := exp(−ϕ) and ψ̂ := pXu∗ exp(ϕ) =
pXu∗

ψ
, (22)

often referred to as the Hopf-Cole transform. This yields the following well-known optimality conditions of the Schrödinger
Bridge problem defined in (14).

Theorem A.2 (Optimality PDEs). The solution u∗ to the Schrödinger Bridge problem (14) is equivalently given by

1. u∗ := −σ⊤∇ϕ, where pXu∗ and ϕ are the unique solutions to the coupled PDEs{
∂tpXu∗ = −∇ ·

(
pXu∗ (µ− σσ⊤∇ϕ)

)
+ 1

2 Tr
(
σσ⊤∇2pXu∗

)
∂tϕ = −µ · ∇ϕ− 1

2 Tr
(
σσ⊤∇2ϕ

)
+ 1

2

∥∥σ⊤∇ϕ
∥∥2,

with boundary conditions {
pXu∗ (·, 0) = pprior,

pXu∗ (·, T ) = ptarget.

2. u∗ := σ⊤∇ logψ, where ψ and ψ̂ are the the unique solutions to the PDEs{
∂tψ = −∇ψ · µ− 1

2 Tr
(
σσ⊤∇2ψ

)
,

∂tψ̂ = −∇ ·
(
ψ̂µ
)
+ 1

2 Tr
(
σσ⊤∇2ψ̂

)
,

(23)

with coupled boundary conditions {
ψ(·, 0)ψ̂(·, 0) = pprior,

ψ(·, T )ψ̂(·, T ) = ptarget.
(24)

The optimal control v∗ is given by Nelson’s identity (10), i.e.,

v∗ = σ⊤∇ log pXu∗ − u∗ = σ⊤∇ log ψ̂. (25)

Using Itô’s lemma, we now derive a BSDE system corresponding to the PDE system in (23).
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Proposition A.3 (BSDEs for the SB problem). Let us assume ψ and ψ̂ fulfill the PDEs (23) with boundary conditions (24)
and let us define the processes 

Yw
s = logψ(Xw

s , s),

Ŷw
s = log ψ̂(Xw

s , s),

Zw
s = σ⊤∇ logψ(Xw

s , s) = u∗(Xw
s , s),

Ẑw
s = σ⊤∇ log ψ̂(Xw

s , s) = v∗(Xw
s , s),

where the process Xw is given by
dXw

s = (µ+ σw)(Xw
s , s) ds+ σ(s) dWs

with w ∈ U being an arbitrary control function. We then get the BSDE system{
dYw

s =
(
Zw

s · w(Xw
s , s)− 1

2∥Z
w
s ∥2

)
ds+ Zw

s · dWs,

dŶw
s =

(
1
2∥Ẑ

w
s ∥2 +∇ · (σẐw

s − µ(Xw
s , s)) + Ẑw

s · w(Xw
s , s)

)
ds+ Ẑw

s · dWs.

Furthermore, it holds
Yw
s + Ŷw

s = log pXu∗ (Xw
s , s) = log ⃗pY v∗ (Xw

s , s). (26)

Proof. The proof is similar to the one in Chen et al. (2021a). For brevity, we define D = 1
2σσ

⊤. We can apply Itô’s lemma
to the stochastic process Yw

s = logψ(Xw
s , s) and get

dYw
s =

(
∂s logψ +∇ logψ · (µ+ σw) + Tr

(
D∇2 logψ

))
(Xw

s , s) ds+ σ⊤∇ logψ(Xw
s , s) · dWs. (27)

Further, via (23) it holds

∂s logψ =
1

ψ

(
−∇ψ · µ− Tr

(
D∇2ψ

))
= −∇ logψ · µ− Tr

(
D∇2ψ

ψ

)
, (28)

and we note the identity

∇2 logψ =
∇2ψ

ψ
− ∇ψ (∇ψ)⊤

ψ2
. (29)

Combining (27), (28), and (29), we get

dYw
s =

(
σ⊤∇ logψ · w − Tr

(
D
∇ψ (∇ψ)⊤

ψ2

))
(Xw

s , s) ds+ σ⊤∇ logψ(Xw
s , s) · dWs

=

(
Zw

s · w(Xw
s , s)−

1

2
∥Zw

s ∥2
)

ds+ Zw
s · dWs.

Similarly, we may apply Itô’s lemma to Ŷw
s = log ψ̂(Xw

s , s) and get

dŶw
s =

(
∂s log ψ̂ +∇ log ψ̂ · (µ+ σw) + Tr

(
D∇2 log ψ̂

))
(Xw

s , s) ds+ σ⊤∇ log ψ̂(Xw
s , s) · dWs. (30)

Now, via (23) it holds that

∂s log ψ̂ =
1

ψ̂

(
−∇ ·

(
ψ̂µ
)
+Tr

(
D∇2ψ̂

))
= −∇ log ψ̂ · µ−∇ · µ+Tr

(
D∇2ψ̂

ψ̂

)
. (31)

Combining (30) and (31), we get

d log ψ̂(Xw
s , s) =

(
Tr

(
D
∇2ψ̂

ψ̂
+D∇2 log ψ̂

)
−∇ · µ+ σ⊤∇ log ψ̂ · w

)
(Xw

s , s) ds+ σ⊤∇ log ψ̂(Xw
s , s) · dWs.

Now, noting the identity

Tr

(
D
∇2ψ̂

ψ̂
+D∇2 log ψ̂

)
= 2Tr

(
D
∇2ψ̂

ψ̂

)
− 1

2
∥σ⊤∇ log ψ̂∥2 =

1

2
∥σ⊤∇ log ψ̂∥2 +∇ ·

(
σσ⊤∇ log ψ̂

)
,
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we can get the relation

dŶw
s =

(1
2
∥σ⊤∇ log ψ̂∥2 +∇ ·

(
σσ⊤∇ log ψ̂ − µ

)
+ σ⊤∇ log ψ̂ · w

)
(Xw

s , s) ds+ σ⊤∇ log ψ̂(Xw
s , s) · dWs

=
(1
2
∥Ẑw

s ∥2 +∇ · (σẐw
s − µ) + Ẑw

s · w
)
(Xw

s , s) ds+ Ẑw · dWs,

which concludes the proof.

Note that the BSDE system is slightly more general than the one introduced in Chen et al. (2021a), which can be recovered
with the choice w(Xw

s , s) = Zw
s . Also, the roles of pprior and ptarget are interchanged in Chen et al. (2021a) since they

consider generative modeling instead of sampling from densities.

A valid loss can now be derived by adding the two BSDEs and recalling relation (26), which yields

log
ptarget(X

w
T )

pprior(Xw
0 )

=

∫ T

0

(
(Zw

s + Ẑw
s ) ·

(
w +

Ẑw
s −Zw

s

2

)
+∇ ·

(
σẐw

s − µ
))

(Xw
s , s) ds+

∫ T

0

(
Zw

s + Ẑw
s

)
· dWs

almost surely. Analogous to Berner et al. (2022); Huang et al. (2021) in generative modeling, the above equality suggests
a parameterized lower bound of the log-likelihood log pprior when replacing the optimal controls in Zw

s = u∗(Xw, s)

and Ẑw
s = v∗(Xw

s , s) with their approximations u and v, see Chen et al. (2021a). This lower bound exactly recovers the
loss given in (8). Further, note that variance of the left-hand minus the right-hand side is zero, which readily yields our
log-variance loss as defined in (9).

A.2.1. SCHRÖDINGER HALF-BRIDGES (PIS)

For the Schrödinger half-bridge, also referred to as PIS, introduced in Section 3.3, we can find an alternative derivation,
motivated by the PDE perspective outlined in Appendix A.2. For this derivation it is crucial that we assume the prior density
to be concentrated at a single point, i.e., pprior := δx0 for some x0 ∈ Rd (typically x0 = 0), see Tzen & Raginsky (2019);
Dai Pra (1991). We can recover the corresponding objectives by noting that, in the case pprior = δx0 , the system of PDEs
in (23) can be decoupled. More precisely, we observe that the second equation in (23) is the Fokker-Planck equation of X0

and we have that
ψ̂ = pXu∗ exp(ϕ) = pX0 and ψ̂(·, 0) = pX0

0
= δx0

.

In view of (25), we note that this defines v∗ = σ⊤∇ log pX0 . By (22), we observe that ψ =
p
Xu∗

pX0
, which yields the

boundary condition

ϕ(·, T ) = − logψ(·, T ) = log
pX0

T

ptarget
= log

ZpX0
T

ρ

to the HJB equation in (21). By the verification theorem (Dai Pra, 1991; Pavon, 1989; Nüsken & Richter, 2021; Fleming &
Soner, 2006; Pham, 2009), we thus obtain the PIS objective

LKL(u) = E

[∫ T

0

1

2
∥u(Xu

s , s)∥2 ds+ log
pX0

T
(Xu

T )

ρ(Xu
T )

]
= E

[(
Rfref

u,0,u
+Bref

)
(Xu)

]
.

Moreover, the optimal control is given by u∗ = −σ⊤∇ϕ = σ⊤∇ logψ. We can also derive this objective from the BSDE
system in Proposition A.3. Since ψ̂(·, 0) = δx0 , we may focus on the process Yw

s = logψ(Xw
s , s) only and get

Yw
T − Yw

0 =

∫ T

0

Zw
s · w(Xw

s , s)−
1

2
∥Zw

s ∥2 ds+
∫ T

0

Zw
s · dWs.

The PIS objective now follows by choosing w(Xw
s , s) = Zw

s and noting that

Yw
T = logψ(Xw

T , T ) = log
ptarget
pX0

T

(Xw
T ).

Recalling our notation in (1) and (2), this also shows that the log-variance loss can be written as

Lw
LV(u) = V

[(
Rfref

u,0,w
+ Su +Bref

)
(Xw)

]
.



Improved sampling via learned diffusions

A.3. Tractable SDEs

Let us present some commonly used SDEs of the form

dXu
s = µ(Xu

s , s) ds+ σ(s) dWs

with affine drifts that have tractable marginals conditioned on their initial value, see Song et al. (2020). For notational
convenience, let us define

α(t) :=

∫ t

0

β(s)ds

with suitable β ∈ C([0, T ], (0,∞)).

Variance-Preserving (VP) SDE: This Ornstein-Uhlenbeck process is given by

σ(t) := ν
√
2β(t) I and µ(x, t) := −β(t)x.

with ν ∈ (0,∞). Then, we have that

Xt|X0 ∼ N
(
e−α(t)X0, ν

2
(
1− e−2α(t)

)
I
)
.

This shows that for α(T ) sufficiently large it holds that XT ≈ N
(
0, ν2I

)
. For X0 ∼ N (m,Σ), we further have that

Xt ∼ N
(
e−α(t)m, e−2α(t)

(
Σ− ν2I

)
+ ν2I

)
. (33)

Variance-exploding (VE) SDE / scaled Brownian motion: This SDE is given by a scaled Brownian motion, i.e., µ := 0
and σ as defined above. It holds that

Xt|X0 ∼ N
(
X0, 2ν

2α(t)I
)
.

For X0 ∼ N (m,Σ), we thus have that
Xt ∼ N

(
m, 2ν2α(t)I + Σ

)
.

A.4. Computational details

In our implementations, we generally follow the settings and hyperparameters of PIS in Zhang & Chen (2022). The main
difference is that we observed better performance (for all considered methods and losses) by choosing more steps for the SDE
solver, larger batch sizes, and more gradient steps during training. We thus always used 200 steps for the Euler-Maruyama
scheme, a batch size of 2048, and 60000 gradient steps for the experiments with d ≤ 10 and 120000 gradient steps otherwise.
However, we observed that the differences between the losses are already visible before convergence, see, e.g., Figure 1.

For DIS, we replace the pinned Brownian motion of Zhang & Chen (2022) by the VP-SDE in Song et al. (2020). Specifically,
we use ν := 1 and

β(t) := (1− t)βmin + tβmax, t ∈ [0, 1],

with βmin = 0.05 and βmax = 5, see Appendix A.3. Similar to PIS, we also use the score of the density ∇ log ρ (typically
given in closed-form or evaluated via automatic differentiation) for the parametrization of the control u.

For the SB examples reported in Table 2, we chose the same setting as in the PIS and DIS experiments. One difference
is, however, that we are free to choose the prior density pprior as well as the drift function µ in the SDEs (3) and (4). We
choose µ = 0, noting that more sophisticated, potentially problem-specific choices might be investigated in future studies.
We observed that for the double well example with d = 5 it was sufficient to choose pprior = N (0, I). For the GMM and
the high-dimensional double well example, on the other hand, the experiments did not properly converge using the Gaussian
prior. In case of the GMM example, choosing the uniform density pprior = 1

2561[−8,8]2 , helped the model to converge while
detecting all nine modes.

For the log-variance loss, we used the default choice of w := u, i.e., Xw := Xu. We emphasize that we do not need to
differentiate w.r.t. w, which results in reduced training times, see Figure 4. In practice, we detachXw from the computational
graph, which can be achieved by the detach and stop gradient operations in PyTorch and TensorFlow, respectively.
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We leave other choices of w to future research and anticipate that choosing noisy versions of u in the initial phase of training
might lead to even better exploration and performance. Furthermore, we use the same hyperparameters for the log-variance
loss as for the KL-based loss. As these settings originate form Zhang & Chen (2022) and have been tuned for the KL-based
loss, we suspect that optimizing the hyperparameters for the log-variance loss can lead to further improvements.

To evaluate our metrics, we consider n = 105 samples (x(i))ni=1 and use the ELBO as an approximation to the log-
normalizing constant logZ, see Appendix A.4.1. We further compute the (normalized) effective sample size

ESS :=

(∑n
i=1 w

(i)
)2

n
∑n

i=1

(
w(i)

)2 ,
where (w(i))ni=1 are the importance weights of the samples (x(i))ni=1 in path space. Finally, we estimate the Sinkhorn
distance3 W2

γ (Cuturi, 2013) and report the error for estimating the average standard deviation across the marginals, i.e.,

std :=
1

d

d∑
k=1

√
V[Gk], where G ∼ ptarget.

A.4.1. COMPUTATION OF LOG-NORMALIZING CONSTANT

For the computation of the log-normalizing constant in the general SB setting, Proposition 2.3 ensures that for the optimal
u∗ and v∗ it holds that

logZ = −
(
RfSB

u∗,v∗,u∗
+ Su∗+v∗ +B

)
(Xu∗

)

Using approximations of u∗ and v∗, the ELBO yields a lower bound to logZ. For PIS and DIS, the log-normalizing
constants can be computed analogously, see also Zhang & Chen (2022); Berner et al. (2022).

A.5. Further experiments

In Figure 4 we present boxplots to show that our results from Table 3 are robust w.r.t. different seeds.

3Our implementation is based on https://github.com/fwilliams/scalable-pytorch-sinkhorn with the default
parameters.

https://github.com/fwilliams/scalable-pytorch-sinkhorn
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Figure 4. Boxplots for five independent runs for each problem and method (KL-PIS, LV-PIS (ours), KL-DIS, LV-DIS (ours) from left
to right in each plot) in the settings of Table 3 and corresponding ground truth or optimal values (dashed lines). It can be seen that the
performance improvements of the log-variance loss are robust across different seeds. At the same time, the log-variance loss reduces the
average time per gradient step by circumventing differentiation through the SDE solver.


