DecoupleRAG: Decoupling Planning and Searching in Agentic RAG via
Hierarchical Reward Modeling

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) sys-
tems have emerged as a pivotal methodology
for enhancing Large Language Models (LLMs)
through the dynamic integration of external
knowledge. To further improve RAG’s flex-
ibility, Agentic RAG introduces autonomous
agents into the workflow. However, Agentic
RAG faces several challenges: (1) the success
of each step depends on both high-quality plan-
ning and accurate searching, (2) the lack of
supervision for intermediate reasoning steps,
and (3) the exponentially large candidate space
for planning and searching. To address these
challenges, we propose DecoupleRAG, a novel
framework that decouples planning and search-
ing processes using dual value models, en-
abling independent optimization of plan rea-
soning and search grounding. Our approach
constructs a reasoning tree, where each node
represents planning and searching steps. We
leverage Monte Carlo Tree Search to assess the
quality of each step. During inference, Hierar-
chical Beam Search iteratively refines planning
and searching candidates with dual value mod-
els. Extensive experiments across policy mod-
els of varying parameter sizes, demonstrate the
effectiveness of our method.

1 Introduction

Large Language Models (LLMs) (Taylor et al.,
2022; Chowdhery et al., 2022; Zhao et al., 2023)
have demonstrated remarkable performance across
a wide range of downstream tasks (Xia et al.,
2024; Yamauchi et al., 2023; Imani et al., 2023;
Lewkowycz et al., 2022). Despite these advance-
ments, LLLMs remain susceptible to generating re-
sponses that include hallucinated facts (Ji et al.,
2023; Shuster et al., 2021; Zhang et al., 2023),
undermining their reliability. To address this chal-
lenge, Retrieval-Augmented Generation (RAG) has
been proposed, integrating external knowledge to
enhance the generation process (Ram et al., 2023;

(O Pruned Node
(O Selected Node

Q Planning @ @ @

@ Searching

Where was the inventor of
theory of relativity born?

Q Planning
Q Searching

Final Answer

Kingdom of Wiirttemberg 0

Figure 1: The illustration of Hierarchical Beam Search.
During planning, the policy model generates and prunes
candidate plans using the planning value model. During
searching, it generates queries, retrieves documents, and
prunes results using the searching value model. This
process iterates until the final answer is reached.

Shi et al., 2023; Rashkin et al., 2021; Gao et al.,
2022; Bohnet et al., 2022; Menick et al., 2022).

While RAG systems have led to significant im-
provements, they still face important limitations.
These systems rely on static workflows and strug-
gle to effectively handle multi-step reasoning or
complex tasks. A promising solution to these limi-
tations is Agentic Retrieval-Augmented Generation
(Agentic RAG), which introduces autonomous Al
agents into the RAG pipeline (Asai et al., 2023; Yu
et al., 2024; Chen et al., 2024d; Li et al., 2025). In
this framework, the reasoning process typically in-
volves two phases: planning and searching. During
the planning phase, the agent analyzes the current
reasoning process and determines which informa-
tion is still required. In the searching phase, the
agent generates search queries to retrieve relevant
external documents. These phases alternate itera-
tively until a final answer is produced.

Although Agentic RAG shows superior perfor-
mance, it faces several inherent challenges: (1) The

success of the reasoning process depends not only
on high-quality planning but also on the accuracy
of the retrieved information. While planning can
be improved with high-quality training data and
sophisticated pipelines, ensuring accurate retrieval
remains challenging, as it depends on both the qual-
ity of the generated queries and the retrieval sys-
tem’s performance. (2) Evaluating the quality of
each reasoning step is difficult due to the lack of
explicit supervision signals. Most RAG datasets
only provide final answers without feedback on
intermediate steps, making it hard to assess and im-
prove the quality of individual reasoning stages. (3)
The exponential candidate space for planning and
searching creates a large, computationally intensive
search space, making it challenging to efficiently
identify optimal paths.

To address these challenges, we propose Decou-
pleRAG, a novel Agentic RAG framework that
decouples planning and searching processes us-
ing dual value models. To enhance the success
probability of each reasoning step, we introduce
planning exploration and searching exploration
phases. The policy model generates multiple poten-
tial plans, which are evaluated by a planning value
model to select the most promising options. Based
on these plans, the policy model generates multi-
ple queries to retrieve relevant documents. These
search results are then ranked by the searching
value model to ensure the reliability of the retrieval
process. To efficiently assess the quality of each
reasoning step, we introduce Monte Carlo Tree
Search (MCTS) (Silver et al., 2017) to guide the
exploration of potential reasoning paths. During
MCTS simulations, the LLM acts as the judge to
evaluate the quality of both the planning and search-
ing results, separately. Through iterative MCTS
simulations, the rewards derived from final answer
correctness are back-propagated to update the LLM
scores, refining the LLM’s scores and correcting
potential inaccuracies. To combat the exponen-
tial search space, we propose pruning the plan-
ning and searching spaces using a planning value
model and a searching value model. These models
are trained on reward signals derived from the rea-
soning tree constructed through MCTS annotation.
During inference, we employ Hierarchical Beam
Search. At each step, the policy model generates
multiple plans, which are evaluated by the plan-
ning value model to retain only the most promising
ones. Based on these plans, the policy model gener-
ates search queries to retrieve relevant documents.

The searching value model then evaluates the re-
trieved results, preserving only the most valuable
ones. This iterative process continues until either
the maximum depth is reached or no further nodes
can be expanded, ensuring effective reasoning.

To summarize, our contributions can be summa-
rized as follows:

* We introduce DecoupleRAG, a novel Agen-
tic RAG framework that decouples planning-
searching processes with dual value models, en-
abling independent optimization of plan reason-
ing and search grounding.

* We propose improving the success rate of each
step by fully exploring the planning and search-
ing spaces. We utilize MCTS to accurately as-
sess planning and searching quality, while Hier-
archical Beam Search is employed to efficiently
prune the exponential candidate space.

» Extensive experiments on five datasets across
policy models of different parameter sizes
demonstrate the effectiveness of our method.

2 Background

In Agentic RAG, given a user query g, the policy
model conducts multi-step reasoning and retrieves
external knowledge to produce the final answer.
Each step typically involves two stages: planning
and searching. In the planning stage, the policy
model M reasons based on the interaction history
T¢—1 and generates a plan p;:

pr = M(1-1),

where 7¢—1 = {¢,p1,q1,d1, - -, Pt—1,G—1,dr—1}
represents the previous reasoning path.

In the searching stage, the policy model gen-
erates search queries and retrieves external docu-
ments using an off-the-shelf search engine:

q = M(Ti-1,p1), (D
d; = Retrieve(q;), 2)

where d; denotes the retrieved documents.

The success of each step depends on two key fac-
tors: the quality of the planning and the precision
of the searching. While planning can be improved
through high-quality training data, searching is sub-
ject to uncertainties due to challenges in query for-
mulation and retriever performance.

To enhance the success rate of each step, we
encourage the policy model to fully explore both

Selection Expansion

() (a)
® @ (&

In Npygrent(St)
N(se)

Random
Sampling

UCT(sy) = Vy(sy) + @

Simulation

Backpropagation

(@)
&) (2,0
(o) (s0) (13

N(sy) « N(sp) +1
Planning: 0.9 1
Searching: -0.5 Vp(se) « V(s + W(Rp(sz) —Vp(s)

Vs(se) « Vs(se) + s(se) — Vs(se))

1 &
N(st)(

Figure 2: Single iteration of MCTS Annotation. The iteration is repeated until the maximum number of iterations is

reached or no further nodes in the tree can be expanded.

the planning and searching spaces through sam-
pling. These sampled paths are then refined using a
planning value model and a searching value model,
respectively, ensuring more accurate outcomes.

3 Approach

3.1 Overview

Figure 3 presents an overview of our framework.
The process begins with the application of Monte
Carlo Tree Search (MCTYS) to construct a reasoning
tree for the queries in the training dataset. Each
node in the tree represents a reasoning step, encom-
passing both planning and searching results. From
these trees, we extract both correct and incorrect
paths, which are subsequently utilized to train the
policy model and the value models, respectively.
During the inference phase, we introduce a hierar-
chical beam search algorithm, where at each layer,
the policy model fully explores the planning and
searching spaces, and the value models select the
best candidate for further refinement.

3.2 MCTS Annotation

During MCTS annotation, we prompt the LLM to
generate plans and search queries, interactively col-
laborating with the retriever to iteratively expand
the reasoning tree. The process runs for multiple
simulations and terminates when the maximum iter-
ation number is reached, or no further paths can be
expanded. For the ¢-th simulation, MCTS conducts
four operations to expand the tree:

Selection The ¢-th simulation begins with sg, rep-
resenting the input query. The algorithm selects
nodes according to the Upper Confidence Bound
for Trees (UCT) criterion (Rosin, 2011):

In Nparent (St)

UCT(st) = Vi(se) +w N(st)

3)

where V;(s;) represents the reward of the search
result, and w controls the balance between explo-
ration and exploitation. The reason we choose
Vs (s¢) to calculate the UCT score is that the quality
of the search results serves as a reliable indicator
of a step’s potential to arrive at the correct answer.

Expansion After selecting the node to be ex-
panded, the LLM generates the next plan and query
based on the reasoning status. For simplicity, as-
sume the chosen node s; corresponds to the inter-
mediate reasoning trajectory 7¢—1. The expansion
process is as follows:

pes g = LLM(7-1) “
d: = Retrieve(q) 5)

To ensure diversity, we employ sampling genera-
tion with a higher temperature.

Simulation The simulation evaluates the quality
of planning and searching at each step and assigns
reward values. For intermediate nodes, the LLM as-
sesses the quality of planning and searching, assign-
ing a value between —1 and 1, where 1 indicates
high quality and —1 indicates low quality:

Ry(st), Rs(st) = LLM(7¢—1,p,q¢) (6)

For terminal nodes, if the final answer is correct,
both planning and searching rewards are set to 1;
otherwise, they are set to —1.

Backpropagation At the end of the ¢-th simula-
tion, each edge along the path from the leaf node
s¢ to the root undergoes a backward pass update.
The updates to their values and visiting counts are
executed as follows:

N(St) — N(St) +1
V(o) = Volse) + g3 (Rl = Vals))

1
N(St)

Vs(st) « Vs(se) + (Rs(st) — Vi(st))

(€ Correct Solution €3 Incorrect Solution <— Select <— Backup

Plan Value Search VaIue)

oo{

MCTS Annotation

o[OO0
e~
O-0-0-® T IR e d
Plan

®-0-0-0 |

Extracted Paths

Vo (s:)[<Plan>] Vs(s:)

LLM (Tl’g, V¢, VIIJ)

Query Search ,

Y
i-th Iteration

Policy-Value Model

Figure 3: Overview of the proposed method: The MCTS algorithm constructs reasoning trees for training queries,
from which correct and incorrect paths are extracted to train the policy and value models. During inference,
Hierarchical Beam Search iteratively refines planning and searching for accurate reasoning and retrieval.

This backpropagation process is crucial because it
corrects potential inaccuracies in the LLM’s gener-
ated scores using the answer correctness signal.

3.3 Model Training

In our framework, the policy model 7y is initial-
ized with a pre-trained LLM. We extend this model
to derive the planning value model V, and search-
ing value model V,;, by adding two auxiliary linear
layers with a Tanh activation function. These lay-
ers operate alongside the traditional softmax layer
responsible for token prediction, as illustrated in
the rightmost panel of Figure 3. This design en-
sures that the policy model and the value models
share the majority of their parameters, promoting
parameter efficiency and joint optimization.

To construct the training signals for the policy
model and the value models, we sample solution
paths from the tree constructed through multiple
rounds of MCTS. These paths are denoted as x™
(correct solutions) and x~ (incorrect solutions). We
then apply a multi-task loss function to jointly up-
date all the models:

T (x)
£=—logmocla) + - 3 (Vels) = Vel
t=1

+HVa(st) = Va(so)ll?)

Here, the first term represents the negative log-
likelihood loss for next-token prediction in correct
solutions, guiding the policy model to generate ac-
curate predictions. The second term captures the
loss in value prediction for both correct and incor-
rect solutions, ensuring the value models provide
reliable estimates of expected rewards at each node.
T'(x) denotes the number of steps in the solution
path x, and [is a tunable hyperparameter that con-
trols the weight of the value loss term.

3.4 Model Inference

After obtaining the trained policy model, it can be
directly used to conduct reasoning. However, this
greedy decoding process fails to fully explore the
planning and searching spaces, limiting its ability
to identify optimal reasoning paths. To address this
issue, we propose a hierarchical beam search algo-
rithm to encourage the policy model to thoroughly
explore both the planning and searching spaces.

Hierarchical Beam Search At each step, the
policy model first samples multiple possible plans,
which are ranked and filtered by the planning value
model. Based on the most promising plan, the pol-
icy model generates multiple search queries, which
are used to retrieve relevant documents. The re-
trieved documents are then evaluated by the search-
ing value model to select the most valuable result.
This iterative process continues until the maximum
depth is reached or no further paths can be ex-
panded. Finally, the answers are evaluated by the
planning value model, and the answer with the
highest value is selected as the output. This ap-
proach ensures a more comprehensive exploration
of both the planning and searching spaces, leading
to higher quality and more reliable results.

4 Experiments

4.1 Datasets and Metrics

We conduct experiments on five datasets spanning
both single-hop and multi-hop question-answering
(QA) tasks. Specifically, the multi-hop QA tasks
include the 2WikiMultiHopQA dataset (Ho et al.,
2020), the HotpotQA dataset (Yang et al., 2018),
the Bamboogle dataset (Press et al., 2022) and the
MuSiQue dataset (Trivedi et al., 2022), while the

HotpotQA 2WikiMulti MusiQue Bamboogle TriviaQA AVG
Method
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Qwen-2.5-7B-Instruct
Direct 18.20 24.10 2580 27.61 580 1096 1694 19.00 4320 41.84 21.99 24.70
CoT 20.64 26.64 24.00 2644 7.80 13.69 1532 18.81 46.28 46.03 22.81 26.32
Standard 26.00 30.04 1500 17.31 7.20 11.57 19.35 21.77 5880 56.42 2527 2742
Iterative 1320 1640 7.80 9.59 3.80 6.39 2097 24.60 40.00 37.66 17.15 1893
Gen-Retrieve 2440 28.15 18.80 19.68 820 1295 19.35 2141 5520 5293 2519 27.02
Judge-Retrieve 25.80 30.88 17.40 1996 7.60 12.18 19.35 21.77 5520 5292 25.07 27.54
RAgent 26.40 3095 26.00 2870 9.00 14.57 30.65 35.01 57.20 50.89 29.85 32.02
Search-ol 29.80 3237 29.60 3133 1240 16.67 3145 3595 53.60 50.70 31.37 33.40
GreedyAgent 34.94 3286 34.00 34.79 1240 17.01 36.59 39.03 6140 53.02 35.87 3534
DecoupleRAG 38.62 36.60 35.87 35.03 17.20 17.73 42.28 46.52 65.66 58.08 39.93 38.79
Qwen-2.5-14B-Instruct
Direct 22.00 2737 2560 2724 620 12.63 1290 1585 54.00 5147 24.14 2691
CoT 26.00 3098 25.60 27.52 940 1530 33.06 37.58 6040 58.82 30.89 34.04
Standard 27.40 28.51 34.00 20.75 940 1291 1694 1995 6040 5470 29.63 27.36
Iterative 1500 1624 540 6.74 521 870 1048 15.16 4220 3630 15.66 16.63
Gen-Retrieve 26.80 27.10 3320 21.23 840 11.70 19.35 2141 61.60 57.30 29.87 27.75
Jud-Retrieve 27.40 2838 3340 20.16 9.00 1149 1855 21.11 6040 5532 29.75 27.29
RAgent 37.40 38.18 33.87 34.19 1620 18.72 3790 4328 65.80 59.92 38.23 38.86
Search-o1 36.80 37.18 3420 3586 1640 20.54 3548 4341 6440 60.46 37.46 39.49
GreedyAgent 38.96 37.31 37.80 36.15 16.06 19.39 4553 48.18 63.45 57.13 40.36 39.63
DecoupleRAG 43.35 39.56 41.84 38.37 18.38 21.82 47.15 49.77 72.44 6298 44.63 42.50

Table 1: Evaluation results on five representative QA tasks. The bold fonts denote the best results in each dataset.

single-hop QA task is represented by the TriviaQA
dataset (Joshi et al., 2017).

To evaluate performance, we employ two key
metrics: Exact Match (EM) and F1 Score. Under
the EM metric, a predicted answer is deemed cor-
rect if its normalized form exactly matches any of
the normalized versions of the reference answers in
the provided answer list. The F1 score, on the other
hand, quantifies the word-level overlap between
the normalized predicted answer and the reference
answers, providing a measure of the answer’s pre-
cision and recall.

4.2 Baselines

We compare DecoupleRAG with the following
three categories of methods:

Vanilla Prompting Methods This category in-
cludes direct prompting, Chain-of-Thought (CoT),
and standard Retrieval-Augmented Generation
(RAG). Direct prompting instructs the model to
generate answers directly without retrieving exter-
nal resources. Chain-of-Thought guides the model
to reason step by step before arriving at the final
answer. Standard RAG first retrieves relevant doc-

uments from an external corpus and then generates
the answer based on the retrieved information.

Advanced RAG Methods This category in-
cludes Iterative RAG (Xu et al., 2024), Judge-
then-retrieve (Asai et al., 2023), and Generate-
then-retrieve (Wang et al., 2023). We implement
all these baselines in our experiments. Iterative
RAG decomposes the query into sub-queries, re-
trieves and generates answers for each, and then
combines them to produce the final answer. Judge-
then-retrieve first determines whether retrieval is
necessary and then generates the final answer us-
ing either internal knowledge or retrieved docu-
ments. Generate-then-retrieve directly generates an
answer, concatenates the answer with the question,
and then retrieves and generates a refined answer.

Agentic RAG Methods This category includes
RAgent (Li et al., 2025) and Search-o1 (Li et al.,
2025) and AgenticRAG. These methods operate by
iteratively searching for the necessary information
to answer the question. At each step, the policy
model autonomously decides when and what to
retrieve. Search-ol enhances this approach by in-
corporating a Reason-in-Document module, which

condenses retrieved documents into reasoning steps
while preserving the logical flow of the reasoning
chain. GreedyAgent is a greedy variant of Decou-
pleRAG, whose beam size is set to 1.

4.3 Implementation Details

To demonstrate the generality of our method,
we initialize the policy with two large language
models (LLMs) of different parameter sizes:
Qwen2.5-7B-Instruct! (Team, 2024) and Qwen2.5-
14B-Instruct’(Team, 2024). During Monte Carlo
Tree Search (MCTS) annotation, we employ Qwen-
Turbo to predict the next action and evaluate the
scores for planning and searching. The policy
model and value models are fine-tuned over 10
epochs with a batch size of 4 and a learning
rate of le-6, utilizing 8§ NVIDIA A100 80GB
GPUs. For retrieval, we use the Wikipedia dump
from January 27, 2020, as our corpus and employ
DPR (Karpukhin et al., 2020) as our dense retriever.
For each query, we retrieve the top-5 most relevant
documents from the retrieval corpus. Additional
implementation details can be found in Appendix B.
To promote reproducibility, we plan to open-source
the code upon acceptance of this work.

4.4 Main Results

In this section, we present the results of experi-
ments conducted on five QA datasets using two
model backbones, respectively. Based on the re-
sults in Table 6, several observations can be made:

First, our method achieves superior performance
on all datasets across different policy models, ver-
ifying the effectiveness of our approach. Notably,
when using Qwen2.5-7B-Instruct-1M as the pol-
icy model, DecoupleRAG achieves a 25.8% rela-
tive average improvement over the best-performing
baseline. This improvement is attributed to the
application of planning beam search and search-
ing beam search, which enables the policy model
to thoroughly explore the planning and searching
spaces, significantly increasing the likelihood of
identifying the correct reasoning path.

Second, among the baselines, agentic RAG meth-
ods outperform both prompting methods and ad-
vanced RAG methods. This is primarily due to the
flexibility agentic RAG provides, allowing the pol-
icy model to dynamically decide what to retrieve
and when to retrieve. This capability is especially
important for complex queries requiring multi-step

1
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

Methods HotpotQA TriviaQA
EM Fl1 EM Fl1
DecoupleRAG 38.62 36.60 65.66 58.08
-w/o Planning 3535 32.84 62.10 54.78
-w/o Searching 36.75 35.05 62.58 55.63
-w/o Both 3494 3286 61.40 53.02

Table 2: Ablation Study. We experiment by gradually
removing all model components.

reasoning, as demonstrated by strong performance
on multi-hop datasets such as Bamboogle.

Third, when comparing policy models of dif-
ferent sizes, larger models (e.g., Qwen2.5-14B-
Instruct) generally yield better performance, as ex-
pected, due to their higher model capacity. How-
ever, after applying Hierarchical Beam Search
(HBS), the performance of DecoupleRAG with
the 7B policy model becomes comparable to that
of the 14B model, highlighting the potential for
smaller models to achieve competitive performance
through inference-time scaling techniques.

5 Analysis
5.1 Ablation Study

In this section, we analyze the effectiveness of plan-
ning expansion and searching expansion by remov-
ing these components and observing the resulting
performance changes, as shown in Table 2.

The results demonstrate that removing either
planning expansion or searching expansion leads
to a decline in performance, underscoring the im-
portance of thoroughly exploring both the plan-
ning space and the searching space. Notably, the
removal of planning expansion results in a more
significant performance drop. This is because the
planning typically defines the searching space; if
the plan is suboptimal, it becomes challenging to
retrieve high-quality results. Therefore, planning
expansion plays a more critical role in ensuring
robust model performance.

5.2 Scaling with Planning and Searching

During inference, we employ hierarchical beam
search, which involves two key hyperparameters:
the planning expansion size B; and the searching
expansion size Bs. To investigate their impact on
model performance, we conduct experiments on
the HotpotQA, 2WikiMultihopQA, and MusiQue
datasets, varying these parameters within the range

https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

Size HotpotQA 2WikiMulti MusiQue
EM F1 EM F1 EM F1
Plan Expansion Size
1 3535 32.84 3474 3468 1420 16.66
2 37.83 3748 3640 3568 1543 18.53
3 38.62 36.60 3587 3503 17.20 17.73
4 3778 36.00 3560 36.14 1523 19.20
S 3529 34.62 33.87 3419 14.63 1842
Search Expansion Size

1 36.75 35.05 3340 34.04 1480 17.78
2 38.87 37.68 34.07 33.85 15.03 18.19
3 38.18 36.85 33.87 3438 16.23 1892
4 37778 3536 3534 3479 1543 17.78
5 4020 3746 3534 3599 17.60 19.59

Table 3: We vary the expansion sizes within the range
of 1 to 5 and observe the performance changes.

of 1 to 5. Based on the results presented in Table 3,
several observations can be made.

First, for the planning expansion size, model per-
formance peaks when the expansion size is set to
approximately 3. Values smaller or larger than this
threshold result in a decline in performance. This
is primarily because a larger planning expansion
size provides the model with more opportunities to
identify the optimal plan. However, when the ex-
pansion size becomes too large, the planning value
model struggles to effectively rank and select the
best plan due to increased complexity.

Second, for the searching expansion size, we
observe that larger expansion sizes generally
lead to improved performance. This is because a
larger searching expansion size increases the likeli-
hood of retrieving optimal evidence that can lead to
the correct answer. Compared to the planning value
model, the searching value model faces relatively
less difficulty in ranking search results, as it can
directly evaluate the retrieved evidence, whereas
the planning value model must rely on complex pat-
terns learned from training data to make decisions.

5.3 Effectiveness of Value Models

In this section, we analyze the accuracy of the plan-
ning value model and the searching value model.
Specifically, during the beam ranking stage, instead
of using our value model to rank, we randomly
select one plan or search result and compare the
performance of random selection with ranking by
the value model. Based on the results shown in
Figure 4, several observations can be made:

First, for both planning expansion and search-
ing expansion, ranking by the learned value model

Win Lose Win Lose

TriviaQA 62.9 37.1 77.9 22.1
Bamboogle 62.0 38.0 73.2 26.8
2WikiMulti 66.0 34.0 72.4 27.6

HotpotQA 65.0 35.0 69.5 30.5

0 25 50 75
Percentage

(a) Plan Expansion

100 O 25 50 75 100
Percentage

(b) Search Expansion

Figure 4: We analyze the effectiveness of value models
by replacing the value ranking with random sampling.

achieves better performance compared to random
selection. This verifies that both value models can
accurately measure the quality of plans and search
results. Second, the performance superiority is
more pronounced for searching expansion. This is
because determining the value of search results
is relatively easier than evaluating plans. Typ-
ically, the value of a search result can be directly
assessed by checking whether it contains the an-
swer to the search query. In contrast, evaluating
the quality of a plan is more challenging, as there
are no obvious patterns to determine its effective-
ness. Therefore, when computational resources are
constrained, allocating more resources to searching
expansion may be a more robust strategy.

5.4 Case Study

In this section, we present a case study from the
MusiQue dataset in Figure 5.

Given the query “Who is the father-in-law of
Gulcicek Hatun?”, the policy model generates
plans, such as searching for Gulcicek Hatun’s
spouse or lineage. The planning value model as-
signs a higher reward to the spouse search plan,
pruning the lower-value alternative. The policy
model then creates search queries like “Who is
Gulcicek Hatun’s husband?” and “Gulcicek Hatun
Spouse”. The first query retrieves direct informa-
tion about her husband, Murad I, and receives a
high positive reward, while the less relevant result
is pruned. Next, the policy model searches for Mu-
rad I’s father, generating queries like “Who was
Murad I’s father?” The result identifying Orhan
Ghazi as his father receives a high reward, while
irrelevant results are pruned. The final answer,
Orhan Ghazi, is output. This case study illustrates
how planning and searching expansion broaden the
candidate space, while the value models identify
the most valuable candidates, validating our frame-
work’s effectiveness in handling complex queries.

Query: Who is Gulcicek
Hatun’s husband?

Result: Gulcicek Hatun was
the first wife of Ottoman
Sultan Murad | ...

Reward: 0.92 O

Plan: Knowing her
spouse will allow us
to find out his father,
who was her father-
in-law.

Reward: 0.82 o

o Pruned Node
o Selected Node

Based on the
search result, we
know that
Gulcicek Hatun’s
husband was
Murad I, whose
father was Orhan

Query: Who was Murad I's
father?

Result: Murad I’s father
—> was Orhan Ghazi, the
second bey of nascent
Ottoman...

Reward: 1.0 o

Plan: She was the first
wife of Ottoman Sultan
Murad |. To find her
father-in-law, we need to
identify Murad I's father.
Reward: 0.85 O

Ghazi. Therefore,

Who is the

father-i Plan: /t's important
father-in- b=

Query: Gulcicek Hatun spouse?

I to find historical Result: Gulcicek Hatun was a
aW,Of sources that detail Greek woman from Bithynia
Gulcicek .
Hatun? her lineage. who became...
) Reward: 0.78 o Reward: -0.34 0

the answer is
Orhan Ghazi.

Plan: She was the (Query: Murad I's paternal

i ?
mother of Bayezid. We gzt

need to identify Bayezid’s Result7iadliweslte
sultan of the Ottoman
grandfather.

Reward: 0.52 Empire from 1362 to 1389.
0 Reward: -0.12

Orhan Ghazi

Final Answer

Input Query
:] Q Planning @ Q Searching @ Q Planning @ Q Searching

Figure 5: Case Study of DecoupleRAG. The example illustrates how DecoupleRAG optimizes reasoning by
decoupling planning and searching using hierarchical reward modeling. The reasoning tree dynamically selects
high-reward paths while pruning suboptimal ones, demonstrating the effectiveness of Hierarchical Beam Search.

6 Related Work

6.1 Agentic Retrieval-Augmented Generation

Despite significant advancements, Large Language
Models (LLMs) often generate responses that in-
clude hallucinated facts and inaccurate information
(Ji et al., 2023; Shuster et al., 2021; Zhang et al.,
2023), which compromises their reliability and lim-
its their practical applicability in real-world scenar-
ios. To mitigate this issue, researchers have turned
to Retrieval-Augmented Generation (RAG), which
integrates external knowledge to improve the accu-
racy of responses (Ram et al., 2023; Shi et al., 2023;
Rashkin et al., 2021; Gao et al., 2022; Bohnet et al.,
2022; Menick et al., 2022; Chen et al., 2024¢). By
dynamically retrieving information from external
documents, RAG enables LLMs to ground their
outputs in verifiable evidence.

While RAG offers substantial improvements, it
remains limited by its reliance on static workflows.
Agentic RAG presents a more promising approach
by incorporating agents into the RAG pipeline.
For instance, Self-RAG (Asai et al., 2023) em-
ploys a self-reflection mechanism to iteratively pre-
dict reflection tokens during training. Auto-RAG
(Yu et al., 2024) systematically plans retrievals
and refines queries to acquire valuable knowledge
through multi-turn iterations. MindSearch (Chen
et al., 2024d) mimics human cognitive processes in
web information seeking and integrates them with
an LLM-based multi-agent framework. PlanxRAG
(Verma et al., 2024) isolates the reasoning plan as
a directed acyclic graph (DAG) outside the LM’s
working memory. Search-ol (Li et al., 2025) incor-
porates an agentic search process into reasoning,
allowing for the dynamic retrieval of information
whenever LLMs face uncertain knowledge points.

6.2 Enhancing LLMs with Search

The application of search techniques to enhance
LLMs has garnered considerable attention (Yao
et al., 2023). Numerous studies have demonstrated
that MCTS can significantly improve the reasoning
capabilities of LLMs by generating diverse reason-
ing paths. For example, AlphaMATH (Chen et al.,
2024a) utilizes MCTS to eliminate the need for
process annotations from humans or GPTs. Simi-
larly, SVPO (Chen et al., 2024b) employs MCTS
to automatically annotate step-level preferences for
multi-step reasoning. Llama-berry (Zhang et al.,
2024b) leverages MCTS to facilitate more efficient
exploration of solution spaces.

Other notable works include CoAT (Pan et al.,
2025), which integrates MCTS with associative
memory for structured reasoning, and MCTSr
(Zhang et al., 2024a), which applies MCTS to self-
refine mathematical solutions through tree-search
iterations. AirRAG (Feng et al., 2025) activates
intrinsic reasoning capabilities and expands the so-
lution space for specific tasks using MCTS.

7 Conclusion

In this paper, we propose DecoupleRAG, a novel
framework that decouples planning and search pro-
cesses using dual value models, enabling indepen-
dent optimization of plan reasoning and search
grounding. Our approach constructs a reasoning
tree, where each node represents planning and
searching steps. We leverage MCTS to efficiently
assess the quality of each step. During inference, hi-
erarchical beam search iteratively refines planning
and searching candidates through reward-guided
optimization. Extensive experiments across policy
models of varying parameter sizes, demonstrate the
effectiveness of our method.

Limitations

In this paper, we propose an agentic RAG frame-
work that fully explores the planning and search-
ing spaces. We acknowledge two limitations of
our method. First, the MCTS annotation process
requires multiple simulations, which can lead to
additional labeling costs. Second, our current ap-
proach focuses on retaining only the single most
promising plan and search result at each step. The
exploration of retaining multiple promising plans
and search results is left for future work.

Ethics Statement

This work complies with the ACL Ethics Policy.
All datasets and LLMs used are publicly avail-
able. Our research focuses on improving the per-
formance of agentic RAG, and we do not anticipate
any negative ethical impacts.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Bernd Bohnet, Vinh Q Tran, Pat Verga, Roee Aharoni,
Daniel Andor, Livio Baldini Soares, Jacob Eisenstein,
Kuzman Ganchev, Jonathan Herzig, Kai Hui, et al.
2022. Attributed question answering: Evaluation and
modeling for attributed large language models. arXiv
preprint arXiv:2212.08037.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: Process supervision
without process. In Advances in Neural Information
Processing Systems, volume 37, pages 27689-27724.
Curran Associates, Inc.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024b. Step-level value preference optimization for
mathematical reasoning. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 7889-7903, Miami, Florida, USA. Association
for Computational Linguistics.

Yunmo Chen, Tongfei Chen, Harsh Jhamtani, Patrick
Xia, Richard Shin, Jason Eisner, and Benjamin
Van Durme. 2024c. Learning to retrieve iteratively
for in-context learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7156-7168.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Jiangning Liu,
Wenwei Zhang, Kai Chen, and Feng Zhao. 2024d.
Mindsearch: Mimicking human minds elicits deep ai
searcher. arXiv preprint arXiv:2407.20183.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Jingyi
Song, and Hao Wang. 2025. Airrag: Activat-
ing intrinsic reasoning for retrieval augmented gen-
eration via tree-based search. arXiv preprint
arXiv:2501.10053.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin-
cent Y Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan,
et al. 2022. Rarr: Researching and revising what
language models say, using language models. arXiv
preprint arXiv:2210.08726.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing A multi-hop
QA dataset for comprehensive evaluation of reason-
ing steps. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13,
2020, pages 6609-6625. International Committee on
Computational Linguistics.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. arXiv preprint
arXiv:2403.14403.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL 2017, pages 1601-1611.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843—
3857.

https://arxiv.org/pdf/2212.08037.pdf
https://arxiv.org/pdf/2212.08037.pdf
https://arxiv.org/pdf/2212.08037.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/30dfe47a3ccbee68cffa0c19ccb1bc00-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/30dfe47a3ccbee68cffa0c19ccb1bc00-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/30dfe47a3ccbee68cffa0c19ccb1bc00-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-emnlp.463
https://doi.org/10.18653/v1/2024.findings-emnlp.463
https://doi.org/10.18653/v1/2024.findings-emnlp.463
https://arxiv.org/pdf/2210.08726.pdf
https://arxiv.org/pdf/2210.08726.pdf
https://arxiv.org/pdf/2210.08726.pdf
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://dl.acm.org/doi/pdf/10.1145/3571730
https://dl.acm.org/doi/pdf/10.1145/3571730
https://dl.acm.org/doi/pdf/10.1145/3571730
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. 2025. Search-ol: Agentic search-
enhanced large reasoning models. arXiv preprint
arXiv:2501.05366.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, et al. 2022. Teaching
language models to support answers with verified
quotes. arXiv preprint arXiv:2203.11147.

Jianfeng Pan, Senyou Deng, and Shaomang Huang.
2025. Coat: Chain-of-associated-thoughts frame-
work for enhancing large language models reasoning.
arXiv preprint arXiv:2502.02390.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Lora Aroyo, Michael Collins, Dipanjan Das, Slav
Petrov, Gaurav Singh Tomar, Iulia Turc, and David
Reitter. 2021. Measuring attribution in natu-

ral language generation models. arXiv preprint
arXiv:2112.12870.

Christopher D Rosin. 2011. Multi-armed bandits with
episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203-230.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation

reduces hallucination in conversation. arXiv preprint
arXiv:2104.07567.

David Silver, Thomas Hubert, Julian Schrittwieser, loan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, An-
drew Poulton, Viktor Kerkez, and Robert Stojnic.
2022. Galactica: A large language model for science.
CoRR, abs/2211.09085.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

10

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational

Linguistics, 10:539-554.

Prakhar Verma, Sukruta Prakash Midigeshi, Gau-
rav Sinha, Arno Solin, Nagarajan Natarajan, and
Amit Sharma. 2024. Plan x rag: Planning-guided
retrieval augmented generation. arXiv preprint
arXiv:2410.20753.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9414-9423. Association for Computational
Linguistics.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2024. Evaluating mathemati-
cal reasoning beyond accuracy. arXiv preprint
arXiv:2404.05692.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng,
and Tat-Seng Chua. 2024. Search-in-the-chain: Inter-
actively enhancing large language models with search
for knowledge-intensive tasks. In Proceedings of the
ACM on Web Conference 2024, WWW 2024, Singa-
pore, May 13-17, 2024, pages 1362-1373. ACM.

Ryutaro Yamauchi, Sho Sonoda, Akiyoshi Sannai,
and Wataru Kumagai. 2023. Lpml: llm-prompting
markup language for mathematical reasoning. arXiv
preprint arXiv:2309.13078.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Tian Yu, Shaolei Zhang, and Yang Feng. 2024.
Auto-rag: Autonomous retrieval-augmented gener-
ation for large language models. arXiv preprint
arXiv:2411.19443.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqgiang
Li, and Wanli Ouyang. 2024a. Accessing gpt-4
level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yuqgiang Li, et al. 2024b. Llama-berry: Pair-
wise optimization for ol-like olympiad-level mathe-
matical reasoning. arXiv preprint arXiv:2410.02884.

https://arxiv.org/pdf/2203.11147.pdf
https://arxiv.org/pdf/2203.11147.pdf
https://arxiv.org/pdf/2203.11147.pdf
https://arxiv.org/pdf/2203.11147.pdf
https://arxiv.org/pdf/2203.11147.pdf
https://arxiv.org/pdf/2210.03350.pdf
https://arxiv.org/pdf/2210.03350.pdf
https://arxiv.org/pdf/2210.03350.pdf
https://arxiv.org/pdf/2210.03350.pdf
https://arxiv.org/pdf/2210.03350.pdf
https://arxiv.org/pdf/2112.12870.pdf
https://arxiv.org/pdf/2112.12870.pdf
https://arxiv.org/pdf/2112.12870.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Ma-
lin, and Sricharan Kumar. 2023. Sac3: Reliable hal-
lucination detection in black-box language models
via semantic-aware cross-check consistency: Reli-
able hallucination detection in black-box language
models via semantic-aware cross-check consistency.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 15445-15458.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

11

A Dataset Statistics

The dataset statistics used in this paper are shown in Table 4.

Settings TrivaQA Bamboogle HotpotQA 2WikiMultiHopQA MuSiQue
(Joshi et al., 2017) (Press et al., 2022) (Yang et al., 2018) (Ho et al., 2020) (Trivedi et al., 2022)

Dataset statistics

Task Single-Hop QA Multi-Hop QA Multi-Hop QA Multi-Hop QA Multi-Hop QA

Train Data 3,000 0 5,000 3,000 5,000

Test Data 500 125 500 500 500
Evaluation settings

Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Retrieval settings
Corpus Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia
Retriever DPR DPR DPR DPR DPR

Table 4: Statistics and experimental settings of different tasks/datasets.

B Implementation Details

Dataset Construction We sample 3000, 5000, 3000, 5000 queries from the training data of TriviaQA,
HotpotQA, 2WikiMultihopQA and MuSiQue datasets and conduct the MCTS annotations. During MCTS
annotation, following Chen et al. (2024a), the parameter w, (is set to 1.4 and 0.1, respectively. The
maximum number of iterations is configured to 20. we employ Qwen-Turbo to predict the next action and
evaluate the scores for planning and searching. We then sample 10,000 correct paths and 10,000 incorrect
paths from the constructed trees. The correct paths are used to train the policy model, while both paths are
used to train the value models.

Training Process The policy model and value models are fine-tuned over 10 epochs with a batch size
of 4 and a learning rate of 1e-6, utilizing 8 NVIDIA A100 80GB GPUs.

Inference Process During inference, both the plan expansion size and the search expansion size are set
to 3.

Model Stage Total Time Time to Converge
MCTS Labeling Offline 18h 31m None
Qwen-2.5-7B-Instruct ~ Training 12h 30m ~6h
Qwen-2.5-14B-Instruct Training 1d 2h ~12h

Table 5: Training and labeling time for different models.

Training Cost We conduct training using 8 A800 GPUs, with the detailed time costs for both labeling
and training summarized in Table 5. As shown, the overall training cost is reasonable, particularly since
convergence is typically achieved in about half of the total training time. Moreover, MCTS is used only
once during offline labeling and introduces no additional overhead during inference.

C Compare with Non-Agentic Baselines

To ensure a fair comparison, we conducted additional experiments comparing our method with Self-
RAG(Asai et al., 2023) and Adaptive-RAG(Jeong et al., 2024) using their official open-source implemen-
tations. Specifically, we employed the official open-sourced Self-RAG model, and used Qwen2.5-7B-
Instruct as the backbone model for both DecoupleRAG and Adaptive-RAG. The results are presented in
Table 6. DecoupleRAG outperforms both Self-RAG and Adaptive-RAG across all datasets, demonstrating
the effectiveness of our agentic reasoning framework.

12

HotpotQA 2WikiMulti MusiQue Bamboogle TriviaQA AVG
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Self-RAG 2340 2697 23.00 24.63 6.60 7.00 887 1031 53.60 52.67 23.09 24.32
Adaptive-RAG 34.40 31.80 34.00 3420 11.80 1247 27.42 30.39 58.00 55.82 33.12 3294
DecoupleRAG 38.62 36.60 35.87 35.03 17.20 17.73 42.28 46.52 65.66 58.08 39.93 38.79

Method

Table 6: Evaluation results on five representative QA tasks. The bold fonts denote the best results in each dataset.

D Prompts

The prompts used in MCTS annotations are listed below:

LLM Sample Prompt

**You are a highly capable web agent. Your task is to engage in multi-step reasoning and propose plans to reach a final
answer for the given question.**

For each step, please include the following elements:

Thought: Offer a comprehensive and detailed analysis. This section should cover:

- An analysis of the specific information required to address the question effectively and the information currently available.
- If the information is enough to answer the question, you should conduct deep analysis based on the information and then
answer the question.

- If the information is not enough to answer the question, you should analyze whether the current plan progresses well.

- If yes, predict the next action.

- If no, reflect on why the progress is not good and then propose a new plan.

Action: Provide the next action. This section should cover:

- If the information is enough to answer the question, you should output the final answer in format of Finish(put the answer
here) without extra content.

- If the information is not enough to answer the question, you should clearly specify the exact query for the next search in the
format Search([List of Queries]) without extra content. Ensure the queries convey the same semantic information but are
expressed differently to enhance the likelihood of finding the necessary information.

For the question: query, here is the reasoning process so far:
history

The Output Format:

- **Thought:** [Detailed analysis of the needed information, existing information, identifies whether information is enough.
If enough, conduct analysis to obtain the final answer, else, identify what still needs to be searched]

- **Action:** [Finish(put the answer here) or Search([List of Queries])]

Please provide the plan for the next step:

13

LLM Evaluation Prompt

Task: Assess the effectiveness of the thought and the search result in the last reasoning step.
As an advanced web search agent, your role is to systematically evaluate the current step step.
For the question: query, here is the reasoning process so far:

history

As an expert in web search, your tasks are as follows:

1. Analyze the thought in the last step: Evaluate the thought and determine its effectiveness in reaching the final answer.
Assign a score between -1 and 1, where -1 means the thought is useless and 1 means the thought is very effective.

2. Analyze the search result in the last step: Evaluate the search result and determine its effectiveness in reaching the final
answer. Assign a score between -1 and 1, where -1 means the search result was ineffective, and 1 means the search results
were highly useful.

You should output the following elements

Analysis of the thought:

- Analyze whether the thought from the last step were helpful in progressing toward the final answer.

- Assign a score between -1 and 1, where -1 means the step was ineffective, and 1 indicates high usefulness.

- You must conclude the analysis with the format of "the value of the thought is **#x***" where x represent the value and *
is the identifier. Remember that you must output the value x with identifier ***.

Analysis of the search result:

- Analyze whether the search query and search results from the last step were helpful in progressing toward the final answer.
- Assign a score between -1 and 1, where -1 means the step was ineffective, and 1 indicates high usefulness.

- You must conclude the analysis with the format of "the value of the search result is ***x***" where x represent the value
and * is the identifier. Remember that you must output the value x with identifier ***.

Please begin by analyzing the previous step: **Analysis of the thought:**

14

	Introduction
	Background
	Approach
	Overview
	MCTS Annotation
	Model Training
	Model Inference

	Experiments
	Datasets and Metrics
	Baselines
	Implementation Details
	Main Results

	Analysis
	Ablation Study
	Scaling with Planning and Searching
	Effectiveness of Value Models
	Case Study

	Related Work
	Agentic Retrieval-Augmented Generation
	Enhancing LLMs with Search

	Conclusion
	Dataset Statistics
	Implementation Details
	Compare with Non-Agentic Baselines
	Prompts

