
Statistical Test for Attention Maps in Vision Transformers

Tomohiro Shiraishi 1 Daiki Miwa 2 Teruyuki Katsuoka 1 Vo Nguyen Le Duy 3 4 5 Kouichi Taji 1

Ichiro Takeuchi 1 5

Abstract
The Vision Transformer (ViT) demonstrates ex-
ceptional performance in various computer vision
tasks. Attention is crucial for ViT to capture
complex wide-ranging relationships among image
patches, allowing the model to weigh the impor-
tance of image patches and aiding our understand-
ing of the decision-making process. However,
when utilizing the attention of ViT as evidence in
high-stakes decision-making tasks such as medi-
cal diagnostics, a challenge arises due to the poten-
tial of attention mechanisms erroneously focusing
on irrelevant regions. In this study, we propose a
statistical test for ViT’s attentions, enabling us to
use the attentions as reliable quantitative evidence
indicators for ViT’s decision-making with a rigor-
ously controlled error rate. Using the framework
called selective inference, we quantify the statis-
tical significance of attentions in the form of p-
values, which enables the theoretically grounded
quantification of the false positive detection prob-
ability of attentions. We demonstrate the valid-
ity and the effectiveness of the proposed method
through numerical experiments and applications
to brain image diagnoses.

1. Introduction
The Vision Transformer (ViT) (Dosovitskiy et al., 2020)
demonstrates exceptional performance in various computer
vision tasks by replacing traditional Convolutional Neu-
ral Networks (CNNs) with transformer-based architectures.
ViT divides images into fixed-size patches and processes
them using self-attention mechanisms, capturing wide-range
dependencies. This enables the model to effectively learn
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spatial relationships and contextual information, surpassing
the limitations of CNNs in handling global context (Wu
et al., 2020; Henaff, 2020; Xiao et al., 2021; Touvron et al.,
2021; Jia et al., 2021; Khan et al., 2022).

In ViT, attention plays a pivotal role in capturing complex
visual relationships by allowing the model to weigh the
importance of different image regions. The interpretability
of attention mechanisms is crucial for understanding how
the model makes decisions. ViT’s attention mechanisms
enable the identification of salient features and contribute to
the model’s ability to recognize patterns.

However, when utilizing ViT’s attentions as evidence in
high-stakes decision-making tasks such as medical diagnos-
tics or autonomous driving (Dai et al., 2021; He et al., 2023;
Prakash et al., 2021; Hu et al., 2022), a challenge arises
due to the potential of attention mechanisms erroneously
focusing on irrelevant regions. In this study, we propose a
statistical test for ViT’s attentions, enabling the quantifica-
tion of the false positive detection probability of attentions
in the form of p-values. This enables us to use the atten-
tions as reliable quantitative evidence indicators for ViT’s
decision-making with a rigorously controlled error rate.

For example, in medical field, wrongly identifying the brain
tumor regions leads to wrong treatments and patients may
become apprehensive about seeking medical help, fearing
misdiagnosis and unnecessary treatments. Similarly, in au-
tonomous driving, wrongly identifying the road signs or
obstacles can lead to inappropriate actions, resulting in traf-
fic accidents. Therefore, in high-stakes decision-making
tasks, it is crucial to control the probability of false posi-
tives, often referred to as the type I error rate in the statistical
inference literature.

To our knowledge, there are no prior studies that investigate
the statistical significance of ViT’s attentions. The challenge
in assessing the statistical significance of ViT’s attentions
stems from the inherent selection bias in ViT’s attention
mechanism. Testing image patches with high attention is
biased, given that the ViT selects these patches by looking
at the image itself. Consequently, it becomes imperative to
develop an appropriate statistical test that can account for
selection bias by properly considering the complex attention
mechanism of ViT.
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(a) Brain image with tumor. The naive p-value is 0.000 (true positive) and the selective p-value is 0.000 (true positive).
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(b) Brain image without tumor. The naive p-value is 0.000 (false positive) and the selective p-value is 0.801 (true negative).

Figure 1. Schematic illustration of the problem setup and the proposed method on a brain image dataset. By inputting a brain image into
the trained ViT classifier, the attention map is obtained, which indicates the area on which the ViT model focuses. Our objective is to
provide the statistical significance of the attention map using the p-value. To achieve this objective, we consider testing the attention
region, which consists of pixels with high attention levels by thresholding the attention map. The results suggest that the naive p-value
(see §4) cannot be used to properly control the false positive (type I error) rate. Instead, the selective p-value (introduced in §2) can be
used to detect true positives while controlling the false positive rate at the specified level.

In this study, we address this challenge by employing selec-
tive inference (SI) (Lee et al., 2016; Taylor & Tibshirani,
2015). SI is a statistical inference framework that has gained
recent interest for testing data-driven hypotheses. By con-
sidering the selection process itself as part of the statistical
analysis, SI effectively addresses the selection bias issue
in statistical testing when the hypotheses are selected in a
data-driven manner.

Related Works. SI was initially developed for the statisti-
cal inference for feature selection in linear models (Fithian
et al., 2015; Tibshirani et al., 2016; Loftus & Taylor,
2014; Suzumura et al., 2017; Le Duy & Takeuchi, 2021;
Sugiyama et al., 2021) and later extended to other problem
settings (Lee et al., 2015; Choi et al., 2017; Chen & Bien,
2020; Tanizaki et al., 2020; Duy et al., 2020; Gao et al.,
2022). In the context of deep learning, SI was first intro-
duced by Duy et al. (2022) and Miwa et al. (2023), where
the authors proposed a computational algorithm for SI by
exploiting the fact that a class of CNNs can be described as
piecewise linear functions of the input image. Later, based
on the algorithm proposed by Duy et al. (2022) and Miwa
et al. (2023), SI was extended to anomaly detection with
VAEs (Miwa et al., 2024) and to diffusion models (Katsuoka
et al., 2024). However, this algorithm cannot be applied to
the transformer-based architectures, as the self-attention
mechanism are not piecewise linear. In this study, we intro-

duce a new computational approach to develop SI for ViT’s
attentions.

Demonstration. Figure 1 illustrates the problem setup
considered in this study, where we applied a naive statis-
tical test, which does not consider selection bias, and our
proposed statistical test to brain image diagnosis task. The
upper panel shows a brain image with a tumor region, in
which we want the attentions to be declared as statistically
significant (with a small p-value). Here, both the naive test
and the proposed test conclude that the identified attention
is statistically significant with p-values nearly 0. In con-
trast, the lower panel displays a brain image without tumor
regions, in which we want the attentions to be determined
as statistically not significant (with a large p-value). In
this case, the naive test falsely detects significance (false
positive) with an almost zero p-value, while the proposed
method yields a p-value of 0.801, concluding that it is not
statistically significant (true negative).

Contributions. Our contributions in this study are as fol-
lows. The first contribution is the introduction of a theo-
retically guaranteed framework for testing the statistical
significance of ViT’s Attention (§2). The second con-
tribution involves the development of the SI method for
ViT’s attention, for which we introduce a new computa-
tional method for computing the p-values without selection
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bias (§3). The third contribution involves demonstrating
the effectiveness of the proposed method through its ap-
plications to synthetic data simulations and brain image
diagnosis (§4). For reproducibility, our implementation is
available at https://github.com/shirara1016/
statistical_test_for_vit_attention.

2. Statistical Test for ViT’s Attentions
In this study, we aim to quantify the statistical significance
of the attention regions identified by a trained ViT model.
The details of the structure of the ViT model we used in our
experiments are shown in Appendix A.1.

Notations. Let us consider an n-dimensional image as a
random variable

X = (X1, . . . , Xn) = µ+ ϵ, ϵ ∼ N (0,Σ),

where µ ∈ Rn is the pixel intensity vector and ϵ ∈ Rn

is the noise vector with covariance matrix Σ ∈ Rn×n.
We do not pose any assumption on the true pixel intensi-
ties µ, while we assume that the noise vector ϵ follows
the Gaussian distribution with the covariance matrix Σ
known or estimable from external independent data1.We
define the computation of the attention map as a mapping
A : Rn ∋ X 7→ A(X) ∈ [0, 1]n, which takes an image
X as input and outputs attention scores Ai(X) ∈ [0, 1] for
each pixel i ∈ [n]. The details of its computation are given
in Appendix A.2. We define the attention regionMX of an
image X as the set of pixels with attention scores greater
than a given threshold value τ ∈ (0, 1), i.e.,

MX = {i ∈ [n] | Ai(X) > τ}. (1)

Statistical Inference. To quantify the statistical signif-
icance of the attention region MX of an image X , we
propose to consider the following hypothesis testing prob-
lem:

H0 :
1

|MX |
∑

i∈MX

µi =
1

|Mc
X |

∑
i/∈MX

µi

v.s.

H1 :
1

|MX |
∑

i∈MX

µi ̸=
1

|Mc
X |

∑
i/∈MX

µi,

(2)

where H0 is the null hypothesis that the mean pixel intensity
inside and outside the attention region are equal, while H1

is the alternative hypothesis that they are not equal. A
reasonable choice of the test statistic for the statistical test

1We discuss the robustness of the proposed method when the
covariance matrix is unknown and the noise deviates from the
Gaussian distribution in our experiments (§4).

in (2) is the difference in the average pixel values between
inside and outside the attention region, i.e.,

η⊤
MX

X =
1

|MX |
∑

i∈MX

µi −
1

|Mc
X |

∑
i/∈MX

µi,

where ηMX
= 1

|MX |1
n
MX
− 1

|Mc
X |1

n
Mc

X
is a vector that

depends on the attention regionMX , and 1n
C ∈ Rn is an

n-dimensional vector whose elements are set to 1 if they
belong to the set C ⊂ [n], and 0 otherwise. In this study, we
consider the following standardized test statistic:

T (X) =
η⊤
MX

X√
η⊤
MX

ΣηMX

.

The p-value for the hypothesis testing problem in (2) can be
used to quantify the statistical significance of the attention
region MX . Given a significance level α ∈ (0, 1) (e.g.,
0.05), we reject the null hypothesis H0 if the p-value is less
than α, indicating that the attention regionMX is signif-
icantly different from the outside of the attention region.
Otherwise, we fail to state that the attention regionMX is
statistically significant.

Our main idea in this formulation is to quantify whether
pixels selected as attention regions by ViT are statistically
significantly different from the regions that were not se-
lected. Although we consider the average difference in pixel
values in the above formulation for the sake of simplicity,
similar formulations are also possible for other image fea-
tures obtained by applying appropriate image filters.

Conditional Distribution. To compute the p-value, we
need to identify the sampling distribution of the test statistic
T (X). However, as the vector ηMX

depends on the atten-
tion regionMX (i.e., depends on X through a complicated
computation in the ViT), the sampling distribution of the
test statistic T (X) is too complicated to characterize. Then,
we consider the conditional sampling distribution of the test
statistic T (X) given the event {MX =MXobs}, i.e.,

T (X) | {MX =MXobs}, (3)

where Xobs is the observed image. This conditioning means
that we consider the rarity of the observation Xobs only in
the case where the same attention regionMX as observed
MXobs is obtained. The advantage of considering the condi-
tional sampling distribution in (3) is that, by conditioning on
the attention regionMX , the test statistic T (X) is written
as a linear function of X , which allows us to characterize
the sampling property of the test statistic T (X).

Selective p-value. Statistical hypothesis testing based
on the conditional sampling distribution has been studied
within the framework of SI (also known as post-selection
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inference). In this study, we also utilize the SI framework
to perform statistical hypothesis testing in (2) based on the
conditional sampling distribution in (3). For the tractable
computation of the conditional sampling distribution in (3),
we consider an additional condition on the sufficient statistic
of the nuisance parameter QX , defined as

QX =

(
In −

ΣηMX
η⊤
MX

η⊤
MX

ΣηMX

)
X.

Remark 2.1. The nuisance component QX corresponds to
the component z in the seminal paper (Lee et al., 2016)
(see Sec. 5, Eq. (5.2), and Theorem 5.2). We note that
additionally conditioning on QX , which is required for
technical purpose, is a standard approach in the SI literature
and it is used in almost all the SI-related works that we cited.

The selective p-value is then computed as

pselective = PH0
(|T (X)| > |T (Xobs)| |X ∈ X ), (4)

where X = {X ∈ Rn | MX =MXobs ,QX = QXobs}.
Theorem 2.2. The selective p-value in (4) satisfies the fol-
lowing property of a valid p-value:

PH0
(pselective ≤ α) = α, ∀α ∈ (0, 1).

The proof of Theorem 2.2 is presented in Appendix B.1.
This theorem guarantees that the selective p-value is uni-
formly distributed under the null hypothesis H0 and then
used to conduct the valid statistical inference for the atten-
tion regionMX .

3. Computing Selective p-values
In this section, we propose a novel computational procedure
for the selective p-values in (4).

Characterization of the Conditional Data Space. To
compute the selective p-values in (4), we need to character-
ize the conditional data space X . According to the condi-
tioning on the nuisance parameter QX , the conditional data
space X is restricted to a one-dimensional line in Rn.

Lemma 3.1. The set X can be re-written, using a scalar
parameter z ∈ R, as

X = {X(z) ∈ Rn |X(z) = a+ bz, z ∈ Z}

where vectors a, b ∈ Rn are defined as

a = QXobs , b = ΣηM
Xobs

/√
η⊤
M

Xobs
ΣηM

Xobs
,

and the region Z is defined as

Z = {z ∈ R | Ma+bz =MXobs}.

The proof of Lemma 3.1 is presented in Appendix B.2.
This characterization of the conditional data space is first
proposed by Liu et al. (2018) and used in many other SI
studies. Let us consider a random variable Z ∈ R and its
observation zobs ∈ R such that they respectively satisfy
X = a+bZ and Xobs = a+bzobs. The selective p-value
in (4) is re-written as

pselective = PH0(|Z| > |zobs| | Z ∈ Z). (5)

Because the unconditional variable Z ∼ N (0, 1) under the
null hypothesis H0

2, the conditional random variable Z |
Z ∈ Z follows the truncated standard Gaussian distribution.
Once the truncated region Z is identified, the selective p-
value in (5) can be easily computed. Thus, the remaining
task is reduced to the characterization of Z .

Reformulation of the Truncated Region. Based on the
definition of the attention region in (1), the condition part
of the set Z can be reformulated as

Ma+bz =MXobs

⇔{i ∈ [n] | Ai(a+ bz) > τ} =MXobs

⇔

{
Ai(a+ bz) > τ, ∀i ∈MXobs

Ai(a+ bz) < τ, ∀i /∈MXobs

⇔fi(z) < 0, ∀i ∈ [n],

where fi : R→ R, i ∈ [n] is defined as

fi(z) =

{
τ −Ai(a+ bz) (i ∈MXobs)

Ai(a+ bz)− τ (i /∈MXobs)
. (6)

Therefore, we can reformulate Z as

Z =
⋂
i∈[n]

{z ∈ R | fi(z) < 0}. (7)

Selective p-value Computation by Adaptive Grid Search.
The problem of finding Z in (7) is reduced to the prob-
lem of enumerating all solutions to the nonlinear equations
fi(z) = 0 for each i ∈ [n] in (6). The difficulty of this
problem depends on the continuity, differentiability, and
smoothness of the functions fi, i ∈ [n]. Fortunately, since
the function fi is a part of the attention map computation
in the ViT model, it is continuous, (sub)differentiable, and
possesses a certain level of smoothness (except for patho-
logical cases). Assuming the certain degree of smoothness
of the function fi, by adaptively generating grid points in
the one-dimensional space z ∈ R and computing the values

2The random variable Z corresponds to the test statistic T (X).
Then, Z ∼ N (0, 1) is obtained by the linearity of the test statistic
T (X) with respect to X and the fact that the test statistic T (X)
is already standardized in the definition.
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of fi(z) at each grid point, it is possible to identify Z in (7)
with sufficient accuracy. This further means that it is pos-
sible to compute the selective p-value in (5) with sufficient
accuracy (as stated in Theorem 3.2 later).

The overall procedure for estimating the selective p-value
by an adaptive grid search method is summarized in Algo-
rithm 1. Here, S represents the grid search interval [−S, S],
εmin and εmax represent the minimum and maximum grid
width, respectively. Note that, in line 9 of Algorithm 1, we
added the interval J(zobs) that overlaps with the grid points
for computational simplicity. The key of Algorithm 1 lies
in how to determine the adaptive grid size d(zj).

Algorithm 1 Selective p-value Computation by Adaptive
Grid Search
Require: S, εmin, εmax, {fi}i∈[n] and zobs := T (Xobs)

1: j ← 0, z0 ← −S
2: while zj < S do
3: compute the adaptive grid width d(zj)
4: zj+1 ← zj +min(εmax,max(d(zj), εmin))
5: j ← j + 1
6: end while
7: dobs ← min(εmax, d(z

obs))
8: J(zobs)← [zobs − dobs, zobs + dobs]
9: Zgrid ← ∪j|zj∈Z [zj , zj+1] ∪ J(zobs)

10: pgrid ← PH0(|Z| > |zobs| | Z ∈ Zgrid), where Z ∼
N (0, 1)

Ensure: pgrid

The following theorem states that, by utilizing the Lipschitz
constant of fi, it is possible to appropriately determine the
adaptive grid width d(zj) and compute the selective p-value
with sufficient accuracy.

Theorem 3.2. Assume that fi is differentiable and Lipschitz
continuous for all i ∈ [n]. Assume further that fi has at
most only a finite number of zeros, at any of which the value
of f ′

i is non-zero for all i ∈ [n]. Define the grid width d(zj)
as

d(zj) =


min

i∈[n],fi(zj)<0

|fi(zj)|
Li(zj)

(zj ∈ Z),

max
i∈[n],fi(zj)≥0

|fi(zj)|
Li(zj)

(zj /∈ Z),

where Li(zj) is the Lipschitz constant of fi in the εmax-
neighborhood of zj . Then, we have

|pselective − pgrid| = O(εmin + exp(−S2/2)),

where εmin → 0, S →∞.

The proof of Theorem 3.2 is presented in Appendix B.3.
The following lemma suggests why it is reasonable to define
the grid width as d(zj) in Theorem 3.2.

Lemma 3.3. For the grid width d(zj) defined in Theo-
rem 3.2, we have

zj ∈ Z ⇒ [zj , zj +min(εmax, d(zj))] ⊂ Z,
zj /∈ Z ⇒ [zj , zj +min(εmax, d(zj))] ⊂ R \ Z.

The proof of Lemma 3.3 is presented in Appendix B.4.
The main idea of the proof is that fi has the same sign
on the interval [zj , zj +min(εmax, |fi(zj)|/Li(zj))] from
Lipschitz continuity (as shown in Figure 2). In Algorithm 1,
we take the max operation in line 4 to avoid the case where
the grid width is too small and then the grid point is stuck
in Z or R \ Z .

Figure 2. Schematic illustration of the relationship between grid
width and Lipschitz constant.

Implementation Teqniques. For implementation, we
need to define the grid width d(zj) in a computable form.
Actually, computing d(zj) as defined in Theorem 3.2
presents a challenge since it requires the computation of
the Lipschitz constant Li(zj) of the attention score in the
vicinity of zj . In this study, we define d(zj) as in Theo-
rem 3.2, by estimating the Lipschitz constant Li(zj) using
some heuristics. Specifically, we introduce two types of
heuristics based on the relative positions of the current grid
point zj and zobs. In the case where zj is far from zobs

(i.e., |zj − zobs| > 0.1), we assume that fi can be approx-
imated by a linear function in the εmax-neighborhood of
zj . Then, we conservatively set Li(zj) = 10|f ′

i(zj)|. Here,
we can also assume that the sign of fi does not change
on the interval [zj , zj + εmax] for i such that fi(zj) and
f ′
i(zj) have the same sign, since fi is assumed to be ap-

proximated by a linear function. This can be implemented
by taking the min or max operation only for i such that
fi(zj)f

′
i(zj) < 0. In contrast, in the case where zj is close

to zobs (i.e., |zj − zobs| < 0.1), fi may exhibit a flat shape
or micro oscillations and tends to take values close to zero.
Note that careful consideration is required when any fi is
close to zero, because it implies that the grid point zj is
close to the boundary of Z . Therefore, it may not be rea-
sonable to utilize the derivative of fi in the same way as
above, so we assume that Li(zj) = 1. This assumption is
highly conservative, since the range of the attention score
Ai is [0, 1]. The schematic illustration of these heuristics is
shown in Figure 3.
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conservative

Near

Figure 3. Schematic illustration of the introduced heuristics. The left and central part of the figure show the case where the grid point is
far from zobs and the right part of the figure shows the case where the grid point is close to zobs. In the left part where zj is far from zobs,
the function fi is approximated by a linear function and the Lipschitz constant Li(zj) is conservatively set to 10|f ′

i(zj)|. In the central
part where the function fi is approximated by a linear function, the sign does not change as long as fi(zk)f ′

i(zk) is positive. In the right
part where zl is close to zobs, the function fi may exhibit a flat shape or micro oscillations and tends to take values close to zero.

Derivative of the Attention Map. We considered utiliz-
ing the derivative of each fi to compute the grid width
d(zj). This necessitates computing the derivative of the
attention map A, which is the output of the ViT model.
Auto differentiation, which is implemented in many deep
learning frameworks (e.g., TensorFlow and PyTorch), can
be used to compute this derivative. It should be noted that
we are to differentiate an n-dimensional attention map with
respect to a scalar input zj . When output dimension is large,
reverse-mode auto differentiation (also called backpropaga-
tion) is generally inefficient. In these cases, forward-mode
auto differentiation is a better option. However, it is not
well supported in many frameworks and may require more
implementation costs than using the back-mode auto differ-
entiation. We modularized the operations specific to the ViT
model for differentiating the attention map using forward-
mode auto differentiation in TensorFlow. This allows us
to differentiate the attention map for ViTs of any architec-
ture without incurring additional implementation costs. For
details, see our implementation code.

4. Numerical Experiments
Methods for Comparison. We compared the proposed
method (adaptive) with naive test (naive), permu-
tation test (permutation), and bonferroni correction
(bonferroni), in terms of type I error rate and power.
Then, we compared the proposed method with other grid
search options (fixed, combination) in terms of com-
putation time. See Appendix C.1 for more details.

Experimental Setup. We first trained the ViT classi-
fier model on the synthetic dataset. We created a syn-
thetic dataset by generating 1,000 negative images X =
(X1, . . . , Xn) ∼ N (0, I) and 1,000 positive images X =
(X1, . . . , Xn) ∼ N (µ, I). The pixel intensity vector µ was
set to µi = ∆, ∀i ∈ S and µi = 0, ∀i ∈ [n] \ S, where
∆ was uniformly sampled from U[1,4] and S is the region
to focus on whose location was randomly determined. Af-
ter training process, we experimented with the trained ViT

model on the test dataset. We input the test image to the
trained ViT model and obtained the attention map, and then
performed the statistical test for the obtained attention map.
In all experiments, we set the threshold value τ = 0.6, the
grid search interval [−S, S] with S = 10 + |zobs|, the min-
imum grid width εmin = 10−4, the maximum grid width
εmax = 0.2, and the significance level α = 0.05. We con-
sidered two types of covariance matrices: Σ = In ∈ Rn×n

(independence) and Σ = (0.5|i−j|)ij ∈ Rn×n (correlation).

For the experiments to see the type I error rate, we consid-
ered two options: for image size in {64, 256, 1024, 4096}
and for architecture in {small, base, large, huge} (the details
of architectures are presented in Appendix C.2). If not spec-
ified, we used the image size of 256 and the architecture
of base. In each setting, we generated 100 null test images
X = (X1, . . . , Xn) ∼ N (0,Σ) and ran 10 trials (i.e., 1,000
null images in total). Here, the first 2 trials were also used
for comparing the computation time. Regarding our pro-
posed method, we ran additional 90 trials to carefully check
the validity in controlling the type I error rate at three signif-
icance levels α = 0.05, 0.01, 0.10. To investigate the power,
we set image size to 256 and architecture to base and gen-
erated 1,000 test images X = (X1, . . . , Xn) ∼ N (µ,Σ).
The pixel intensity vector µ was set to µi = ∆, ∀i ∈ S
and µi = 0, ∀i ∈ [n] \ S, where S is the region to fo-
cus on whose location was randomly determined. We set
∆ ∈ {1.0, 2.0, 3.0, 4.0}.

Results. The results of type I error rate are shown in Fig-
ures 4 and 5. The adaptive and bonferroni success-
fully controlled the type I error rate under the significance
level in all settings, whereas the other two methods naive
and permutation could not. Because the naive and
permutation failed to control the type I error rate, we
no longer considered their powers. The results of power
comparison are shown in Figure 6 and we confirmed that the
adaptive has much higher power than the bonferroni
in all settings. The results of computation time are shown
in Figures 7 and 8. In all settings, the adaptive outper-
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forms the fixed and combination while utilizing the
smallest minimum grid width. The results of additional
trials for the type I error rate are shown in Figures 9 and
10. We confirmed that our proposed method can properly
control the type I error rate at multiple significance levels in
all settings for more trials.

Additionally, we confirmed the robustness of our proposed
method in terms of type I error rate control for two cases:
where the covariance matrix is estimated from the same data,
and where the noise follows one of five non-Gaussian distri-
bution families. More details can be found in Appendix C.3.
The results are shown in Figures 11 and 12. Our method
still maintains good performance in type I error rate control.

Discussion. Our experiments confirmed that the approxi-
mation approach works well with the heuristics considered
in §3 for the attention map in the ViT model. We assess
the reasonableness of the heuristics in §3 by presenting
several examples of our target function fi defined in (6)
in Figure 13. The plots demonstrate that the function fi
is generally consistent with the heuristics, having a shape
that can be approximated linearly when z is away from zobs

and tending to take values close to zero when z is close
to zobs. The input image of the ViT model is written as
a+bz = Xobs+b(z−zobs), where b is the vector parallel
to ηM

Xobs
from the definition. For z away from zobs, the

input Xobs + b(z − zobs) results in an image where the
pixel intensity in the attention regionMXobs is highlighted.
Then, each attention score Ai may exhibit a gradual trend.
On the other hand, for z close to zobs, from the definition
of fi in (6) and continuity, it is expected that some fi are
close to zero. However, it is unclear whether these heuristics
are always valid for any complex Transformer architectures.
In some cases, it may be necessary to sufficiently reduce
the grid size to account for highly nonlinear functions with
increased computational costs.

Real Data Experiments. We examined the brain image
dataset extracted from the dataset used in Buda et al. (2019),
which included 939 and 941 images with and without tu-
mors, respectively. We selected 100 images without tumors
to estimate the variance and used 700 images each with
and without tumors for training the ViT classifier model.
The remaining images with and without tumors were used
for testing, i.e., to demonstrate the advantages of the pro-
posed method. The results of the adaptive and naive
are shown in Figure 14. The naive p-values remain small
even for images without tumors, which indicates that naive
p-values cannot be used to quantify the reliability of the
attention regions. In contrast, the adaptive p-values are large
for images without tumors and small for images with tu-
mors. This result indicates that the adaptive can detect
true positive cases while avoiding false positive detections.
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Figure 4. Type I Error Rate when changing the image size. Only
our proposed method and the bonferroni correction are able to
control the type I error rate in all settings.
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Figure 5. Type I Error Rate when changing the architecture. Only
our proposed method and the bonferroni correction are able to
control the type I error rate in all settings.
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Figure 6. Power when changing the signal intensity. Our proposed
method has much higher power than the bonferroni correction.

5. Conclusion
In this study, we introduced a novel framework for testing
the statistical significance of ViT’s Attention based on the
concept of SI. We developed a new computational method
for calculating the p-values, which are used as an indicator
of statistical significance. One current limitation of the
proposed method is its computational cost, which makes it
difficult to apply to high-resolution images and very huge
architectures. The introduction of reasonable and stronger
heuristics is a possible future improvement that would make
the proposed method more widely applicable. We believe
that this study opens an important direction in ensuring the
reliability of ViT’s Attention.
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Figure 7. Computational Time when changing the image size. Our
proposed method outperforms the other two grid search options
while utilizing the smallest minimum grid width.
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Figure 8. Computation Time when changing the architecture. Our
proposed method outperforms the other two grid search options in
all settings while utilizing the smallest minimum grid width.
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Figure 9. Type I Error Rate from 10,000 null images for three
significance levels, when changing the image size. Error bars
indicate the 95% confidence interval of the type I error rate. Our
proposed method can properly control the type I error rate at
multiple significance levels in all settings for more trials.
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Figure 10. Type I Error Rate from 10,000 null images for three
significance levels, when changing the architecture. Error bars
indicate the 95% confidence interval of the type I error rate. Our
proposed method can properly control the type I error rate at
multiple significance levels in all settings for more trials.
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Figure 11. Robustness of Type I Error Rate Control. Our proposed
method can robustly control the type I error rate even when the
covariance matrix is estimated from the same data.
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Figure 12. Robustness of Type I Error Rate Control. Our proposed
method can robustly control the type I error rate, albeit slightly
above the significance level, even when the noise follows non-
Gaussian distributions.
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Figure 13. Demonstration of the target function fi. We set image
size to 256 and architecture to base, and the image was generated
from the standard normal distribution N (0, I). The vertical red
line indicates the observed test statistic zobs and the horizontal
red line indicates zero. The blue plots display fi values for 10
randomly selected i from MXobs , while the orange plots display
fi values for 40 randomly selected i from Mc

Xobs . We note that
the region on which all fi values lie below zero (horizontal red
line) is the truncated region Z .
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Figure 14. Demonstration on brain image dataset. Our proposed method conclude that attentions are statistically significant for images
with tumors while avoiding falsely detection of significance for images without tumors.
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A. Details of the Vision Transformers
A.1. Structure of the Vision Transformers

The overall structure of the ViT model is shown in Figure 15. In MLP, we use two fully-connected layers and set the hidden
dimension to four times the #emb dim. In Multi-Head Self-Attention, we use #heads self-attention mechanisms. Regarding
the patch embedding, we set the patch size to min(2,

√
n/8) (i.e., for

√
n = 16 case, the patch size is 2 and then #patches is

(16/2)2 = 64). As the base model, we set the #layers to 8, the #emb dim to 64, and the #heads to 4, respectively.

Multi-Head
Self-Attention

Layer Norm

MLP

Encoder Block

+

Layer Norm

+

(#patches+1, #emb_dim)

Input (d, d, 1)

Positive/Negative

Encoder Block

Predictor

Class Token and Embed Patches
(#patches+1, #emb_dim)

Patch Embedding and
Positional Embedding

Encoder Block

(#patches+1, #emb_dim)

(#patches+1, #emb_dim)

#layers

Extract Class Token

(#emb_dim, ) (1, )

Figure 15. Structure of the Vision Transformer model.

A.2. Computation of the Attention Maps

Let we denote the #patches as N , #layers as L, the #heads as H , and the #emb dim/#heads as D. We describe the
computation of the attention map A(X) ∈ [0, 1]n for input image X ∈ Rn from the ViT model based on (Abnar &
Zuidema, 2020)

Obtain the Attention Weights. We reshape the input image X ∈ Rn to X ′ ∈ Rd×d where d =
√
n, and then input it to

the ViT model. In process of the ViT model, the input image X ′ is passing through the self-attention mechanism H × L
times. In the h-th self-attention mechanism of the l-th layer, let we denote the query and key as Ql,h ∈ R(N+1)×D and
Kl,h ∈ R(N+1)×D, respectively. Then, the attention weights Al,h ∈ R(N+1)×(N+1) are computed as

Al,h = softmax

(
Ql,hK

⊤
l,h√

D

)
, (l, h) ∈ [L]× [H],

where softmax operation is applied to each row of the matrix. Note that the row of Al,h corresponds to the queries and
the column of Al,h corresponds to the keys. The attention map is computed by aggregating the all attention weights
{Al,h}(l,h)∈[L]×[H].

Aggregate the Attention Weights. We compute the layer-wise attention weights Âl ∈ R(N+1)×(N+1) by averaging the
attention weights Al,h in heads direction as

Âl =
1

H

∑
h∈[H]

Al,h, l ∈ [L].
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Then, to aggregate the all attention weights to Ā, we take the matrix product of each Âl, adding the identity matrix
I ∈ R(N+1)×(N+1), as

Ā =
∏
l∈[L]

(
Âl + I

)
,

where matrix I represents the skip connection in Encoder Block as in Figure 15. Finally, we extract the N -dimensional
vector A ∈ RN from Ā as

A = Ā1,2:N+1,

which corresponds to the keys of each patch for the query of the class token as an aggregated form.

Post-Processing. We reshape the N -dimensional vector A to square matrix and upscale it to A′ whose size is the same as
the input image X ′ by using bilinear interpolation. Then, we obtain the attention map A(X) ∈ [0, 1]n by normalizing A′

with min-max normalization and flattening it to n-dimensional vector.

B. Proofs
B.1. Proof of Theorem 2.2

We proof this theorem based on the Lemma 3.1. Then, under the null hypothesis H0, we have

T (X) | {MX =MXobs ,QX = QXobs} ∼ TN(0, 1;Z),

where TN(0, 1;Z) is the truncated standard Gaussian distribution on Z and truncated region Z is defined in Lemma 3.1.
Therefore, by probability integral transform, under the null hypothesis we have

pselective | {MX =MXobs ,QX = QXobs} ∼ Unif(0, 1),

which leads to
PH0

(pselective ≤ α | MX =MXobs ,QX = QXobs) = α, ∀α ∈ (0, 1).

For any α ∈ (0, 1), we firstly marginalize over all the values of the nuisance parameters and then over all possible attention
regions. Regarding the marginalization of the nuisance parameters, we have

PH0
(pselective ≤ α | MX =MXobs)

=

∫
Rn

PH0
(pselective ≤ α | MX =MXobs ,QX = QXobs)PH0

(QX = QXobs | MX =MXobs)dQXobs

=α

∫
Rn

PH0
(QX = QXobs | MX =MXobs)dQXobs = α.

Regarding the marginalization of the attention regions, we obtain the results as follows:

PH0
(pselective ≤ α)

=
∑

M
Xobs∈2[n]\{∅,[n]}

PH0(pselective ≤ α | MX =MXobs)PH0(MX =MXobs)

=α
∑

M
Xobs∈2[n]\{∅,[n]}

PH0(MX =MXobs) = α.

B.2. Proof of Lemma 3.1

According to the conditioning on QX = QXobs , we have

QX = QXobs ⇔

(
In −

ΣηMX
η⊤
MX

η⊤
MX

ΣηMX

)
X = QXobs ⇔X = a+ bz,

where z = T (X) ∈ R. Then, we obtain the results as follows:

X = {X ∈ Rn | MX =MXobs ,QX = QXobs}
= {X ∈ Rn | MX =MXobs ,X = a+ bz, z ∈ R}
= {a+ bz ∈ Rn | Ma+bz =MXobs , z ∈ R}.
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B.3. Proof of Theorem 3.2

We note that the εmax is not necessarily to evaluate the error bound because it is introduced for implementation convenience.
Let us define the indicator function I(zj) as

I(zj) =

{
1 (εmin ≤ d(zj))

0 (εmin > d(zj))

First, we divide R into the four unions of intervals such that any two of them have no intersection with length as

R1 =
⋃

j|I(zj)=1,zj∈Z

[zj , zj+1] ∪ J(zobs),

R2 =
⋃

j|I(zj)=1,zj /∈Z

[zj , zj+1],

R3 =
⋃

j|I(zj)=0

[zj , zj+1] \ J(zobs),

R4 = (−∞,−S] ∪ [S,∞).

Here, R1 ⊂ Zgrid and R2 ⊂ R \ Zgrid are obvious from the definition of them, and from the Lemma 3.3, we have R1 ⊂ Z
and R2 ⊂ R \ Z . Then, we have following subset relationships

R1 ⊂ Z, Zgrid ⊂ R1 ∪R3 ∪R4 (8)

Let us denote the probability density function of the standard Gaussian distribution as ϕ and the cumulative distribution
function of that as Φ, and introduce the integrate function I as

I : B(R) ∋ R 7→
∫
R

ϕ(z)dz ∈ [0, 1],

where B(R) is the Borel set of R. Additionally, for any R ∈ B(R), we define the two sets Rin, Rout ∈ B(R) as

Rin = R ∩ [−|zobs|, |zobs|], Rout = R \ [−|zobs|, |zobs|].

Then, we have pselective and pgrid as

pselective = PH0(|Z| > |zobs| | Z ∈ Z) =
I(Zout)

I(Zin)
, (9)

pgrid = PH0
(|Z| > |zobs| | Z ∈ Zgrid) =

I(Zgrid
out )

I(Zgrid
in )

, (10)

respectively. Therefore, by considering the subset relationships in (8), our goal of evaluating the error is casted into the
evaluating the I(R1), I(R3), and I(R4). To do so, we start to evaluate the length of R3.

We denote the Lipschitz constant of fi as Li > 0 and the number of zeros of fi as Ki ∈ N. We define the L > 0 and K ∈ N
as L = maxi∈[n] Li and K = maxi∈[n] Ki, respectively. Then, for any zj ∈ Z , we have

d(zj) ≥ min
i∈[n]

|fi(zj)|
Li(zj)

≥ min
i∈[n]

|fi(zj)|
L

Furthermore, regarding the condition of R3, we have εmin > mini∈[n] |fi(zj)|/L from I(zj) = 0 ⇔ εmin > d(zj).
Therefore, we have the following subset relationship

R3 ⊂
⋃

j|I(zj)=0

[zj , zj+1] =
⋃

j|I(zj)=0

[zj , zj + εmin]

⊂
⋃

j|Lεmin>mini∈[n] |fi(zj)|

[zj , zj + εmin]. (11)
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Continuously, we evaluate the length of R3 by show that the set in (11) is restricted to the neighborhood of the zeros of fi.
For i ∈ [n], we denote the k-th zeros of fi as qik(k ∈ [Ki]), and the minimum value of |f ′

i | at the zeros of fi as hi > 0 (i.e.,
hi = mink∈[Ki] |f ′

i(qik)|). Let us denote the h > 0 as h = mini∈[n] hi. Here, by using these zeros, we define the set D(r)
for any r > 0, which is the union of the r-neighborhood of the zeros,

D(r) =
⋃
i∈[n]

⋃
k∈[Ki]

[qik − r, qik + r].

Then, for any i ∈ [n] and k ∈ [Ki], from the definition of derivative function, there exists δik > 0 such that, for any s
satisfying 0 < |s| < δik, ∣∣∣∣fi(qik + s)− fi(qik)

s
− f ′

i(qik)

∣∣∣∣ < h

2

holds. Therefore, from the triangle inequality and the definition of h, we have

h

2
>

∣∣∣∣f ′(qik)−
fi(qik + s)

s

∣∣∣∣ ≥ |f ′(qik)| −
∣∣∣∣fi(qik + s)

s

∣∣∣∣ ≥ h−
∣∣∣∣fi(qik + s)

s

∣∣∣∣ .
To summarize, we have |fi(qik + s)| ≥ h|s|/2 including the case of s = 0. Thus, let us denote the δ > 0 as δ =
mini∈[n] mink∈[Ki] δik, then, for any s satisfying |s| < δ, we have

min
i∈[n]

min
k∈[Ki]

|fi(qik + s)| ≥ h

2
|s|. (12)

Next, we consider the set [−S, S] \D(δ), which is assumed to have its boundary points added. Then, this set is a compact
set, and thus the minimum value of mini∈[n] |fi| in this set is attained and we denote it as l > 0 (because l = 0 violates the
assumption of zeros of fi and the definition of D(δ)).

As follows, we consider the asymptotic case of εmin → 0 and then only consider the case of εmin < min(hδ/2L, l/L). In
this case, we have 0 < 2Lεmin/h < δ, thus, from (12), the infimum of mini∈[n] |fi| in D(δ)/D(2Lεmin/h) is greater than
or equal to h(2Lεmin/h)/2 = Lεmin. By combining this with the definition of l, for any z ∈ [−S, S] \D(2Lεmin/h), we
have

min
i∈[n]
|fi(z)| ≥ min(Lεmin, l) = Lεmin,

where we used the assumption of εmin < l/L. Therefore, we have

R3 ⊂
⋃

j|Lεmin>mini∈[n] |fi(zj)|

[zj , zj + εmin]

⊂
⋃

j|zj∈D(2Lεmin/h)

[zj , zj + εmin] ⊂ D

((
2L

h
+ 1

)
εmin

)
.

Based on these results, we return to the evaluation of the I(R1), I(R3), and I(R4). Regarding the I(R3), we have

I(R3) ≤ I
(
D

((
2L

h
+ 1

)
εmin

))
≤
∑
i∈[n]

∑
k∈[Ki]

I
([

qik −
((

2L

h
+ 1

)
εmin

)
, qik +

((
2L

h
+ 1

)
εmin

)])

=
∑
i∈[n]

∑
k∈[Ki]

{
Φ

(
qik +

(
2L

h
+ 1

)
εmin

)
− Φ

(
qik −

(
2L

h
+ 1

)
εmin

)}
.

By using the mean value theorem and the fact that ϕ has the maximum value at 0, then we have

I(R3) ≤
∑
i∈[n]

∑
k∈[Ki]

ϕ(0)

(
4L

h
+ 2

)
εmin

≤ nKϕ(0)

(
4L

h
+ 2

)
εmin = M1εmin, (13)
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where M1 = nKϕ(0) (4L/h+ 2) is a positive constant independent of εmin and S. Next, regarding the I(R1), from the
mean value theorem, the symmetry of ϕ and the decreasing property of ϕ on [0,∞), we have

I(R1
in) ≥ I(J(zobs)in)

= I([zobs − dobs, zobs + dobs] ∩ [−|zobs|, |zobs|])
≥ ϕ(zobs)dobs = M2, (14)

where M2 = ϕ(zobs)dobs is a positive constant independent of εmin and S. Finally, regarding the I(R4), we have

I(R4) = 2Φ(−S) (15)

Finally, we evaluate the error bound. From (8), (9) and (10), we have

I(R1
out)

I((R1 ∪R3 ∪R4)in)
≤ pselective, pgrid ≤

I((R1 ∪R3 ∪R4)out)

I(R1
in)

.

Therefore, by using (13), (14) and (15), we have the following error bound

|pselective − pgrid|

≤I((R
1 ∪R3 ∪R4)out)

I(R1
in)

− I(R1
out)

I((R1 ∪R3 ∪R4)in)

=
I((R1 ∪R3 ∪R4)out)I((R1 ∪R3 ∪R4)in)− I(R1

out)I(R1
in)

I(R1
in)I((R1 ∪R3 ∪R4)in)

=
I((R3 ∪R4)out)I((R3 ∪R4)in) + I(R1

out)I(R3 ∪R4)

I(R1
in)I((R1 ∪R3 ∪R4)in)

≤I(R
3 ∪R4)2 + I(R3 ∪R4)

I(R1
in)

2

≤ 2

M2
2

I(R3 ∪R4) ≤ 2

M2
2

(M1εmin + 2Φ(−S)). (16)

Here, based on the three equations limx→∞ ϕ(x)/xϕ(x) = 0, Φ′(−x) = (1 − Φ(x))′ = −ϕ(x) and ϕ′(x) = −xϕ(x),
we have the limx→∞ Φ(−x)/ϕ(x) = 0 from the l’Hôpital’s rule. We consider the asymptotic case of S → ∞ and
then only consider the case of S sufficiently large such that Φ(−S) ≤ exp(−S2/2) holds (we can take such S because
limx→∞ Φ(−x)/ϕ(x) = 0). By combining this with (16), we have

|pselective − pgrid| ≤
2

M2
2

(M1εmin + 2 exp(−S2/2))

≤ 2M1 + 4

M2
2

(εmin + exp(−S2/2)),

where the coefficient (2M1 + 4)/M2
2 is positive constant independent of εmin and S. Thus, we have successfully showed

that the error is bounded by O(εmin + exp(−S2/2)) in asymptotic case of εmin → 0 and S → ∞, which was what we
wanted.

B.4. Proof of Lemma 3.3

In case of zj ∈ Z , we have

[zj , zj +min(εmax, d(zj))] = [zj , zj + εmax] ∩
[
zj , zj + min

i∈[n],fi(zj)<0

|fi(zj)|
Li(zj)

]
=

⋂
i∈[n],fi(zj)<0

[zj , zj + εmax] ∩
[
zj , zj +

|fi(zj)|
Li(zj)

]

=
⋂

i∈[n],fi(zj)<0

[
zj , zj +min

(
εmax,

|fi(zj)|
Li(zj)

)]
⊂ Z.
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Similarly, in case of zj /∈ Z , we have

[zj , zj +min(εmax, d(zj))] = [zj , zj + εmax] ∩
[
zj , zj + max

i∈[n],fi(zj)≥0

|fi(zj)|
Li(zj)

]
=

⋃
i∈[n],fi(zj)≥0

[zj , zj + εmax] ∩
[
zj , zj +

|fi(zj)|
Li(zj)

]

=
⋃

i∈[n],fi(zj)≥0

[
zj , zj +min

(
εmax,

|fi(zj)|
Li(zj)

)]
⊂ R \ Z.

C. Experimental Details
C.1. Methods for Comparison

We compared our proposed method with the following methods:

• naive: This method uses a classical z-test without conditioning, i.e., we compute the naive p-value as

pnaive = PH0

(
|Z| > |zobs|

)
.

• permutation: This method uses a permutation test. The procedure is as follows:

– Compute the observed test statistic zobs by inputting the observed image Xobs to the ViT model.
– For i = 1, . . . , B, compute the test statistic z(i) by inputting the permuted image X(i) to the ViT model. Here, B

is the number of permutations which is set to 1,000 in our experiments.
– Compute the permutation p-value as

ppermutation =
1

B

∑
b∈[B]

1{|z(b)| > |zobs|},

where 1{·} is the indicator function.

• bonferroni: This is a method to control the type I error rate by using the Bonferroni correction. The number of all
possible attention regions is 2n, then we compute the bonferroni p-value as pbonferroni = min(1, 2n · pnaive).

• fixed: This is a grid search method with a fixed grid width ε = 10−3.

• combination: This is a grid search method with a fixed grid width ε = 10−4 for the grid point zj which satisfies
|zj − zobs| < 0.1 and ε = 10−2 for the remaining grid points.

We note that, in implementing the grid search methods (adaptive, fixed, combination), the binary search is
performed to find the boundary of the truncated region Z between adjacent grid points, where one belongs to the Z and the
other does not.

C.2. Architectures to Compare

The architectures to compare are shown in Table 1. The details of the structure of the ViT model we used are shown in
Appendix A.1.

C.3. Details of Robustness Experiment

Estimated Covariance Matrix. We considered the two options: for image size in {64, 256, 1024, 4096} and for
architecture in {small, base, large, huge} as same as the type I error rate experiments in §4. In each setting, we generated
100 null images X = (X1, . . . , Xn) ∼ N (0, I) and estimated the covariance matrix as σ̂2I where σ̂2 is the sample variance
of the same data. We ran 100 trials (i.e., 10,000 images in total) for three significance levels α = 0.05, 0.01, 0.10.
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Table 1. Architectures to compare

Architecture #layers #hidden dim #heads #parameters

small 4 32 2 53.2K
base 8 64 4 405K
large 12 128 8 2.39M
huge 16 256 16 12.7M

Non-Gaussian Noise. We set the image size to 256 and the architecture to base. As non-Gaussian distributions, we
considered the following five distribution families:

• skewnorm: Skew normal distribution family.

• exponnorm: Exponentially modified normal distribution family.

• gennormsteep: Generalized normal distribution family (limit the shape parameter β to be steeper than the normal
distribution, i.e., β < 2).

• gennormflat: Generalized normal distribution family (limit the shape parameter β to be flatter than the normal
distribution, i.e., β > 2).

• t: Student’s t distribution family.

We note that all of these distribution families include the Gaussian distribution and are standardized in the experiment. To
conduct the experiment, we first obtained a distribution such that the 1-Wasserstein distance from N (0, 1) is d in each
distribution family, for d ∈ {0.01, 0.02, 0.03, 0.04}. We then generated 100 images following each distribution and ran 100
trials (i.e., 10,000 images in total) for two significance levels α = 0.05, 0.01.

We demonstrate the probability density functions for distributions from each distribution family such that the 1-Wasserstein
distance from N (0, 1) is 0.04 in Figure 16
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Figure 16. Demonstration of non-Gaussian distributions
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