Scaling Beyond the GPU Memory Limit
for Large Mixture-of-Experts Model Training

Yechan Kim “! Hwijoon Lim “? Dongsu Han ' 2

Abstract

Mixture-of-Experts (MoE) is a powerful tech-
nique for enhancing the performance of neural
networks while decoupling computational com-
plexity from the number of parameters. How-
ever, despite this, scaling the number of experts
requires adding more GPUs. In addition, the load
imbalance in token load across experts causes un-
necessary computation or straggler problems. We
present ES-MoE, a novel method for efficient scal-
ing MoE training. It offloads expert parameters
to host memory and leverages pipelined expert
processing to overlap GPU-CPU communication
with GPU computation. It dynamically balances
token loads across GPUs, improving computa-
tional efficiency. ES-MoE accelerates MoE train-
ing on a limited number of GPUs without degra-
dation in model performance. We validate our
approach on GPT-based MoE models, demonstrat-
ing 67 better scalability and up to 17.5x better
throughput over existing frameworks.'

1 Introduction

Mixture-of-Experts (MoE) (Shazeer et al., 2017; Du et al.,
2022; Riquelme et al., 2021; Jiang et al., 2023) integrate
multiple smaller sub-models or “experts” within a compre-
hensive ensemble model. The key enabling factor behind
their success lies in the incorporation of learnable gating
networks, which efficiently allocate input tokens to different
experts. It improves the performance and scalability of mod-
els without increasing the computational complexity (Clark
et al., 2022; Hwang et al., 2022), effectively decoupling the
computational cost from the parameter size.

“Equal contribution 'Kim Jaechul Graduate School of Al,
KAIST, Daejeon, Republic of Korea 2School of Electrical En-
gineering, KAIST, Daejeon, Republic of Korea. Correspondence
to: Dongsu Han <dhan.ee @kaist.ac.kr>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

'The source code is available at https://github.com
/kaist-ina/es-moe.

Parameters in MoE models can easily exceed billions, re-
quiring a significant amount of memory for training. To train
such models, expert parallelism (Fedus et al., 2022; Lep-
ikhin et al., 2020) has become a de facto standard, wherein
each GPU exclusively handles one or more experts. This
assigns experts across GPUs while replicating non-expert
parameters on each GPU, allowing multiple experts to run
concurrently within a single GPU.

Recent research has been pushing MoE models beyond 128
experts to improve model accuracy (Puigcerver et al., 2023;
Clark et al., 2022; Koishekenov et al., 2022; Rajbhandari
et al., 2022; Fedus et al., 2022). However, scaling MoE
models requires additional GPUs due to the increased mem-
ory footprint, even though the computational complexity
remains the same. Thus, existing solutions for training large
MoE models (e.g., FairSeq, DeepSpeed-MoE, Tutel) de-
mand a large array of GPUs, limiting the ability of many
researchers to train or even refine these models. For ex-
ample, training MoE-L with 8 experts is feasible with four
A100 GPUgs, but scaling it to 128 experts demands 52 GPUs,
which is a significant hurdle to most academic researchers.

To address the problem, ES-MoE improves the scalabil-
ity of MoE models beyond the GPU memory limit and
enhances the training efficiency of large MoE models. It
is the first work to target the settings where the memory
footprint of MoE expert models exceeds the GPU memory
capacity. Our approach involves offloading expert param-
eters and optimizer states to the host, which reduces the
GPU memory footprint, allowing it to process larger mini-
batches within limited GPU memory for greater throughput.
It facilitates the flexible assignment of experts to GPUs, pro-
viding the chance to balance the computational load across
GPUs. However, realizing the idea involves handling new
challenges:

e Unlike traditional systems in which an expert is statically
assigned to a GPU, ES-MoE adopts dynamic scheduling
wherein experts are placed on GPUs based on the output
of the gating network. This prevents prefetching the
experts onto GPUs, potentially causing the pipeline stalls.

e With optimizer states stored in CPU memory, transferring
them back to GPU is expensive. Thus, model optimiza-
tion must operate on the CPU, which takes more time.

https://github.com/kaist-ina/es-moe
https://github.com/kaist-ina/es-moe

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

® non-MoE models MoE models |

MoE-XL

MoE-M 8 experts

32 experts

MoE-L
12 experts

8 experts 4 experts

16 experts
~ 4 experts L] ®
8 experts

L D0 T °o®
0 1 2 3 4 5
Computational Complexity (TFLOPs)

of Parameters (B)
O FRLr NWAUIOON®
=
[=]
m
o

Figure 1: MoE models decouple the computational com-
plexity from the number of parameters.

e Scaling the number of experts exacerbates token load
imbalance. This disparity leads to the straggler prob-
lem (Harlap et al., 2016). Although techniques such as
sparse matrix multiplication (Gale et al., 2022) have been
proposed, existing designs do not scale well.

Our design resolves the challenges by introducing dynamic
expert placements, and pipelined CPU optimizations, while
offloading expert parameters for virtually unlimited scaling.
ES-MoE employs expert-level scheduling that strategically
manages expert parameter uploads to enable pipelined ex-
pert processing that overlaps the GPU-CPU communication
with expert computation to maximize the GPU utilization.
In contrast to generic pipelining methods that operate on a
layer-by-layer basis and wait for the entire layer to finish,
our expert-level pipelining starts optimization as soon as
an individual expert finishes its computation. In addition,
ES-MOoE balances the load across GPUs by managing the
placement of experts considering their load.

We provide a comprehensive evaluation of the scalabil-
ity and throughput of ES-MoE with GPT-based (Radford
et al., 2019) MoE models. ES-MoE accommodates up to
66.5 times more experts than existing frameworks and is
able to fine-tune 15B parameter language models with just
4 GPUs. It completed the fine-tuning on 100 M tokens in
6.5 hours using datasets (Williams et al., 2017) contain-
ing 16 M tokens to significantly improve the accuracy. It
achieves a notable increase in throughput of up to 11.6x
over generic offloading methods, and up to 2.12x compared
to the state-of-the-art method, Tutel (Hwang et al., 2022).

2 Related Work

Mixture-of-Experts (MoE) is a machine learning architec-
ture that has gained traction for its high scalability. MoE
models, leveraging a learnable gating network, intelligently
route input tokens to one or more of the most appropriate
sub-models, each termed an ‘expert’. These models are
typically built on top of transformer-based models, where
the feed-forward network in each transformer is replaced by
a combination of a gating network and multiple experts.

Expert parallelism (Fedus et al., 2022; Lepikhin et al.,
2020), a variant of model parallelism (Chilimbi et al., 2014;
Shazeer et al., 2018; Huang et al., 2019), has become a stan-
dard approach in training MoE-based models.This approach
distributes experts across multiple GPUs, assigning one or
more experts to each GPU, while replicating non-expert
parameters on every GPU. During training, input tokens are
exchanged between GPUs to ensure alignment with the ap-
propriate experts as determined by the gating network. This
distribution not only improves computational efficiency but
also significantly enhances the scalability of MoE models.

To mitigate the cost associated with token exchanges, recent
works (He et al., 2022; Liu et al., 2023) propose a data-
centric design in which tokens remain in GPUs and experts
are exchanged instead, under the premise that moving ex-
perts is less costly than exchanging tokens in an all-to-all
fashion. However, this premise is only valid in environments
with large GPU clusters and abundant memory. With limited
GPU memory, the trainable batch size is limited, making
expert exchanges more costly than token exchanges.

Offloading experts to CPU memory. Several studies sug-
gest offloading certain states to the CPU (Rhu et al., 2016;
Huang et al., 2020; Ren et al., 2021; Wang et al., 2018)
for generic models. Notable works (Ren et al., 2021; Ra-
jbhandari et al., 2020) have proposed offloading of model
parameters and optimizer states to CPU memory. Offloading
optimizer states to CPU memory is particularly beneficial
in reducing the GPU memory footprint, as optimizer states
can occupy up to six times more memory than the model it-
self. However, the downside is that CPU-side optimization
is orders of magnitude slower, even in the state-of-the-art
implementation (Rajbhandari et al., 2022)

Load imbalance. Load balancing across the experts is es-
sential in ensuring optimal model accuracy and efficient
GPU resource utilization. With expert parallelism, an un-
even distribution of tokens across the experts results in an
unbalanced workload per GPU, which causes some GPUs to
become stragglers (Harlap et al., 2016). To mitigate imbal-
ance, a common practice is to incorporate an auxiliary imbal-
ance loss to promote balanced token distribution (Shazeer
et al., 2017; Fedus et al., 2022). Despite the practice, the
load imbalance is still common (Zhou et al., 2022).

Many state-of-the-art frameworks (Hwang et al., 2022; He
et al., 2022; Lepikhin et al., 2020; Fedus et al., 2022) use
batched matrix multiplication, necessitating uniform input
batch sizes across all experts. To meet this requirement,
batches are typically zero-padded. The greater the load
imbalance, the more zero padding is required to equalize
batch sizes. However, since these placeholders do not con-

?Adam optimizer (Kingma & Ba, 2014), one of the most com-
mon optimizer, requires 12 bytes for the optimizer state per param-
eter, while the model parameter itself only require 2 bytes (fp16).

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

tribute to the actual training, they lead to computational
inefficiency. In addition, batched matrix multiplication obli-
gates all experts to be loaded into GPU memory and uses a
large dispatch mask for token reordering, further restricting
the batch size and even causing out-of-memory (OOM).

An alternative strategy is token dropping (Fedus et al., 2022;
Zoph et al., 2022), where a limit is set on the maximum
number of tokens per expert. This approach, however, can
lead to dropping a significant fraction of tokens (more than
40% as reported by (Zhou et al., 2022)), which even affects
model convergence (Rajbhandari et al., 2022).

3 Problem and Motivation

MOoE models can be easily scaled to attain enhanced model
performance by adding more experts but without increasing
the computational cost, as shown in Figure 1. GPT-L has
760 million parameters, but its MoE counterpart, MoE-L
can reach 2.11 billion parameters with 4 experts and 14.8
billion parameters with 32 experts, while having the same
computational cost as GPT-L.

However, scaling MoE-based models with existing frame-
works, in practice, presents challenges for two key reasons.
First, although the model inherently decouples computa-
tional complexity from the model size, the underlying sys-
tem does not support decoupling computation from memory.
As aresult, increasing the number of experts requires adding
more GPUs, which is not always a viable option for many
researchers. For instance, training MoE-L with 8 experts is
feasible with only four A100 GPUs, scaling the model to
128 experts requires 52 GPUs, substantially increasing the
barrier. Second, scaling the number of experts exacerbates
existing inefficiencies in computation, which further limits
GPU utilization. We expose the issues in greater detail.

Large memory footprint. Existing systems demand large
amounts of GPU memory for the following reasons: First,
they load all experts on GPUs as they execute the expert
computations simultaneously. Adding more experts in-
creases the GPU memory requirements for model memory
and optimizer states. Second, the use of batch matrix multi-
plication in expert computation requires creating a dispatch
mask to reorder the tokens so that they can be sent to the cor-
rect expert according to the decision of the gating network.
However, this dispatch mask is essentially a huge table that
maps tokens to experts with a dimension of (number of to-
kens after zero-padding) x (number of tokens) (Huang et al.,
2023), occupying substantial memory. For example, train-
ing MoE-L with a batch size of 32 and 1024 tokens per
batch requires at least 48 GiB for the mask.

GPU underutilization. Scaling up the number of experts
results in GPU under-utilization for the following reasons:
First, as the input batch (input tokens) gets distributed across

experts, increasing the number of experts proportionally re-
duces the number of tokens per expert. This decrease in the
token count per expert in MoE models leads to lower GPU
utilization. Second, the demand for large memory creates
memory pressure and limits the size of microbatches; e.g.,
training MoE-M with 4 experts and four A100 40GB GPUs
allows the microbatch size of 8, but increasing to 32 experts
drops the size to 2, reducing training throughput by 46.2%.
Finally, increasing the number of experts exacerbates the to-
ken load imbalance, which can be quantified by the fraction
of zero-padding required to evenly distribute the load across
all experts relative to the total workload. Empirical data
from training the MoE-L model show that with 8 experts,
the token load imbalance in the initial training phase reaches
up to 17% (i.e. 17% of computations are used for computing
zero padding) but with 32 experts, it increases to 39%.

Limited GPU availability. Securing a large number of
GPUs for model training is a significant challenge for many
researchers, especially those in academic settings and small
organizations (Holmes & Gardizy, 2023; Kuperman, 2023).
Most cloud providers impose stringent resource quotas on
individuals, due to the limited availability of GPUs (Google
Cloud, 2024). The situation worsens during peak demand
periods, making it difficult for individuals to obtain even a
few GPUs. This barrier often prevents researchers from the
opportunity to train or even fine-tune large MoE models.

4 ES-MOoE Design

Goals. We present a design of ES-MOE that tackles the chal-
lenges described in §3 in scaling training MoE-based mod-
els. Specifically, ES-MoE achieves the following goals:

e Scalable w.r.t. the number of experts: ES-MoE must
be able to scale to a large number of experts without
having to add more GPUs.

e Improve efficiency in training: It should improve the
GPU utilization by supporting larger mini-batches, miti-
gating the token imbalance, and minimizing any overhead
introduced from scaling.

e Preserve model accuracy: It must maintain the integrity
of a model by maintaining mathematical equivalence to
preserve the model accuracy.

Key approach. The key idea of ES-MOoE is to offload ex-
pert parameters from the GPU to host memory and storage,
which allows us to accommodate larger models than the
GPU memory permits. With our careful pipelining of ex-
pert loading and computation, we effectively minimize the
overhead of copying parameters to and from GPUs (§4.1).

The offloading of experts opens up two new opportunities
for enhancing the training throughput. First, the offloaded
experts alleviate the GPU memory pressure and free mem-
ory, which can be used to increase the batch size for training.
This allows ES-MoE to fully utilize the parallelism in GPUs

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

Training Iteration without Expert-wise CPU-based optimization

CPU Copy ™ B0 | E1 | E2 | E3 Parameters E3

GPU compute

CPU Copy

E2

Gradients

El EO Parameters

opti
opens

Backward

E3 || E2 || E1 || EO

CPU Compute

&

i il T 1]
[= J— s [ISP | - 1

optimize I NN AN B <

Pipelined Expert Optimization

<

Training Iteration with Expert-wise CPU-based optimization

Figure 2: ES-MOoE overlaps expert’s computation and communication and pipelines CPU optimization at the expert
granularity to overlap with the backward pass of the layer. EQ, ..., E3 indicate experts in the same layer. G and Perm
respectively indicate the gating network and token permutation phase.

and thus increase the training speed. Second, the experts
have to be dynamically loaded to GPUs for computation,
which gives us an opportunity to place experts on the GPUs
in a way that evenly balances the load across GPUs without
having to use zero-padding (§4.2). Finally, ES-MoE adapts
the degree of offloading based on the number of experts
per GPU and the maximum number of experts a GPU can
accommodate in its memory (§4.3).

4.1 Expert-wise Offload and Processing

ES-MoE offloads expert parameters and optimizer states,
while efficiently scheduling the upload, download, and op-
timization of individual experts. It maintains only the fol-
lowings states in the GPU memory: non-expert parameters,
parameters of the expert being used at the moment, and their
activations. The remaining offloaded state is kept on either
the host memory or storage. The offloading allows ES-MoE
to scale the number of experts beyond the GPU memory
limit, unlike layer-wise offloading (Ren et al., 2021; Rajb-
handari et al., 2021) which causes out-of-memory when the
experts in a layer exceeds the GPU memory capacity.

Pipelined expert processing. A key challenge in offloading
experts is that its upload must be carefully scheduled so
that they minimize GPU stalls. Training an MoE block
starts with tokens passing through the gating network (G
in Figure 2). Based on the output of the gating network,
ES-MOoE places experts on GPUs to evenly distribute load
across GPUs, calculated by the expert placement module
(detailed in §4.2). After the decision, ES-MoE uploads the
experts to the GPUs according to the decision. However, this
poses a challenge because the expert placement on GPUs
can only be determined after the gating network is executed,
leaving too little time to upload all experts assigned to a
GPU, leading to potential GPU stalls.

To address this, ES-MoE implements a careful pipeline of
the tasks to be completed following the output of the gating
network. The tasks include token permutation, expert up-
load, and expert processing. Before being fed to the experts,
the tokens are reordered in the permutation phase for the
token exchange across GPUs. Although the token permu-

tation time is too short to complete the upload of multiple
experts, it usually gives sufficient time for transferring a sin-
gle expert. Thus, ES-MoE overlaps the permutation phase
(Perm in Figure 2) with the time required to upload the
first expert. Subsequent experts are then processed sequen-
tially, ensuring concurrent expert computation and upload,
reducing the perceived expert loading time.

Supporting larger batches. ES-MoE differs from other
GPU-based schemes (e.g., Tutel) in that it does nor use
batched matrix multiplication. This is due to the incom-
patibility of expert-wise offloading with batched matrix
multiplication, which requires all experts to be loaded into
GPU memory. Interestingly, not using batched matrix mul-
tiplication brings a significant benefit in reducing the GPU
memory footprint. Instead of creating a large dispatch mask
required for the batched matrix multiplication, ES-MoE se-
quentially assigns tokens to the target expert based on the
gating network decision, saving memory substantially.

The GPU memory saved by this sequential approach allows
for larger batch sizes, which results in improved throughput.
For example, when training MoE-L, this approach allows
ES-MoE to handle 8 x larger microbatches, which translates
into 3.1 x throughput improvements (Table 3).

Comparing memory-saving techniques, we can compare ES-
MoE’s sequential approach with the sparse batched matrix
multiplication introduced by MegaBlocks (Gale et al., 2022).
MegaBlocks reduces the memory required for the dispatch
mask and improves throughput by eliminating zero padding.
MegaBlocks particularly becomes efficient as the number of
experts increases (i.e., the batched matrices become sparser).
However, MegaBlocks is only useful when the GPU mem-
ory is abundant since it requires all experts to be loaded into
GPU memory for batched matrix multiplication. In contrast,
ES-MoE’s sequential approach doesn’t require all experts
to be loaded into GPU memory at the same time, allowing
training of larger batches.

Expert-wise CPU-based optimization. Due to the large
memory footprint of optimizer states, the use of a CPU-
based optimizer is inevitable. However, the CPU-based
optimizer is extremely slower compared to a GPU-based

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

- GPUO
5 o) = | GPU1
g B I — |
2; g % | | | | GPU 2
2| B "Eo | GPU3
i el | | B

Tokens GPU Memory Assigned Tokens ~ Zero-padding

(a) Traditional MoE training (static expert placement)

— GPUO
B =
| B B g
=]) ° GPU1
| B RS P)
LB e -3 lEa
B o]
s B [esH-§ el
4 [E6 -3 [[EZ GPU3
B MM m—
Tokens CPU Memory GPU Memory Assigned Tokens

(b) ES-MoE (dynamic expert placement)

Figure 3: Example of training a MoE model with 4 GPUs and 8 experts. EO to E7 indicates separate experts in the same
layer. Dynamic expert placement of ES-MoE eliminates the need for zero padding, achieving high efficiency.

optimizer (e.g., 31x slower with Adam). On top of this,
existing frameworks apply optimizer at the granularity of
the entire model (Hwang et al., 2022; Lepikhin et al., 2020)
or the entire layer (Pudipeddi et al., 2020). As the number of
experts in MoE-based models grows, the processing time of
CPU-based optimization increases, resulting in GPU stalls.

To address the challenge, ES-MoE introduces expert-wise
CPU-based optimization, which enables concurrent CPU
optimization and GPU computation. ES-MoE runs the op-
timizer at the granularity of individual experts—ES-MoE
initiates the optimizer for each expert as soon as each expert
completes its backward pass (Figure 2), instead of waiting
for the entire layer to complete the backward pass. This is
especially useful for models with many layers and experts
since the optimization of layers close to the output can be
hidden by the GPU’s processing of other layers.

Note this is different from delayed update used in ZeRO-
Offload (Ren et al., 2021), where the parameter update is
delayed to overlap CPU optimizations with the next iteration.
Although delayed update hides the latency of CPU-based
optimization, it introduces “staleness”, affecting final model
accuracy (Dai et al., 2018). In contrast, ES-MoE performs
updates at the granularity of the expert without introducing
staleness and maintains the original model accuracy.

Offloading experts to SSD. Although CPU RAM is ex-
pandable, this expandability does not apply to cloud envi-
ronments, where most researchers train their models. Cloud
providers offer only predetermined sets of GPU, CPU, and
RAM configurations for each type of virtual machine in-
stance. For example, AWS instance type p3.4xlarge
offers four V100 GPUs, but only provides 244 GiB of CPU
RAM. To access larger amounts of RAM, researchers must
opt for more expensive higher-tier instances, resulting in in-
creased costs. Instead, cloud providers offer highly scalable
storage solutions, such as AWS Elastic File System (EFS),
which can scale almost without limit.

To exploit highly scalable storage, ES-MoE extends its of-
floading strategy to include fast storage devices, such as
SSDs, allowing it to scale beyond the CPU memory capac-
ity. To enable this, ES-MoE uses a virtual memory (VM)-

like method with prefetching; it maintains a limited set of
experts in CPU memory, and evicts them using the Least
Recently Used (LRU) cache policy. The key to this system
is the prefetching of experts using the predictable sequence
of forward and backward passes in training. This enables
efficient expert handling between CPU memory and storage
without bottlenecks and is superior to using naive VM for
two reasons: First, the naive approach lacks application-
level knowledge and can fetch the next expert only after a
page fault, which may stall the training. Second, it allows
more efficient data transfers, as ES-MoE prefetches experts
onto DMA-able non-pageable (pinned) memory area. When
using a naive VM approach, experts must be copied from
the pageable memory to the pinned memory.

4.2 Dynamic Expert Placement on GPUs

Existing work on training MoE suffers from load imbalance
across GPUs that arise from the skewed distribution of to-
kens across experts (Figure 3(a)). This is because experts
are fixed on the GPU memory, whereas the distribution of
tokens changes over time. However, in ES-MoE, because
experts are loaded on the GPUs on demand and each GPU
processes multiple experts sequentially, the placement of
experts can be adapted to the distribution of tokens on a
per-batch basis such that the aggregate load on a GPU is
balanced, as shown in Figure 3(b). Our dynamic expert
placement effectively decouples the load-balancing decision
from the token routing decision.

We now explain how ES-MoE decides the placement of
n experts on k GPUs, where n is often much greater than
k. Distributing experts across GPUs to balance the token
load is similar to minimum makespan scheduling (Vazi-
rani, 2001) whose goal is to minimize the finishing time
of the last task. This is known as a strong NP-hard prob-
lem (Garey, 1997). To ensure fast expert upload and token
transfer, we require an approximate solution. We adopt
a greedy scheduling algorithm from (Graham, 1969) that
gives a %—approximation for the problem. This algorithm
sorts the experts by the expert processing times, modeled
as the maximum of the expert upload time plus the expert
processing time determined by the number of tokens as-

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

signed. It then assigns each expert to the group with the
lowest accumulated processing times.

This algorithm runs efficiently on the CPU in a short time (<
2.69 us). Considering that expert computation and upload
take a few milliseconds, running the expert placement algo-
rithm does not block the training process. The complexity
of the algorithm is O (m * logn +m xlogm), where m is the
number of experts and n is the number of GPUs. However,
in most cases, n << m and m is at most hundreds, so the
actual runtime of this algorithm is trivial.

4.3 Adaptive Offloading

This section introduces additional optimizations regarding
expert offloading. While the CPU offloading and pipelined
expert processing are useful in scaling MoE models, they
do not provide performance benefits when training smaller
models that fit within the aggregate GPU memory and/or
when the number of tokens allocated to each expert is so
small that its computation time is too short to hide the delay
of uploading another expert. To automatically attain the best
performance in any setting, ES-MoE introduces adaptive
offloading, in which the degree of offloading is determined
based on the number of experts per GPU and the maximum
number of experts a GPU can accommodate in its memory.

GPU only. In the limited scenario where all expert param-
eters and optimizer states fit within the GPU memory, ES-
MOoE operates with all experts kept within the GPU memory,
achieving training throughput gain from the zero-padding
elimination. As ES-MoE does not offload experts, we cannot
obtain benefits coming from the dynamic expert placement,
thus the load across GPUs may vary as in other baselines.
However, ES-MOoE still outperforms other baselines as it
saves GPU memory by avoiding creating large dispatch
masks and allows training with larger batches, which con-
tributes to higher GPU utilization.

Offload with expert pinning. As the number of experts
increases, expert loading time relative to the processing time
also increases, potentially causing GPU stalls. To mitigate
this, ES-MoE pins a few heavily used experts on each GPU.
Pinning experts allows greater time to dynamically load
other experts and reduces the number of expert I/O, thus
improving the GPU utilization. The token load of an expert
does not vary much from one iteration to the next in the
training phase. Thus, ES-MoE pins the top n, experts to
each GPU from the previous iteration and use dynamic
placement for remaining experts. We empirically set n,, as
25% of the number of experts in each GPU.

5 Evaluation

We evaluate ES-MOoE against several state-of-the-art training
frameworks, including a generic CPU offloading framework

and and those optimized for training MoE-based models.
Our main findings are as follows:

e ES-MOoE shows excellent scalability with an increasing
number of experts and model size, allowing training of 64-
expert MoE-L with only 4 GPUs, while all other frame-
works suffer from OOM.

e ES-MOoE enhances training throughput up to 17.5x com-
pared to the framework that supports offloading and
2.13x compared to existing frameworks optimized for
training MoE models, all while preserving mathematical
equivalence to original training semantics.

Implementation. ES-MoE is implemented on top of the
Fairseq framework (Ott et al., 2019). For CPU-based opti-
mization, we adopt the efficient CPU Adam optimizer by
DeepSpeed (Microsoft, 2023). We implement ES-MoE with
3.3k lines of Python and 3.0k lines of C++ code.

Setup. We conduct our experiment on a GPU node with four
NVIDIA A100 with 40 GB of GPU memory and an AMD
EPYC 7543 processor (32 cores) and 512 GiB DDR4 CPU
memory. The node uses PCle 4.0 for CPU-GPU communica-
tion and NVLink (600 GB/s) for GPU-GPU communication,
enabling efficient token exchange between GPUs.

Baselines. We compare ES-MoE with frameworks opti-
mized for training MoE-based models, including Fairseq’s
Gshard (Lepikhin et al., 2020) and Tutel (Hwang et al.,
2022). In addition, to compare with a CPU offloading
scheme, we use a modified version of ZeRO-Offload (Ren
et al., 2021). The original ZeRO-Offload, which offloads
parameters layer by layer, fails to handle a large num-
ber of experts causing OOM. Thus, we extend it to sup-
port expert-wise offloading and name this version Zero-
Offload®. For all frameworks, we enable activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).

Models. We evaluate ES-MoE using GPT-derived Mixture-
of-Experts (MoE) language models, MoE-S, MoE-M, MoE-
L, and MoE-XL introduced in Gale et al. (2022). We provide
details of the models, including their hyperparameters in
Appendix A.1. We train the models using the WikiText-103
dataset with a vocabulary size of 51,200. We employ the
top-1 gating mechanism that directs tokens to the top-ranked
expert. We incorporate the imbalance loss technique from
Fedus et al. (2022), with a coefficient of 0.01, to align with
previous research (Fedus et al., 2022; Rajbhandari et al.,
2022; Lepikhin et al., 2020). In line with standard prac-
tices, we apply mixed precision training (Micikevicius et al.,
2017), using 16-bit (fp16) for parameters and 32-bit (fp32)
for the optimizer state, enhancing numerical stability. We
maintain a per-device batch size of 32; for frameworks other
than ES-MoE, we employ smaller microbatches to prevent
OOMs during training and use gradient accumulation.

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

.. 10000
Training Throughput (words/s)

#Experts Model Param. Zero-Offload” FairSeq Tutel ES-MoE ><1°°°
MoE-S 521M 46321 82631 123152 163217 (3.52x) Emo
8 MoE-M 1.76B 18784 27772 57605 65352 (3.48x) § ﬂ l W
MoE-L 3.93B 8677.3 21542 25526 38173 (4.40x) -
ES-MoE ES-MoE of?l';adf Tutel FairSeq
MoE-S 974M 24469 60142 96314 158904 (6.49x) (/418 50)
16 MoE-M 3.37B 6987.7 23705 43480 63150 (9.04x) (2) MoE-M
MoE-L 7.56B 46744 OOM OOM 20247 (4.33X) ;000
MoE-S 1.88B 12847 47088 76776 148673 (11.6x) g
32 MoE-M 6.60B 3987.3 17252 21587 42946 (10.8x) &
MoE-L 14.8B 21669 OOM OOM 10217 (4.72x) n
MoE-S 3.70B 6702.8 31644 55124 117150 (17.5x) 3 ﬂ I
64 MoE-M 13.0B 22257 OOM OOM 12623 (5.67x) v MosozngOdzﬂ r——
MoE-L 29.3B OOM OOM OOM 1240.8 (NaN) (w/ 478 55D) oa

(b) MoE-L
Table 1: Training throughput (words/s) evaluated on multiple MoE models. Numbers
in parentheses show improvement over Zero-Offload”. ES-MOoE enables training large
MoE models and a large number of experts increases without OOM, while GPU-only
baselines (FairSeq and Tutel) suffer from OOM at scale. Bold indicates the best result

Figure 4: ES-MoE is highly scal-
able, accommodating up to 5Xx
(67 x with SSD) more experts com-

for each configuration.

pared to other frameworks.

5.1 Scalability and Performance Dataset SST-2 MNLI BoolQ
Table 1 shows the training throughput of each framework as Zero-shot accuracy ~ 51.6% 49.3% 60.9%
we increase the number of experts for MoE-based models. Fine-tuned accuracy ~ 88% 782% 68.5%

For each framework, we use the microbatch size that maxi-
mizes its own throughput. Frameworks that rely solely on
GPU memory, such as FairSeq, Tutel, and MegaBlocks, fail
to complete due to out-of-memory (OOM) as we increase
the model size. FairSeq and Tutel struggle to train MoE-L
models with 16 or more experts, even with the smallest
microbatch of one. Zero-Offload” encounters OOM when
the memory usage exceeds the CPU memory capacity; the
512 GiB RAM is insufficient for training MoE-L models
with 64 or more experts. In contrast, ES-MoE efficiently
scales to accommodate large models by offloading experts to
host CPU memory and storage (SSD), successfully training
29 B-parameter MoE-L with only 4 GPUs.

The result demonstrates that ES-MoE delivers a superior
training throughput in all cases, from models of 0.5B to
58B parameters. It outperforms Zero-Offload” by up to
11.6x and MoE-specialized frameworks by up to 3.16x.
The significant performance benefit comes from its ability
to handle larger batch sizes, the pipelined offloading design,
and the elimination of extra computation from zero-padding,
resulting in the highest training throughput across a wide-
range of scenarios, as detailed in §5.2.

LLM fine-tuning with 4 GPUs. Table 2 shows the fine-
tuned result of a pre-trained Fairseq-MoE-15B model
on three different datasets, SST-2 (Socher et al., 2013),

Table 2: Fine-tuned results of pre-trained Fairseq-MoE-15B
model achieved in only 6.5 hours with 4 GPUs.

MNLI (Williams et al., 2017), and BoolQ (Williams et al.,
2017), trained for 100 M tokens without freezing layers.
Fine-tuning the model on existing systems requires at least
400 GB of GPU memory and 64 GPUs (Ott et al., 2019).
ES-MOoE, on the other hand, allows fine-tuning the same
model using only 4 GPUs in about 6.5 hours, without com-
promising model accuracy, unlike low-rank approximation
(e.g., LoRA (Huet al., 2021)) that reduces memory footprint
at the expense of accuracy.

Maximum supported model size. We evaluate the scalabil-
ity of each framework by comparing the maximum number
of experts each can handle with 4 GPUs. Figure 4 shows
the result for MoE-M and MoE-L models. ES-MoE demon-
strates exceptional scalability, surpassing all baselines by
supporting up to 5x more experts and 4.78 x larger model
with host memory. The result shows that ES-MoE’s scalabil-
ity is not limited to the GPU memory, but can accommodate
larger MoE models as much as host memory and storage
permits. With 4 TB of SSD, ES-MoE can scale up to 67 x
more experts (63 x larger number of parameters) compared
to the baselines. In contrast, FairSeq and Tutel, are con-
strained by GPU memory and they can train up to only 12

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

—e—ZeRO-Offload® —e— Fairseq --©--Tutel —e— ES-MoE |

[EGPUL mGPU2 WGPU3 mGPU4| [DGPU1 BGPU2 MGPU3 MGPU4

'g 70000
£ 60000
50000
40000
30000
20000
10000

0 4 T T T T T T T 1
0 4 8 12 16 20 24 28 32

Microbatch Size

Throughput (word

Figure 5: Training throughput of MoE-M with 16 experts
while varying the microbatch size. ES-MoE achieves the
best training throughput by supporting larger microbatches.

experts (5.7 M params) with MoE-L. They rely on batched
matrix multiplication, which requires creating large dispatch
masks. The existence of zero-padding even increases the
size of the mask, exacerbating the problem.

5.2 Component-wise Benefit

All three design components considerably benefit perfor-
mance. We analyze the benefit of each.

Benefit of expert-wise processing. The expert-wise pro-
cessing effectively reduces GPU memory usage, allowing
ES-MOoE to handle larger microbatches and makes the GPU
run more efficiently. As shown in Figure 5, ES-MoE accom-
modates 2.67x larger batches than those manageable by
other frameworks, allowing it to perform up to 5.91 x faster
compared to Zero-Offload”. Because Zero-Offload” con-
stantly offloads experts to CPU memory, it introduces signif-
icant overhead and suffers from limited training throughput.
It also struggles to handle larger microbatches due to inef-
ficiencies associated with zero padding, which can take up
to 24%. In contrast, ES-MoE stands out by enabling the
training of much larger microbatches, up to 32, achieving
superior training throughput. Note that adjusting the size of
the microbatch does not impact model accuracy.

Next, we quantify the benefit of our pipelined expert pro-
cessing, which enables concurrent CPU optimization and
GPU computation. This leads to shorter iteration times in
all cases where the experts are offloaded. Compared to
ES-MoE without pipelined expert optimization, ES-MoE
achieves up to 63.0% higher throughput on MoE-M with 32
experts, resulting from 61.1% higher GPU utilization.

Benefit of dynamic expert placement. ES-MoE’s dynamic
expert placement effectively distributes the workload across
GPUs, significantly reducing token imbalance. To demon-
strate this, we compare the number of tokens assigned to
each GPU when training the MoE-M model with 64 experts.
As shown in Figure 6(a), FairSeq (and other GPU-based
baselines as well) shows a significant discrepancy reaching
102% difference in the number of tokens assigned between

2 3k 2 40k

) & 15%
52 g 30

Q 102% 0-20

2 2

2 210

2 2 o

‘s Layer 0 " Layer 12 "Layer23 ‘G Layer O " Layer 12" Layer 23
E (First Layer) (Last Layer) (First Layer) (Last Layer)

(a) FairSeq (E=64, b=2) (b) ES-MoE (E=64, b=32)
Figure 6: The number of tokens assigned to each GPU, eval-
uated on MoE-M. F and b indicate the number of experts
and the microbatch size respectively. Only the first, middle,
and last layers are shown out of 24 layers in the model.

ZeRO-Offload®
————— ES-MoE (w/o Adaptive Offloding)

—u— Tutel
ES-MoE

Throughput
(k word/sec)

Offload (cPu)

0 16(3.48) 32(668) 48(088) 64(138) 80(168) 96(198)
Number of Experts (Number of Parameters)

Figure 7: Throughput of ES-MoE measured with MoE-M
while varying the number of experts.

the most and least burdened GPUs. In contrast, ES-MoE’s
dynamic expert placement enables balancing the load across
GPUs, reducing the gap down to 15%, as shown in Fig-
ure 6(b). Note that the number of tokens differs in two
figures because FairSeq requires the use of the smaller mi-
crobatch size due to memory constraints, while we use a
large microbatch size of 32 for ES-MoE.

Benefit of adaptive offloading. ES-MoE offloads experts
only when the aggregate GPU memory does not allow it
to load the entire model. It has three modes of operation:
1) non-offload, when the GPUs aggregate capacity allows
it to load the entire model; 2) offload to CPU memory;
3) offload to CPU memory and SSD. Figure 7 shows the
throughput comparison as the number of experts increases.
We compare the performance of ES-MoE, Tutel, and ES-
MoE without adaptive offload. The model we use is MoE-
M. Up to 32 experts (6.6 B parameters), ES-MoE trains the
model without offloading. As ES-MOoE is able to use larger
microbatch size and eliminate zero padding, its performance
is better than Tutel. It is also better than ES-MoE without
adaptive offload because it does not unnecessarily offload
the experts to the CPU and incurs communication overhead.
The other two baselines do not scale beyond 32 experts due
to the memory limit. In contrast, ES-MoE scales beyond
the aggregate GPU memory capacity. Additionally, the
strategy of expert pinning proves to be effective; pinning
25% of experts in an MoE-M model with 32 experts resulted
in a 22.8% improvement in throughput, compared to ES-
MoE without expert pinning (red dotted line). However,

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

Scheme Thpt. (Tokens/s)
ES-MoE 20,247

— Expert pinning (§4.3) 19,501 (-3.8%)
— Optimizer overlapping (§4.1) 17,943 (-8.7%)
— Larger batch size (§4.1) 5,959 (-301%)
— Zero-padding elimination (§4.2) 4,674 (-27.4%)

(=ZeRO-Offload®)

Table 3: Ablation study with MoE-L with 16 experts. Re-
sults are cumulative across rows.

as the number of tokens for an expert decreases, it reduces
computational efficiency. When the number of experts is
above 104, ES-MOoE starts to use the SSD offloading experts.

Ablation study. We report the results of an ablation study
on the MoE-L model with 16 experts in Table 3. We evaluate
the impact of four techniques: larger batch size, optimizer
overlap, zero-padding elimination, and expert pinning. By
eliminating each technique sequentially, we evaluate their
individual contributions to training throughput. Note that
our ES-MoE and ZeRO-Offload” variant includes upload
overlapping. The results show that all design components
significantly benefit performance, and increasing the batch
size has the most significant effect, achieving 3.01x im-
provement.

6 Conclusion

This paper addresses the challenges of training large
Mixture-of-Experts models, under the constraints of limited
GPU memory. By offloading expert parameters and opti-
mizer states to the host, ES-MoE supports scaling MoE mod-
els without additional GPUs. Its dynamic expert placement
ensures that the load is spread uniformly across GPUs with-
out introducing zero-padding, solving the straggler problem
and further saving the memory usage.

Our extensive evaluation demonstrates ES-MoE’s superior
scalability and throughput. It successfully accommodates
up to 67x more experts than conventional methods and
achieves remarkable throughput improvements. ES-MoE
outperforms existing offloading frameworks by up to 17.5x
and shows up to 2.13x gains over Tutel.

Acknowledgements

We thank the anonymous reviewers for providing helpful
feedback and suggestions to improve our work. This work
was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT)
(No.RS-2024-00398157) and Samsung Electronics.

Impact Statement

This work prioritizes batch-level parallelism over expert-
level parallelism and leverages CPU offload to achieve scal-
able training of large MoE-based models. We believe this
work will empower researchers from academia and small
organizations with the ability to train MoE-based LLMs
with a larger number of experts.

References

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project adam: Building an efficient and scalable deep
learning training system. In //th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
14), pp. 571-582, 2014.

Clark, A., De Las Casas, D., Guy, A., Mensch, A., Paganini,
M., Hoffmann, J., Damoc, B., Hechtman, B., Cai, T.,
Borgeaud, S., et al. Unified scaling laws for routed lan-
guage models. In International Conference on Machine
Learning, pp. 4057-4086. PMLR, 2022.

Dai, W., Zhou, Y., Dong, N., Zhang, H., and Xing, E. P. To-
ward understanding the impact of staleness in distributed
machine learning. arXiv preprint arXiv:1810.03264,
2018.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:
Efficient scaling of language models with mixture-of-
experts. In International Conference on Machine Learn-

ing, pp. 5547-5569. PMLR, 2022.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple

and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232-5270, 2022.

Gale, T., Narayanan, D., Young, C., and Zaharia, M.
Megablocks: Efficient sparse training with mixture-of-
experts. arXiv preprint arXiv:2211.15841, 2022.

Garey, M. R. Computers and intractability: A guide to the
theory of NP-Completeness. Fundamental, 1997.

Google Cloud. Understand quota, values, and system lim-
its. https://cloud.google.com/docs/quot
a/understand-limits, 2024. [Accessed 17-01-
2024].

Graham, R. L. Bounds on multiprocessing timing anomalies.
SIAM journal on Applied Mathematics, 17(2):416-429,
1969.

https://cloud.google.com/docs/quota/understand-limits
https://cloud.google.com/docs/quota/understand-limits

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

Griewank, A. and Walther, A. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or ad-
joint mode of computational differentiation. ACM Trans-
actions on Mathematical Software (TOMS), 26(1):19-45,
2000.

Harlap, A., Cui, H., Dai, W., Wei, J., Ganger, G. R., Gibbons,
P. B., Gibson, G. A., and Xing, E. P. Addressing the
straggler problem for iterative convergent parallel ml. In
Proceedings of the seventh ACM symposium on cloud
computing, pp. 98-111, 2016.

He, J., Zhai, J., Antunes, T., Wang, H., Luo, F,, Shi, S., and
Li, Q. Fastermoe: modeling and optimizing training of
large-scale dynamic pre-trained models. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 120-134, 2022.

Holmes, A. and Gardizy, A. Al Developers Stymied by
Server Shortage at AWS, Microsoft, Google. The Infor-
mation, 2023. URL https://www.theinformati
on.com/articles/ai-developers—-stymied
-by-server-shortage-at-aws-microsoft
—google.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, C.-C., Jin, G., and Li, J. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swap-
ping. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1341-1355, 2020.

Huang, H., Ardalani, N., Sun, A., Ke, L., Lee, H.-H. S.,
Sridhar, A., Bhosale, S., Wu, C.-]J., and Lee, B. Towards
moe deployment: Mitigating inefficiencies in mixture-of-
expert (moe) inference. arXiv preprint arXiv:2303.06182,
2023.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline

parallelism. Advances in neural information processing
systems, 32, 2019.

Hwang, C., Cui, W., Xiong, Y., Yang, Z., Liu, Z., Hu,
H., Wang, Z., Salas, R., Jose, J., Ram, P, et al. Tu-
tel: Adaptive mixture-of-experts at scale. arXiv preprint
arXiv:2206.03382, 2022.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. L., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

10

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Koishekenov, Y., Berard, A., and Nikoulina, V. Memory-
efficient nllb-200: Language-specific expert pruning of a
massively multilingual machine translation model. arXiv
preprint arXiv:2212.09811, 2022.

Kuperman, L. How to Solve the GPU Shortage Problem
With Automation. https://devops.com/how—t
o-solve-the-gpu-shortage-problem-wit
h—-automation/, 2023. [Accessed 17-01-2024].

Lepikhin, D., Lee, H., Xu, Y., Chen, D, Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Liu, J., Wang, J. H., and Jiang, Y. Janus: A unified dis-
tributed training framework for sparse mixture-of-experts
models. In Proceedings of the ACM SIGCOMM 2023
Conference, pp. 486—498, 2023.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Microsoft. Deepspeed, 2023. https://github.com
/microsoft/DeepSpeed.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, ex-
tensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Pudipeddi, B., Mesmakhosroshahi, M., Xi, J., and Bharad-
waj, S. Training large neural networks with constant
memory using a new execution algorithm. arXiv preprint
arXiv:2002.05645, 2020.

Puigcerver, J., Riquelme, C., Mustafa, B., and Houlsby, N.
From sparse to soft mixtures of experts. arXiv preprint
arXiv:2308.00951, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp- 1-16. IEEE, 2020.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and
He, Y. Zero-infinity: Breaking the gpu memory wall for
extreme scale deep learning. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-14, 2021.

https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://devops.com/how-to-solve-the-gpu-shortage-problem-with-automation/
https://devops.com/how-to-solve-the-gpu-shortage-problem-with-automation/
https://devops.com/how-to-solve-the-gpu-shortage-problem-with-automation/
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi,
R. Y, Awan, A. A, Rasley, J., and He, Y. Deepspeed-moe:
Advancing mixture-of-experts inference and training to
power next-generation ai scale. In International Confer-
ence on Machine Learning, pp. 18332-18346. PMLR,
2022.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload:
Democratizing billion-scale model training. In USENIX
Annual Technical Conference, pp. 551-564, 2021.

Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and
Keckler, S. W. vdnn: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In
2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1-13. IEEE, 2016.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M.,
Jenatton, R., Susano Pinto, A., Keysers, D., and Houlsby,
N. Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems, 34:
8583-8595, 2021.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani,
A., Koanantakool, P., Hawkins, P., Lee, H., Hong, M.,
Young, C., et al. Mesh-tensorflow: Deep learning for
supercomputers. arXiv preprint arXiv:1811.02084, 2018.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C.D.,Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631-1642, 2013.

Vazirani, V. V. Approximation algorithms, volume 1.
Springer, 2001.

Wang, L., Ye, J., Zhao, Y., Wu, W.,, Li, A., Song, S. L.,
Xu, Z., and Kraska, T. Superneurons: Dynamic gpu
memory management for training deep neural networks.
In Proceedings of the 23rd ACM SIGPLAN symposium
on principles and practice of parallel programming, pp.
41-53,2018.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Zhou, Y., Lei, T.,, Liu, H., Du, N., Huang, Y., Zhao, V.,
Dai, A. M., Le, Q. V., Laudon, J., et al. Mixture-of-
experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103-7114, 2022.

11

Zoph, B., Bello, 1., Kumar, S., Du, N., Huang, Y., Dean, J.,
Shazeer, N., and Fedus, W. Designing effective sparse
expert models. arXiv preprint arXiv:2202.08906, 2022.

Scaling Beyond the GPU Memory Limit for Large Mixture-of-Experts Model Training

A Evaluation Details

A.1 Models

Model Name Nlayers dmodel dhead Tlheads

MOoE-S 12 768 3072 12
MoE-M 24 1024 4096 16
MoE-L 24 1536 6144 16
MoE-XL 24 1536 8192 24

Table 4: Model configurations for GPT-S, M, L, and XL

To create an MoE model based on GPT models, we follow the approach used by Switch (Fedus et al., 2022), which converts
the Feed-Forward Network (FFN) in the Transformer architecture into experts and creates multiple copies as the number of
experts increases.

To build MoE models of various sizes, we adopt hyperparameter configurations from GPT-3 models. Table 4 shows
the details, where njayers, @model> dheads Theads T€Spectively indicate the number of decoder layers, embedding dimension,
feedforward layer embedding dimension, and the number of attention heads.

A.2 Additional Evaluations

#Exp. Params. Zero-Offload”® ES-MoE # GPUs

Metrics Fairseq ES-MoE 16 1338 1% 59% 3
Processed Tokens 1B tokens 1B tokens 24 19.8B 40% 57% 16
Training Loss 3.353 3.344 32 23.1B 32% 39% 16
Valid Loss 5.149 5.144 40 32.7B 28% 33% 16
Training Duration (hrs) 9.47 6.90 48 39.1B 18% 31% 32

Table 5: ES-MoE accelerates the training of the MoE-L Table 6: GPU utilization while training a MoE-L model with
model, achieving the same loss 37% more quickly. varying numbers of experts.

Case Study: Pretraining. In Table 5, we show a comparative analysis of end-to-end training time and training loss
for MoE-L with 8 experts and a batch size of 128. Although both implementations are mathematically equivalent and
demonstrate almost identical training and validation losses, a notable difference is observed in training efficiency. When
compared to Fairseq (Lepikhin et al., 2020), ES-MoE completes the training process 37% more quickly, highlighting its
enhanced efficiency in model training.

Communication and computation overhead. In Table 6, we present an analysis of ES-MoE’s offloading overhead by
examining the effective GPU utilization percentage. Across various configurations, ES-MoE outperforms Zero-Offload” in
effective GPU utilization, coming from pipelined expert scheduling and dynamic expert placement. The effective GPU
utilization decreases with the growth in the number of experts for both Zero-Offload® and ES-MoE. This trend results from
the fixed batch size, causing a reduction in assigned tokens per expert with an increased expert count. Consequently, the
overlapping of computation and communication is diminished, and the required CPU computation escalates. Despite this
limitation, ES-MoE demonstrates a significant capability to train large MoE models that conventionally require up to 32
GPUs, using even a single GPU. This flexibility in resource utilization may have broader implications, overshadowing the
effects of offloading overhead.

12

